An Efficient Deep Learning Approach to Detect
COVID-19 Infected Lungs Using Image Data

by

Asif Rezwan Kabir
18301230
Shutirtha Roy
18301028
Nusrat Zerin
18101533
Sheikh Sharia Afrin
18101528
Anika Jahan Choudhury
18301016

A thesis submitted to the Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2022

(©) 2022. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Asif Rezwan Kabir Shutirtha Roy
18301230 18301028
Nusrok Zersin
Nusrat Zerin
18101533
Sheikh Sharia Afrin Anika Jahan Choudhury

18101528 18301016

sthir
Stamp

Approval

The thesis/project titled “An Efficient Deep Learning Approach to Detect COVID-
19 Infected Lungs Using Image Data” submitted by

1. Asif Rezwan Kabir (18301230)

2. Shutirtha Roy (18301028)

3. Nusrat Zerin (18101533)

4. Sheikh Sharia Afrin (18101528)

5. Anika Jahan Choudhury (18301016)

Of Fall, 2021 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 16, 2022.

Examining Committee:

Supervisor:
(Member)

Dr. Md. Ashraful Alam, PhD
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Co-Supervisor: 0
(Member)

Md. Tanzim Reza
Lecturer
Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor
Department of Computer Science and Engineering
Brac University

i

sthir
Stamp

Abstract

The beginning of 2020 will always be a dreadful chapter in human history. Even
with all the recent advancements in the medical sector, the COVID-19 virus proved
to be a major challenge for doctors all over the world. The virus affected different
people in different ways. One of its deadliest symptoms can be observed in our
lungs. COVID-19 can cause various complications in the lungs such as pneumonia,
acute respiratory distress syndrome (ARDS), sepsis, etc. This pandemic, being
highly contagious, can spread and affect a large number of the population in a very
short period. This results in many patients not receiving proper treatment at the
appropriate time. Our proposed CNN model will be able to automate the entire
detection and classification process. It will be trained using large amounts of X-
ray images of lungs, which will provide it with the necessary feature knowledge to
distinguish between an infected lung and a healthy one.

Keywords: COVID-19; CNN; Supervised Learning; X-ray image; Tensorflow

il

Acknowledgement

Firstly, all praise to the Great Almighty for whom our thesis have been completed
without any major interruption.

Secondly, to our advisor Dr. Md. Ashraful Alam sir and co-advisor Md. Tanzim
Reza sir for their kind support and advice in our work. They helped us whenever

we needed help.
And finally to our parents without their throughout support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

v

Table of Contents

Declaration i
Approval ii
Abstract 1ii
Acknowledgment iv
Table of Contents v
List of Figures vii
List of Tables viii
Nomenclature viii
1 Introduction 1
1.1 Motivation 1
1.2 Research Problem 2
1.3 Research Objectives 3

2 Literature Review 4
2.1 COVID-19 & its Effects on Lungs 4
2.2 CNN Architecture 5
2.3 Supervised Learning 5
2.4 Different Types of CNN Models 6
241 Resnet s 6

2.4.2 Inception Net 8

2.5 Related Works 10

3 Workplan 11
4 Methodology 13
4.1 Inputdata 13
4.2 Data pre-processing 14
4.3 CNN Modeling 15

5 Implementation & Results 18
5.1 Implementation 18
5.1.1 Building the model 18

5.2 Results.
521 CNN . . .o
5.22 Inception v3
0.23 ResNet-b0o
5.2.4 Comparative Analysis of the different models.

Limitations

Conclusion

Future Works

81 COVID-19 App

8.2 Federated Learning L

8.3 SMOTE: Synthetic Minority Over-Sampling Technique
Bibliography

vi

27

28

29
29
31
33

35

List of Figures

2.1

2.2
2.3
24
2.5

3.1

4.1
4.2
4.3

5.1
5.2
2.3
5.4
2.5
2.6
5.7

8.1
8.2

Architecture of Artificial neuron and Multilayered Artificial neural

network.[3] 5
Diagram shows how Input X is added to Output 6
Resnet-50 Architectureo oL 7
Inception Layero 8
Inception Modules[29]o o 9

The flow chart of the proposed COVID-19 detection model using CNN 12

Sample COVID-19 Positive X-ray image from the dataset 13
Sample COVID-19 Negative X-ray image from the dataset 14
Convolution Neural Network 16
Determining the training and validation loss 21
Determining the training and validation accuracy 21
Determining the training and validation loss 23
Determining the training and validation accuracy 23
Determining the training and validation loss 25
Determining the training and validation accuracy 25
Comparative Analysis between different models 26
User Interface Inside the App 30
Our Future Plans of Implementing Federated Learning 32

vil

List of Tables

4.1 Number of Images Per Class

viil

Chapter 1

Introduction

1.1 Motivation

After the world survived pandemics such as the ones caused by Influenza, Cholera,
and the Bubonic Plague, humans have gotten better at identifying and treating
these life-threatening diseases. As better and more effective medicines and medical
techniques were being invented, we felt much more confident in our endeavor to be
protected from any further pandemics.

COVID-19 arrived in 2020 against all odds. It was one of the most unexpected
phenomenons in modern times, unpredicted by anybody. In a very short period, it
started spreading uncontrollably, infecting people by the millions. Daily life was in
complete disarray, and lockdowns were enforced all over the world in an attempt to
contain the spread of the virus. However, as of May 2021, the world is still struggling
to find some stability with newer and deadlier strains of the virus being reported
every month. We are in complete uncertainty of when the situation will become
normal once again, and if we can ever get rid of this deadly virus.

Since this challenge cannot be faced by humans alone, we have been trying to use
deep learning algorithms to assist us in the process. One of the implementations of
deep learning is using Convolutional Neural Networks (CNN) for identifying COVID-
19 infected lungs from X-ray images. Convolution layers, pooling layers, and fully
connected layers are fundamental building elements in a convolutional neural net-
work|[1]. Several neurons are used to create fully connected neural networks. An
artificial neural network is a mathematical model based on the motivation of the
biological brain. It comprises certain properties of the human brain, particularly
the biological neuron of the brain and how it functions as a link between them. The
concept of interconnected neurons is implemented in a neural network to handle
specific problems. A neural network is composed of three layers: input, hidden, and
output. The data from the input is received by the layer of input neurons, and
the processed result is received by the layer of output neurons. Between them are
hidden layers that include numerous neurons in diverse patterns. Weights are ap-
plied to each neuron and multiplied by the input [2]. For the model with numerous
layers, an activation function is used; otherwise, a linear regression model would be
constructed, with restricted performance. To decrease error in huge data sets, the
notion of backpropagation is employed to move back from output layers to preceding
layers [3]. The concept of backpropagation is used to travel back from output layers
to preceding levels to reduce errors in large data sets. Following the discovery of

mistakes, the weights may be modified using the gradient descendent. The output
from the final Pooling or Convolutional Layer is the input of the fully connected
layer [1]. It is flattened and then fed into the fully connected layer [1].

In deep learning, the deeper the neural network, the more data training is required
to better suit the parameters of each layer. Otherwise, overfitting is quite easy which
leads to a poor generalization ability. In response to this issue, transfer learning is
a viable option [4]. Transfer learning aims to transfer knowledge from the source
domain to the target domain by relaxing the assumption that the training data and
the test data must be independent and distributed in the same way. This will have
a significant positive impact on a variety of domains that are difficult to enhance
due to a lack of training data [5].

