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Abstract

Linear programming (LP) is the most popular among optimization techniques used
in production, industry, planning and in other areas. Simplex method for solving LP
problems has been in use for more than 70 years. Despite the fact that pathological
examples can be created in which simplex algorithm requires exponential number
of iterations, in practice it has been found very efficient. In this research, we aim
to devise an improvised algorithm for the simplex method so as to reach optimality
in fewer iterations. In a feasible region with differentiable surface, optimal solution
will correspond to a point in which gradient of the objective function will coincide
with the normal of the surface. LP theory asserts that if an LP has an optimal
solution there is one at a vertex of the polyhedron. Unfortunately vertices of the
polyhedron are in the intersection of n or more hyperplanes and therefore are not
differentiable. Moreover, LP theory asserts that there is an optimal vertex at which
gradient of the objective function will lie in the cone determined by normals of
hyperplanes intersection of which is the vertex itself. Unfortunately finding the right
combination of the hyperplanes is a combinatorial problem. Therefore, we may think
of starting simplex iterations from a point where gradient of the objective function
makes minimum angles with the normals of hyperplanes determining the point. It
may be noted here that such a point may well be beyond feasible region, and we
may need iterations to reach feasibility. We would like to carry out simulation of
this algorithm and compare its performance with the existing simplex algorithm.
Furthermore, we have noted two other issues of LP problem. Firstly, we show that
revenue maximizing and profit maximizing LP problems are equivalent. Secondly,
LP duality is robust in the sense that even if non-negativity constraints are included
into the main constraints duality results hold.

Keywords: Linear Programming; Simplex Method; Basic Feasible Solution; Feasi-
bility; Infeasibility; Duality
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Chapter 1

Introduction

1.1 Motivation for Linear Programming

Human society has always been in short of resources to meet the growing demand.
This is true not only for underdeveloped or developing countries even the most
affluent societies like to satisfy demand using as less resources as possible. In the
second world war USA had to support allied forces with resources that had to
be transported across the Atlantic. They thought about ways and means to do
that. In fact linear Programming techniques got developed around the time. In
daily life we want to produce goods using minimum resources,in minimum time
or given resources we would like to maximize profit by producing different goods.
Finding an improved solution to a problem in a mathematical way is known as
optimization. In practically every aspect of decision-making, optimization models
are employed widely. From maximizing the profit in businesses, minimizing the labor
costs in industries to optimal planning for radiation therapy in cancer treatments,
mathematical optimization plays a significant role. In simple words, given a scenario,
they are used to find the best solution from various alternatives. But of course, profit
of a business cannot be maximized infinitely because various costs such as production
costs, labor costs, cost of raw materials and others have to be considered. Some
required materials may not be available all seasons, laborers have limited working
hours per day, deadlines for certain products may need to be met, etc. Hence,
in mathematical terms, we need to optimize our outcome within a given set of
constraints. Mathematical optimization is widely needed in different industries.
So, it is necessary to find the best method to solve such problems accurately and
efficiently. This is why it is one of the most important research topics in operational
research. There are many types of optimization problems. In this thesis, we will
be focusing on solving problems with linear inequalities, which is known as linear
programming (LP).

1.2 Basics of Linear Programming

One of the founders of LP problems is Russian mathematician Leonid Kantorovich
who developed it in 1939, and it remained unknown to the western scientific com-
munity. In 1947, Dantzig was the first to publish the simplex algorithm, and in the
same year, John von Neumann devised the duality theory. Dantzig was tasked with
designing a mechanism for the Air Force to adopt in order to improve their planning
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process [7]. This led to his initial example of using linear programming to deter-
mine the best way to assign 70 persons to 70 tasks, demonstrating its utility. The
amount of processing power needed to evaluate all of the permutations in order to
choose the best assignment is enormous; the number of conceivable configurations
exceeds the number of particles in the cosmos. However, presenting the problem
as a linear program and using the Simplex algorithm to discover the best solution
takes only a few seconds. The linear programming theory minimizes the number
of possible optimal solutions that must be checked dramatically. Dantzig’s Simplex
algorithm [2] is one of the most popular methods to solving LP problems. It has
been utilized successfully in the optimization community for over 70 years. While
the simplex algorithm has proven to be quite efficient in practice, Klee and Minty [3]
and Zadeh [4] demonstrate that in the worst situation, it can take exponential time
for the simplex algorithm to run. Russian mathematician Khachiyan [6] and later,
Karmarkar [8], solved this problem by introducing polynomial time methods for
tackling LP problems.

Linear programming problems (LPP) are optimization problems where feasible re-
gions are defined by a set of linear inequalities usually including non-negativity
constraints and one needs to find out the maximum or minimum value of a linear
function known as objective function. Linear programming is the method of consid-
ering different inequalities relevant to a situation and calculating the best value in
those conditions. The following are the basic components of a linear programming
problem:

• Decision Variables: They are the variables in determining the outcome.
The solution depends on them. To solve any problem, the decision variables
must be identified first.

• Objective Function: This is the function to optimize. Usually objective is
to maximize profit or revenue or minimize associated costs.

• Constraints: They are the limitations or restrictions placed on the decision
variables. They typically set a limit on the value of the decision variables.

• Feasible Region: This is the set of all potential points that satisfy the con-
straints of an optimization problem. An optimal solution is a point in the
feasible region that produces the optimal value of the objective function. An
infeasible solution is any point outside the feasible region.

For a problem to be identified as a linear programming problem, it needs to fulfill
certain criteria. The characteristics of a linear programming problem are:

1. Constraint: Constraints must be in the form of linear inequalities that decision
variables must satisfy.

2. Objective Function: The objective function should be a linear function of the
concerned variables.

3. Linearity: The relationship between the variables in the function must be
linear. It means that the degree of the variables must be one.
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4. Non-negativity: Usually the values of the variables should be non-negative. In
most cases, the variables represent the amounts of some resource used or the
levels of a set of activities, hence this non-negativity requirement is necessary.
If at least one of the variables is negative or zero, then we can transform the
problem to a problem with only non-negative variables. This helps bring the
equations to a standard form.

1.3 An Example of Linear Programming

There are numerous approaches to solving linear programming problems, including
the graphical method, the simplex method, and the use of software such as R, open
solver, and others. One of the simplest ways is the graphical method. It is most
used when the LP problem has two decision variables. The set of inequalities is
subjected to constraints in this approach. The inequalities are then plotted on an
XY plane. After plotting all the inequalities in the XY plane, the region enclosed
by all the inequalities denote all the valid solutions to the problem. Thus this re-
gion is the feasible region of this LPP. So, our optimal solution lies in this region.
To understand this method better, let us solve a simple linear programming problem.

Example: Suppose we have a furniture store and we only sell chairs and tables.
It takes 8 hours to make a single chair and 18 hours to make a table. The cost of
making a chair is $50 and a table is $80. Our workers work 60 hours per week. We
can afford to spend $300 for costs per week. We have decided to sell the chairs for
$80 each and tables for $150 each. How many of each should we make so we can
maximize our profit?

