
 1

Implementing Language Independent Dictionary and spell
checkers for Bangla and English language using Web Service.

Computer science Undergraduate Thesis

By

Mohammad Faruk
ID: 03201014

Thesis Supervisor
Dr. Mumit Khan

id4569890 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

 2

Acknowledgements

I have been fortunate to have very dedicated supervisors working with me this
Year. I would like to sincerely thank Dr. Mumit Khan for his enthusiasm, advice
and inspiration throughout this thesis. His efforts in implementing a language
independent dictionary saved me a lot of time.

 I am also grateful to Abdur Rahman and Fahim, research programmer of CRBLP for
their continued help while working with Bangla language.

Finally, sincere thanks to my family for their support, including my younger brother
Hafizur Rahman showing me Bangla typing and my friends collaborating me all the
times.

 3

TABLE OF CONTENTS

Chapter 1: Introduction�������������.�������.�.......4
 1.1 Working with language independent��������������...4
 1.2 Thesis overview����������������������...4
Chapter 2: Related Works..�.......6
 2.1 Past works�������������������������6
 2.2 Where I am unique? ..7
Chapter 3: requirement specification..8
 3.1 Programming Language�������������������...8
 3.1.1 Web Service����������������������8
 3.2 The Extensive Markup Language (XML)������������....9
 3.3 IIS (Internet Information Service) 6.0�������������......9
 3.4 Stylus studio�����������������������....10
 3.5 Platform requirement�������������������......10
 3.6 Data Source...10
Chapter 4: Design...11
 4.1 Schema Design���������������������........11
 4.2 Client and Service design����������������............19
 4.2.1 Three- Tier Architecture����������������......19
 4.2.2 Client Design��������������������.......19
 4.2.3 Service design��������������������......20
Chapter 5: Implementation ..21
 5.1 Algorithm..21
 5.1.1 Metaphone...21
 5.1.2 Double Metaphone..22
 5.1.3 Double Metaphone phonetic encoding for Bangla............................. 23
 5.1.4 Approximate string Algorithm... 28
 5.2 Implementation of service..29
 5.2.1 DOM (Document Object Model)..29
 5.2.2 Searching the meaning of a word..30
 5.2.3 Searching words which Starts / Ends with *:30
 5.2.4 Spelling check and making suggestion list..31
 5.2.5 Ranking the words in the suggestion list...32
 5.3 Implement of Client...33
 Chapter6: Result and discussion..34
Chapter7: Conclusion...39
 7.1 Problems of the dictionary..39
 7.2. Future improvements...39
REFERANCES...40

 4

Chapter 1: Introduction:

Every country has its own language. Dictionaries are used for a wide variety of
purposes, by people with various backgrounds in the language. If we want to interact
with other languages we need to use dictionaries. The potential advantage of a
computerized dictionary is that there is an interface between the user and the complete
dictionary. This means that the way information is delivered to the user can be altered
significantly, for much less cost than the creation of another paper dictionary edition.
Electronic dictionaries �e-dictionaries� also have the potential to allow users to customize
what and how information is presented to suit their preference. This immediately means
that the dictionary can deal with a broader range of intentions and a greater range of
Language competency than is possible with printed copy.

How well a dictionary application satisfies a diverse range of users, depends on how
Well the developers use the potential of working in an electronic medium. Despite
some significant research in the area of computerizing dictionaries, there has been
little effort in addressing the challenge of taking this to real speakers and language
learners.

This has been a focus of this project, to not be satisfied with simply a better structured
dictionary, but also make the dictionary language independent.

1.1 Working for Language Independent Dictionary:

In Bangladesh two types of Languages are frequently used. These are English and
Bangla. There are huge English web dictionaries. But not enough dictionaries
implemented for Bangla Language. My challenge was to implement a dictionary service
which will work for both English and Bangla Language. There may have four probable
dictionaries in Bangladesh. Theses are English to English, English to Bangla, Bangla
to English and Bangla to Bangla. I have implemented a service which will work for all
types.

Since the dictionary is language independent it will work for other languages. For
example if I want to implement a dictionary for Arabic language like Bangla to Arabic or
English to Arabic dictionary it is also possible. Only I need to add a new XML database.
The program will remain same.

1.2 Thesis Overview:

The challenge for the work of this thesis has been to creatively (intelligently) address the
following areas: making the dictionary language independent, data processing, storing
this extracted information in a suitable format , displaying this dictionary information in

 5

a usable way and generate suggestion list for any wrong input . This thesis follows the
work in these areas of research and how they relate to each other. The organization is as
follows:

Chapter 2: Reviews the past work in the fields of electronic dictionary research. In
discussing what is lacking in much of the other dictionaries, I will discuss some of the
challenges in attempting to make the dictionary language independent, and summaries
the approaches taken this thesis.