1.2 Research Problem

From the early days when the severity of COVID-19 was being realized by the
general populace, countless attempts have been made in search of a cure for it.
Being a virus, it does not truly have a cure, but rather vaccines can be used to
prevent further cases of COVID-19. Therefore, the race to discover the vaccine for
COVID-19 was first initiated.

While the research was ongoing to discover the vaccine by studying the inner struc-
ture of the virus, it continued spreading to the far reaches of the world. Even
developed countries started to notice that they do not possess the necessary equip-
ment and protective measures required to prevent the virus. Even before contracting
the virus, humans were unaware of the protective measure which should be imple-
mented to reduce the risk of contracting the disease. An inadequacy of personal
protective equipment (PPE), masks, and medicines are some of the major causes
of death in both developing and developed countries [6]. The usage of PPE was
previously limited to hospitals only, and producers were unable to cope up with the
increased demand.

Another problem started to arise when a person suspected that they might have
been exposed to the virus and wanted to be certain by going through a test. To do
that, one testing kit was required per person, and the inadequacy of raw materials
was a serious hindrance in producing to meet the rising demand. Additionally, the
global lockdown and travel restrictions also caused bottlenecks in the supply chain,
resulting in the factors of production being inefficiently utilized [7].

The final problem started being apparent once mass people started getting infected
with the virus. Since a lot of the virus’s symptoms were similar to the ones caused
by pneumonia doctors had some ideas about the steps to follow to alleviate the
patients. What they were not prepared for is the sheer volume of the patients that
they were required to diagnose. They bravely rose to face the challenges but treating
infected patients had the adverse effect of infecting some of the doctors in return. As
time progressed, the discrepancies between the number of available trained surgeons
and the number of infected people started to widen [8].

After careful consideration of the previously mentioned problems, our research aims
to answer the following question:

“How to efficiently and accurately detect the severity of COVID-19 infected pa-
tients with the least human intervention to determine who requires the most urgent
treatment?”

Our research will explore how we may use transfer learning to modify previous
pneumonia-detection models to now be able to identify COVID-19 in X-ray scans
and judge their severity based on CXR scores.

1.3 Research Objectives

This analysis focuses on advancing a COVID-19 detection system to discover infec-
tions from the lungs caused by COVID-19 using a Convolutional Neural Network
(CNN) on top of X-ray images. At the preprocessing stage, abnormalities in data
transmitted by X-ray pictures may be recognized and deleted. The objectives of
this research are:

1. To deeply understand CNN, and how it works.
2. To deeply understand image processing techniques.

3. To develop a model for COVID-19 detection based on X-ray images and train
with its other data.

4. To evaluate the model.

5. To offer recommendations on improving the model.

Chapter 2

Literature Review

The COVID-19 detection model is changing rapidly due to the CNN models that
have the advantage to detect infection patterns in the lungs. CNN is one of the most
useful deep neural networks in which several hidden layers execute convolution and
sampling to extract modest to considerable amounts of input data. These layers
are known as convolutional layers, which contain featured input and output. Here,
different channels are intertwined with the information in each layer [9].

2.1 COVID-19 & its Effects on Lungs

COVID-19 is a contagious disease that was initially discovered in Wuhan, China in
December of 2019. Attempts were made to contain the disease around the source,
however, it started to spread globally around March 2020 and has caused a worldwide
pandemic situation causing lockdowns as of the first half of 2021.

COVID-19 is mainly caused by a virus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The main symptoms include breathing problems,
dizziness, fever, nausea, vomiting, diarrhea, cold, cough, and loss of taste and smell.
In some moderate cases, we may notice dry cough, sore throat, inflammation in the
trachea and the lungs, and in some people, this may turn into pneumonia [10].
Our COVID-19 detection model will mainly be focusing on X-ray scans to identify
the changes which can be observed in a pair of lungs that are affected by COVID-
19 compared to a pair of healthy ones. The severity stages of this disease can be
identified using a metric known as a chest X-ray (CXR) scoring system. Using this
system, we can categorize patients into different stages of infection based on the
correlation of their CXR scores with their age, sex, etc [11].

Some distinct visual changes can be noticed in our lungs. These changes are then
analyzed and their contrast with healthy lungs can give us an idea of the severity of
the infection. In the scan of a pair of normal lungs, we can see the markings inside
the lungs. However, in infected lungs, these markings are hidden by some cloudy
substance, which is caused by increased lung density [12]. Our model can identify
this white pattern and predict the chance of COVID-19 and its severity from it.

2.2 CNN Architecture

CNN is one of the most amazing deep neural networks in which several hidden lay-
ers execute convolution and sampling to extract modest to considerable amounts of
input data. These layers are known as convolutional layers, which contain featured
input and output. Here, different channels are intertwined with the information
in each layer [3]. Convolution layers, pooling layers, and fully connected layers are
amongst the building components of the CNN architecture. Usually, an architecture
contains one or more fully connected layers, followed by a stack of multiple convo-
lution layers and a pooling layer. In our CNN model, there are a total of 384 2D
convolutional layers, 64 1D convolutional layers, another set of 32 1D convolutional
layers, a flatten layer, a 128 neuron dense layer, a 64 neuron dense layer and a two
neuron output layer. This results in a total of 484 layers.

Forward propagation refers to the process of transforming input data into output
data using these layers. Pixel values are stored in a two-dimensional (2D) grid, such
as an array of numbers, in digital images, and a small grid of parameters called
kernel, an enhanced feature extractor, is applied at each image position. This can
create CNNs highly systematic for image processing because a feature can emerge
anywhere in the image. Although the convolution and pooling operations described
in this section are for 2D-CNN; they are also applicable to three-dimensional (3D)-
CNN [3].

2.3 Swupervised Learning

In neural networks, teaching patterns can be categorized into three sections such
as supervised learning, unsupervised learning and reinforcement learning. Hence,
supervised learning takes an input vector which is presented with a set of responses
at the output layer. To put it simply, it uses labeled input and output datasets to
train algorithms which can later classify data or outcomes accurately. However, a
forward pass is done and also it calculates the errors between preferred and actual
responses for each node in the output layer. Later, the values are used to determine
weight changes according to its existing network [3].

Hidden layer

Output layer

output (0)
X4 Wy
(@) Artificial neuron (b) Multilayered artificial neural network

Figure 2.1: Architecture of Artificial neuron and Multilayered Artificial neural net-
work.[3]

2.4 Different Types of CNN Models

2.4.1 Resnet

Resnet is one of the models of the CNN which uses identity concepts to skip the
connection by adding a particular input to output directly. It bypasses a few stages
of training and joins directly to the output, referred to as skip connections. If we
consider X as input, the data travels from layer to layer. Skip connections will not
add any extra parameters or complexity to the process.

weight layer
F(x) l relu N
weight layer identity

Figure 2.2: Diagram shows how Input X is added to Output

We can consider it as F(X) on the basis of input. In CNN Networks it would be Y
= F(X), since X is connected directly with the output we are considering Y = F(X)
+ X. Since we want to get Y = X in the residual network we have to convert F(X)
to 0. If the input is not equal to the output a convolution block is added in the skip
connection to match it.

There are many variations of Resnet, out of which Resnet-50 was used for the main
implementation as it brought better accuracy, precession when compared to other
CNN models. If we compare Resnet of 18 layers and 34 layers we can see that
Resnet of 34 layers works better than Resnet of 18 layers. This is due to Resnet
34 layers having lesser error during training and has better understanding of the
validation data which also helps us to understand better accuracy gains. Due to
that we thought to use Resnet-50 as it had more layers and it was seen to provide
better accuracy gains.