Solution: Let us first translate this problem into a linear programming problem.
Let x be the number of chairs we will make and y be the number of tables. Creating
the linear inequalities based on the statements we get,

Objective function: 80x+ 150y = z
Constraints: 8x+ 18y ≤ 60

50x+ 80y ≤ 300
x, y ≥ 0

So, here 80x + 150y is the objective function to be maximized and is denoted
by Z. The coefficients 80 and 150 are known as the cost coefficients and x and
y are the decision variables to be determined. The conditions x ≥ 0, y ≥ 0 are
the non-negative restrictions. The solution to an optimization problem is always a
corner point or vertex on the bounded region represented by some linear inequalities.
Meaning, the solution will lie at the intersections (corner points) of the inequalities.
Let us look at the graphical representation of the given inequalities in a 2D space.
From the graph, we can see that the linear inequalities have formed a polygon
defined by the vertices (0,0), (0,3.33), (2.308,2.308) and (6,0). Since we cannot
produce fractional amount of furniture, we will be rounding down our solutions.
This is known as integer linear programming. So, the resulting vertices are (0,3),
(2,2) and (6,0). Using our max objective function, we find the values of our objective
function, denoted by Z. We find Z = 0 for solution (x,y) = (0,0), Z = 450 for (0,3),
Z = 460 for (2,2) and Z = 480 for (6,0) respectively. As 480 is the maximum value,
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Figure 1.1: Geometric representation of the linear inequalities

we can say our optimized solution is for (x,y) = (6,0). This means that we will be
able to maximize our profit if we make 6 chairs and 0 tables per week.
The above problem can be solved in a 2D space, where the linear inequalities form
a polygon. We can find the solution on the corner points of the polygon. But
when there are many variables, we can imagine the linear inequalities enclosing a
region in a multi-dimensional space. The bounded region can be thought of as a
polytope. A polytope is a geometric object with ”flat” sides in elementary geometry.
It is a three-dimensional polyhedron generalization of a shape in any number of
dimensions. In real life, linear programming problems include many variables and
many constraints and as such, solving it geometrically becomes impossible. For large
companies, the slightest mistake may cost them millions of dollars. Hence, it was of
utmost need to come up with a more feasible method to solving such LP problems.
Some popular algorithms that solve LP problems are the Simplex Method, Ellipsoid
Method, Interior Point Method and the Cutting Plane Method, each of which have
their own strengths and weaknesses. In this thesis we will be having a closer look
at the Simplex Method.

1.4 Research Problem

The Simplex method is a simple iterative process. In real life circumstances, linear
programming problems may end up in having large number of variables and con-
straints. Hence it takes a large number of iterations to solve those LP problems.
This can be very costly. An improvised simplex where optimality is reached in fewer
iterations can make the algorithm much more efficient.

1.5 Research Objectives

In a feasible region with differentiable surface, optimal solution corresponds to a
point in which gradient of the objective function coincides with the normal of the
surface. But in LP problems, the feasible region is a polytope, whose surface is not
differentiable in the intersections of the hyperplanes. So, we intend on starting the
simplex iterations from such a point where the gradient of the objective function
makes minimum angles with the normals of the hyperplanes determining the point.
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We would then like to carry out a simulation of this algorithm and compare its
performance against the usual simplex algorithm.

We have also tried to show the robustness of the duality theory of LP through some
examples. We have shown that even if we include the non-negativity constraints in
the main constraints, the conversion to its dual problem does not affect the results.

We have further shown that profit and revenue maximizing LP problems are equiva-
lent in the sense that profit maximizing solution simultaneously maximizes revenue
and vice versa.
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Chapter 2

Literature Review

The Simplex Method was introduced almost seven decades ago. It’s been a highly
efficient computational tool for tackling linear programming issues since then. For
many years, the approach has been the focus of significant research. However, there
are certain major aspects of its behavior that have yet to be clearly comprehended.
Studies are still being conducted on solving its limitations and increasing its effi-
ciency.

2.1 Introduction to Simplex Method

Leonid Kantorovich, a Russian mathematician who introduced linear programming
problems in 1939, Dantzig, who published the simplex approach in 1947, and John
von Neumann, who developed the theory of duality in the same year, are considered
the founders of this topic.
Since then, many individuals have contributed to the field of linear programming in
various ways, including theoretical developments, computational aspects, and explo-
ration of new applications of the subject. According to Bazaara et al. (2009) [15],
the simplex method of linear programming is universally acknowledged because of its
capacity to simulate critical and complicated management decision problems and its
ability to produce solutions in a fair period of time.

2.2 Steps of the Simplex Algorithm

The Simplex Method is one of the most powerful and widely used linear programming
algorithms. This strategy employs an iterative approach to reach the best possible
solution. In this procedure, we keep modifying the values of the basic variables until
the objective function reaches its maximum value.
We start our study of the simplex algorithm by stating that if there is an opti-
mal solution, there must also be an optimal extreme point. These extreme points
are defined in terms of basic solutions that are feasible. We improve these basic
solutions using the simplex method until they are optimal, or until we determine
that the optimal value is unbounded. Assume R is a feasible LPP region. If the
objective function has no maximum or minimum value, R is said to be unbounded.
The feasible region here stretches indefinitely in any direction. If R is bounded, the
objective function has a maximum and minimum value on R, with each occurring
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at a vertex or corner point of R. Here the feasible region is enclosed or bounded by
the system of linear inequalities.

Suppose, an SLE contains n variables and m equations where n ≥ m. A basic
solution for this system is obtained in the following way:

1. Set the n −m variables to a value of zero. These are the non-basic variables
(NBV).

2. Solve the system for the m variables that remain. These refer to the basic
variables (BV).

3. The basic solution is the resultant vector of the variables. A basic feasible
solution is a solution in which all variables have non-negative values.

The simplex method employs a very efficient technique. It does not compute the
objective function’s value at each location. It starts at the feasible region’s corner
point, where all of the basic variables are zero. Then it advances progressively from
one corner point to the next, increasing the objective function’s value at each stage.
The process is repeated until the optimal solution is discovered. Let us look at the
steps in details.

Step 1) Setting Up the Problem: The first step is to write the objective func-
tion, z and the inequality constraints from the given scenario. Because the simplex
approach is used to solve problems with a large number of variables, variables such
as x, y, z, etc. So we use symbols x1, x2, x3, ....xn and so on.

Step 2) Converting to Standard Form: The problem must be expressed in
standard form before the simplex algorithm may be used to solve it. All constraints
must be equations in standard form, and all variables must be non-negative. To
convert the linear inequalities of the constraints to equations, slack variables and
surplus variables are introduced.

1. For each constraint i of type (≤), a slack variable, si is added such that si is
non-negative. For example: 3x1 + 2x2 ≤ 5 will translate to 3x1 + 2x2 + si = 5
where si ≥ 0.

2. For each constraint i of type (≥), a surplus variable, si is subtracted such that
si is non-negative. For example: 3x1+2x2 ≥ 5 will translate to 3x1+2x2−si =
5 where si ≥ 0.

The objective function is then rewritten in the form,

−c1x1 − c2x2 − ...− cnxn + 0s1 + 0s2 + ...+ 0sm + z = 0

Step 3) Forming Initial Tableau: The simplex method is implemented by ex-
ecuting basic row operations on a matrix known as the simplex tableau. We may
express the problem in an augmented matrix called the initial simplex tableau now
that the inequalities have been transformed into equations. Each inequality con-
straint is represented by a separate row. In the simplex tableau, the non-negativity
constraints do not appear in the rows. The objective function is written on the
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bottom row.

Example: Suppose we are given the following maximizing LPP,

Objective function, max, Z = 10x1 + 20x2
Constraints, x1 + 2x2 ≤ 6

3x1 + 3x2 ≤ 12
x1, x2 ≥ 0

After following step 1 and 2, we get,

Objective function, −10x1 − 20x2 + 0s1 + 0s2 + z = 0
Constraints, x1 + 2x2 + s1 = 6

3x1 + 3x2 + s2 = 12
x1, x2 ≥ 0

Then the initial simplex tableau is shown in Table 2.1.

B Cb P x1 x2 s1 s2
s1 0 6 1 2 1 0
s2 0 12 3 3 0 1

1 0 -10 -20 0 0

Table 2.1: An example of initial simplex tableau

The B column indicates the basic variables. The Cb column contains the coefficients
of the basic variables in the objective function, z. The P column contains the right-
hand side of the constraint equations. We may also refer to this as the solution
column. The remaining columns represent the left-hand side of the constraint equa-
tions. The bottom row shows the objective function.
The basic solution for the initial tableau will be s1 = 6, s2 = 12, Z = 0.

