
Diabetic Retinopathy Detection and Classification
by Using Deep Learning

by

Shahriar Hossain
21141036

Md. Nurusshafi Evan
18101525

Fariya Zakir Farhin
18101505

Mashrur Karim Nabil
19101659

Sameen Sadman
21341058

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2022

© 2022. Brac University
All rights reserved.



Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Shahriar Hossain
21141036

Md. Nurusshafi Evan
18101525

Fariya Zakir Farhin
18101505

Mashrur Karim Nabil
19101659

Sameen Sadman
21341058

i



Approval

The thesis titled “Diabetic Retinopathy Detection and Classification by Using Deep
Learning” submitted by

1. Shahriar Hossain (21141036)

2. Md. Nurusshafi Evan (18101525)

3. Fariya Zakir Farhin (18101505)

4. Mashrur Karim Nabil (19101659)

5. Sameen Sadman (21341058)

Of Fall, 2021 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 18, 2022.

Examining Committee:

Supervisor:
(Member)

Amitabha Chakrabarty, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

ii



Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii



Ethics Statement

Hereby, we, the members, consciously assure that the following is fulfilled for the
manuscript, ”Diabetic Retinopathy Detection and Classification by Using Deep
Learning”.

1. The contents of this paper are unique work of the writers’ and it has not been
published before.

2. Only the authors’ own research and analysis is presented in the work with
utmost accuracy.

3. Contributions by the co-authors and co-researchers are rightly acknowledged
in the study.

4. All sources are appropriately mentioned (correct citation). Text that is lit-
erally copied must be identified as such by using quote marks and providing
suitable reference.

5. The authors actively participated and put in effort leading to the article and
any public responsibility related to it’s content will be accepted.

Violations of the Ethical Statement standards may have serious repercussions. We
agree with the preceding declarations and certify that this submission adheres to
BRAC University’s rules.

iv



Abstract

Eyes are the most sensitive part of a human being and it is one of the most chal-
lenging tasks for a computer-aided system to classify its diseases. Many vision-
threatening diseases such as, Glaucoma and Diabetic Retinopathy are treated using
digital fundus imaging and retinal images by the specialist at a primary level. How-
ever, a computer-aided system that can classify if the eye has a disease or not could
be a handy tool for the specialists and a challenging task for computer aided system
developers. A branch of machine learning which is deep learning is making a revolu-
tionary impact on medical diagnosis using image processing and pattern recognition.
Therefore, we aim to make use of some Convolutional Neural Network (CNN) archi-
tectures such as ResNet50, Inception V3, Xception, DenseNet-169 and MobileNetV3
Large to extract the features and classify if the eye has a disease or not using digital
fundus photography and retinal image. For our research, we used a competition
dataset available from Kaggle [1] and another dataset from IDRiD [2]. Our final
dataset contained a total of 2,517 images with each stage having around 500 images
in them. Upon training and testing the selected architectures, we have found that
Inception V3 has an accuracy of 86.31% and 87.7% (with a lowered learning rate).
Similarly for Xception, we attained 86.9% accuracy with default learning rate and
87.9% accuracy with lowered learning rate. ResNet50 gave an accuracy of 46.83%,
MobileNetV3 Large gave the lowest accuracy standing at 23.81%. DenseNet-169
gave us the highest accuracy among all other models, soaring at 88.29% accuracy.

Keywords: Convolutional Neural Network, Deep Learning, Diabetic Retinopathy,
InceptionV3, Xception, DenseNet-169
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Chapter 1

Introduction

1.1 Motivation

One of the most vital organs in the human body is the eye. All living organisms
have eyes that allow them to view the world around them. This complicated physical
part allows us to perceive things, which we call vision. Light rays enter the eyes
through the cornea after reflecting from various things, and are then processed by
the brain to generate an image of that item. One of our most crucial senses is
sight, which accounts for 80 percent of what we see. Our way of living has a big
influence on how well our eyes are doing. Everything adds to the rise in the risk of
eye problems: stress, eating habits, sleep, diabetes, and so on. Visual impairment
is a national and international health issue that has a severe influence on both
physical and mental health. Visually handicapped people are more likely to develop
chronic illnesses, have accidents, withdraw from social situations, get depressed, and
even might face untimely death. Because of the aging population, the number of
persons with vision impairment and blindness is growing. Near- or far-sightedness
affects at least 2.2 billion individuals worldwide. Vision impairment might have been
averted or handled in at least 1 billion of these instances, or about half of them. Not
taking proper care of our eyes can lead to permanent blindness. Medical science and
technology have advanced by leaps and bounds over the years. This opened doors
to new ways of imaging and screening of eye diseases. Usage of AI and automated
predictions in combination with medical knowledge is gaining traction rapidly [3]–[5].
Medical institutes and organizations around the globe collect, analyzes and performs
research on this data to fine-tune medical procedures. Storing medical information in
electronic form has great potential as well. Such data can be transferred to different
medical experts almost instantly to ensure greater healthcare [6]. These data can
be processed through many prominent machine learning models to automate and
increase the accuracy of disease detection based on training set or data. If the same
was to be analyzed manually, it would take ages and the human margin of error is
too high to depend on. We believe our deep learning model is a solid solution which
will help in making more accurate and swift decision in such eye disease cases.

1.2 History of Diabetic Retinopathy

Eye disorders are prevalent, and the reasons of these diseases can be caused by a
variety of variables such as external or internal injury, advanced age, or a variety
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of maladies. Many eye illnesses, such as glaucoma, diabetic retinopathy, diabetic
macular edema, and melanoma, can result in permanent vision loss.

Early detection and treatment of such disorders can spare one’s eyes from these
diseases. Any ophthalmologist would benefit from a computer-aided system that
can diagnose these disorders in real time. It might help prevent one’s vision from
becoming blurred.

DR lesions however are not easy to detect and classify. In [7], the authors pro-
posed a new hybrid classifier. In the paper, an m-Mediods and GMM (Gaussian
Mixture Model) classifier was used as an ensemble. This ensured that the best
properties from each classifier comes into account when the architectures process on
the dataset.

Clinical data has previously been used to point out relational signs in order to
diagnose eye diseases [8]. Our goal is to make such a system which will help the
medical sector especially the ophthalmologist with a time efficient multi disease pre-
diction with the help of the Deep learning.

Color fundus photography was utilized to detect diabetic retinopathy in the study
[9]. For their investigation, the authors employed the InceptionV3 architecture.
From the dataset provided, InceptionV3 extracts both general (5x5) and local (1x1)
features at the same time. They have had remarkable success using the OpenCV
library for picture pre-processing, loading, and manipulations.

We’ve seen cases where the large color range of fundus pictures was addressed by
normalizing such retinal images using various histogram specification approaches
[10]. This approach was used to standardize all of the photos within the same pa-
rameters, making pre-processing and model training more exact. Computer-based
medical tests are frequently chastised, and the issue is exacerbated when it comes
to categorizing and identifying pictures based on patterns as well as colors.

1.3 Research Objective

We want to leverage widely available medical data and machine learning methods to
create a model that can properly predict diabetic retinopathy with high accuracy.
Hospitals have access to all patient data required for the study, including age, gen-
der, weight, diabetes level, fasting blood sugar, and an image of the patient’s eyes.
Most medical clinics now use complex frameworks to store this critical data in their
databases. Eye illnesses are diagnosed clinically by professionals with competence
and experience. However, patients must undergo a series of costly testing.

We used machine learning methods to identify Diabetic Retinopathy and its various
phases in this study. We’ll assess the accuracy of each algorithm’s output indepen-
dently to have a better understanding of which algorithms are best for fundoscopic
image data.

To identify DR from fundoscopy pictures, convolutional neural networks were used.

2



CNNs have been employed by several academics to perform similar jobs [11]. Some
of these models have also shown to be quite accurate.