Resnet-50 has a kernel size of 7 * 7 and 64 different kernels with a stride of size 2.
Here 1 layer is found. In the next layer we can see max pooling of size 3 x 3 of stride
size of 2. In the next convolution there is a 1 * 1,64 different kernels, a 3 * 3,64
different kernels and 1 * 1, 256 different kernels. All these layers are repeated thrice,
so we get 9 layers. After that, in the next convolution there is a 1 * 1,64 different
kernels, a 3 * 3, 64 different kernels and 1 * 1, 256 different kernels. All these layers
are repeated four times, so we get 12 layers. In the next convolution there is a 1 *
1,64 different kernels, a 3 * 3, 64 different kernels and 1 * 1, 256 different kernels.
All these layers are repeated four times, so we get 16 layers. In the next convolution
there is a 1 * 1,64 different kernels, a 3 * 3, 64 different kernels and 1 * 1, 256
different kernels. All these layers are repeated four times, so we get 9 layers. After

7 x 7,64, stride 2

J X 3 max pool, stride 2

1x1,64
3x 3. 64
1x1,256| * 3

1x1,64
3x3,64

! X
1x1, 256 4

1x1,64
3x3,64| , g
1x1, 256

1x1,64
3x3 64 x 3
1x1, 256

average pool, 1000-d fc, softmax

Figure 2.3: Resnet-50 Architecture

that we do an average pool and end it with a fully connected layer containing 1000
nodes and at the end a softmax function so this gives us 1 layer. Altogether we get
a total of 50 layers.

Many image applications other than image classification, including object identifi-
cation and face recognition have improved due its powerful representational ability.
It also reduces the calculation process of the computer [13].

2.4.2 Inception Net

In our CNN model there can be a lot of problems when the model is big and there
are a lot of parameters. If the model is big, the model cannot perform accurately
due to overfitting. If there are a lot of parameters in the model, it is put up a huge
load while performing computation.So if the model is changed to a thinly dispersed
connected manner layer instead of a fully connected layer it would solve the issue.
InceptionNet follows that particular architecture.

Filter concatenation

N

3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions f T T
1x1 convolutions 1x1 convolutions 3x3 max pooling

S~ 7 —

Previous layer

Figure 2.4: Inception Layer

The Inception Layer is made up of three convolutional layers: 1x1 Convolutional,
3x3 Convolutional, and 5x5 Convolutional, with their output filter banks combined
into a single output vector that serves as the input to the second process. The 1x1
Convolutional layer is added before being added to another layer for dimensionality
reduction, along with the previous convolution layers. The Max Pooling layer is
connected in parallel, giving the inception layer another choice.

Out of the four versions of Inception Net we used Inception-v3 for our model which
is an extension of the figure of Inception Layer. Inception-v3 is also a 48 layer net-
work . In Inception-v3 we can factorize into smaller convolutions. Next change we
can do is to add Factorization into Asymmetric Convolutions which helps to reduce
the parameters [14]. For factorization convolutions it explains the reason for the
reduction of computation power and decreases the number of parameters. When
we decrease the size of the convolutions it trains quicker than earlier. Asymmetric

il Bl
(L
i1 |..l
(L

f mm Convolutional Filter
| @ Average Pooling Layer
I BB Max Pooling Layer
. 1 @l Concatenation Layer
T I @8 Dropout Layer
1 Softmax Layer
[

Fully Connected Layer

I
;

Figure 2.5: Inception Modules|29]

Convolutions is performed by converting 1 two-dimensional kernel into 2 one dimen-
sional convolution kernels. For example, 1 x 3 and 3 x 1 can be calculated from 3 x
3 convolution.

2.5 Related Works

This section of the report is an analysis of the previous work that has been conducted
in the field of detecting COVID-19 infected lungs using image data. Since COVID-19
is a relatively new phenomenon, the amount of research conducted specifically on it
is quite limited. However, there has been other related research work on identifying
similar diseases such as pneumonia from which we can draw inspiration and use as
a foundation for comparisons and improvements.

Ali et al. [15] created a deep convolutional neural network (CNN) for the classifi-
cation of COVID-19 Chest X-ray images into normal and COVID-19 classes using
ResNet50, InceptionV3, and Inception-ResNetV2 models. The CT imaging results
and the PCR technique had excellent image results, they reported.

Prabira et al. [16] suggested a technique based on deep feature and support vector
machines (SVM) for detecting COVID-19 in X-ray images. They gathered images of
X-rays from GitHub, Kaggle, and the Open-I repository. Despite the short number
of pictures utilized in their analysis, they recovered the deep feature maps of multiple
CNN models and concluded that ResNet50 performs better.

Maghdid et al. [17] suggested a basic CNN with only 16 layers to identify COVID-19
using X-ray and CT images and found decent results, however, the dataset utilized
was small-scale.

Using the Resnet18 model and image patches focusing on regions of interest, Xiaowei
et al. [18] developed an early prediction model to differentiate COVID-19 pneumonia
from Influenza-A viral pneumonia and healthy patients using lung CT scans.

Shuai et al. [19] used CT scans to predict COVID-19 cases, with an accuracy of
89.5 percent, a specificity of 88.0 percent, and a sensitivity of 87.0 percent using the
Inception transfer-learning model. Several CNN architectures, which are currently
utilized for various medical image classifications, were examined across a dataset
of X-ray images to differentiate coronavirus patients from pneumonia and normal
cases [20]. CNN’s were used on a dataset of 224 images of COVID-19, 700 of
non- COVID19 pneumonia, and 504 normal where they report overall accuracy of
97.82. Wang and Wong [21] explored COVIDx, a dataset, and COVID-Net, a neural
network architecture developed for the identification of COVID-19 cases from open-
source chest X-ray radiography images.

In [22], Narin et al. used multiple CNN architectures to categorize normal X-ray
images with COVID-19 X-rays and they showed remarkable classification accuracy,
sensitivity, and specificity.

The research conducted by our predecessors gives us a working plan in improving
on our model, implementing their ideas, and expanding on them to create models
with better performance, trained and tested with larger datasets.

10

Chapter 3

Workplan

The primary objective of our project is to display definitive data on whether a patient
is infected by COVID-19 based on their X-ray scans. Initially, we collect various
image databases as our input data. After pre-processing those images to filter out
unnecessary data we move on to splitting the data for training and testing purposes.
We have decided to use 80% of the pre-processed data for training purposes,10%
on validation and the remaining 10% on testing our model for performance metrics.
Afterward, we use the training data to create and train the CNN model which is the
core of our COVID-19 detection system. After training is complete, move on to the
classification stage where we test the remaining input data to identify whether they
are infected by COVID-19 or not. If COVID-19 is detected, the model displays the
information and administers the patient for further diagnosis.

11

Start

Input Data

v

Pre-processing Data

4

Splitting Data

Training Data (80%)

Validation Data (10%)

Building CNN Model

»

Classification « Testing Data (10%)

Is Infected by
COVID-197?

COVID Not Detected

COVID Detected.
Further diagnosis required

Figure 3.1: The flow chart of the proposed COVID-19 detection model using CNN

12

Chapter 4

Methodology

Despite the fact that there are a huge number of infected COVID-19 patients across
the world, the number of publicly available online chest X-ray pictures are trivial and
dispersed. As aresult, CNN has been used in this study which uses the generalization
capabilities of large datasets to train models, then moves on to smaller chest X-Ray
datasets to continue training. Pretrained models are frequently used in this design
technique which is why deep evolution neural networks are used to create these pre-
trained models. Also, a CNN model can acquire a knowledge of extracting important
picture characteristics and select the most phenomenal display features of data for
initial training.

