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Abstract

Computing devices were once limited in just calculating arithmetic. Whereas, in
modern computing, complex task like object classification or recognition has become
so popular that even our smart devices cannot be thought without having a voice,
character and face recognition features. Although it has been a long time since the
idea of object recognition first came into the scene, there has been limited amount
of work done in categorising objects from human fMRI data. As a result, part of
human cognitive study has been neglected which possesses a large potential to be
discovered and used. In brief, when a human perceives an object through vision
or imagination, certain regions of brain generate specific patterns of electric signals.
Using fMRI brain data, we can potentially use those signals to interpret whatever a
person is perceiving. We have tried to recreate some of the few works done previously
in a limited test environment. In this paper, we try to explore an approach where
a random perceived object gets split into a bunch of features it possesses. Using
those extracted features, we will be able to classify the object from our previously
trained deep learning model. Finally, our experiment will show a robust approach
to explore and study human cognition using computers.

Keywords: Functional MRI; Machine Learning; Visual Features; Convolutional
Neural Network; Deep Learning
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Chapter 1

Introduction

1.1 Introduction

One of the fundamental approaches of predicting human cognitive activities is the
analysis complex patterns from functional (MRI), which stands for Magnetic Res-
onance Imaging. These includes whatever a person perceives while watching, think-
ing, memorizing as well as dreaming during his sleep. However, simple linear clas-
sification based approaches yield results which are not effective in the real world
application. This is due to the limited capabilities of the linear classifiers. On the
other hand, modern techniques involve encoder/decoder based model which gener-
ates possible brain signal database from image. Then, the signals are compared with
the actual fMRI data to predict the brain activity. While this approach is great for
image identification, it lacks the ability to provide rigid details whether the object
a person is watching with eyes, just imagining in the brain or just dreaming. As
the amount of objects a human observes in day-to-day life are limitless, we need a
better approach to categorize those. This paper aims to establish a novel approach
for categorising generic objects by decoding brain activity of subjects who either
watched or just imagined an object in their head.

1.2 Problem Statement

Human race is different from machines due to their diverse ability to perceive, think,
dream, infer and classify objects. This intelligence has given birth to innovations. As
a result, naturally they can extract relevant features to classify an arbitrary object
and continue improving the capability to classify new objects. However, machines
are different. So-called Machine vision is just a set of sampled pixels with numeric
data. Also, machines do not have an inherent ability to think or classify objects.
Due to that, we have to hard-code a machine program in order to do something
reliably.
However, if we think for a bit, we can realize a problem with this approach. With the
passing of time, the number of distinguishable objects in this universe are increasing
at an exponential rate. If we stick with this approach, we have to hard-code a
program to classify just one specific object. Obviously, that would require an infinite
number of programs to be written and tested at every moment in order to classify an
acceptable amount of the real-world objects reliably. This is the reason we needed
a more robust yet generalized approach.
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Observing these obstacles, we decided to build a system which will take fMRI brain
signals, then process and convert those signals into a real world object features.
Using a trained model, those features will be used to categorise a real-world object.
This approach will help people with speaking inabilities to express their statement,
recall forgotten things and improve their lifestyle.

1.3 Objective

• Learn about fMRI

• Explore real-world fMRI data

• Correlate fMRI signals with real-world objects

• Make an object classifier

• Understand human cognition better

1.4 General Overview

Initially, we execute some pre-processing tasks on the (fMRI) data inside the
dataset. In this stage, we demonstrate that not every ROI of brain is relevant
for us. Instead, we can narrow it down to specific signals obtained from certain
parts of the brain. As we are mostly interested in visual features, our focus will be
limited to regions related to visual regions of brain, such as Visual Cortex, Parahip-
pocampal Place and Occipital Complex. This gives us some additional benefits as
well. As fMRI is extremely noisy data due to uncountable number of brain activ-
ities, narrowing the region gives us less signal to noise ratio. Additionally, we show
that stimulus-trained decoders can be used to decode visual features of imagined
objects, providing evidence for the progressive recruitment of hierarchical neural
representations in a T2B manner.