We have discovered a low-cost method of accurately diagnosing diabetic retinopathy
after additional research and refinement of our model. Deep learning architectures
trained on fundoscopy pictures have shown to be fairly accurate in recognizing the
disorders in question. On fundoscopy pictures, we’ll test a variety of deep learning
architectures. For Diabetic Retinopathy, all of the selected architectures will be run
separately. We will select the best performing architecture after model training to
meet our aim of properly recognizing these illnesses at an early stage.

1.4 Research Methodology

This model is responsible to accurately predict if a patient has diabetic retinopathy
or not depending on the patients fundoscopic images. The proposed model makes
use of various data pre-processing techniques such as Image Augmentation, CLAHE
implementation, Hybridization and etc. Finally, utilizing various deep learning ar-
chitectures such as DenseNet-169 and etc. we get a prediction on the test data. The
prediction comes with both if the patient has diabetic retinopathy or not and at
what stage it is currently.

1.5 Research Orientation

We already mentioned study and effort on Diabetic Retinopathy by other researchers
in section 2. Following that, part 3 delves into the deep learning architectures,
methodology, and procedures that we employed to conduct our own study on the
subject. In section 4, we illustrate how we used our research strategy and methodol-
ogy to develop the previously discussed algorithms and structures. There are other
examples of our dataset and pre-processing procedures in this section. The findings
of our research, as well as the results and analysis of the data obtained after imple-
menting our recommended techniques, are presented in section 5. Finally, section 6
contains the recommended research’s future work goals and a thorough conclusion.

3



Chapter 2

Related Work

Andrés Ortiz, Jorge Munilla, Juan M Górriz, and Javier Ramrez created a ground-
breaking approach for detecting Alzheimer’s disease early on [12]. They used auto-
mated anatomical labeling (AAL) to train a deep belief network to designate various
areas of MRI (Magnetic Resonance Imaging) and PET (Positron Emission Tomogra-
phy). To assess data intensity, these voxelized pictures with specified area markers
are processed through an unsupervised network using Restricted Boltzmann Ma-
chines with a two-layer architecture. For regression and classification, trained RBM
and SVM [13] are utilized to correctly detect early stages of Alzheimer’s disease.
The main idea behind voxelizing pictures is to mark out distinct regions and then
use our trained model to detect eye illness from retinal images.

The authors present a computer-based automatic classification algorithm to iden-
tify Age-related macular degeneration AMD. 1,20,656 manually graded color fundus
images from AREDS study was collected for this study [14]. The authors defined a
severity scale of 13 class to classify AMD. After pre-processing the images, multiple
convolution neural nets (CNNs) were trained independently. CNN was trained to
optimize evaluation metric by comparing the CNN output with the true class iter-
atively and then adjusting the weights to minimize the loss between CNN output
and actual label. A random forest algorithm was trained to build a model ensemble
based on the results of the single CNNs. Performance of the algorithm was evaluated
on 5555 independent fundus images from the KORA study. The deep learning algo-
rithm outperformed human graders in the AREDS study and is suitable to classify
AMD fundus images in other datasets.

In this paper, the authors tried to create a system that will act as a referral trigger,
which would advise the patient to consult a retinal expert upon positive detection
[15]. This study included two phases in which the model was trained and tested in
the first phase and a GUI was developed for real-time detection in the second phase.
They divided the dataset into an 8:2 ratio for training and testing. Features were
extracted from the fundus images through a series of convolution, pooling, ReLu
layers. An 80% accuracy was acquired which can be further improved by perform-
ing parameter tuning and adopting cross-validation.

The author implemented GPU accelerated Deep CNN to automatically detect Dia-
betic Retinopathy from fundus color images. They classified the dataset images into
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5 stages of severity. The authors three major CNN models and obtained a max ac-
curacy of 38.66% [16]. The test set contained 5,000 fundus images. The examination
in diagnosing diabetic retinopathy has been founded on the extraction of highlights
from the images like microaneurysms and injuries through which the classification
is performed. This work was implemented using ImageMagick and python library,
OpenCV.

A. Alaimahal, Dr. S. Vasuki developed a system to help ophthalmologists in the
screening process of Diabetic Retinopathy. The system concentrates on detecting
microaneurysm from fundus images [16]. The fundus images were pre-processed
to reduce noise and increase contrast for easier detection of microaneurysms. The
sensitivity and Predictive value of the proposed system is 98.89% and 89.70% re-
spectively. It was also able to detect microaneurysms from poor quality images.

Wejdan L. Alyoubi, Wafaa M. Shalash, Maysoon F. Abulkhair together has re-
viewed 33 papers in their given paper named Diabetic retinopathy detection through
deep learning techniques: A review. The authors describe the 5 stages of diabetic
retinopathy which are No DR, mild DR, moderate DR, severe DR and prolifera-
tive DR. They also found that many CNN methods can be used to detect Diabetic
Retinopathy. Such as, estricted Boltzmann Machines, CNN, auto encoder and sparse
coding [17]. Performance is proportional to the quantity of training data. The Au-
thors also illustrated that, SoftMax activation function is the most used classification
function. The authors also included that, Fundus color images and optical coher-
ence tomography (OCT) are used as the datasets. Lastly They added that, Many
CNN can be used for the detection eg. AlexNet, VGG-16, SqueezeNet, ResNet50,
Inception V3, InceptionResNetV2, Xception, DenseNets etc.

Daniel Shu Wei Ting, Carol Yim-Lui Cheung, Gilbert Lim, et al. in their paper has
proposed a model to evaluate diabetic retinopathy with great accuracy. This model
extracts data from retinal images to predict the severity of diabetic retinopathy with
high accuracy [18]. The deep learning system shows an accuracy of upto 93.2%.

Tahira Nazir, Aun Irtaza, Ali Javed, Hafiz Malik, Dildar Hussain, Rizwan Ali Naqvi
has developed deep learning system to analyze and detect diabetic retinopathy. Fast
Region based Convulational Neural Network (FRCNN) and Fuzzy K-Means (FKM)
was used to process images and localize different regions for the classes and states
of the disease [19]. The model has shown an accuracy of 95.8%.
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Chapter 3

Research Methodology

Our Deep Learning model has been fine-tuned to identify Diabetic Retinopathy at
various stages. Various data pre-processing techniques and deep learning architec-
tures are employed in our model.

The following flow chart (fig 3.1) summarizes the full work process of our inves-
tigation.
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Figure 3.1: Workflow Diagram

3.1 Data Pre-Processing

Pre-processing entails a number of processes, as previously noted. We only have
photos in our dataset. In order to feed our model with varying levels of diabetic
retinopathy afflicted photos from two different dataset, we split them into distinct
folders.

We organized the photographs into various folders based on the ailment and its
severity degree using the provided labeled CSV. This allowed us to quickly determine
the amount of data for each instance, as well as detect any potential data imbalances.
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3.1.1 Data Cleaning

Image data is frequently skewed. For a variety of causes, images might become
damaged, clipped, deformed, or truncated. The accuracy and validity of our model
will be harmed if such data is included in the train and test.

As a result, our initial course of action was to eliminate such erroneous data. The
shortened data is the first flaw here. Truncation is defined as the process of shrinking
something, removing the least significant digits, replacing an angle, or performing a
similar action.

In image processing, truncation operates in a similar way. When we try to process
these photos, we usually get an error message like ”OSError: image file is truncated!”

When we go through our data and come across an error like this, we may delete or
transfer the image to a new location that we won’t use in our code or model. Fol-
lowing the removal of shortened photos, we must also remove any photographs that
are undesirable. In our scenario, we’re talking about visuals that aren’t readable
to the model. Images were taken by several cameras in our diabetic retinopathy
dataset. There were some photographs that were burned out, some that were fuzzy,
and some that displayed surprising features for such a wide range of image quality.
We manually eliminated those photos to produce a better model. Figure 3.2 shows
various cases of poor image quality. Such photos will seriously sabotage our model
development and testing.