4.1 Input data

In this study, a total of 13,808 chest X-ray images have been obtained from different
sources which are publicly available datasets, online sources, and published articles
[23], [24]. This repository consists of chest X-ray images for COVID-19 positive cases
along with negative cases. 10,192 normal (COVID-19 negative) and 3616 COVID-19
positive chest X-ray images were selected for this study.

Here, some sample images from the dataset for COVID-19 positive chest X-ray
images has been shown in figure 1.

Figure 4.1: Sample COVID-19 Positive X-ray image from the dataset

13

Figure 4.2: Sample COVID-19 Negative X-ray image from the dataset

From the figure 2, we can see the chest X-ray images of COVID-19 negative patients.
So, the lung opacity in X-ray images caused by COVID-19 and other lung-related
diseases is the primary key to differentiate between COVID and non-COVID cate-
gories.

4.2 Data pre-processing

In deep learning, data preprocessing is a critical step that improves data quality and
facilitates the extraction of useful insights from the data. For now, we have only
used genuine X-Ray data in this study and will not consider the development and
use of synthetic data.

Dataset images were labelled into 2 classes which are COVID-19 Negative (0) and
COVID-19 Positive (1). A random 80% of the dataset was used for training, 10%
was used to test, and the remaining 10% was used to validate the data in the
study’s experiments. But, before being used as input to the networks, chest X-ray
pictures were resized. The chest X-ray pictures were resized from 299 x 299 to 100
x 100 pixels in order to meet the CNN model’s compatibility criteria. Also, the
images were transformed to grayscale. The pre-trained model standards were used
to normalize all of the images. The table below summarizes the number of images
per class used for training, validation, and testing in this study.

Types Binary classification | Total number of X-ray images | Training set | Testing set | Validation
COVID-19 Positive | 1 3616 2892 362 362
Normal 0 10192 8154 1019 1019

Table 4.1: Number of Images Per Class

14

4.3 CNN Modeling

The CNN model type that has been used in the study is the sequential model. In
Keras, the simplest way to build a model is sequential. It allows the model to be
built layer by layer. The ‘add()’ function is used to add layers to the model. As it
is mentioned before, the first layer of our custom CNN model is the convolutional
layer which is mainly used to extract features from input images. It contains a set
of filters with height and width which are smaller than input images. Moreover,
the CNN model consists of 3 types of convolutional layers, max pooling layers, fully
connected layers and additional activation functions. In the convolutional layers,
mathematical operations of convolution are performed between the input image and
filters of different sizes with strides 1 and no padding. Then, the filter is slid across
over the input image, and the dot product is used to compute an output layer of that
particular convolution. As the depth starts increasing, inner convolutional layers
help in detecting edges from the output of the previous layer. This will generate
a feature map to pass through the activation function for learning more about the
X-ray images in depth used in the dataset. The activation function used is ReLLU or
rectified linear unit as it is easier to train and give better performance by cancelling
out the negative values. It is the most important parameter as it adds non-linearity
to the learning.

Max pooling is the process of extracting windows from the input feature maps
and displaying the channel’s maximum value. It’s similar to convolution in general,
except that instead of using a trained linear transformation (the convolution kernel),
local patches are modified using a hard-coded max tensor operation. Max pooling
differs from convolution in that it generally uses 2 x 2 windows and stride 2 to
down-sample the feature maps by a factor of two. Convolution, on the other hand,
is usually done with 3 x 3 windows and no stride (stride 1) [25]. By convolving
filters across the convolutional layer, max pooling combines the features of the layer.
It helps to avoid overfitting by decreasing the computational cost by limiting the
number of parameters. To prevent overfitting and make the model computationally
effective, a 2 x 2 Max pooling layer is added after the convolutional layer in each of
the three layers [26]. We can notice that after each MaxPooling2D layer, the size of
the feature maps is reduced to half. For example, the feature map is 48 x 48 before
the initial MaxPooling2D layers, but the max-pooling process reduces it to 24 x 24.
So, max pooling’s objective is to aggressively down-sample feature maps, similar to
strided convolutions.

The fully connected layer (FC) or also known as classifier is used to mainly clas-
sify the image more accurately. As convolution and pooling already reduced the
size of the input images to keep unique characteristics of the classification, we then
used flattening to increase dimension of the vector and passed it to FC. FC performs
mathematical functions to classify the given model accurately. Here, instead of using
sigmoid, we have opted to use “Softmax ” activation function to generate our final
vhat values because we are dealing with multiple classification rather than binary.
In the terminal dense layer, the expected dimension is 128 which passes through our
softmax function to output based on exponents of probability for each classification.
However, overfitting can occur while connecting all of the FC layer and there is
the issue of relying heavily on one single feature.To solve these problems, dropout
(dropout_1,droput_2,droput_3) each with value 0.5 that is, half of the neurons se-

15

HReLl Pooing +Rell Pating Connected ~ Comecied Predictons

v

CovID-19
Positive (1)

CovID-19
Negative (0)

Figure 4.3: Convolution Neural Network

lected randomly will be shut off during training process for further improving our
model’s performance.
The summary of the model is given below:

16

Model: "sequential 1™

Layer (type)

model 1 (Model) (None, 84 11668

conv2d 4 (Conv2D) (None, 48, 48) 221248

activation 1 (Activation) (None,

max_pooling2d 1 (MaxPooling2 (None,

conv2d 5 (Conv2D) (None, 22, 22, 32 18464

activation 2 (Activation) (None, :

max_pooling2d 2 (MaxPooling2 (None, :

flatten 1 (Flatten) (None,

dropout_1 (Dropout) (None,

(None,
(None,
(None,

(None,

Total params: 754,850
Trainable params: 754,850

17

Chapter 5

Implementation & Results

For image classification, CNN is a dynamic model because of its features to categorize
image characteristics. This section describes how this suggested model works. At
first, the layers are first arranged in a logical order with width, height, and depth
dimensions. The neurons in a particular layer do not attach completely with all of
the next layer neurons.

However, a Jupyter notebook was used in order to implement and test this model
which is implemented in the following stages: pre-processing of input data, classifi-
cation, normalizing, training, testing and validation.

In this section, the results of implementation of CNN in the given x-ray image
dataset is obtained.

5.1 Implementation

Anaconda, the most popular open source Python data science platform, was used to
write the program, while Jupyter was used as the Python development environment
(Julia, Python and R). Jupyter is a free notebook, open-source, dynamic web appli-
cation that allows researchers to integrate software code, computational output and
other resources in a single document.

Keras, a high-level library for the TensorFlow machine learning framework, was
used to construct the suggested technique using the Python programming language
which is done in Jupyter notebook. Besides Keras, tensorflow and jupyter, other
libraries which we used are Pillow, numpy, scikit-learn, matplotlib, opencv-python
and pandas. A Ryzen 3600 CPU and 32 GB RAM powered the machine.

5.1.1 Building the model

After downloading, we can see that the dataset is divided into two folders which
are- Covid19 Positive and Covid19 Negative. Among them, 3616 images belonged
to label 0 i.e. Covid19 Positive and 10192 images belonged to label 1 i.e. Covid19
Negative. To prepare the pictures for processing, the photographs were kept in the
frequently used PNG format and the order of the color channels was altered from
the default RGB to GRAYSCALE.