Figure 1.1: fMRI data to object classifier overview

Last but not least, we evaluate our model by testing it and determine whether it is
useful at all recognising arbitrary objects from brain signals. We try to maximise
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the accuracy of this model as much as possible. Although, we are in a challenging
situation due to lack of computational power to train and evaluate multiple times in
order to gain optimal efficiency. Therefore, we have to compromise in some areas in
order to finish this study in the given amount of time. In future, these limitations
can be overcome by improving those compromised parts of this study.

1.5 Thesis Orientation

This segment gives an overall overview of what has been discussed in each chapter
of this thesis paper. After giving the overview of this study and what we intend to
do and plan to accomplish in this chapter, the remainder of the paper is assembled
in the consequential manner

• Chapter 2 reviews the relevant papers

• Chapter 3 presents the work plan and lab environments

• Chapter 4 mentions the methodology of this research

• Chapter 5 describes the implementation details and results

• Chapter 9 concludes this thesis with future plans

3



Chapter 2

Literature Review

While doing our research on image decoding and fMRI analysis, we came across
some articles presenting interesting phenomena. These articles reflect what have
been done previously.

Horikawa and Kamitani(2017)[7] had the objective of decoding arbitrary object cat-
egories. It was done from human brain activity and by using fMRI. So, four different
computational models and 13 visual feature types/layers were used to build visual
features from images. The models used were: CNN (8 layers), HMAX (3 layers), 1
layer of GIST, and SIFT+BoF each. The authors performed two fMRI experiments:
experiment of image representation and experiment of imagery. In the image pre-
sentation experiment, a training image session was conducted. Every 1200 images
from 150 categories were once presented there. In test image session, 50 images were
presented. They were chosen from 50 object categories and were presented 35 times.
At the time of imagery experiments, 1 of the 50 image categories was imagined by
the subjects. fMRI signals were measured during that time. The target objects for
analysis were: a) the models and b) ROIs. The authors trained a unit vector for
predicting feature vector values. Around 1000 decoders were used per layer. These
decoders predicted a feature vector when the subject was seeing or imaging an ob-
ject which was left out during the time of training. Finally, for the identification of
the seen/imagined object, the authors calculated the resemblance between vectors
that were predicted and the feature vectors. As for accuracy, CNN1-8 showed the
most (more than 85% for seen object identification and close to 70% for identifying
imagined objects).

M. Johnson and M. Johnson(2014)[4] had the aim to discover what was performed
in cortex areas related to scene selection and verify if they created any item-specific
details at the time of mental imagery. They also wanted to find out the level at
which information was represented for re-evaluating item-specific task motifs no-
ticed during visual perception. Then, MVPA was used with the help of support vec-
tor machine(SVM) classifier. This was done to detect if during perception and/or
image those regions could properly encode the information about the identity of
specific scene items. After the experiments were completed, they found several
scene-selective regions which were OPA, PPA, RSC, and PCR/IPS. Item-specific
data was represented in these regions.
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Miyawaki et al.(2009)[1] made an effort to reconstruct the visual images using mul-
tivoxel patterns of fMRI signals and multi-scale visual representation. To rebuild
the presented image; at first, a decoder was used using multivoxel patterns to pre-
dict the stimulus state at each local element. Then finally the outputs of all local
decoders were combined. This combination was used to represent several different
complicated images. The subjects observed a sequence of visual images. These
images consisted of binary contrast patches on a 10x10 grid. FMRI signals were
measured during that time. Two image sessions were conducted. In ”random image
session”, 440 different images, and in ”figure image session”, five alphabet letters
and five geometric shapes were shown 6/8 times. The objective for analysis was
fMRI signals from V1 to V4. ”Random image session” data was used in the ”figure
image session”. This was done to rebuild the images. This paper also performed
image identification analysis along with image reconstruction to measure the accu-
racy. The identification was more than 95% accurate.