Figure 3.2: Truncated Image and Bad Image

3.1.2 Data Handling

Deep learning models are affected by data imbalance. The test accuracy will suffer
a significant decrease if there is not enough data at each level on which a model
is being trained. We used two Kaggle datasets in our project. In Fig. 5, we can
observe that the dataset for Diabetic Retinopathy published by APTOS has a lot
of imbalance in it. In all, we had 25624 photos for No DR, 2419 images for Mild
DR, 5257 images for Moderate DR, 870 images for Severe DR, and 708 images for
Proliferative DR. After cleaning the data, we had 708 images for Proliferative D.
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However, the images of this dataset was captured in different light condition. For
this reason, many of the images are washed out and burned. Some images were so
bad that we had a difficulty of identifying it as a retinal scan. The use of a dataset
with such a wide range of values results in a significant loss. We required to balance
the dataset first in order to minimize the training loss, raise the validation loss, and
enhance the validation accuracy.

Figure 3.3: Imbalanced Data (APTOS)

Figure 3.4: Imbalanced Data (IDRID)

The second dataset we worked with was Indian Diabetic Retinopathy Image Dataset
[2]. The dataset was already splitted into training and validation sets. The train-
ing set contains total 413 Images and the validation set contains total number of
103 images. To be more specific, the training image contains 134 images for No
DR, Only 20 images for MILD DR, 136 images for Moderate DR, 74 for Sever DR
and lastly 49 for Proliferative DR. Moreover, this dataset is also imbalanced and
a very small dataset. As the classification is defined by very small features, this
small dataset will definitely cause underfitting. However, if we use deeper models
for classification, there is a high chance that it will cause overfitting. But the good
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part of this dataset is, the images are clean. There was not a single piece of bad
image. All the images are clear and all the images have a good detail level.

However, we continue to have a dataset that is severely skewed. The number of
samples collected for levels 1 to 4 is much lower than the number of samples col-
lected for No DR in both of the dataset. level 4 and level 2 DR are very much less
in quantity in both dataset. We could not use any of the dataset as it will give us a
biased prediction. However, for bad images in our first dataset, the model will learn
features which are not at all important for our research. But the challenge for us
to get a good balanced dataset. Where not a single image should be bad or have
unnecessary features like noise, shadows etc. The only possible option that came
across our mind was mixing the two dataset and make a new one. This will improve
the outcome of our model as it will not contain bad images and will be balanced.

3.1.3 Making Hybrid Dataset

To make a Hybrid Dataset, we decided to take all the images from IDRID dataset.
Because, the images of this dataset are comparatively better than the other one.
So, initially, we started with the total number of 134 images of level 0, 20 images
of level 1, 136 images of level 2, 74 images of level 3 and 64 images of level 4. As
we have many images which are in bad condition in the first Dataset from kaggle,
we couldn’t use a randomizer to pick images from that dataset randomly. So, we
decided to hand pick some clean images and mix it with the IDRID dataset. So
we picked images from the first dataset very carefully one by one. We were really
careful about taking images which has the less amount of noise. We took 367 images
of level 0 from the first dataset and mixed it with the level 0 of the IDRID dataset.
Additionally, we took 473 images of level 1, 371 images of level 2, 435 images of
level 3, 458 images of level 4. Finally after mixing two dataset, we now have 501
images of level 0, 493 images of level 1, 507 images of level 2, 509 images of level 3,
507 images of level 4. Now, if we take a look at (fig. 3.6), we can see that we have
a pretty much well balanced dataset than before. As we have handpicked the data,
we do not need to worry about bad images with noise such as blur, bokeh, shadow
etc. Now it makes, we have a total number of 2,517 images in our training dataset
to work with.
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Figure 3.5: Bad Images

Figure 3.6: Hybrid Dataset Count Visualized

3.1.4 Image Enhancement using Contrast Limited Adaptive
Histogram Equalization (CLAHE)

In our data pre-processing, CLAHE is an essential component of our workflow.
CLAHE, which is an abbreviation for contrast limited adaptive histogram equaliza-
tion, is a method for increasing the contrast of target pictures in order to improve
visibility in low light.

It is possible to decrease issues such as noise amplification by the use of CLAHE.
The picture is processed in this manner by working on little chunks of it rather than
on the entire image as a whole. Iteratively combining the bi-linear interpolation
of surrounding tiles is performed on each tile in order to eliminate any artificial
boundaries from the image.

A far better set of results is obtained by applying CLAHE on the luminance channel
of an image (HSV, hue-saturation-value) rather than applying the same technique
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to the RGB channels of the picture.

Blood vessels, which are visible on retinal pictures, are a prominent aspect of these
images, which we must consider while dealing with them. Microaneurysms (MA),
which are red dots in the blood vessel, can be found in any stage of diabetic retinopa-
thy. Additionally, MA is important information since it can diagnose DR at an early
stage in the disease’s progression. A good contrast in the blood vessel is therefore
essential for this reason as well. In order to produce contrast in a picture, the inten-
sity value range must be combined with the highest and minimum pixel values to
be distinguished. The purpose of improving a picture with histogram manipulation
is to obtain an intensity distribution that is uniform over the whole image field.
A low effective intensity range is associated with images that have a low contrast.
When using histogram equalization, you may spread out the intensity distribution
while also adjusting the intensity of the original image. In accordance with [20], one
of the distinctive characteristics of retinal pictures is that they include significant
information in the G (green) channel. CLAHE will be applied to the G channel
of our dataset for the objectives of our research with the expectation that a better
result will be obtained.

Figure 3.7 shows two photos that illustrate the differences between CLAHE and
other systems.

Figure 3.7: Retinal Images before and after using CLAHE

3.1.5 Augmentation

After balancing the data, we get a large number of photographs that are compa-
rable. This is due to the fact that we have raised the sample count for Mild DR,
Severe DR, and proliferative DR numerous times. As an added bonus, we boosted
the sample count for the Moderate-Difficulty DR by a factor of 0.35. Because there
are so many comparable photographs, the model will be biased. To put it another
way, it will only remember a specific sort of picture and will predict it otherwise if
the provided test image is a different type of image from the one remembered. It will
only remember the image that we will show it when we train it. A bias model will
have a significant impact on the correctness of our validation. In order to eliminate
this prejudice, we applied augmentation techniques. For data pre-processing, we
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made use of the ImageDataGenerator package provided by the TensorFlow Keras
framework. This gadget is simple to use and quite effective. Depending on the
parameter, it spins, shears, flips, and performs a variety of other operations on the
photos to generate a new image. Because we have a large number of photographs
that are identical, this program will make them unique by applying random tech-
niques to them.

3.2 Convolutional Neural Networks

CNN or Convolutional Neural Networks are a form of deep learning methods. These
methods or models assign priority to various aspects in the input images. Learnable
weights and biases are the key cogs that help in building and making the model
understand what it needs to recognize. Convolutional neural networks (CNNs) are
sophisticated image processing AI systems that employ deep learning to handle both
generative and descriptive tasks. A neural network is a hardware and/or software
system modeled after the way neurons in the human brain operate. A CNN employs
a technology similar to a multi-layer perceptron that is optimized for low processing
requirements. Through the use of appropriate filters, it is able to properly capture
spatial and temporal relationships in a picture [21]. Due to the reduced number of
parameters involved and the reusability of weights, the architecture performs supe-
rior fitting to the picture dataset. In other words, the network may be trained to
better recognize the image’s complexity.

For classification and computer vision applications, convolutional neural networks
(ConvNets or CNNs) are more commonly used. They’re made up of node layers,
each of which has an input layer, one or more hidden levels, and an output layer.
Each node is connected to the others and has a weight and threshold assigned to it.
If a node’s output exceeds a certain threshold value, the node is activated, and data
is sent to the next tier of the network. The convolutional layer is the most impor-
tant component of a CNN since it is where the majority of the processing takes place.