Step 4) Identifying Pivot: After setting up the initial simplex tableau for an
LPP, the simplex method checks for optimality. It improves the current solution if
it is not optimal. We introduce a new basic variable into the solution to improve
the current solution. This new variable is known as the entering variable. This
means that one of the current basic variables must be replaced; otherwise, the basic
solution would contain too many variables. This leaving variable is known as the
departing variable or exiting variable. The variables for entering and leaving are
chosen as follows:

1. The most negative entry in the bottom row of the tableau corresponds to the
entering variable.

2. The leaving variable is determined by the ratio of the smallest non-negative
entry of the solution column with the column corresponding to the entering
variable.

3. The pivot element is the entry in the entering variable’s column or pivot column
and the exiting variable’s row.
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So, from Table 2.1, we can identify the entering variable as x2, since it has the most
negative value, -20. The column of x2 will be the pivot column or key column. So
then we find the ratios of the values of P column and x2 column. For the first row,
we get 6 ÷ 2 = 3. For the second row, we get 12 ÷ 3 = 4. So the minimum ratio,
3 is found in first row. Hence the first row is the departing variable’s row, s1 is the
departing variable. The entry in the key column and departing variable’s row is 2.
Therefore 2 is our pivot or key element of the current simplex tableau.
Q. Why do we pick the bottom-most row’s most negative entry?
Ans: The largest coefficient in the objective function is represented by the most
negative entry in the bottom row. As a result, this coefficient will have the greatest
impact on the objective function’s value. So in the above objective function, z =
10x1 + 20x2, it makes more sense that we increase x2 rather than x1.
Q. Why do we calculate ratios and why does the minimum ratio identify the leaving
variable row?
Ans: The pivot column identifies which variable would enter the basis and increase
z. In the example above, x2 will enter. But what value of x2 should we consider? If
we take x2 = 50, it violates the first condition, x1 + 2x2 ≤ 6. If we take x2 = 6, then
it violates the second condition, 3x1 + 3x2 ≤ 12. Hence when we take the smallest
ratio 6÷ 2 = 3, which is the maximum value x2 can be without breaking any of the
given constraints.
Q. Why do we identify the pivot element?
Ans: The simplex approach improves the value of the objective function by starting
with a corner point and then proceeding to the next corner point. Changing the
number of units in the variables improves the objective function’s value. We can
increase the number of units in one variable while decreasing the number of units in
another. This process is allowed through pivoting by the pivot element.

Step 5) Pivoting: We use the Gauss-Jordan Elimination method to find the im-
proved solution in the column that contains the pivot. This is referred to as pivoting.
We put 1 in the location of the pivot element by dividing the whole row with the
pivot element. We make all other entries of the pivot column 0 using row operations.
We see the transformation of Table 2.1 after pivoting in Table 2.2.

B Cb P x1 x2 s1 s2
x2 20 3 1/2 1 1/2 0
s2 0 3 3/2 0 -3/2 1

1 60 0 0 10 0

Table 2.2: After first iteration

After pivoting, step 3 is repeated until no negative entries are found at the bottom
row.

Step 6) Determining Solution: When no negative entries are found in the bottom
row, the iteration stops. It indicates that we have reached our optimal solution. In
Table 2.2, there are no negative entries so this is our final table. From here we get
the basis solution x2 = 3, s2 = 3 and
Z = (10× 0) + (20× 3) + (0× 0) + (0× 3) = 60.
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So Z=60 is our maximized solution. The slack variable s2 indicates that 3 units
have remained unused.
Q. Why do we stop when the bottom-most row no longer contains negative entries?
Ans: The bottom row of Table 2.2 tells us the answer. The corresponding equation
of the bottom row is,

0x1 + 0x2 + 10s1 + 0s2 + Z = 60
or Z = 60− 10s1

Since all the variables are non-negative, Z can achieve a maximum value of 60 while
s1 remains zero.

2.3 A Problem Solved by Simplex Method

Let us now solve a real life LP problem using the simplex method. The following
problem has been collected from the paper by Anggoro et al. (2019) [16].

Problem

In Sukarame, Bandar Lampung, a study was conducted at the Star Bakery home
industry. Here, three sorts of bread are made. Flavored bread, mattress bread, and
fresh bread are the three types. Six different types of flavored bread are available:
chocolate, chocolate cheese, cheese milk, blueberry, strawberry, and pineapple. The
cost of this flavored bread is Rp.2,500 per package. The Mattress bread combines
three distinct flavors inside a single loaf. Chocolate, chocolate cheese, cheese milk,
strawberry, blueberry, and pineapple flavors are all present. The cost of each mat-
tress bread box is Rp.6,000. Fresh Bread does not come in a variety of flavors. 12
pieces of fresh bread are contained in one package of fresh bread. Each package of
freshly baked bread costs Rp.5,000.

Product Requirements:

An interview was conducted by the researchers [16] with the owners of the Bintang
Bakery to know about the product requirements. The materials required to produce
each of the types of bread in a one-month period is shown in Table 2.3.

Available Resources:

The availability of products for a one-month period is shown in Table 2.4. For one
month, the capacity of the engine’s operating hour is less than 475,200 seconds. For
one month, labor hour capacity is less than 748,800 seconds.

If the current output of each bread is 3640 packs, 1300 packs, and 520 packs, how
much more do we need to manufacture to optimize profit?
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SL no. Production Factor Flavored Bread Mattress Bread Fresh Bread Unit
1 Raw Materials

Flour 28 100 250 g
Sugar 7 25 62 g
Developer 1 9 4 g
Softener 1 6 2 g
Yellow Butter 5 20 50 g
Salt 1 3 g
Milk Powder 1 3 2 g
Liquid Milk 5 20 g
BOS Butter 5 20 g
Egg 4 15 25 g
Filling 14 20 g
White butter 5 g
Calcium 2 g

2 Production machine 32 132 336 seconds
3 Labour Hours 65 209 450 seconds

Table 2.3: Production Requirements in one period (one month).
Source: Bintang Bakery home industry, 2018

SL no. Production Factor Availability Unit
1 Raw Materials

Flour 400 kg
Sugar 250 kg
Developer 90 kg
Softener 40 kg
Yellow Butter 90 kg
Salt 10 kg
Milk Powder 60 kg
Liquid Milk 60 kg
BOS Butter 90 kg
Egg 70 kg
Filling 200 kg
White butter 90 kg
Calcium 20 kg

2 Production machine
Mixer 20 hours
Divider Machine 7 hours
Oven 105 hours

3 Labour Hours 208 hours

Table 2.4: Production Availability in one period (one month).
Source: Bintang Bakery home industry, 2018

Solution using Simplex Method:

We first determine the decision variables and set up the objective function and the
constraints. This is a maximizing LPP as we intend to increase the earnings.
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Decision variables: x1 = number of packs of flavored bread
x2 = number of packs of mattress bread
x3 = number of packs of fresh bread

Objective function: Z = 2500x1 + 6000x2 + 5000x3
Constraints:

Flour, 28x1 + 100x2 + 250x3 ≤ 4400000
Sugar, 7x1 + 25x2 + 62x3 ≤ 250000
Developer, 1x1 + 9x2 + 4x3 ≤ 90000
Softener, 1x1 + 6x2 + 2x3 ≤ 40000
Yellow butter, 5x1 + 20x2 + 50x3 ≤ 90000
Salt, 1x1 + 3x2 ≤ 10000
Milk powder, 1x1 + 3x2 + 2x3 ≤ 60000
Liquid milk, 5x1 + 20x2 ≤ 60000
BOS butter, 5x1 + 20x2 ≤ 90000
Egg, 4x1 + 15x2 + 25x3 ≤ 70000
Filling, 14x1 + 20x2 ≤ 200000
White butter, 5x3 ≤ 90000
Calcium, 2x3 ≤ 20000
Machine, 32x1 + 132x2 + 336x3 ≤ 475200
Labor, 65x1 + 209x2 + 450x3 ≤ 748800

x1 , x2 , x3 ≥ 0

Standard Form: Introducing slack variables on the left hand side to convert (≤)
equations to (=) equations,