The input data folder is read by the following lines of code:

data_path=’dataset’

categories=os.listdir(data_path)

18

labels=[i for i in range(len(categories))]

label_dict=dict(zip(categories,labels))

Here, the main folder contains two sub folders namely COVID and Normal. These
two sub folders are read by the codes given above.

Then the images are resized and the labels are categorized into the dataset using
the following code:

data.append(resized)

target.append(label_dict[category])

This whole sequential model structure includes two convolution 2D layers conv2d_4
and conv2d_5, two maxpooling2D layers max_pooling2d_1 and max_pooling2d_2. In
this case, we create a pool size of 2x2 for max pooling. In between each conv2D
and maxpooling2D layer, an activation function is used. The activation functions
are activation_1 and activation 2 . The next phase is using the flatten function.
All of the pooled feature maps are combined into a single vector in this phase. All
extracted features are flattened into a single column using the Flatten function.
Finally, dense gives the neural network a completely linked layer. Dropout is placed
in between flatten and dense phase layers to create a dropout for avoiding data over
fitting. To add layers to our model, we use the ‘add()’ function. It is done by the
following lines of code:

model = Sequential()

model.add(conv_model)

model.add(Conv2D(64,(3,3)))

model.add(Activation(’relu’))

model.add(MaxPooling2D(pool size=(2,2)))

model.add(Conv2D(32,(3,3)))

model.add(Activation('relu’))

model.add(MaxPooling2D(pool size=(2,2)))

model.add(Flatten())

model.add(Dropout(0.5))

model.add(Dense(128,activation="relu’))

model.add(Dropout(0.5))

model.add(Dense(64,activation="relu’))

model.add(Dropout(0.5))

model.add(Dense(2,input_dim=128,activation="softmax’))

For training all of our models, we have used Adam optimizer. It is a deep learning
model training algorithm that replaces stochastic gradient descent which is simple
to set up, and the default configuration parameters work well for the majority of
problems. It uses a first-order gradient-based optimization approach which is based
on adaptive lower-order moment estimates. Besides, Adam optimizer requires less
memory space, it is easy to implement in the output layer, it works well with large
data sets as we use almost 13K images. Most importantly, as it is computationally
efficient because it is the combination of gradient descent with momentum algorithm
and RMS(Root Mean Square) Prop algorithm and so most models just like our model
prefer to use this optimization algorithm in the output layer for compilation. It uses

a single learning rate for all of the weight updates of our dataset that do not change
throughout the training.

model.compile(loss="categorical crossentropy’,optimizer="adam’, metrics=["accuracy’
Jkeras.metrics.Precision(), keras.metrics.Recall()])

19

5.2 Results

5.2.1 CNN

In this section, we demonstrate the relevance of our proposed method by providing
the experimental results. Here, the ratio of splitting the training-testing-validation
dataset is (0.8 : 0.1 : 0.1). In this case, 80% of the dataset is used for training, 10%
for testing and 10% for validation. We trained on 11184 samples and validated on
1243 samples of our dataset.

The summary of training our model using CNN is given below:

Train on 11184 samples, validate on 1243 samples

Epoch 1/18

11184/11184 |] - 8775 78ms/step - loss: B.4614 - accuracy: 8.7725 - val loss: 8.3493 - val accura
cy: ©.8399

Epoch 2/18@

11184/11184 |] - 871s 78ms/step - loss: 8.313@ - accuracy: 8.867@ - val loss: 8.2421 - val_accura
cy: ©.8978

Epoch 3/1@

11184/11184 [] - 8555 76ms/step - loss: B.268@ - accuracy: 8.8974 - val_loss: 8.2314 - val_accura
cy: ©.9043

Epoch 4/18

11184/11184 [] - 8295 7dms/step - loss: 8.2858 - accuracy: 8.9183 - val loss: 8.2078 - val accura
cy: 9.9801

Epoch 5/18@

11184711184 |] - 8245 74ms/step - loss: B.1713 - accuracy: 0.9345 - val loss: 98.1768
cy: @.9388

Epoch 6/16@

11184/11184 |] - 8135 73ms/step - loss: B.1454 - accuracy: 8.9455 - val loss: 8.1487 - val_accura
cy: ©.9445

Epoch 7/18@

11184/11184 |] - 888s 72ms/step - loss: B.1381 - accuracy: 8.9497 - val loss: 8.1492 - val accura
cy: 8.9372

Epoch 8/1@

11184/11184 [] - 814s 73ms/step - loss: 8.1120 - accuracy: 8.9596 - val_loss: 8.1494 - val_accura
cy: 09,9453

Epoch 9/18

11184/11184 |] - 8895 7Ims/step - loss: B.8825
cy: 0.9533

Epoch 18/18

11184711184 |] - 8@8s 72ms/step - loss: B.6913
cy: ©.95646

val_accura

accuracy: 8.9666 - val_loss: 8.1185 - val_accura

accuracy: 9.9662 - val loss: 8.1186 - val accura

We trained the model with an epoch of 10. After 10 epochs, we got a training loss
of 0.0913 or, 9.13% , a validation loss of 0.1106 or, 11.06%, a validation accuracy of
95.87%.

The following figures indicate the above mentioned information:

20

training loss

training accuracy

045 -

0.4 -

L35 1

0.30 -

25 1

020 1

015 +

010 -

Figure 5.1: Determining the training and validation loss

[R

4
epochs

0.975 1

0La50 1

0925 1

FR=TH F

0875 A

0850 1

0825 4

0L800 1

0775 1

Figure 5.2: Determining the training and validation accuracy

= -

Pad =

4
epochs

Figure 5(b) depicts the accuracy analysis of the proposed CNN model. It clearly
shows that our proposed sequential CNN model achieves a significant accuracy rate.
From the results above, we can say that our proposed model is obtaining 96.62%
accuracy on our sample dataset based on X-ray images. Therefore, it can be said
that our proposed model can efficiently classify the COVID-19 negative and positive
patients.

5.2.2 Inception v3

We took the same dataset that was used previously in CNN and used it to train an
InceptionV3 model. However, instead of the previous split ratio, we now separated
the images in a 0.8 : 0.1 : 0.1 ratio.

The summary of training our model using InceptionV3 is given below:

Epoch 1/3e

B4/64 [==============================] - 425 59&ms/step - loss: 183.77326 - accuracy: @.4653 - precision: ©.5196 - recall: @.878
4

Epoch

B4 /64 - 385 s@&ms/step - loss: 156.3278@ - accuracy: @.4626 - precision: 2.5386 - recall: @.3384
Epoch

B4 /64 - 395 g@zms/step - loss: Z.2481 - accuracy: @.2878 - precision: @.5828 - recall: 8.23&5
Epoch

B4/64 - 395 ee@ams/step - loss: @.51%7 - accuracy: @.7622 - precisien: @.5438 - recall: 8.5792
Epoch

B4 /64 - 38s S9ims/step - loss: @.5154 - accuracy: @.7646 - precision: @.5225 - recall: 8.7588
Epoch

B4/64 - 4@s elams/step - loss: @.44%4 - gccuracy: @.7646 - precision: @.4%82 - recall: 8.8765
Epoch

B4 /64 - 38s S393ms/step - loss: @.4885 - accuracy: @.7242 - precision: @.4888 - recall: @.8572
Epoch

B4 /64 - 355 S4sgms/step - loss: @.58832 - accuracy: @.75249 - precision: @.4882 - recall: 8.5558
Epoch

B4/64 - 415 s3z2ms/step - loss: @.5644 - gccuracy: @.7314 - precisieon: @.4428 - recall: 8.2zes
Epoch