It requires input data, a filter, and a feature map, among other things. Let’s assume
the input is a color picture composed of a 3D matrix of pixels. The size of the
receptive field is determined by the filter size, which is usually a 3x3 matrix [22].
The output array does not need to map each input value directly.

It simply has to be connected to the receptive field, which is where the filter is ap-
plied. This characteristic can also be described as local connectivity. Before starting
the neural network training, there are three hyper-parameters that determine the
output volume size that must be established. These include: 1. The number of
filters. 2. Stride is the distance, or number of pixels, that the kernel moves over the
input matrix, and 3. Padding.

The feature detector’s weight values remain constant as it advances over the picture,
a technique known as parameter sharing. A CNN adds a Rectified Linear Unit
(ReLU) adjustment to the feature map after each convolution operation, imparting
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non-linearity to the model. However, because subsequent layers may identify pixels
within previous layers’ receptive fields, the CNN’s structure can become hierarchical
[23]. Finally, the convolutional layer converts the picture to numerical values that
the neural network can evaluate and extract patterns from. Let’s assume we’re
trying to figure out if an image contains a bicycle. A bicycle is made up of several
components such as a frame, handlebars, wheels, pedals, and so on. Within the
CNN, the combination of its elements indicates a higher-level pattern, resulting in
a feature hierarchy.
In a simple Convolutional Neural Network, we start with an input image and feed it
through the network to get a predicted label output in a very simple fashion, as seen
in the diagram below. To elaborate, the algorithm gives weights or significance, as
well as biases, to specific elements and attributes of the input in order to categorize
the test picture.

Figure 3.8: Convolutional Neural Network

Except for the first convolutional layer, which gets the input image, each consecutive
convolutional layer consumes the output of the previous layer and creates an output
feature map, which is then passed on to the next convolutional layer. Between the
L number of layers, there are L direct connections - one for each layer and its next
layer.

ConvNet, or Convulational Neural Network, breaks down input pictures into little
pieces or bits, making them much easier to analyze than the complete image while
maintaining all of the image’s characteristics. This enables a proper train-test with
characteristics that are necessary for the model to successfully forecast. To illustrate
how this picture segmentation works and how the kernel iterates over the segments,
imagine that the whole image is partitioned into multiple little cubes, each of which
is processed independently of their neighbors.

3.3 Model Training

We used ImageDataGenerator to divide the data one more before training the model,
and we did so before training the model. We divided the data into two groups: 80
percent and 20 percent. 80 percent of the data is used for training, while the
remaining 20 percent is used for testing. Splitting the data in this manner makes it
easier to train the model and execute the necessary tests and validations after it is
trained.
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3.3.1 ResNet50

A deep convolutional neural network is a multilayer network that naturally com-
bines low, mid, and high level features and classifiers in an end-to-end multilayer
manner. The features can be increased by increasing the depth of the network. Deep
convolutional neural networks are used to classify images. However, it has now been
demonstrated that deeper networks can result in a significant gain in accuracy, but
that this rise is short-lived after a few rounds. This problem was addressed by a
group of researchers who developed a deep residual learning architecture that was
eventually dubbed ResNet as a solution. The layers of this architecture are designed
to suit a residual mapping. The intended underlying mapping was labeled as H(x),
and the stacked nonlinear layers fit another mapping of F(x):= H(x)x, which was
denoted as F(x). In the original mapping, F(x)+x is substituted for F(x). As previ-
ously stated, it has been demonstrated that optimizing a residual mapping is more
easier than optimizing the old conventional mapping [24].
ResNet50 is one of the few CNN designs that is capable of continually delivering
good accuracy despite having a large number of nodes in the network. The fun-
damental premise of this design is centered on the use of shortcut connections or
residuals to create deeper models rather than using full models. ResNet has used
batch normalization as a standard practice. It is capable of handling 26 million
parameters [24]. The design is capable of working with up to 152 layers while still
delivering great outcomes.

By simply looking at the basic diagram (fig. 3.9) shown below, it is possible to
quickly visualize the building components of the ResNet design.

Figure 3.9: Residual Learning: Building Block

3.3.2 Inception or GoogLeNet

The architecture of Inception may be summarized by stating that it is a CNN (convo-
lutional neural network) with a depth of 27 layers, which is the shortest description
possible [25]. The Inception model’s goal is to eliminate reliance on fully linked
network designs by replacing them with sparsely connected network architectures,
therefore removing the need for them.

The following graphic depicts a comprehensive visual representation of the whole
27 layers of the work being shown (fig. 3.10). Following that, a more in-depth
explanation of the operating mechanism is provided.
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Figure 3.10: Layers of InceptionV3

It is possible to simplify the graphic above in order to make Inception more un-
derstandable. [26] The inception layer concatenates numerous convolutional layers,
such as 1x1, 3x3, and 5x5, into a single output vector by combining them into a sin-
gle output vector. In the following stage, this vector is utilized as the input for the
next stage. The following is an illustration of how this section should be visualized.

Figure 3.11: Simplified InceptionV3

Additionally, there is more to the Inception layer than what is seen above. These
add-ons form a significant component of the Inception architecture.

3.3.3 MobileNetV3 Large

MobileNet is a CNN architecture model built for mobile and embedded vision. Mo-
bileNet stands out from other models since it requires relatively little computational
power to execute or apply transfer learning. This makes it ideal for mobile devices,
embedded systems, and computers that lack a GPU or have low processing effi-
ciency without sacrificing considerable accuracy. It’s also ideal for web browsers,
which have limitations in terms of compute, graphics processing, and storage. In
2017, the first version of MobileNets was published. The main goal was to present
a set of TensorFlow-based computer vision models that maximize accuracy while
also taking into account the limited resources available for an on-device or embed-
ded application. To reduce the amount of parameters, MobileNetV1 incorporated
depthwise convolution [27]. The second iteration adds an expansion layer to the
block, resulting in a three-layer expansion-filtering-compression scheme. This ap-
proach, dubbed “Inverted Residual Block”, helped to improve performance even
more. MobileNet V3 is a review of MobileNet V1 that was presented at ICCV in
Seoul, South Korea in 2019. It tries to optimize the number of filters for every conv
in question and picks the model with the highest across-the-board algorithm. This
version adds Squeeze and excitation layers to the initial building block taken from
V2.
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Figure 3.12: MobileNetV2: Bottleneck with residual

Figure 3.13: MobileNetV3 Block

MobileNet V3 has two structures: MobileNetV3-Large and MobileNetV3-Small.
Both have the following structure (MobileNetV3-Large on the left and MobileNetV3-
Small on the right):

Figure 3.14: MobileNetV3 Large Structure and MobileNetV3 Small Structure

3.3.4 Xception

Xception is a Depthwise Separable Convolutions-based deep convolutional neural
network architecture. Francois Chollet, a Google Inc. employee, introduced this
network. Xception is a ”extreme” version of an Inception module that performs nu-
merous transformations (as seen in the diagram above) on the same input. Xception
stands for ”extreme inception,” and it pushes Inception’s concepts to their logical
conclusion. 1x1 convolutions were employed to compress the original input in In-
ception, and different types of filters were utilized on each of the depth spaces from
each of those input spaces [28]. Xception simply reverses this process, applying the
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filters on a depth map before compressing the input space using 1X1 convolution
applied across the depth. This approach is virtually equivalent to a depthwise sepa-
rable convolution, which has been used in neural network building since 2014. The
occurrence of non-linearity after the initial operation is another distinction between
Inception and Xception. In the Inception model, both processes are followed by a
ReLU non-linearity; however, Xception does not add any non-linearity.