28x1 + 100x2 + 250x3 + s1 = 400000
7x1 + 25x2 + 62x3 + s2 = 250000
x1 + 9x2 + 4x3 + s3 = 90000
x1 + 6x2 + 2x3 + s4 = 40000

5x1 + 20x2 + 50x3 + s5 = 90000
x1 + 3x2 + s6 = 10000
x1 + 3x2 + 2x3 + s7 = 60000

5x1 + 20x2 + s8 = 600000
5x1 + 20x2 + s9 = 90000
4x1 + 15x2 + 25x3 + s10 = 70000

14x1 + 20x2 + s11 = 200000
5x3 + s12 = 90000
2x3 + s13 = 20000

32x1 + 132x2 + 336x3 + s14 = 475200
65x1 + 209x2 + 450x3 + s15 = 748800

Therefore, objective function,

Z = 2500x1 + 6000x2 + 5000x3 + 0s1 + 0s2 + 0s3 + 0s4 + 0s5

+ 0s6 + 0s7 + 0s8 + 0s9 + 0s10 + 0s11 + 0s12 + 0s13 + 0s14 + 0s15

Iteration 0: Now, we create the initial tableau (Table 2.5). In Table 2.5, Zj row is
calculated as sum of the product of Cbi × aij where i = 1, 2.., 15 indicate the rows
of basic variables and j = 0, 1, 2.., 15 indicate the columns P to s15. Cj indicate
the coefficients of the variables in the objective function, Z which are shown in the
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topmost row. Zj − Cj indicate the reduced costs. We find the most negative entry
in the bottom-most row as -6000. So x2 is the entering variable. The minimum ratio
is found as 3000. So the departing variable is s8. Hence the pivot element is 20.
Here, value of objective function, Z = 0x1 + 0x2 + 0x3 = 0.

2500 6000 5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Min ratio
B Cb P x1 x2 x3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 P/key col.
s1 0 400000 28 100 250 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4000
s2 0 250000 7 25 62 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10000
s3 0 90000 1 9 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 10000
s4 0 40000 1 6 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6666.67
s5 0 90000 5 20 50 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4500
s6 0 10000 1 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3333.33
s7 0 60000 1 3 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 20000
s8 0 60000 5 20 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3000
s9 0 60000 5 20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4500
s10 0 70000 4 15 25 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4666.67
s11 0 200000 14 20 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 10000
s12 0 90000 0 0 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -
s13 0 20000 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -
s14 0 475200 32 132 336 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3600
s15 0 748800 65 209 450 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3582.78
Zj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Zj − Cj -2500 -6000 -5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.5: Initial Simplex Tableau.

Iteration 1: After pivoting at 20 and performing necessary row operations we get
Table 2.6. There we get Z = 0x1 + 6000x2 + 0x3 = 6000× 3000 = 18000000 and,

entering variable : x3
departing variable : s14
pivot element : 336

Iteration 2: After pivoting at 336 and performing necessary row operations we
would get,
Z = 0x1 + 6000x2 + 5000x3 = (6000× 3000) + (5000× 235.71) = 19178571.43

entering variable : x1
departing variable : s15
pivot element : 14.09

Iteration 3: After pivoting at 14.09 and performing necessary row operations we
would get,
Z = 2500x1 + 6000x2 + 5000x3 = (2500 × 1116.35) + (6000 × 2720.91) + (5000 ×
239.04) = 20311533.59

entering variable : s14
departing variable : s6
pivot element : 0.02

13



2500 6000 5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Min ratio
B Cb P x1 x2 x3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 P/key col.
s1 0 10000 3 0 250 1 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 400
s2 0 175000 0.75 0 62 0 1 0 0 0 0 0 -1.25 0 0 0 0 0 0 0 2822.58
s3 0 63000 -1.25 0 4 0 0 1 0 0 0 0 -0.45 0 0 0 0 0 0 0 15750
s4 0 22000 -0.5 0 2 0 0 0 1 0 0 0 -0.3 0 0 0 0 0 0 0 11000
s5 0 30000 0 0 50 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 600
s6 0 1000 0.25 0 0 0 0 0 0 0 1 0 -0.15 0 0 0 0 0 0 0 -
s7 0 51000 0.25 0 2 0 0 0 0 0 0 1 -0.15 0 0 0 0 0 0 0 25500
x2 6000 3000 0.25 1 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0 -
s9 0 30000 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 -
s10 0 25000 0.25 0 25 0 0 0 0 0 0 0 -0.75 0 1 0 0 0 0 0 1000
s11 0 140000 9 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 -
s12 0 90000 0 0 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 18000
s13 0 20000 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 10000
s14 0 79200 -1 0 336 0 0 0 0 0 0 0 -6.6 0 0 0 0 0 1 0 235.71
s15 0 121800 12.75 0 450 0 0 0 0 0 0 0 -10.45 0 0 0 0 0 0 1 270.67
Zj 18000000 1500 6000 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0

Zj − Cj -1000 0 -5000 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0

Table 2.6: Simplex Tableau for Iteration 1.

Iteration 4: After pivoting at 0.02 and performing necessary row operations we get
Table 2.7. There we get, Z = 2500x1 + 6000x2 + 5000x3 = (2500× 4000) + (6000×
2000) + (5000× 157.33) = 22786666.67

entering variable : s8
departing variable : x2
pivot element : 0.2

Iteration 5: After pivoting at 0.2 and performing necessary row operations we get
Table 2.8. We see here that there are no more negative values in the bottom-most
row. This means our objective function has reached its maximum. Hence, we can
stop the iteration.

Results:

Finally we get our basic feasible solution,

(x1, x2, x3, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15)

= (10000, 0, 219.56, 0, 0, 0, 0, 0, 0, 0, 10000, , 0, 0, 0, 0, 0, 81429.33, 0)

for which we get the maximized value of the objective function, Z = 26097777.78.
Let us compare the earnings. As mentioned before, currently the bakery produces,

3640 packs of flavored bread at Rp.2500,
1300 packs of mattress bread at Rp.6000,
520 packs of fresh bread at Rp.5000.

So current earnings = Rp. (3640 x 2500) + (1300 x 6000) + (520 x 5000) = Rp.
19,500,000
According to the simplex algorithm, optimal production requires,
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250060005000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Min ratio
B Cb P x1 x2 x3 s1s2s3s4s5 s6 s7 s8 s9s10s11s12s13s14 s15 P/key col.
s1 0 48666.67 0 0 0 1 0 0 0 0 16.33 0 -1.64 0 0 0 0 0 0 -0.56 -29594.59
s2 0 162245.33 0 0 0 0 1 0 0 0 4.03 0 -0.41 0 0 0 0 0 0 -0.14 -391686.7
s3 0 67370.67 0 0 0 0 0 1 0 0 5.45 0 -1.18 0 0 0 0 0 0 -0.01 -57331.32
s4 0 23685.33 0 0 0 0 0 0 1 0 2.23 0 -0.59 0 0 0 0 0 0 0 -40311.65
s5 0 22133.33 0 0 0 0 0 0 0 1 5.67 0 -0.69 0 0 0 0 0 0 -0.11 -32129.03
s14 0 30336 0 0 0 0 0 0 0 0 42.08 0 -5.11 0 0 0 0 0 1 -0.75 -5937.37
s7 0 49685.33 0 0 0 0 0 0 0 0 -0.77 1 0.01 0 0 0 0 0 0 0 3992571.43
x2 6000 2000 0 1 0 0 0 0 0 0 -1 0 0.2 0 0 0 0 0 0 0 10000
s9 0 30000 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 -30000
s10 0 20066.67 0 0 0 0 0 0 0 0 1.83 0 -0.44 0 1 0 0 0 0 -0.06 -45150
s11 0 104000 0 0 0 0 0 0 0 0 -36 0 4.4 0 0 1 0 0 0 0 23636.36
s12 0 89213.33 0 0 0 0 0 0 0 0 0.57 0 0.03 0 0 0 1 0 0 -0.012867571.43
s13 0 19685.33 0 0 0 0 0 0 0 0 0.23 0 0.01 0 0 0 0 1 0 0 1581857.14
x3 5000 157.33 0 0 1 0 0 0 0 0 -0.11 0 -0.01 0 0 0 0 0 0 0 -25285.71
x1 2500 4000 1 0 0 0 0 0 0 0 4 0 -0.6 0 0 0 0 0 0 0 -6666.67
Zj 22786666.6725006000 0 0 0 0 0 0 3433.33 0 -331.11 0 0 0 0 0 0 11.11

Zj − Cj 0 0 0 0 0 0 0 0 3433.33 0 -331.11 0 0 0 0 0 0 11.11

Table 2.7: Simplex Tableau for Iteration 4.