B4 /64 - 48s 623ms/step - loss: @.4268 - accuracy: @.733@ - precision: @.4377 - recall: 8.3685
Epoch

B4/54 - 385 Sggms/step - loss: @.4488 - accuracy: @.725& - precisien: @.441e - recall: 8.212&
Epoch

B4 /64 - 37s S7ams/step - loss: @.39%53 - accuracy: @.7627 - precision: @.447% - recall: 8.8584
Epoch

B4 /64 - 37s S7ams/step - loss: @.5878 - accuracy: @.7545 - precision: @.4742 - recall: 8.7358
Epoch

e4/84 [- 385 ssoms/step - loss: @.4387 - accuracy: @.724s8 - precisieon: @.4255 - recall: 8.s228
Epoch

B4 /64 - 38s S92ms/step - loss: @.3%44 - accuracy: @.5685 - precision: @.4211 - recall: 8.3375
Epoch

B4 /64 - 38s S9Sms/step - loss: @.4378 - accuracy: @.7158 - precision: @.4432 - recall: 8.231&
Epoch

e4/64 [- 385 S97ms/step - loss: @.3543 - accuracy: 8.58%5 - precision: 8.4245 - recall: 8.9369
Epoch

B4 /64 - 38s So7ms/step - loss: @.4116 - accuracy: @.7427 - precision: @.4242 - recall: 8.2@33
Epoch

B4/54 - 325 s@vms/step - loss: @.4444 - accuracy: @.5289 - precisieon: @.32952 - recall: 8.2829
Epoch

B4 /64 - 38s &@3ms/step - loss: @.39%64 - accuracy: @.5658 - precision: @.4886 - recall: 8.38%8
Epoch

ea/64a [- 425 gl7ms/step - loss: @.48832 - accuracy: @.5885 - precision: @.4376 - recall: 8.217S
Epoch

54/64 - &8s 525ms/step - loss: @.4818 - accuracy: 8.568% - precision: @.4273 - recall: 8.9158
Epoch

B4 /64 - 325 Soams/step - loss: @.£4625 - accuracy: @.5224 - precision: @.4848 - recall: 8.8853
Epoch

B4/54 - 325 sesms/step - loss: @.4885 - accuracy: @.5885 - precisieon: @.42e@ - recall: 8.7353
Epoch

54/64 - 395 s@7ms/step - loss: @.3%29 - accuracy: 8.7144 - precision: - recall: 8.7783
Epoch

B4 /64 - 38s So2ms/step - loss: @.3738 - accuracy: @.7128 - precision: - recall: @.7g819
Epoch

54/64 - 38s S88ms/step - loss: @.4321 - accuracy: 8.7531 - precision: 8.4411 - recall: 8.8191
Epoch

&4 /64 - 385 S2ims/step - loss: @.38%7 - accuracy: @.5322 - precision: @.23735 - recall: 9.8848
Epoch

B4/54 - 375 Ssems/step - loss: @.3745 - accuracy: @.s52e4 - precision: e.3%2& - recall: 8.22687
Epoch

54/64 - 395 s@&ms/step - loss: @.4121 - accuracy: 8.5112 - precisien: 8.3753 - recall: 8.9346

During this phase, we increased the number of epochs to 30, hoping that it might
yield better results compared to the CNN. Unfortunately, the accuracy score that
we received was extremely poor, and the model proved to be quite ineffective in
properly classifying the images into the various classes.

The overall trend of the loss and accuracy during training is given in the graphs
below:

22

training loss

training accuracy

100 A

10

15
epochs

Figure 5.3: Determining the training and validation loss

.75 1

070 A

65 1

0.60 -

0.55 -

0.50 -

045 -

J

Figure 5.4: Determining the training and validation accuracy

0

10

15
epochs

23

20

5.2.3 ResNet-50

After InceptionV3’s underwhelming performance compared to basic CNN, we de-
cided to employ the power of ResNet50 to help us to properly identify the different
categories. We kept the image split ratio the same as InceptionV3 and started the
training.

The summary of training our model using ResNet50 is given below:

22?22 - 111s zs/step - loss: ©.8153 - accuracy: 2.7588 - precision_2z: 2.6322 - recall_2: @.6812
22?22 - 1235 zs/step - loss: ©.281% - accuracy: 2.8%16 - precision_2Z: 2.8144 - recall_2: @.32%5
:ﬁ?;: - 1@2s 2s/step - loss: B.2674 - accuracy: 2.8%68 - precision 2: 2.8472 - recall 2: @.8431
Zﬁ?;: - 112s 2s/step - loss: B.2288 - accuracy: 2.%15% - precision 2: 2.8661 - recall 2: @.8521
ZE?;: - 112s 2=/step - loss: B.2231 - accuracy: 2.9@95 - precision_2: @.8762 - recall_2: 8.8725
ZE?;: - 1155 2s/step - loss: B.2091 - accuracy: 2.9277 - precision_2: 2.8848 - recall_2: 8.2386
ZE?;: - 119 2s/step - loss: B.1982 - accuracy: 2.9253 - precision_z: e.891e - recall_2: @.8878
ZE?;: - 1245 2s/step - loss: B.1862 - accuracy: 2.9287 - precision_z: @.8957 - recall_2: @.8328
E-Elcf;: - 114s zs/step - loss: B.2881 - accuracy: 2.%155 - precision_z: 2.8921 - recall_2: @.3363
E-Elcf;: - 1z21s zs/step - loss: B.1595 - accuracy: 2.9375 - precision_z: @.9828 - recall_2: @.3332
22?22 - 1zzs zs/step - loss: ©.1837 - accuracy: 2.9336 - precision_2z: 2.5854 - recall_2: @.9827
22?22 - 117s zs/step - loss: ©.1526 - accuracy: 2.%424 - precision_2z: 2.5881 - recall_2: @.3855
:ﬁ?;: - 121s 2s/step - loss: 8.1611 - accuracy: 2.9346 - precision 2: 2.9186 - recall 2: @.9881
:ﬁ?;: - 1165 2s/step - loss: 8.136% - accuracy: 2.%482 - precision 2@ 2.9127 - recall 2: @.%9182
ZE?;: - 116s 2s/step - loss: B.1801 - accuracy: 2.9258 - precision_2: €.5151 - recall_2: 8.9127
ZE?;: - 111s 2s/step - loss: B.1657 - accuracy: 2.9246 - precision_2: €.9157 - recall_2: 8.9132
ZE?;: - 114s zs/step - loss: B.1374 - accuracy: 2.92453 - precision_Z: 2.9172 - recall_2: @.2149
ZE?;: - 114s 2s/step - loss: B.1348 - accuracy: 2.9521 - precision_Zz: 2.2121 - recall_2: @.9169
E-Elcf;: - 113s zs/step - loss: B.1275 - accuracy: 2.9536 - precision_z: 2.9211 - recall_2: &.%15%
E-Elcf;: [- 117s zs/step - loss: B.1242 - accuracy: 2.9512 - precision_z: @.9227 - recall_2: @.3%2&s5
22?22 - 114s zs/step - loss: ©.1456 - accuracy: 2.%458 - precision_2z: 2.523% - recall_2: @.3215
22?22 - 11@s zs/step - loss: ©.1881 - accuracy: 2.9514 - precision_2z: 2.5253 - recall_2: @.3233
:5?;: - &8s 1s/step - loss: 8.1871 - accuracy: 2.961% - precision 2! 2.9269 - recsll 2: 2.9258
:5?;: - 675 1s/step - loss: B.1483 - accuracy: 2.9535 - precision 2! 2.9284 - recall_2: 2.9255
:5?;: - 665 1s/step - loss: 8.1241 - accuracy: 9.5512 - precision_2: 2.9291 - recall 2: &.9272
:5?;: - 665 1s/step - loss: 8.1200 - accuracy: 9.5521 - precision_2: 2.9282 - recall 2: &.9283
ZE?;: - B85 1s/step - loss: B.@992 - accuracy: 2.9624 - precision_2: 2.9212 - recall 2: 2.9234
ZE?;: [- B7s 1s/step - loss: ©.11190 - acCuracy: 2.9595 - precision_2: 2.9223 - recall 2: 2.93e%
E-Elcf;: - 655 1s/step - loss: @.8372 - accuracy: 8.961% - precision_2: 2.9334 - recall_z: 2.9316
E-Elcf;: == =] - 665 1s/step - loss: @.8834 - accuracy: 8.3643 - precision_2: #.9342 - recall_2z: 2.932&