Naselaris et al.(2009)[2] constructed a Bayesian framework. They wanted to cre-
ate the spatial structure of natural images with proper reconstructions for brain
reading. Here the authors used the image with the highest posterior probability
of creating the measured response as the definition of reconstruction. For calcu-
lating the probability, two details were used: a) target image details and b) prior
details that contained the structure as well as semantic content of native images.
The authors used an additional semantic encoding model to create reconstructions.
These reconstructions properly reflected the semantic content of target images for
the improvement of rebuilt images. These images were collected from fMRI data.
To calculate semantic accuracy the authors considered semantic categories at four
different levels of specificity. From 2 categories that were vividly defined, showed an
accuracy of 90% to 23 narrowly defined categories that have an accuracy of 40% by
the hybrid method were used.

Naselaris et al.(2011)[3] demonstrated a voxel-wise modeling and decoding approach.
Their aim was to establish that while visualizing multiplex images from memory,
visual features that were low-level were encoded in generated activity. The authors
believed that the encoding model approach separates specific elements with a varia-
tion that occurred due to visual features with low-level. Then that element is used in
the identification of mental image connected with a measured pattern of activity[5].

Based on magnetic resonance imaging (MRI) of the brain and 3D convolution neural
networks(3D-CNN), a paradigm was presented for distinguishing individuals with
schizophrenia from healthy control participants(Han et al., 2015) [6]. Using 3D-CNN
based, ten-fold cross-validated deep learning classification framework and features
based on ICA, resting-state functional MRI data from 144 participants were di-
vided into two groups of 72, ageing from 18 to 65 years where one was filed with
schizophrenia patients and the remaining 72 were healthy people serving as controls
which was acquired from the COBRE dataset. Siemens TIM 3.0-Tesla Scanner was
used to scan the patients with multi-echo MPRAGE (MEMPR) sequence and rs-
fMRI data were obtained using single-shot full k-space echo-planar imaging (EPI)
with ramp sampling correction where the intercommissural line (AC-PC) was used
as a reference. They found out that their classification accuracy was 98.09 ± 1.01%,

5



the p-value was less than 0.001 and AUC ( which stands for Area under the curve)
was 0.9982 give or take 0.015. Furthermore, upon statistically analysing across sev-
eral resting-state networks dissimilarity in functional linkage among the two groups,
it was revealed that patients had a better relationship between the default mode
network and different cerebellar or networks that were task-positive but had a no-
ticeable gap between the visual and frontal networks. For the determination of
schizophrenia, these ICA functional network maps functioned as largely determin-
istic 3D imaging characteristics. Finally, it can be said that in the future, owing to
its high AUC, this study might be used as an additional instrument to aid doctors
at the first evaluation of schizophrenia in the future with further cross-diagnosis
validation and a publicly accessible data set.

Hosseini et al.(2019)[10] in their paper outlined, constructed and applied an au-
tomatic computing BCI system for restriction and prediction of Epileptogenicity.
They used rs-fMRI which stands for resting state-functional magnetic resonance
imaging as well as electroencephalography (EEG) to analyse functional connectiv-
ity. They created and implemented both nonintrusive and intrusive approaches for
monitoring, assessment, and regulation of the epileptic brain by taking advantage of
autonomic edge computing in epilepsy. To overcome existing obstacles, novel meth-
ods were proposed for processing multimodal rs-fMRI and EEG big data which was
obtained independently for epileptogenic network definition and prediction via deep
learning. They used an unsupervised feature extraction model for recognising both
preictal and non-preictal time periods of data through convolutional deep learning
where a nonlinear support vector machine(SVM) with a GRBF kernel classifier was
used. Also an edge computing framework for live and prevalent computing of big
data found in medical fields such as fMRI,iEEG and EEG as part of a DSS for
surgical suitability has been introduced. They modelled the brain as a connected
mesh of nodes and connectivity matrices are approximated from rs-fMRI and EEG
data. Wavelet analysis was performed to extract various features from epileptic
EEG signals. They found out that the proposed approaches gave an accuracy of
98%, sensitivity of 96%, specificity of 97% and better p-values. These are supported
by experimental and simulated findings based on real-world patient data. Although
concurrent EEG and fMRI data acquiring may be difficult but the authors proposed
models to overcome this computing over independently obtained EEG and fMRI
data.