2500 6000 5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B Cb P x1 x2 x3 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15
s1 0 65111.11 0 8.22 0 1 0 0 0 0 8.11 0 0 0 0 0 0 0 0 -0.56
s2 0 166387.56 0 2.07 0 0 1 0 0 0 1.96 0 0 0 0 0 0 0 0 -0.14
s3 0 79121.78 0 5.88 0 0 0 1 0 0 -0.42 0 0 0 0 0 0 0 0 -0.01
s4 0 29560.89 0 2.94 0 0 0 0 1 0 -0.71 0 0 0 0 0 0 0 0 0
s5 0 29022.22 0 3.44 0 0 0 0 0 1 2.22 0 0 0 0 0 0 0 0 -0.11
s14 0 81429.33 0 25.55 0 0 0 0 0 0 16.53 0 0 0 0 0 0 0 1 -0.75
s7 0 49560.89 0 -0.06 0 0 0 0 0 0 -0.71 1 0 0 0 0 0 0 0 0
s8 0 10000 0 5 0 0 0 0 0 0 -5 0 1 0 0 0 0 0 0 0
s9 0 40000 0 5 0 0 0 0 0 0 -5 0 0 1 0 0 0 0 0 0
s10 0 24511.11 0 2.22 0 0 0 0 0 0 -0.39 0 0 0 1 0 0 0 0 -0.06
s11 0 60000 0 -22 0 0 0 0 0 0 -14 0 0 0 0 1 0 0 0 0
s12 0 88902.22 0 -0.16 0 0 0 0 0 0 0.72 0 0 0 0 0 1 0 0 -0.01
s13 0 19560.89 0 -0.06 0 0 0 0 0 0 0.29 0 0 0 0 0 0 1 0 0
x3 5000 219.56 0 0.03 1 0 0 0 0 0 -0.14 0 0 0 0 0 0 0 0 0
x1 2500 10000 1 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Zj 26097777.78 0 7655.56 0 0 0 0 0 0 1777.78 0 0 0 0 0 0 0 0 11.11

Zj − Cj 0 1655.56 0 0 0 0 0 0 1777.78 0 0 0 0 0 0 0 0 11.11

Table 2.8: Simplex Tableau for Iteration 5.

number of packs of flavored bread to be produced, x1 = 10000
number of packs of mattress bread to be produced, x2 = 0
number of packs of fresh bread to be produced, x3 = 219.56 ≈ 219
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Therefore, in optimal production, earnings = Rp. (2500 x 10000) + (5000 x 219) =
Rp. 26,095,000
So, earnings will increase by = Rp. (26,095,000 - 19,500,000) = Rp. 6,595,000.

2.4 Related Works

Dantzig’s Simplex algorithm [2] has been used in the optimization community very
successfully for about 70 years now. While this method has proved to be very efficient
practically, some pathological examples created by Klee and Minty [3] and Zadeh [4]
show that in the worst case, the simplex algorithm can take exponential time to ex-
ecute. This problem was addressed by Russian mathematician Khachiyan [6] and
later on, Karmarkar [8] who introduced polynomial time algorithms for solving LP
problems. In addition, some more research works were done in [11] and [14] to im-
prove the simplex algorithm. In a paper, Murshed et al [9] initiated some thoughts
of starting simplex method from a point that is obtained by the intersection of the
normals of the hyperplanes which make minimum angles with the gradient of the
objective function. Though the paper had some flaws, the same idea was used by
Junior and Lins [10], to accelerate the simplex method by selecting suitable initial
solutions. Further work was done by Hu [13], who was able to improve the solution
by applying LU decomposition. LU decomposition refers to the factorization of a
square matrix into one upper triangular matrix and one lower triangular matrix,
such that the original matrix can be obtained from the product of these two trian-
gular matrices.

One of the most important discovery in the field is the duality theory of Linear
Programming. According to George Dantzig, John von Neumann conjectured the
duality theorem for linear optimization shortly after Dantzig presented him with the
linear programming issue in 1947. Neumann also developed a link between the Lin-
ear Programming issue and game theory at the time. At the very first conference on
Linear Programming in Chicago in 1949, Tucker and two of his graduate students,
David Gale and Harold W. Kuhn, presented the first rigorous proof of the duality
theorem in their first article “Linear Programming and the Theory of Games” [12].
The theorem states that on the same set of data, one can formulate another linear
minimizing programming problem for a linear maximizing programming problem,
or a linear maximizing programming problem for a linear minimizing programming
problem. Hence the term dual problem. The existence of a finite optimal solution to
one of them assures the existence of an optimal solution to the other, and the values
of both objective functions are the same. Albert W Tucker and his group presented
the rigorous evidence of duality theory as early as 1948, according to Dantzig’s pro-
logue to Nering and Tucker, 1993.

On pathological examples of [3] and [4], Dantzig’s simplex algorithm takes expo-
nential time. Through the development of polynomial time algorithms for handling
LP issues, Khachiyan [6] and subsequently Karmarkar [8] properly addressed this
issue. Furthermore, Bland [5] has eliminated the unfavorable cycling problem.
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Chapter 3

Proposed Variation of Simplex
Model

In a maximizing LPP whose objective function lies in a convex feasible region with
a differentiable surface, the gradient of the surface would coincide with the gradient
of the objective function at the optimal point. Here, convex feasible region indicates
a region in multi-dimensional space, bounded by hyperplanes with vertices as its
corners. However, in LP problems, we have a finite amount of hyperplanes and the
surface is not differentiable at the basic feasible points (vertices of the polyhedron).
According to LP theory, at optimality, gradient of the objective function lies in the
cone determined by the normals of the hyperplanes the optimal solution lies on. But
computing all the combinations of the normals of the hyperplanes is nor easy neither
efficient. So, intuitively we can look for the optimal solution on n hyperplanes,
whose normals make minimum angles with the gradient of the objective function.
Now the vertex at such a region may not be feasible, but it should possibly be
near the optimal solution in a combinatorial sense. But first, it is necessary remove
redundant half spaces from the system of linear inequalities to ensure the existence
of solution to the obtained system of linear equations. Assuming that vectors ai’s
are normalized by multiplying the corresponding rows by an appropriate constant,
we compute st.ai, ∀i = {1, 2, ...,m}. Arrange st.ai and sj, ∀j = {1, 2, ..., n} in
descending order of their values. Choose the set S of variables corresponding to the
last m half spaces as candidates for basic variables. Starting with the first simplex
tableau, we forcibly select entering variables xk, k ∈ S from this list, and as exiting
variable we select one that is not in S, ignoring the usual rules of selecting rows and
columns. Note that it is possible for this solution to be infeasible. So, necessary
steps need to be taken to bring the basis to feasibility.
Finally, this basic solution as the initial tableau can be passed to an existing version
of the simplex method to find the optimal value.

3.1 Steps to create the initial simplex tableau

The steps to create the initial simplex tableau are given below.