«<tenscorflow.python. keras.callbacks.History at ex22fse7caase>

ResNet50 yielded surprisingly accurate results compared to the InceptionV3 model
that we used previously. The 96.43% accuracy score even surpassed the basic CNN
model’s impressive score (95.87%). It was able to correctly identify 30 images that
we manually input to test the model’s functionality.

The overall trend of the loss and accuracy during training is given in the graphs
below:

24

training loss

training accuracy

0.8 1

0.7 1

&

05 1

0.4 4

03 1

02 1

0.1

epochs

Figure 5.5: Determining the training and validation loss

0.950 A

0925 1

0200 1

0875 4

0.850 1

0825 1

0.800

0775 4

Figure 5.6: Determining the training and validation accuracy

10

15
epochs

25

20

25

5.2.4 Comparative Analysis of the different models

From the above findings, we are able to notice both differences and similarities
between the accuracies of the models. The basic CNN model and ResNet50 had
both yielded almost identical results, and they clearly determined which category
the image of an X-ray fell under. On the other hand, InceptionV3 seems to be quite
ineffective in this particular case, with a subpar accuracy score which cannot be
relied upon for such critical medical advice.

104

0E A

[=]
o

=]
=

Accuracy Score

0z

00 -

Inception ResNet
Type of Model

Figure 5.7: Comparative Analysis between different models

26

Chapter 6

Limitations

For X-ray images, both detection and segmentation are prominent. However, this
research has some shortcomings that must be addressed in the near future.

First of all, we could not conduct first-hand research. Also, more COVID-19 samples
can be used to train and test our models and resolve the overfitting issue. In recent
days, the coronavirus is mutating itself and taking different types of forms which
has become a concerning issue all around the world. This can be the cause for our
dataset to become obsolete. Furthermore, the current variants of the virus show
symptoms similar to Bronchitis which is why our models can be futile since they are
more efficient in detecting the virus resembling Pneumonia.

Besides, we have used almost 13,000 images for our model; it would be better if we
could use more images to train our model with an increased number of epochs and
in that way it would show better outcomes. Moreover, it was quite difficult to label
limited images in case of data pre-processing compared to CSV files. In addition,
we have faced difficulties to implement our model as different libraries with different
versions are incompatible with each other. For instance, we had to use older versions
of some of the libraries to be able to run ResNet-50 successfully. Due to the older
and incompatible versions of the python library, we could not use GPU. So, we had
to use the CPU Ryzen 3600 for training our models. Also, we faced difficulties in
converting images from DICOM to JPEG format when we tried to train a different
dataset for our model.

27

Chapter 7

Conclusion

Just like in all other sectors of human lives, the use of technology is now the most
viable solution against this global pandemic. Every day newer and better deep
learning methodologies are being implemented in our growing arsenal against bat-
tling COVID-19. Since this virus is relatively new we have limited research and
data concerning it. However, since its symptoms have a similarity to pneumonia, we
have the opportunity to use transfer learning methodologies to convert pneumonia-
detection models to now be able to detect COVID-19, eliminating the time and
resources required to set up a completely new model.

It is possible to state that transfer learning is a deep learning design methodology in
which pre-trained models are frequently used. Deep evolution neural networks are
used to create these pre-trained models. This method in deep learning includes the
initial training of a CNN for a classification issue using large-scale training datasets.
Because a CNN model may learn to extract crucial image features, the availability
of data for introductory training is a necessary part of successful training. It is
determined whether a model is suitable for transfer learning or not based on the
CNN’s ability to recognize and select the most spectacular display features.

In a research paper, transfer learning is seen to diagnose retinal diseases such as AMD
(age-related macular degeneration), diabetic macular edema, etc. Also, with the
same framework, this model can distinguish between viral and bacterial pneumonia
which ultimately can save a lot of lives [27]. With the development of deep neural
networks, it is expected that transfer learning would be widely used to tackle many
complex COVID-19 related problems.

The outbreak of COVID-19 started in late 2019 which developed into a global pan-
demic by March 2020. It has caused a serious negative influence on our daily lives,
including the public health system and the global economy. As it is mentioned be-
fore, this virus is spreading uncontrollably causing the number of affected patients
to grow exponentially. Hence, there is no effective medical equipment or vaccine
to eradicate this disease permanently. Also, there is no certainty whether we will
find its cure anytime soon. So, in these short periods of time, we need to find more
optimum solutions so that we can save as many lives as possible.

28

Chapter 8

Future Works

The Covid-19 epidemic is spreading rapidly. As of now, we have used two different
CNN models in this study to try to characterize Covid-19 afflicted individuals based
on their chest X-ray images. Even though the model accuracies are quite good,
we propose that the performance be validated using future dataset updates. This
may be validated by comparing it to fresh data that will be released in near future.
Hence, we may gather more COVID-19 chest X-ray images to validate our proposed
model. In further studies, we can implement Data Augmentation techniques which
are used to increase the input data set by rotating images from all angles, flipping,
cropping, padding and other standard techniques can be used to train the model
more efficiently. Also, deeper CNN models might be scrutinized to predict higher
accuracy for COVID-19 identification. In addition, the models will be modified so
that other lung illnesses such as Pneumonia, Tuberculosis can be detected. These
characteristics will be addressed in future research, as well as the creation of a
graphics-based user interface to assist radiologists in detecting new types of variants
of COVID-19 like Omicron and different imagistic patterns are emerging. For any
practical application of our model, it is recommended to consult medical specialists.
We want to look into the most cost-effective approaches to battle this disease instead
of using flawless detection techniques. Such approaches may be adapted for further
study in order to demonstrate the real-world use.

8.1 COVID-19 App

In the very near future, we are hoping to start development of a cross-platform
application which allows users to upload image scans of their chest X-rays. These
images will be tested in the backend using the model that we developed. After
testing, the user will be given a message regarding the probability of them having
COVID-19. If there is a high enough probability above a certain threshold, the app
will notify the user to perform a COVID-19 test to confirm its result. Additionally,
it will also suggest some nearby hospitals where the user may appoint a test directly
from the app or allow the user to order a self-testing kit.

29

Figure 8.1: User Interface Inside the App

30

8.2 Federated Learning

Since we are already constructing an app to receive user data on an individual level,
there is an additional functionality that we may integrate onto our system.
Federated Learning is a relatively new machine learning technique. During this
process, the trained model is first stored on a cloud-based server. Devices are able
to download this global model from the server and store it on their local storage.
They are then able to use local training data, which in our case is their X-ray scan to
train the model. Such trained models are combined into a single aggregated model,
and finally that model is fed back into the global model it improve its performance.
Due to this collaborative technique of training models, Federated Learning has been
rising in popularity. Additionally, it solves another problem that was present in
machine learning, which is data privacy and security. Since Federated Learning does
not send the actual data or image into the global model, but rather the metadata or
parameters of the locally trained model, users are able to remain anonymous with
no risk of their personal data being stolen. This will undoubtedly encourage more
people to participate in the training process, who previously stayed away due to the
fear of being compromised.