Figure 3.15: Xception Workflow

Xception outperforms every model in Imagenet Dataset:

Figure 3.16: Xception vs Other Models in Imagenet Dataset

The validation accuracy of the Xception model is also higher than that of the in-
ception model presented below
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Figure 3.17: Xception vs Inception V3

3.3.5 DenseNet-169

Densely Connected Convolutional Networks (DenseNets) are the next step in the
evolution of deep convolutional networks’ depth. This is due to the fact that the
path for information from the input layer to the output layer (as well as the gra-
dient in the other way) is so long that it is possible for them to evaporate before
reaching the other side. To do so, they simply connect each layer to the next di-
rectly. DenseNets are extreme deep neural networks in which each layer has direct
access to the loss function gradients and the original input image. Transition Layers
are the layers between them that handle downsampling by using batch normaliza-
tion, 1x1 convolution, and 2x2 pooling layers [29]. DenseNet comes in a number of
different configurations, including the DenseNet-121, DenseNet-160, DenseNet-201,
and others. The numerical numbers correspond to the number of layers in a neural
network. DenseNet is separated into DenseBlocks, each of which has a different
number of filters but the same dimensions inside the block. The Transition Layer
uses downsampling to provide batch normalization; it is a crucial stage in CNN. The
number of filters varies amongst DenseBlocks, with the number of filters increasing
the channel size. The l-th layer’s generalization is aided by the growth rate (k). It’s
in charge of calculating how much data should be added to each layer.
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Figure 3.18: 5-layer dense block with a growth rate of k = 4 and the standard
ResNet structure

3.4 Adamax Optimizer

Adamax is an advanced optimizer variant enforcing the Adamax algorithm. This
optimizer is takes into account the infinity norm base of Adam. Individual weights
in Adam are updated according to a rule that scales their gradients inversely pro-
portionate to a (scaled) L2 norm of their individual current and previous gradients.
In order to generalize the Lp norm based update rule, we must first define the Lp

norm in the first place. When p is large enough, such versions become numerically
unstable [30]. However, in the exceptional scenario where, let p be a positive integer,
a remarkably simple and reliable solution is discovered.

Figure 3.19: Adamax Formula

3.5 Hyper-Parameter Tuning

Hyper-parameters shorten training time in half and boost performance. Hyper-
parameters also influence how an algorithm functions and have an impact on the final
result. It stores the data that governs the training process.For this hyper-parameter
, settings are selected randomly from a user-defined search area.Following that,
they are identified based on the re-sampling chosen approach .For unknown hyper-
parameter values, the regression model evaluates the performance of the machine
learning algorithm..The tuning process itself is generally influenced by individual
and intuition. When compared to approaches that do not employ knowledge from
prior runs, such as random search or grid, this tuning strategy drastically reduces
the tuning budget needed to discover a setting that is near to the global minimum.
The test/validation loss may be utilized to get insight into the training process,
while the final test accuracy can be used to compare results.The search for hyper-
parameters can be significantly accelerated if the hyper-parameters are specified
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using only a few epochs. Without doing a full training to compare the final per-
formance results, the test loss throughout the training process may be utilized to
determine the ideal network design and hyper-parameters [31]. Here is a summary
of the effects of each hyper-parameter.

Learning Rate
It performs a LR range test with a small learning rate which increases slowly in
linear order throughout a pre-training run and finds the maximum learning rate. It
also performs Cyclical learning rates to choose the learning rate.There is a maximum
pace at which the learning rate can increase without the training becoming unstable,
which has an impact on your minimum and maximum learning rates options.

Total Batch Size
A big batch size works effectively, although the magnitude is usually limited by GPU
memory.Larger batch sizes are favored too much by a fixed number of iterations.
The reason is that with the 1 cycle learning rate schedule, greater batch sizes allow
for higher learning rates.

Momentum
It is related to Learning rate.It’s important to establish as much momentum as
possible during training without producing instabilities, just as it is with learning
rates.If a constant learning rate is applied, a big constant momentum will speed up
the training and enhance the learning rate. Short tests with momentum values of
0.99, 0.97, 0.95, and 0.9 will reveal the ideal momentum value rapidly.

Weight Decay
At this part the values must be set properly.This needs a grid search to identify
the right magnitude, but usually only one significant figure accuracy is required.
Smaller datasets and architectures appear to necessitate higher weight decay values,
whereas larger datasets and deeper architectures appear to necessitate lower values

21



Chapter 4

Implementation

4.1 Dataset

4.1.1 Source

The datasets utilized in our research, as well as the proposed model, were obtained
from Kaggle and IEEE journal. One of the dataset was published by APTOS on
Kaggle and the other one was published in IEEE on 2018 [1], [2]. Additionally, links
are provided in the bibliography section and are also referenced further down in this
section. Two valid Diabetic Retinopathy datasets were utilized in conjunction with
one another to create a hybrid dataset for our needs.

4.1.2 Dataset Description

As we are working on identifying diabetic retinopathy, we have discovered that it
can only be detected by the retinal scans taken from the patients themselves. We
have collected two datasets. The first one which was published by APTOS on kaggle
had in total 88,702 images [1]. Among them, there are 35,126 images for the train-
ing sets. The images of this dataset was captured in different light condition. The
dataset was published for a competition on 2015. This dataset is also the largest
retinal scan dataset available. This dataset has 25624 photos for No DR, 2419 im-
ages for Mild DR, 5257 images for Moderate DR, 870 images for Severe DR, and
708 images for Proliferative DR. After cleaning the data, we had 708 images for
Proliferative D. All the images are in different shapes. some are in 3000x3000 pixels
or some are even bigger or smaller.

The second dataset we are working on is Indian Diabetic Retinopathy Image Dataset
[2]. This dataset was published on IEEE in 2018. This dataset contains total 516
images. Among them, 413 in training set and 103. This dataset represents the Indian
population. Moreover, only this dataset contains the annotation of different lesions
at a pixel level. This dataset was divided into 3 from after some pre-processing.
1. Segmentation , 2. Disease Grading, 3. Localiczation. For the purpose of our
research, Original images from segmentation were enough, so we worked on the
original images .In the original images, we had 134 images for No DR, Only 20
images for MILD DR, 136 images for Moderate DR, 74 for Sever DR and lastly 49
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for Proliferative DR just in the train set. This is comparatively a small dataset than
the first one we chose, but this dataset was better in terms of image quality than
the first one. All the images are in a constant shape which is 4288x2848.

4.1.3 Data Sample

Obtaining fundoscopy pictures is a difficult and time-consuming process. We con-
tacted a number of hospitals and clinics in the hopes of acquiring annotated fundo-
scopic photos from an expert, but unfortunately, our luck did not shine on us this
time.

The problems associated with getting such medical information have been dis-
cussed in earlier articles in the same topic. This pattern appeared to be extremely
widespread in many of the articles that we read for our research, and we were able
to identify it rather easily. Because of this, we turned to Kaggle in order to col-
lect datasets that we could utilize to train and test our model. Because none of
the datasets were complete in themselves, we aggregated several datasets of equal
size and quality to conduct our research. Detailed information on the datasets we
utilized may be found in the reference section [1], [2].
Alternatively, we have included some samples of the data we have used to train and
test our model in the following figure (fig. 4.1).

Figure 4.1: Sample Data

23



The phases of the sample analysis operations are carried out by trained doctors
or non-eye-trained workers based on sensitivity and specificity findings which are
equivalent to or better than human expert observations. The overall performance of
automated software for this diabetic retinopathy diagnosis is high, with a Sensitivity
of more than 80% and a Specification of more than 90% [32]. Diabetic Retinopathy
(DR) is a diabetic complication that causes the retina’s blood vessels to widen and
leak fluids and blood [33].The presence of various sorts of lesions on a retina picture
is used to identify DR. Microaneurysms (MA), haemorrhages (HM), and soft and
hard exudates (EX) are examples of these lesions (fig. 4.3-4.6).