1. Initially, for n variables and m constraints, the constraints and objective func-
tion are converted into unit vectors for ease of calculation.
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2. Then the angle made by the normal of the hyperplane determining each of
the constraints with the objective function gradient is calculated by using the
formula of dot product, ~a.~b = |~a|.|~b|.cosθ.

3. Then the angles are sorted in ascending order, or the cosine values are sorted
in descending order.

4. The initial non-basic variables are taken from the top n hyperplanes of the
sorted list.

5. The remaining m variables from the bottom will be the initial basic variables.

6. Now, the initial simplex tableau is to be created with this set of basic variables.
The basic variables are entered one by one and row reduction operations are
applied to ensure that each row contains only one basic variable.

7. If coefficient of an entering basic variable becomes zero in the row due to
previous row reductions, the basic variable can be replaced with a non-basic
variable, whose coefficient is not zero in that row. This will prevent zero-
division error when pivoting.

8. The resulting basis may be infeasible. In that case, necessary measure need
to be taken to bring the basis to feasibility.

9. After the initial tableau is created, it is passed on to the regular simplex
algorithm to compute the optimal solution.

Step-by-step demonstration on an LP example Let us take a maximizing LPP
to demonstrate how to create the initial simplex tableau.

Objective function: 2x1 + 3x2
Constraints: 4x1 + 3x2 ≤ 10

2x1 + 7x2 ≤ 20
x1 ≥ 0
x2 ≥ 0

Converting the constraints to standard form, we get,

4x1 + 3x2 + s1 = 10
2x1 + 7x2 + s2 = 20

First, finding the normals and converting them to unit vectors, we get,

Objective function: 2√
13
x1 + 3√

13
x2

Subject to, 4
5
x1 + 3

5
x2 (1)

2√
53
x1 + 7√

53
x2 (2)

x1 (3)
x2 (4)

Now, we find the angle between the objective function and the normal of the hyper-
planes.
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Figure 3.1: A general representation of the proposed simplex model
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Dot product between gradient of
i objective function and normal i cosθ θ
1 2√

13
.4
5

+ 3√
13
.3
5

0.94 19.44°
2 2√

13
. 2√

53
+ 3√

13
. 7√

53
0.95 17.74°

3 2√
13
.1 + 3√

13
.0 0.55 56.31°

4 2√
13
.0 + 3√

13
.1 0.83 33.69°

From the above table, we see top 2 hyperplanes are eqn (i) and (ii). They are the
closest to the objective function. So from there we get our first solution, s1 = 0 and
s2 = 0. So, our linear system of equation becomes,

4x1 + 3x2 = 10
2x1 + 7x2 = 20

So our initial non-basic variables are s1 and s2, and our initial basic variables are
x1 and x2. We get our first basic feasible solution by solving the current system of
linear equations. We get,

(x1, x2, s1, s2) = (10
22
, 30
11
, 0, 0)

Now we need to create the initial simplex tableau. To do that, we need to eliminate
the other basic variables in each equation as only one basic variable can exist in one
row. We currently have,

4x1 + 2x2 + s1 = 10 (i)
2x1 + 7x2 + s2 = 20 (ii)

Performing (i)× 7− (ii)× 3, x1 + 7
22
s1 − 3

22
s2 = 10/22 (iii)

Performing (i)− (ii)× 2, x2 − 1
11
s1 + 2

11
s2 = 30/11 (iv)

Now, we create the initial simplex tableau using (iii) and (iv) as shown in Table 3.1.

2 3 0 0
B Cb P x1 x2 s1 s2
x1 2 10/22 1 0 7/22 -3/22
x2 3 30/11 0 1 -1/11 2/11
Zj 100/11 2 3 4/11 3/11

Zj − Cj 0 0 4/11 3/11

Table 3.1: Initial Simplex Tableau of the proposed Simplex Method.

In Table 3.1, we see that bottom row has no negative values, that means we have
reached optimality. From this LP problem, we can observe that we get the optimal
solution directly from the initial simplex tableau using the improvised simplex al-
gorithm, i.e 0 iterations were required. The regular simplex algorithm would take 3
iterations to reach optimality.

3.2 Implementation

The efficiency of this improvised model requires comprehensive experiments with
random data, but intuitively this proposed algorithm is expected to produce good
results.
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Initially after taking input, a regular simplex table is created with the objective
function in the first row, followed by the constraints. The last row is kept for Zj−Cj.
The first column is for Cb and the last is the solution column. Constraints having ≤
inequalities are added as they are, ≥ inequalities are multiplied by −1 to convert to
≤ inequalities and equal constraints, (=), are broken down to ≤ and ≥ inequalities
and handled accordingly. We know, for n variables and m constraints, there will be
a total of n+m constraints. We now convert the hyperplane vectors and objective
function to unit vectors by dividing them by their lengths. The resulting vectors
are the normals of the hyperplanes and objective function gradient respectively. We
store them in a different table for ease of calculation. Here, the first m vectors
indicate the normal of the first m hyperplanes of given constraints and the last n
vectors indicate the same for the non-negativity constraints for all decision variables.
We then use the dot product formula ~a.~b = |~a|.|~b|.cosθ to find the values of cosθ.

We have already precalculted ~a
|~a| and

~b

|~b|
where ~a are the normals of hyperplanes and

~b is the objective function gradient. The cosine values indicate the angles between
them. The larger the value of cosine, smaller the angle. So, we sort the cosine values
in descending order. Then we take top n hyperplanes from the sorted list and from
there, the corresponding numbered variables are stored as initial non-basic variables
and the remaining m are stored as initial basic variables. Corresponding numbered
variable of given constraint indicate its slack variable and that of non-negativity
constraint indicate its decision variable. Now, we forcibly enter these basic variables
as entering variables, if it isn’t already there, by replacing the non-basic variables,
taken as exiting variables. We apply row reduction operations to ensure that each
row contains only one basic variable. While entering a basic variable, if we notice
that its coefficient in that row has become zero due to previous row reductions, we
can replace this basic variable with a non-basic variable to avoid zero-division error
when pivoting. We must also ensure that the non-basic variable that we are entering
into the basis should also have a non-zero coefficient in that row. In this way our
initial simplex tableau is created. All values are stored as fractions to minimize data
loss in calculations.
But this initial basis may be infeasible. If the solution column contains negative
values, we know that it is infeasible because of non-negativity restriction of LP.
To ensure feasibility, we slightly change the rules for selecting entering and exiting
variables. Usually we consider only the positive entries when finding the minimum
ratio for selecting exiting variables. But to eliminate the negative entries in solution
column, we consider the ratios of each of the negative entry in solution column as
numerator, with negative entries in its corresponding row as denominator. This
maintains our positive minimum ratio rule in pivoting. We can deduce the entering
and exiting variable from the minimum ratio as before and pivot. We continue this
process until our basis becomes feasible, i.e all negative entries are eliminated from
the solution column.
Figure 3.2 shows how we have implemented the proposed simplex model.
Theoretically, our proposed simplex method should take fewer iterations to reach
the optimal solution than the regular simplex method.
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Figure 3.2: Flowchart of our implementation of the proposed simplex model
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3.3 Testing

The proposed initial solution was put to the test by creating a series of test cases
with n variables and m ‘≤’ inequality constraints. Each coefficient in the objective
function and the restrictions was chosen at random from a uniform distribution
within a range of [−100, 100). We also randomly created a point x̄ and calculated
the right hand side vector that meets all the conditions, including the non-negativity
ones, to ensure that the system is feasible. That is, b = Ax̄ has been used to
determine the right hand side of the restrictions. Random test cases were produced
in this way for each combination of variables and constraints, which were then
solved using the normal simplex approach and the proposed variant of the simplex
method. The average number of iterations required to achieve optimality has then
been recorded for each size of test case. The regular simplex technique performed
worse than our proposed version for LP problems with negative right hand side
values.
To discover the initial basic solution, repeat the steps below until we have these m
basic variables in our tableau, as shown at the end of the previous subsection.