With the help of Federated Learning, we will be able to enhance our global model
with training data from all over the globe. The collaborative methodology will
undoubtedly improve our model and yield more concrete results.

31

Global Model

The aggregate model is
fed back into the main
global model with the
enhancements

combined together to

Individual devices
download the
model from the
global server

Local datasets are
used to train the
model within the
device

r

Local Model Local Model

Local Model

The local models are

create an aggregate
model

r

Aggregate Model

Figure 8.2: Our Future Plans of Implementing Federated Learning

32

8.3 SMOTE: Synthetic Minority Over-Sampling
Technique

In our research, the dataset that we used is quite imbalanced as it did not contain
equal numbers of COVID-19 Positive and Negative images. If the classification cate-
gories are not equally represented, the dataset is said to be unbalanced. Rather than
over-sampling using replacement, we suggest an over-sampling strategy in which
the minority class is over-sampled by providing ”synthetic” samples which is the
‘SMOTE’ algorithm. The amount of over-sampling is a parameter of this system.
By randomly deleting samples from the majority class population, the majority
class is under-sampled until the minority class reaches a quantity approximately
equal to the majority class. This will allow us to encounter varied degrees of under-
sampling, with the minority class having a better representation in the training set
at increasing degrees of under-sampling.

33

Bibliography

1]

R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural
networks: An overview and application in radiology,” Insights into imaging,
vol. 9, no. 4, pp. 611-629, 2018.

S. B. Maind, P. Wankar, et al., “Research paper on basic of artificial neural
network,” International Journal on Recent and Innovation Trends in Comput-
ing and Communication, vol. 2, no. 1, pp. 96-100, 2014.

A. Ajith, Artificial neural networks: Handbook of measuring system design,
2005.

N. Wang, H. Liu, and C. Xu, “Deep learning for the detection of covid-19
using transfer learning and model integration,” in 2020 IEEE 10th Interna-

tional Conference on FElectronics Information and Emergency Communication
(ICEIEC), IEEE, 2020, pp. 281-284.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep
transfer learning,” in International conference on artificial neural networks,
Springer, 2018, pp. 270-279.

D. Buonsenso, C. De Rose, and L. Pierantoni, “Doctors’ shortage in adults
covid-19 units: A call for pediatricians,” Furopean Journal of Pediatrics, pp. 1—
4, 2021.

C.-Y. Park, K. Kim, and S. Roth, Global shortage of personal protective equip-
ment amid COVID-19: supply chains, bottlenecks, and policy implications, 130.
Asian Development Bank, 2020.

M. Hoyler, S. R. Finlayson, C. D. McClain, J. G. Meara, and L. Hagander,
“Shortage of doctors, shortage of data: A review of the global surgery, obstet-
rics, and anesthesia workforce literature,” World journal of surgery, vol. 38,
no. 2, pp. 269-280, 2014.

V. Madaan, A. Roy, C. Gupta, et al., “Xcovnet: Chest x-ray image classifi-
cation for covid-19 early detection using convolutional neural networks,” New
Generation Computing, pp. 1-15, 2021.

M. Neha Pathak, “What does covid-19 do to your lungs?,” 2021.

R. Yasin and W. Gouda, “Chest x-ray findings monitoring covid-19 disease
course and severity,” Egyptian Journal of Radiology and Nuclear Medicine,
vol. 51, no. 1, pp. 1-18, 2020.

J. Cleverley, J. Piper, and M. M. Jones, “The role of chest radiography in
confirming covid-19 pneumonia,” bmy, vol. 370, 2020.

34

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770-778.

C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1-9.

T. Ai, Z. Yang, H. Hou, et al., “Correlation of chest ct and rt-pcr testing for
coronavirus disease 2019 (covid-19) in china: A report of 1014 cases,” Radiol-
ogy, vol. 296, no. 2, E32-E40, 2020.

P. K. Sethy and S. K. Behera, “Detection of coronavirus disease (covid-19)
based on deep features,” 2020.

H. S. Maghdid, A. T. Asaad, K. Z. Ghafoor, A. S. Sadiq, S. Mirjalili, and M. K.
Khan, “Diagnosing covid-19 pneumonia from x-ray and ct images using deep
learning and transfer learning algorithms,” in Multimodal Image Fxploitation

and Learning 2021, International Society for Optics and Photonics, vol. 11734,
2021, 117340E.

X. Xu, X. Jiang, C. Ma, et al., “A deep learning system to screen novel coro-
navirus disease 2019 pneumonia,” Engineering, vol. 6, no. 10, pp. 1122-1129,
2020.

S. Wang, B. Kang, J. Ma, et al., “A deep learning algorithm using ct images to
screen for corona virus disease (covid-19),” Furopean radiology, pp. 1-9, 2021.

)

I. D. Apostolopoulos and T. A. Mpesiana, “Covid-19: Automatic detection
from x-ray images utilizing transfer learning with convolutional neural net-
works,” Physical and Engineering Sciences in Medicine, vol. 43, no. 2, pp. 635—
640, 2020.

L. Wang, Z. Q. Lin, and A. Wong, “Covid-net: A tailored deep convolutional
neural network design for detection of covid-19 cases from chest x-ray images,”
Scientific Reports, vol. 10, no. 1, pp. 1-12, 2020.

A. Narin, C. Kaya, and Z. Pamuk, “Automatic detection of coronavirus dis-
ease (covid-19) using x-ray images and deep convolutional neural networks,”
Pattern Analysis and Applications, pp. 1-14, 2021.

M. E. Chowdhury, T. Rahman, A. Khandakar, et al., “Can ai help in screening
viral and covid-19 pneumonia?” IEEE Access, vol. 8, pp. 132665-132 676,
2020.

T. Rahman, A. Khandakar, Y. Qiblawey, et al., “Exploring the effect of im-
age enhancement techniques on covid-19 detection using chest x-ray images,”
Computers in biology and medicine, vol. 132, p. 104 319, 2021.

J. Brownlee, Deep learning for computer vision: image classification, object
detection, and face recognition in python. Machine Learning Mastery, 2019.

K. F. Haque and A. Abdelgawad, “A deep learning approach to detect covid-19
patients from chest x-ray images,” Al vol. 1, no. 3, pp. 418-435, 2020.

D. S. Kermany, M. Goldbaum, W. Cai, et al., “Identifying medical diagnoses
and treatable diseases by image-based deep learning,” Cell, vol. 172, no. 5,
pp. 1122-1131, 2018.

35

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Research Problem
	Research Objectives

	Literature Review
	COVID-19 & its Effects on Lungs
	CNN Architecture
	Supervised Learning
	Different Types of CNN Models
	Resnet
	Inception Net

	Related Works

	Workplan
	Methodology
	Input data
	Data pre-processing
	CNN Modeling

	Implementation & Results
	Implementation
	Building the model

	Results
	CNN
	Inception v3
	ResNet-50
	Comparative Analysis of the different models

	Limitations
	Conclusion
	Future Works
	COVID-19 App
	Federated Learning
	SMOTE: Synthetic Minority Over-Sampling Technique

	Bibliography