Microaneurysms

Microaneurysms show up as tiny red spots. MA was divided into six categories by
Michael et al [34].

Haemorrhages

Flame (superficial HM) and blot (deep HM) are the two forms of haemorrhage.

Hard Exudates

It looks like bright-yellow patches on the retina triggered by plasma leakage.They
are located in the retina’s outer layers and feature sharp borders.

Soft Exudates

Because of the enlargement of the nerve fiber, it appears as white spots on the
retina.It is also known as cotton wool spots.

Depending on the occurrence of these lesions, there are five phases of DR as follows.

• Level 0 - No DR

• Level 1 - Mild DR

• Level 2 - Moderate DR

• Level 3 - Severe DR

• Level 4 - Proliferative DR

Level 0 - No DR
Here we can see the absence of lesions. A sample fundoscopic image with no traces
of Diabetic Retinopathy is given below to help in visualization.
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Figure 4.2: Level - 0: No DR

Level 1 - Mild DR
The initial symptom of DR is microaneurysms (MA), which appear as little red
spherical spots on the retina due to a weakening in the vessel’s walls.At this point,
small quantities of fluid may flow into the retina, causing the macula to enlarge. We
can also notice sharper borders with size size that is less than 125m.

Figure 4.3: Level - 1: Mild DR

Level 2 - Moderate DR
It’s more than merely microaneurysms. Swelling of tiny blood vessels begins to
obstruct blood supply to the retina, inhibiting normal feeding (fig. 4.4) .Bigger
bright-yellow spots are seen on the retina which are more than 125 m and have an
asymmetrical edge.

Figure 4.4: Level - 2: Moderate DR

Level 3 - Severe DR
A bigger part of the retina’s blood vessels becomes clogged, resulting in a consider-
able reduction in blood flow to this area. Exudates occur in the macular area, and
the macula thickens.
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Figure 4.5: Level - 3: Severe DR

Level 4 - Proliferative DR
In this level, there are more severe and extensive mutations in the retina. Lens
deterioration happens. This is where the retina pulls away from the back of the eye.
At this stage, there is high risk of losing vision.

Figure 4.6: Level - 4: Proliferative DR

4.2 Applying Deep Learning Algorithms

The suggested system will consist of one ipynb file and one .h5 file, both of which
will include a stored version of the model in a different format. The model is put
into action in a localized area. For our implementation, we made use of the Jupyter
Notebook. It is equipped with an Intel i5 9th generation CPU, 16 GB of RAM, and
an Nvidia 8 GB graphics card, which we employed in this experiment.

Our deep learning frameworks were written in Python, which provides a large num-
ber of deep learning frameworks that are extremely straightforward to use. Making
deep learning models is also a common use of Python, which is readily available.
TensorFlow Keras was utilized as the framework for this project. Furthermore, we
employed the most recent version of TensorFlow, which is TensorFlow 2.5.0 with a
GPU-based runtime, to achieve our results. We proceeded through five phases in
the process of putting our suggested approach into action.

• Sorting and Data cleaning

• Balancing the dataset and applying augmentation

• Building a Hybrid Dataset
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• Enhancing the images using CLAHE

• Feed data into different CNN architectures

• Analyze results

For the purposes of our research, we required a high-quality dataset that contained
OCT scan images of normal eyes as well as images of eyes afflicted by DR. We feed
the information into our CNN model with the goal of identifying illnesses and clas-
sifying whether the patient has DR or not, as well as at what stage the disease is
currently at. We fed the data into different models. With the selected architectures,
such as ResNet50, DenseNet169, MobileNetV3Large, Xception and Inception V3,
we are able to categorize images according to the steps described in the dataset.

The Transfer Learning technique was utilized to improve the results obtained when
using diverse architecture. The dimensions of the input data shape were 1024x1024x3.
This implies they will be taking RGB color photos with three channels at a resolu-
tion of 1024x1024 pixels.

We used a number of different architectures for the purposes of our investigation.
For example, ResNet50, DenseNet169, MobileNetV3Large, Xception and Inception
V3. Transfer Learning is the method we will apply for this challenge. First, we
removed the top layer of the design in order to implement the transfer learning
technique. Afterwards, we set all of the trainable layers to false so that we could
keep the trainable layers in place. After that, we manually added four layers to
achieve a satisfactory result and classification, consisting of one Flatten layer and
three Dense layers. The flatten layer’s purpose was to flatten the output of the
convolutional block that followed it. Finally, we added a categorization layer to the
mix. We utilized the SoftMax activation function for the model that would classify
DR because it is a multi-class classification model.

4.2.1 Train Test Split

In order to Train and Validate our model, we split our data in a 80:20 ratio. This is
the regular splitting ratio to get the best performance evaluation of a Deep Learning
model. The 80% of our data will be used for training. This portion of the dataset
has all the features which distinguish the level of diabetic retinopathy. We will feed
this data to our model. Validation set which is the other 20% of our data will be
used to evaluate our model in terms of unseen data. Which means, the model will
be shown some data which it did not see before. And it will predict the level of DR
of that data. All the images of the validation set will be tested and the loss and
accuracy we will get from the model will be an important metrics for our model
evaluation.
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4.2.2 Taking Image Input

As we have said in the upper section that all the data were stored in different folders
according to the label. We did that because it is easier to read these images using
ImageDataGenerator in this way.

ImageDataGenerator is library from Tensorflow which can flow the image from any
directory and feed into the model. And it makes way easier and memory efficient
if the dataset is large. ImageDataGenerator has various features such as augmen-
tation. It also takes batch size as a parameter which we can manually control. By
Controlling the batch size we can set the batch size in a level where the model does
not throw a Resource Exhausted Error while training.

We, Used ImageDatagenerator and set the Rescale Parameter to 1./255. so that all
the pixel values must be in between 0 to 1. Then we used the flow from Directory
method fetch the data and set the input size to 1024,1024. We also set the batch size
10 which means while training, it will take 10 images per step. We also set batch size
to 10 in terms of validation dataset. Also we set the class mode to categorical be-
cause our dataset has multiple class.

Figure 4.7: Output of ImageDataGenerator

After taking input by using this method, we get total number of images and by a
simple calculation we can also get the steps we need to set during the training of
our models. (fig. 4.7)

4.2.3 Augmentation

Augmentation is used when we have a small dataset and the model is under fitting.
We are working on a hybrid dataset which has around 2511 data on training set.
Which is not that much less but not enough. To avoid underfitting, we used aug-
mentation. The good thing is we used ImageDataGenerator for taking input from
directory and ImageDataGenerator have a builtin feature for augmentation. It takes
some parameters while declaring the object for Augmentation such as rotate, sheer
etc. It randomly change the image based on the parameters and feed into the model.
The parameters we have used for the augmentation have been discussed below.
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• We used a rotation range of 30°, which means that a picture may be rotated
in any direction between 0° and 30°.

• The width and height shift ranges were also employed, with the value set to
0.1 for each of the three parameters. These two options will randomly change
the picture’s width and height by 10 percent, resulting in a distorted image.

• We also used shearing to get the job done. Shearing is, in essence, a shift of
point of view or viewpoint. We used it for 0.2 percent or 20 percent of the
total.

• we utilized 20 percent of the zoom range, which would randomly zoom the
photo between 0 and 20 percent of its original size.

• In addition, we utilized horizontal flip, which just flips the image horizontally
rather than vertically.

• if the picture is manipulated, it may generate some additional pixels in order
to keep its structure. As a result, we chose continuous fill mode, which will
result in the creation of additional black pixels.

Following the use of these augmentation settings, it will randomly modify the image.
Due to the fact that it added more detail to some of the retinal pictures, we decided
not to employ closest mode since it may have an adverse effect on the model’s per-
formance.