1. We select basic variables as our entering variables and non-basic variables as
our outgoing variables to replace undesired non-basic variables.

2. We substitute an entering basic variable with any non-basic variable to prevent
the pivot element from becoming zero.

We reach feasibility by iterating our tableau using the following principles once we’ve
reached our goal tableau:

1. As with the simplex approach, select the column of the entering variable.

2. If the current solution is infeasible, instead of considering solely ratios of pos-
itive entries on the right hand side and in the entering column, choose the
smallest of the positive ratios to shift from infeasibility to feasibility.

We repeat this process until our basis is feasible, i.e. all negative items in the
solution column are removed. We then apply the normal simplex approach to attain
optimality once feasibility has been established.

3.4 Results and Analysis

We summarized the simulation findings in the following table by presenting key pa-
rameters, and then showed the results in graphs.

We conducted various experiments using our implementation1 of the proposed sim-
plex algorithm, the results of which are displayed in Table 3.2. The number of test
cases we conducted for a combination of m, n values, as well as the average number
of iterations it took to reach optimality, are listed in each row. Our findings were
then divided into two groups: those in which the first tableau related to a fundamen-
tal feasible solution and those in which it was in the infeasible region. Because the

1https://github.com/shameme97/A-Variation-of-Simplex-Algorithm
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Table 3.2: Results of randomly generated test cases.

Cases n m
Average number of iterations

General
Simplex

Proposed
Simplex

With Feasibility With Infeasibility
General Proposed General Proposed

100 10 10 12.27 15.05 9.27 16.25 15.39 13.8
100 10 20 19.59 18.72 16.04 20.71 22.49 17.09
100 20 10 18.70 21.23 14.11 22.26 24.51 19.62
100 20 20 33.58 43.91 24.38 44.85 43.96 42.85
100 20 40 53.68 48.77 42.06 48.33 56.23 48.87
100 30 20 51.88 59.72 32.81 59.83 65.69 59.64
100 30 30 84.22 82.31 43.90 91.30 88.99 84.67
100 30 60 106.51 92.87 73.67 92.07 112.31 93.01
100 40 30 95.04 112.28 55.62 117.00 118.19 109.51
100 40 40 144.53 137.78 77.18 147.12 158.33 135.87
100 40 60 163.24 133.24 98.09 150.64 171.29 131.09
100 50 40 153.71 170.58 87.83 175.70 181.94 168.39
100 50 50 203.33 206.98 118.71 220.43 225.39 198.13
100 50 70 252.10 189.98 157.00 179.50 254.04 190.19
100 60 40 153.20 200.92 96.26 202.12 210.14 199.72
100 60 60 300.25 277.06 160.83 305.17 319.26 273.23
50 60 80 335.84 262.34 188.50 287.50 341.98 261.29
50 70 50 245.60 281.00 134.69 292.25 297.79 275.71
50 70 70 392.82 370.67 183.33 423.00 425.05 362.62
20 70 90 437.30 320.80 209.0 252.00 462.67 328.44
20 80 50 236.23 314.95 143.09 307.45 329.36 322.45
20 80 60 296.45 349.40 160.00 357.00 354.93 374.71
20 80 80 531.65 460.00 319.25 442.50 584.75 464.38
50 90 70 433.56 464.30 246.33 474.44 474.66 462.07
50 90 90 679.98 583.54 332.00 625.60 720.44 578.65
20 100 50 286.05 318.30 157.22 314.44 391.45 321.45
20 100 60 484.55 471.25 320.00 464.50 525.69 472.94
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Figure 3.3: Performance comparison (starting from infeasibility)

right hand side was calculated using matrix A and the specific point x̄ we wished to
make feasible, it could contain some negative values, in which case the first simplex
tableau represents an infeasible solution. The general simplex, on the other hand,
iterates towards optimality if the very initial tableau corresponds to a basic feasible
solution. However, in this case, the proposed variant takes a detour through the
point of intersection of hyperplanes that make the smallest angle with the objective
function gradient, despite the fact that this detour may result in iterating from a
basic feasible solution to a basic infeasible solution, then iterating for feasibility,
and finally for optimality. This is why, in the scenario where the first tableau cor-
responds to a basic feasible solution, the proposed variant requires a higher number
of iterations. It is worth noting that only a small percentage of the cases, the tests
we did resulted in right-hand side vectors with all-positive components. Needless
to say, in most cases, the right hand side vector will have non-positive components,
therefore the conventional simplex algorithm will begin with an infeasible solution
and perform poorly in comparison to the new technique.

Figure 3.3 has been prepared from Table 3.2. It displays the amount of iterations
required by the general simplex and suggested variation for LP problems, with each
point (x, y) indicating that on average, for LP problems with x variables and x
constraints, y iterations were required to obtain optimality. The proposed simplex
method reaches optimality in fewer iterations when the LP problems start from an
infeasible region, as shown in the figure. The difference between the average number
of iterations taken by each approach grows as the number of variables/constraints
grows. When dealing with a high number of variables and constraints, the proposed
simplex appears to be more efficient. On the other hand, for LP problems starting
from a feasible region, the general simplex method seems to outperform our proposed
simplex algorithm. While LP problems typically include many more variables than
inequality, we couldn’t incorporate the results of such tests because m << n.

25



Chapter 4

Some Issues on Linear
Programming

The result of duality theory in LP theory is noteworthy. We give two results in this
note. To begin, this report shows that even when non-negativity constraints are
included in the collection of main constraints, duality conclusions remain valid. Sec-
ond, it illustrates how revenue maximization and profit maximization are logically
similar problems.
Let us consider the following LP problem for maximizing sales of an industry:

stx → maximize (4.1)

Ax ≤ b

x ≥ 0

where A is an m × n matrix, x and b are vectors having respectively n and m
components. Each entry i of the (unit) vector s represents unit sale’s price of the
produce i.
Its dual problem is

bty → minimize (4.2)

Aty ≥ c

y ≥ 0

There is a dual variable in (4.2) for each constraint in (4.1). The equivalent dual
variable is unlimited if the constraint is equality, and vice versa. Similarly, there is
a dual constraint in (4.2) for every variable in (4.1). The related dual constraint is
equality if the variable is unconstrained, and vice versa.
LP theory asserts that if the inequalities in (4.1) and (4.2) are consistent, that is if
there exist x1 and y1 such that

Ax1 ≤ b, x1 ≥ 0

and
Aty1 ≥ c, y1 ≥ 0

are both satisfied then there are x∗ and y∗ that are optimal to corresponding systems,
and stx∗ = bty∗.
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Furthermore, the solutions satisfy linear complimentary slackness characteristics.
That is

y∗t(b− Ax∗) = 0, x∗t(c− Aty∗) = 0

The equivalent dual variables in (4.2) are unconstrained if some of the restrictions
in (4.1) are equality, and vice versa. The following small examples demonstrate how
the unboundedness of one problem’s solution leads to the infeasibility of the other.

x1 + x2 → maximize y1 → minimize (4.3)

x1 − x2 = 1 y1 = 1

x1, x2 unrestricted − y1 = −1

y1 unrestricted

It’s also possible that both LP issues are impossible to solve, as in Gale, Kuhn, and
Tucker’s example [1].

2x1 + 5x2 → maximize 2y1 + 5y2 → minimize (4.4)

x1 − x2 = 2 y1 + 2y2 = 2

2x1 + 2x2 = 5 y1 + 2y2 = 5

x1, x2 unrestricted y1, y2 unrestricted

In this chapter we discuss some special properties of linear programming in LPP.
In Section 4.1 we show that if even nonnegativity constraints are inserted in main
inequalities LP theory connecting primal and dual problems remain consistent. In
Section 4.2, we establish equivalence of profit and revenue maximizing LP problems.