Qureshi et al.(2019)[9] in their paper introduces a new framework that detects
arousal levels by combining sophisticated multimedia features obtained from a col-
lection of sample videos and the functional activity of people’s brain recorded by
functional magnetic resonance imaging (fMRI) concerning the people’s reaction to
videos. Initially, 183 videos from various categories and arousal levels are used to
build a database and 93 out of 183 videos are arbitrarily chosen fMRI scan’s train-
ing dataset.10 males and 10 females with ages varying from 21-30 years willingly
watched the videos and labelled them according to arousal levels 1-5. are used
to tag the video arousal. Afterwards many audio(zero cross, roll-off, tempo, pitch
and MFCCs) and video features(aesthetics, shot length feature, general preferences,
visual excitement satu- ration, colour heat, and motion features)all of which are
linked together to construct a composite feature vector and fed to the multimodal
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DBM algorithm and this is used for training classifier where libSVM with RBF
kernel was used. Next, fMRI- derived feature extraction takes place which consists
of fMRI data acquisition by scanning(multimodal DTI and fMRI scans) 3 healthy
participants separately by MRI system (GE 3T Signa HDx) having a head coil with
eight channels, brain ROI identification where 358 predicted and consistent ROIs are
used to form eigenvector which rep- resents fMRI signal of Roi, and feature extrac-
tion where functional connectivity is computed among a pair of ROIs by Wavelet
transform coherence(WTC). As fMRI scans could prove to be non-economical and
lengthy, DBM model can represent both audio and video features combined in ab-
sence of fMRI scans. They found out after carrying out the experiment that their
integrative method inevitably provided improved accuracy(10% to 15% increase)
compared to previous works. In future, they will be improving accuracy by using a
better algorithm and working with wider ranges of data sets.

Han et al.(2020)[8] in their paper challenged the traditional ability of convolutional
neural networks (CNNs) that are exclusively feedforward and driven by goals to
anticipate and interpret cortical responses to natural pictures or videos. It achieves
such a feat using variational auto-encoder (VAE) which serves as a different deep
neural network. 1,024 latent variables and encoders and decoders consisting of
five hidden layers were included in the VAE. It was trained using the ImageNet
ILSVRC2012 dataset with training samples exceeding 2x106 unlabeled images and
for training purposes, the Adam optimizer was used that had a learning speed of 10-
4. For this study, there were 3 female participants, ranging from 23-26 years old and
viewed video content which was of 13.7 hours duration. The encoders and decoders
were trained from two independent data sets for both the prediction of fMRI response
as well as video reconstruction. fMRI data of various spatial and temporal resolution
were logged and preprocessed with the minimal preprocessing pipeline. It was found
out that VAE in contrast to CNN, performed poorly in higher-order optical regions
but performed on par with CNN when it came to forecasting cortical responses
due to videos in prior optical regions. Upon investigation, it was found out that
the main reason for this was their different training aims instead of differing model
architecture or amount of parameters. When compared to CNN, VAE had equal
accuracy in predicting video- Induced cortical feedbacks in prior visual regions, but
worse accuracy in higher-order visual regions. The discrepancy in carrying out
encoding between CNN and VAE was creditable mostly to their differing learning
aims, instead of differing model architectures or the varying amount of parameters
in them. VAE provided an easier scheme when it came to interpreting the fMRI
activity to remake the inputted motion picture, through an initial transformation of
the fMRI data into latent variables for Variational autoencoder, and later turning
them to the rebuilt motion picture frames using VAE’s decoder. It was evident that
this procedure was much better than other methods for its ability to rebuild both the
colour and spatial composition of the visual input. From these results, it becomes
clear that although VAE has its merits and demerits when it comes to describing
feedbacks from the cortex and remaking a plethora of life-like optical scenes, it can
be an exemplary unsupervised model for learning visual representation.
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Chapter 3

Work Plan

3.1 Overview

In our model, our goal was to extract some features from real world images which
we would use to classify objects later. We used CNN to achieve that. First, fMRI
activities needed to be recorded and observed while the subject is seeing or imagining
an object. Then, we needed to extract visual features from the activities using CNN
and built a feature vector to train the model. Later, when a subject observes an
image of an object, the model will be used to predict all the possible names of that
observed object.