4.2.4 Our CNN Model

We have used Transfer Learning technique for our model. Tensorflow keras offers
transfer learning and it is pretty easy to implement. Keras has built in library from
where we can directly use well known Architectures with the ’imagenet’ weights.
ImageNet is a dataset from a competition named Large Scale Visual Recognition
Challenge (ILSVRC). This is a huge dataset. The challenge was to classify total 1000
classes from this dataset. Tensorflow Keras offers all the established Architecture for
this competition and also the new architectures with the weights of this challenge.
It makes those architectures more efficient and better in terms of classification.

The Architecture we used was DenseNet169. It is one of the unique architecture
which does not feed forward like other regular Architectures. It feed the informa-
tion differently to the next layer. This architecture introduced a new concept of
flowing the information to the next layer. The connection between a layer and all
the following layer were done in a way that all of the following layers are connected.
So when a layer send information, it sends the information to all the following layers
together. If we put it on another way, the nth layer will send the processed informa-
tion to all other following layers which is [n+1,n+2,n+3+....]th layers. This kind of
dense connectivity makes this architecture unique and gives a good performance.
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Figure 4.8: DenseNet169 Architecture

In our research we used DenseNet169 as it performed better than any other ar-
chitectures.This architecture has total 6, 12, 12, 32, 32 CNN layers in four dense
blocks. As we have a Medium sized dataset, we did not used DenseNet201 as it
might overfit. We did not used DenseNet121 As it might underfit our data. We
have done further Analysis by comparing other few architecture and went through
numerous trial and error process. But for our dataset and research, DenseNet169
gives the best output.

Using the Keras Tensorflow API, we used the DenseNet169 built in module. We
set input shape to [1024,1024]+[3], so that while applying the first CNN layer, the
pixels at the border does not get ignored. After that we set the weights parameter
as ’imagenet’. Which means, the model we are going to train will already have the
weight of the ImageNet dataset. This will make the model more efficient. After
that, we set the include top parameter to False. So the top layers will be removed.
Now, our model is almost done as we do not have top layers yet. For the top layer,
we set a Dense layer with the SoftMax activation function. The reason behind is
the model is going to classify multiple class. The number of tensors were set to 5.
Because the model is going to classify 5 classes which is level 0, level 1, level 2, level
4.

4.2.5 Compiling the model

We compiled our model with the loss function named categorical cross-entropy as
our model is going to classify multiple class. We set our metrics to accuracy. We
used Adamax Optimizer which is comparatively rare while using CNN. In very few
research of Diabetic Retinopathy detection used Adamax optimizer. Generally, al-
most everyone use Adam or RMSprop optimizer in their CNN models. Surprisingly
we got very good result using the Adamax optimizer than the Adam or RMSprop
optimizer. We also tweaked the learning rate a bit. In other words, we tried Hyper
Parameter Tuning in terms of getting a good result and the outcome was great.

30



4.2.6 Optimizer and Hyper-Parameter Tuning

Hyper Parameter Tuning is basically tweaking the Hyper Parameters to get better
result. Epochs, Learning rate, batch size etc. these are the hyper parameters. The
default value of learning rate of our optimizer is 0.001. We tweaked the learning
rate and trained multiple different models through trial and error. After multiple
trial and error we get the best result when we lower the learning rate to 0.0001 from
0.001. This improve the validation loss a lot. We were getting very large validation
loss but when we set the learning rate to 0.0001, we saw a massive change and im-
provement in the validation loss.Because, While training our data, our model was
getting far from the global minima while using the default learning rate. So, while
compiling our final model we used the Adamax optimizer with the learning rate of
0.0001.

4.2.7 Fitting the model

Our DenseNet169 model was ready with the Adamax optimizer which had the learn-
ing rate of 0.0001. While fitting the model, we input our train and validation data.
We set the steps per epoch to 252. The calculation behind the steps per epoch was,
(Total train Image/Batch Size) + 1. Which means 2511/10 = 251+1 = 252. By
doing the same calculation on validation data, we get the validation steps which is
36. So, we set the validation steps to 51. We trained our model for 20 epochs. While
training, we saw that there was a slight up and down movement in the accuracy.
So, For our final model, we set a call back function to get the best result. We used
Model Checkpoint Call Back function.

4.2.8 Model Check Point Call Back Function

Model Check Point Call Back Function is used in Deep Learning while training a
model. This callback function saves the weights of the model when the model gives
the best result. In other words, after each epoch, this callback function tracks the
best result and save the weights on that epoch. Then on the next epoch, it checks
again that if the new result was better than the previous saved one. If the result
is better, it saves the new weights of the best result and it continues tracking the
results. By using this technique, we get the best trained model even if the accuracy
and loss jumps up and down a bit. We set the monitor parameter of this function
to val accuracy. So that it will monitor the accuracy at the end of the each epoch.
We also set the mode to Max. This means, the call back function will monitor the
validation accuracy after the end of every epoch and it will save the weights when
it gets the maximum validation accuracy.

4.2.9 Model Evaluation

Our Proposed Model gave validation accuracy of 0.8829 which is 88.29%. Moreover,
we got the validation loss 0.7083.
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Figure 4.9: DenseNet169 Architecture Loss Accuracy Curve

If we observe our loss curve closely, we can see there’s a gap between the both curve.
This indicates Underfitting. Our model is definitely giving a good result. But it
can be further improved. Basically, the core features for detecting DR are MA,HM,
Hard Exudates, Soft Exudates are so small that 2511 images are not enough. We
have large dataset from Kaggle but that dataset contains a lot of images which are
full of noise. That means we faced a lack of clean data. So, if we can feed more good
and clean data to our model, the probability of performing better is really high for
our model.

The Confusion Matrix describes that how good the model is performing on our hy-
brid dataset. The Confusion matrix is given below.
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Figure 4.10: DenseNet169 model’s Confusion Matrix

And here is the classification report for our proposed model.

Figure 4.11: DenseNet169 model’s Classification Report
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Chapter 5

Results and Analysis

5.1 Result Overview

The end result of our research is quite unique and we are astounded by the findings.
To start off, there are a few terms and concepts that needs to be understood in order
to properly comprehend the shortcomings as well as they final outcome.

5.2 Model Fit

The fitness of a model can be categorized into three distinct levels. Any model
can be one of the following three types. A model deviates from perfect state due
to various reasons that can be related to data pre-processing, training and even at
testing. Underfit or overfit models will result in a very poor performance of the
model.

• Underfit Model

• Overfit Model

• Optimum Model

5.2.1 Underfit Model

The term underfitting refers to a situation where a data model is unable to effec-
tively represent the connection between input and output variables. This leads to
a greater error margin not only on the training data but also the test or prediction
data. An oversimplified model that did not have enough training time is one of
the primary reasons of underfitting. If a model is trained with mostly precise and
small-scaled features that are easy to miss and mistake for, that may also lead to
underfitting. When a model is insufficiently generalizable to fresh data, that model
is in no way suitable for prediction tasks. A models ability to correctly process new
data and make accurate predictions is what enables us to utilize machine learning
algorithms in classifying and making predictions.

Underfitting is indicated by a high bias and a low variance. Due to the fact that
this behavior is visible when the training dataset is used, underfitted models can
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typically be easily recognized than their significant counterparts, overfitted mod-
els. If we look at the train loss and validation accuracy of a model, we can easily
distinguish if the model is underfitted or overfitted.

Figure 5.1: Underfit

5.2.2 Overfit Model

Overfitting notion in data science refers to scenario where training data and the
model fits perfectly. This occurs when the developed algorithms are unable to ac-
curately and properly process new data or test data ignoring the initial target. We
all know that a machine learning algorithm or model is built with with providing a
decent portion of training sample data. However, when this train time exceeds the
normal or if the model is sophisticated enough, it will start learning the irrelevant
features or ”noise” as they are called in these terms which refers to irrelevant or
unwanted information. A model being able to recognize such noise and irrelevant
features is said to be overfit and is incapable of correct predicting on data that it
has not seen before.