4.1 Consistency of Primal and Dual Problems

In this section, we formulate the primal problem by merging the nonnegativity
constraints into the main inequalities as follows:

stx → maximize (4.5)

Ax ≤ b

−Ix ≤ 0

x unrestricted

Its dual problem is

bty + 0tz → minimize (4.6)

Aty − Iz = c

y, z ≥ 0
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where y represents constraints Ax ≤ b and z represents constraints corresponding
to −Ix ≤ 0. The system (4.6) can also be written as

bty → minimize (4.7)

Aty ≥ c

y ≥ 0

which is identical to (4.2) implying that inequality constraints can be considered
part of main constraints without causing any anomalies.

4.2 Profit and Revenue Maximizing LP problems

Let’s look at the second issue, which is how revenue and profit maximization diffi-
culties are linked. The ej in (4.8) is a unit vector with jth component being 1 and
all α’s and β’s are non-negative values. The αi’s are known as shadow prices related
to the resource i, and they imply that if the resource i is increased by a marginal
amount, the objective function value will increase by αi per unit increase of the
resource i.

atix = bi, ∀i ∈ I (4.8)

xj = 0, ∀j ∈ J
|I|+ |J | ≥ n and s =

∑
i∈I

αiai +
∑
j∈J

βjej,

Naturally, shadow pricing have nothing to do with the actual costs of these com-
modities. However, because most goods are sold for a profit,

m∑
i=1

aijpi ≤ sj, ∀j ∈ {1, ..., n} (4.9)

where the unit price of resource i is pi. Dual of this LP is

ytb → minimize (4.10)

Aty ≥ s

y ≥ 0

If the primal problem in (4.1) has an optimal solution, the dual problem must as
well, and the values of the primal and dual problems’ optimal solutions must be the
same. Let the optimal solutions to the primal and dual problems, respectively, be
x∗ and y∗. As a result, stx∗ = y∗tb. On the other hand, t he entire value of the
sold and leftover resources is not always equal to the value of the objective function
of the dual of the LP, or the primal for that matter. Rather, it is bigger, equaling
stx∗ + (b− Ax∗)tp, where p is the resource price vector. Now rewrite the preceding
expression as (s − Ap)tx∗ + btp, where btp is constant and the objective function
becomes (s− Ap)tx without the constant, where s− Ap = r is the profit vector. If
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x∗∗ is the best solution to the objective function rtx with the same restrictions as
below, then

rtx → maximize (4.11)

Ax ≤ b

x ≥ 0

then rtx∗∗ ≥ rtx∗ is true. In reality, in the LP above, the objective function is now
profit maximization. It signifies that profit-maximizing production adds the highest
value to input resources. As a result, maximizing revenues and profits are the same
thing.
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Chapter 5

Concluding Statements

5.1 Conclusion

In our research we have tried to come up with a more efficient approach to solving
LP problems with the help of the Simplex algorithm. We have demonstrated that we
can begin simplex iterations from a vertex that must be close to the optimal in some
way, albeit this is not always possible. This is the basic solution for hyperplanes that
make minimal angles with the objective function’s gradient. The proposed initial
basic solution provides an advantage over the traditional initial solution, according
to our simulation results. On a side note, we demonstrated that profit and revenue
maximizing objective functions can be inferred logically from one another. We have
also demonstrated the robustness of LP theory in terms of duality results, even when
nonnegativity constraints can be regarded of as part of primary inequalities, and the
results are unaffected.

5.2 Future Work

So far, we have been able to prove that our proposed simplex algorithm can produce
optimized results in fewer iterations than the general simplex method in cases of
infeasibility. But our simulation has only been tested on a relatively smaller scale,
with randomly generated test cases. We would like to test our algorithm further on
benchmark test cases to assess its efficiency. We would also be working on making the
algorithm more efficient in feasible LP problems as well. Moreover, the algorithm we
devised has been tested with maximizing problems. But using the theory of duality,
we can convert the minimizing problems to maximizing problems by transposing
the matrix of the minimizing problem and solve the same way. For simplicity, we
have tested the algorithm with LP problems having less than (≤) inequalities only.
We intend on handling greater than (≥) inequalities by multiplying the equations
with −1, thus converting them to ≤ inequalities. Furthermore, we can handle equal
constraints (=) by splitting them into two constraints, one ≤ constraint and one ≥
constraint. Linear programming enthusiasts are also welcome to work on reducing
the time complexity of our proposed algorithm.

30



Bibliography

[1] D. Gale, H. W. Kuhn, and A. W. Tucker, “Linear programming and the theory
of games,” Activity analysis of production and allocation, vol. 13, pp. 317–335,
1951.

[2] L. MACCOLL, DANTZIG, GB-LINEAR PROGRAMMING AND EXTEN-
SIONS, 1967.

[3] V. Klee and G. J. Minty, “How good is the simplex algorithm,” Inequalities,
vol. 3, no. 3, pp. 159–175, 1972.

[4] N. Zadeh, “A bad network problem for the simplex method and other minimum
cost flow algorithms,” Mathematical Programming, vol. 5, no. 1, pp. 255–266,
1973.

[5] R. G. Bland, “New finite pivoting rules for the simplex method,” Mathematics
of operations Research, vol. 2, no. 2, pp. 103–107, 1977.

[6] L. G. Khachiyan, “A polynomial algorithm in linear programming,” in Doklady
Akademii Nauk, Russian Academy of Sciences, vol. 244, 1979, pp. 1093–1096.

[7] G. B. Dantzig, “Reminiscences about the origins of linear programming,” in
Mathematical Programming The State of the Art, Springer, 1983, pp. 78–86.

[8] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” in
Proceedings of the sixteenth annual ACM symposium on Theory of computing,
1984, pp. 302–311.

[9] M. Murshed, B. Sarwar, M. Sattar, and M. Kaykobad, “A new polynomial
algorithm for linear programming problem, www.gscit.monash.edu.au,” 1993.

[10] H. V. Junior and M. P. E. Lins, “An improved initial basis for the simplex
algorithm,” Computers & Operations Research, vol. 32, no. 8, pp. 1983–1993,
2005.

[11] H. Arsham, “A big-m free solution algorithm for general linear programs,”
International Journal of Pure and Applied Mathematics, vol. 32, no. 4, p. 549,
2006.

[12] R. Cottle, E. Johnson, and R. Wets, “George b. dantzig (1914–2005),” Notices
of the AMS, vol. 54, no. 3, pp. 344–362, 2007.

[13] J.-F. Hu, “A note on “an improved initial basis for the simplex algorithm”,”
Computers & operations research, vol. 34, no. 11, pp. 3397–3401, 2007.

[14] S. Ru, M. Shen, and X. Xue, “A concise way of determination for uppercase
LP initial feasible basis of simplex method,” Scientia Magna, vol. 4, no. 1,
p. 142, 2008.

31



[15] H. D. S. Mokhtar S. Bazaraa John J. Jarvis, Linear Programming and Network
Flows. Wiley, 2009, isbn: 9780470462720.

[16] B. S. Anggoro, R. M. Rosida, A. M. Mentari, C. D. Novitasari, and I. Yulista,
“Profit optimization using simplex methods on home industry bintang bakery
in sukarame bandar lampung,” in Journal of Physics: Conference Series, IOP
Publishing, vol. 1155, 2019, p. 012 010.

32


	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation for Linear Programming 
	Basics of Linear Programming
	An Example of Linear Programming 
	Research Problem 
	Research Objectives

	Literature Review
	Introduction to Simplex Method
	Steps of the Simplex Algorithm
	A Problem Solved by Simplex Method
	Related Works

	Proposed Variation of Simplex Model
	Steps to create the initial simplex tableau
	Implementation
	Testing
	Results and Analysis

	Some Issues on Linear Programming
	Consistency of Primal and Dual Problems
	Profit and Revenue Maximizing LP problems

	Concluding Statements
	Conclusion
	Future Work

	Bibliography