3.2 Environment

In order to train the model, we have used our personal computers along with google
colaboratory in order to accelerate our processing. We used 2 separate personal
computers for distributing the training workload. This also helped us in reducing
the total computation time. In total, the model training took around 60 hours with
all these performance tweaks applied. Without multiprocessing, this would have
taken more than 160 hours.

3.3 Third Party Libraries

Some popular libraries have been used to accelerate our code writing. Notable ones
are ”numpy”, ”pandas”, ”h5py”, ”bdpy”, ”multiprocessing”, ”pickle”, ”sklearn”
etc. ”Numpy” is mostly used for advanced mathematical operation conveniently. It
provides interface to calculate matrix operation with preset precision. ”Pandas” is
used to organize data in data frame and perform operation in a declarative fashion.
”Bdpy” and ”h5py” is used for storing fMRI time series data and manipulating
it. Pickle is used for dumping and restoring machine learning models without the
need of re-training. ”Sklearn” is a library we used to do some model training and
classification related operations.
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3.4 Workflow Chart

Figure 3.1: Workflow Chart
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3.5 Gantt Chart

Year 2021 2022

Month Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Meeting Advisor

Finalize Topic

Work Planning

Organize

Pre-Thesis 1

Presentation

Dataset

Build System

Pre-process

Train

Pre-thesis 2

Presentation

Testing

Debug

Clean Up

Final

Figure 3.2: Workflow Gantt Chart
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Chapter 4

Methodology

4.1 Overview

Computational models such as CNN, HMAX, GIST and SIFT were used to extract
visual features from natural images. We multi-voxel fMRI data from the dataset. A
set of features were predicted based on observed fMRI activity. Then it was utilised
to predict the observed object. This identification task was done by comparing the
current feature vectors with the feature vectors of other objects. The objects were
stored in an annotated picture library which also included ones that were not used
for decoder training.

4.2 Input Data

The input data along with some code snippets were collected from Kamitani LAB
which consists of 5 subjects’ fMRI recording data. The official dataset is in h5 for-
mat. The dataset contains corresponding fMRI data while the subject was exposed
to visually witnessing an object or imagining it. In our experiment, we only focused
on visual objects and their features. There were around 150 categories and 1200
classes, where 8 images were from the same category. It also contains a gigantic
ImageNet (https://www.image-net.org) library of 15372 categories to later evaluate
the model. However, as we extracted features only and used that to predict object,
the categories are not limited to trained data. The brain data contained around 500
to 1000 voxels depending on the regions. Multiple ROIs are seperated using labels
and datatype.

Array Name Array Shape Contents

Data 5 x 10 x 13 x 1000 Subject x ROI x Feature x Voxel

ImageID 150 x 1200 Category Name x Class Name

Table 4.1: Input Data

11
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4.3 Pre-Processing

In order to read and interpret the data, we extracted the necessary data using h5py
library. Then, we used bdpy data structure to seperate ROIs for particular stimulus
along with its’ corresponding data type. Also, we needed to filter the data as the
noise:signal ratio was very big. The image feature unit was extremely big as well,
which our computer was taking a long time to train. So, we used only 100 units of
feature data for training. Then, we flattened the data and divided it into test:train
with 60:40 split. This whole process was done using multiprocessing. At this point,
the data is converted in a suitable form to run our analysis.