Overfit model can be identified having low error margin and large variance. To
bypass overfitting a model, we can feed less training data into the model and keep
the rest for testing purposes. A low error margin on training data with high error
on test data is a clear indication of an overfit model.

Figure 5.2: Overfit
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5.2.3 Optimum Model

The optimum model tends to keep both train and test error relatively close by or
completely overlapping ensuring proper validation on any data that the model has
not seen before.

Figure 5.3: Optimum

5.3 Validation Loss & Accuracy ComparisonWith

Different Learning Rate

As previously mentioned, we implemented quite a few deep learning models to per-
form on our dataset. Each model provided us with different results on the same
dataset. A detailed comparison of Validation Loss & Accuracy across the imple-
mented models are given below for reference.
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Figure 5.4: Validation Loss & Accuracy Comparison

From the bar comparison we can clearly notice the high validation loss incurred by
different models. This graph clearly indicates that our model is underfit. Referring
back to section 4 where we described the features from the image data that are used
to identify and classify diabetic retinopathy are very precise and tiny. Such features
are hard to pinpoint even for trained professionals. When the same comes to a
machine learning model, even more difficulties arise. Too much data might result in
overfitting where the model will learn bad parts or noises of the image resulting in
incorrect prediction. In our case, we lacked a proper and solid dataset with enough
samples and hence, the underfitting issue.

5.3.1 Accuracy Comparison

The bar-chart given below only the accuracy of our proposed models.

37



Figure 5.5: Accuracy Comparison

We witnessed the lowest accuracy with MobileNetV3Large while the DenseNet-169
provided us with the highest accuracy.

5.3.2 Loss Comparison

The bar-chart given below only the accuracy of our proposed models. The labels
along X-axis denotes different models used with their respective learning rate de-
noted by lr. From the chart, again, InceptionV3 gives us the highest amount of
loss with underfitting. Xception model outputs the lowest amount of validation loss
however, in comparison to validation accuracy DenseNet-169 performs way better.
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Figure 5.6: Validation Loss

5.4 InceptionV3 With Default Learning Rate

Initially we ran InceptionV3 on our dataset without altering the learning parameters.
This resulted in heavy underfitting as seen in the loss-accuracy graph given below.

Figure 5.7: InceptionV3 with Learning Rate 0.001
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Figure 5.8: InceptionV3 Confusion Matrix Default Learning Rate

Figure 5.9: InceptionV3 Loss-Accuracy Curve (Default)
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5.5 InceptionV3 With Lowered Learning Rate

To avoid the underfitting observed with default learning rate on InceptionV3, we
applied Hyper-Parameter Tuning and lowered the learning rate to 0.0001 from 0.001.
This change generated significant changes in the outcome of the mode.

Figure 5.10: InceptionV3 with Learning Rate 0.0001

Figure 5.11: InceptionV3 Confusion Matrix Lowered Learning Rate
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Figure 5.12: InceptionV3 Loss-Accuracy Curve (Default)

5.6 Xception With Default Learning Rate

Similar to the InceptionV3 model, training and testing Xception with default learn-
ing rate of 0.001 yielded in high validation loss of 7.57 and a good validation accuracy
of 86.9%. This model however faced underfitting.

Figure 5.13: Xception with Learning Rate 0.001
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Figure 5.14: InceptionV3 Confusion Matrix Default Learning Rate

Figure 5.15: Xception Loss-Accuracy Curve (Default)
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5.7 Xception With Lowered Learning Rate

To overcome underfitting, lowering the learning rate on Xception to 0.0001 yielded
much less validation loss, which is lowest among all 5 models and a even higher
validation accuracy than before, 87.9%.

Figure 5.16: Xception with Learning Rate 0.0001

Figure 5.17: InceptionV3 Confusion Matrix Lowered Learning Rate
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Figure 5.18: Xception Loss-Accuracy Curve (Lowered)

5.8 ResNet With Lowered Learning Rate

From different learning rates used in the previous 4 attempts on two architectures,
we came to a conclusion that using a lowered learning rate yielded much better
results with the data we are handling. So we trained ResNet-50 with the learning
rate 0.0001 and witnessed slightly lower validation loss. However, due to the features
being very sophisticated and small to pinpoint, this model failed to attain a decent
validation accuracy and is by far the second lowest among other models.
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Figure 5.19: ResNet with Learning Rate 0.0001

Figure 5.20: ResNet Confusion Matrix Lowered Learning Rate
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Figure 5.21: ResNet Loss-Accuracy Curve (Lowered)

5.9 DenseNet-169 With Lowered Learning Rate

As previously mentioned, our preferred model the DenseNet-169 outputted the best
results in terms of both validation loss and validation accuracy. This architecture
gave us the highest accuracy topping at 88.29% while keeping the validation accuracy
relatively lower than other models. The learning rate used here was of course, 0.0001.

Figure 5.22: DenseNet-169 with Learning Rate 0.0001
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Figure 5.23: DenseNet-169 Confusion Matrix Lowered Learning Rate

Figure 5.24: DenseNet-169 Loss-Accuracy Curve (Lowered)
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5.10 MobileNetV3 Large With Lowered Learning

Rate

To further strengthen our claim on DenseNet-169 being the better performing model,
we implemented one more architecture, MobileNetV3 Large. This model however
portrayed very poor performance. While the validation loss was decently low, vali-
dation accuracy of this model is way below par, resting at only 23.81%.

Figure 5.25: MobileNetV3 Large with Learning Rate 0.0001

Figure 5.26: MobileNetV3 Large Confusion Matrix Lowered Learning Rate
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Figure 5.27: MobileNetV3 Large Loss-Accuracy Curve (Lowered)

5.11 Comparison & Verdict

After considering and comparing all the algorithms used to test and train our
dataset, we can come to a conclusion that DenseNet-169 is the better perform-
ing algorithm than the rest. DenseNet with a learning rate of 0.0001 results in the
closest outcome to an optimum model. Where InceptionV3 and Xception struggles
with underfitting, DenseNet excels in all regards. MobileNetV3 Large is infact a
very shallow architecture hence the underfitting as seen with a very high loss and
extremely low validation accuracy.

Yashal Shakti Kanungo, et al [9] used InceptionV3 on 10,000 fundus retinal im-
ages of Diabetic Retinopathy and attained an accuracy of 67%. On another re-
search conducted by Gabriel Garcia, et al [35] to detect Diabetic Retinopathy with
their networks “VGG16”, “VGG16noFC1” and “VGG16noFC2” gained accuracy of
74.3%, 72.70% and 83.68% respectively.

Validation loss of a model is proportional to that models prediction confidence. A
model with lower validation loss is more capable of accurately predicting from test
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data. DenseNet shows significantly less validation loss and hence it is our proposed
model of choice.
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Chapter 6

Conclusion

Our model proposes a novel method of Diabetic Retinopathy detection. By using
the Adamax Optimizer and Hyper-Parameter Tuning on the deep learning architec-
ture, we were able to achieve a highly accurate prediction rate. While the proposed
model with such a small data sample has already shown great results, we believe
that with a more balanced dataset, it will be able to perform even better than other
proposed models. We believe that out proposed model has high potential and can
yield greater accuracy with very little loss. But for that, we require better dataset.
Datasets that were available to us to use in this research varied in various ways
which resulted in model underfitting and in some cases overfitting. Features of Di-
abetic Retinopathy are sophisticated, extremely tiny and precise. Without a large
amount of data with various lighting conditions to help the model properly predict
despite however the test data is. We want to continue this research to fine tune
the proposed model a higher dree. The epidemic has prevented us from collecting
data, in this instance fundoscopy photos from local sources, which we rely on for our
research. As a result, we relied on easily available dataset from Kaggle and IDRiD
to test and train our model.
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