4.4 Feature Prediction

At this point, we ran iteration for all the of (subject x rois x features) combinations.
For each combination, we started by normalizing the data. Then, we found the cor-
relation coefficient. In order to find the coefficient, we used Sparse Linear Regression
with 500 iterations in each combinations. However, for later trainings, we decreased
the iterations to 5 as it was taking a lot of power from our CPU. After that, we
initially used 8 layers of CNN with 1000 neurons in each, 3 Layers of HMAX, 1
layer of GIST and SIFT to train the model. However, later we had to reduce the
number of layers to 3 due to lack of cumputational power. Anyhow, we distributed
voxel sets throughout different layers. For example, LV C (lower visual areas) V1,
V2, V3 were given to 2nd layer of CNN whereas arterior areas like LOC(Lateral Oc-
cipital Complex), PPA(Parahippocampal Place Area), FFA(Fusiform Face Area)
were given to 8th Layer of CNN . Different algorithms performed better in terms of
accuracy for different class decoding. The specific number of iterations and weights
were adjusted after lots and lots of tweaks.
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Figure 4.1: Correlation Coefficient
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Chapter 5

Implementation & Result

5.1 Implementation

CNN, HMAX, GIST, SIFT+BoF; these 4 types of computational models were used
to extract visual features from provided images. CNN and HMAX can mimic the
hierarchy of a human’s visual system. GIST was designed to recognize scenes.
SIFT+BOF performed object recognition. These 4 models which were implemented
in the data set are described below in detail.

5.1.1 CNN

CNN is a very effective model for image classification tasks. They are frequently
used in analyzing visual imagery and also in working behind the scenes in image
classification. In CNN, at first, the input image is sent through the convolution
layer, then the max-pooling layer. These two stages perform the task of dimension
reduction. These 2 stages can be applied multiple times until the image dimension
becomes close to the filter dimension. MatConvNet implementation of the CNN
model was applied. We used the images in ImageNet to train the CNN model in
order to classify 1000 object categories. Due to computation difficulty, the number
of layers was reduced to 2 from 8. 1000 units were randomly selected for these layers.
Each image was represented by those unit’s output vectors. The two layers were
named CNN1 and CNN2.

5.1.2 HMAX

HMAX is a feedforward model that learns features hierarchically and performs recog-
nition tasks. The combination of an image layer with six subsequent layers (S1, C1,
S2, C2.S3, C3), creates these hierarchical layers and are built from previous layers
by alternating template matching and max operations. We planned to use 3 layers
of HMAX, but due to computational difficulties, we used 1 layer. Each image was
represented by a vector of a single type of HMAX feature. We named it HMAX1.

5.1.3 GIST

GIST descriptors are a representation of a low-dimensional image that contains
enough information to identify the scene in an image. In order to compute GIST, at
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first image conversion to greyscale was required. Then we made sure the max width
did not exceed 256 pixels. Next, Gabor filters which has 16 orientations and 4 scales
were used to filter the image. Then, the filtered image was segmented into a 4*4
grid. After that, filtered outputs in each block were averaged to extract 16 responses
for each filter. Finally, we concentrated the responses received from multiple filters
so that we could create feature vectors with 16 orientations, 4 scales and 16 block
for each image.

5.1.4 SIFT with BoF

The scale-invariant feature transform (SIFT) is a feature detection algorithm in
computer vision to detect and describe local features in images. SIFT descriptors
were used to calculate the visual features using SIFT+BoF. SIFT descriptors were
extracted from each image and were quantized into visual words using k-means
clustering visual words. BoF histogram for each image was created from calculating
the frequency of each visualwords. Finally, the histograms obtained through the
above processing under- went L-1 normalization to become unit norm vectors.

5.2 Results

In this section the accuracy from the four models: CNN, HMAX, GIST and SIFT
are compared.

Model Name Maximum Accuracy(%) Average Accuracy(%)

CNN1 85.54%(VC) 83.33%

CNN2 83.84%(VC) 80.81%

HMAX1 69.81%(V3) 66.77%

GIST 72.22%(VC) 71.69%

SIFT 80.07%(V4) 77.10%

Table 5.1: Results

5.3 Accuracy Comparison on Related Works

From Kamitani Lab, a paper published in nature, which achieved a stunning accu-
racy of 94% maximum. However, they used way more computational power to train
with optimization in algorithm level. Also, they used multiple layers of different
models to achieve the accuracy which we were unable to obtain.
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Figure 5.1: Accuracy of Our Model

Figure 5.2: Accuracy of Previous Work
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Chapter 6

Conclusion

6.1 Summary

In this modern era, humans and computers are co-operating in several fields. Since
the last decade, we have successfully developed a large number of computing devices
resulting in fewer risk and increased efficiency. Scientists and researchers throughout
the globe have been spending their valuable time and energy to break this wall
between a human and machine. However, the fundamental difference between a
computer and a human still remains. A machine does not perceive objects and
images the way human being does. For a machine, any real world object is just
a bunch of signals, whereas for humans, it is way more complex. Humans do not
have any frame rate, neither do they have time series data like computers have. On
the other hand, computers do not possess intelligence to process and categorise real
world object the way human being does. Due to that, we needed a generalized and
a robust approach to tackle this issue. We have tried to provide such an approach
in this paper. However, a lot more research need to be done in this field in order
to bring it to the mainstream. It is hard to tell what technology can do until it
comes on the hands of developers and researchers. As we were able to achieve some
respectable results in the paper despite having some shortcomings, we are hopeful
that it holds a lot of potentials to unlock.

6.2 Fields of Application

This research has a lot of potentials to be applied in the real world. Some of those
are discussed below:

• Facilitating disabled people: Due to paralysis or brain disorder, a person
may lose the ability to express the feelings to others. Sometimes, people
get this disorder by born. Till now, the only practical way to communicate
with them is to have an experienced person guess their feeling. However, this
process is not fool proof and cumbersome. Our approach will open a door to
tackle this issue by decoding their fMRI signals into human language.

• Revisit human cognition: Right now, human cognition is sort of a black
box for us. It takes huge amount of efforts to just get started with human
cognitive study. Also, a lot of human cognition is yet to be discovered and
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explored. Our solution will provide a way to revisit human cognition differently
than before.

• Crime Investigation: Crime Investigation and Lie Detection are 2 crucial
tasks for police. Most of these tasks are done through facial expressions, heart
rate and blood pressure monitoring. However, people can learn to control and
fake facial expressions and blood pressure to pass those tests. fMRI based
solutions will be more robust than those approaches. Additionally, it can be
used in conjunction with the previous approaches.

• Providing Personalized Content: In web, Content Personalization is a
popular topic right now. From a video steaming to a e-commence website
implements this feature in some shape or form. A lot of money and time get
invested in implementing this feature. However, human behaviour is extremely
complex. As a result, the potential contents for a customer cannot be predicted
just by using their search or browsing history. Instead, their fMRI profile may
give way more sophisticated insight than those previous approaches.

6.3 Future Improvements

• Gain more domain knowledge fMRI is an extremely sophisticated field of
knowledge. Getting most out of fMRI data requires thorough domain knowl-
edge in this field. As we did not have a very good grasp in this domain, some
parts of the algorithm became extremely challenging to implement. Therefore,
we need to gain more knowledge in order to improve the proposed model.

• Train with more test subjects: Our current model is trained with limited
amount of test subjects. However, in order to generalize the model, we need
to train against greater number of subjects. Our future goal would be to train
with more test subjects.

• Use distributed training with more powerful machines: Training a
model from fMRI data takes a lot of CPU power. Even with moderate CPU
and 3 computing nodes, our training took more than 60 hours. It can be
improved using more computing nodes. Modern distributed and parallel ap-
proach of training has improved, which can be used to train the model faster

• Add imaginary object classifier: We have to bear in mind that fMRI data
does not only correspond to perceived objects through eyes, rather imaginary
objects as well. Our current model lacks this feature. In future, this feature
can be added in order to improve it.

• Optimize the algorithm: Right now, the algorithm lacks some of the per-
formance tweaks for efficient model training. As a result, it takes a lot of time,
which can be reduced by a significant amount of time by optimizing it.
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