Chapter 3: In this chapter I will discuss about the requirement specification of the
software. I will also discuss about the architectural Strategies i.e. the software or
hardware needs to implement the dictionary.

Chapter 4: In this chapter I will show the schema design of the Xml database. Then I
will show some architectural diagram for client and server application.

 Chapter 5: This chapter contains the detail implementation of the software. Here firstly
I have shown the algorithms that have been used. Then I have shown the procedure to
implement the software using available algorithms.

Chapter6: This chapter contains the result of the dictionary. I have just put some snap
shots of the taken outputs and the discussion of outputs

Chapter7: This chapter concludes the paper with discussing the problems of the thesis
and future improvements.

 6

Chapter 2: Related works

There are huge well formatted electronic dictionaries. I studied three or four papers on
dictionaries.

2.1: Past works

Some of the Computer science students of The University of Sydney (Australia) worked
on �Intelligent processing, storage and Visualization of Dictionary Information�. They
name the dictionary Kirrkirr. They implemented the dictionary for Warlpiri language.
[6]

They begins with a discussion of the issues associated with using commercial
Database systems for the storage of dictionary information and explained that size of the
database file increase with dictionary data. That�s why this approach was considered
inappropriate for their thesis. They used XML as dictionary database.

The most visual part of their application is the representation of the network of words and
their relationships via a graph. They discussed the �spring algorithm� approach to
animated graph layout, its relative merits and other issues that arose in applying it to
dictionaries. They also discussed the special considerations in constructing a
dictionary interface for Warlpiri such as reducing the reliance on the written word, by
including sounds, pictures and point-and-click (rather than typed) interactivity with
words.

Some students of NANYANG Technological University worked on the Kirrkirr
dictionary to solve the performance problems namely: slow start-up time and large

 7

memory usage. Revamping the underlying data and usage of the Extensible Query
Language and Document Object Model lead to a smaller start-up index file and makes
Possible the loading of the dictionary word in small chunks. This resulted in a very
visible improvement in the start-up time, which was reduced from 7 minutes to 1 minute.
[7]

 Donny Mack in his paper �Utilizing Goggle�s Spell Check APIs on the Client and
Server,� showed how he implemented Spell checker using web service. He implemented
the spell checker for English language using C# .net. They take a dirty string from the
client part and send it to the service. Then groups the string into groups of individual
words. If any wrong word is found then in the client part it shows the underline in the
wrong word. [1]

Naushad UzZaman, the student of BRAC University in his undergraduate thesis work
implemented Bangla spell checker. He showed some spell checking techniques and their
comparison. Finally he used Double Metaphone phonetic encoding. Then he showed how
to generate better suggestion list for the miss spelled word. [8]

2.2: Where I am Unique?

Reading the above papers and looking some other electric dictionaries I decided to
implement a dictionary which will work as Language independent (section 1.1). To store
data I have used XML database and I made a general schema for all language. I used web
service to make it platform independent for the client. So no matter what programming
language is used for the client application. The client application is platform independent
from operating system view. It will support for any OS. I worked for spell checking for
Bangla and English Language for wrong input. It also generates better suggestion list. So
my work is the combination of some of the above works. My dictionary is Unique
because of its Platform independent nature.

 8

Chapter 3: Requirement specification

3.1 Programming Language:

1. Microsoft .NET Framework 2.0
2. Microsoft Visual Studio 2005

Writing system-level software that works consistently across various versions of
Microsoft Windows is a challenging task. Plus, creating graphical user interfaces using
the default (and free) Microsoft Foundation Classes is a daunting endeavor. Securing the
software is also quite difficult.

The Microsoft .NET Framework v 2.0 provides a wonderful solution to these problems.
Learning from the successes and failures of the Sun Java Platform, the Microsoft .NET
Framework provides a similar system of byte code running in a virtual machine, with
clearly defined security models, and an extremely rich programming library. The
framework is available on all versions of Windows all the way back to Microsoft
Windows 98.

Out of the box, .NET supports numerous programming languages, the default being C#
ASP.net Web Service which is the language chosen to implement The Online Dictionary.
Numerous tools are available for Rapid Application Development, as well as libraries to
ease database connectivity � all of which should be availed when developing the
software. The Microsoft .NET Framework, by default, has all the libraries necessary to
implement my Dictionary, so no external software libraries are necessary.

3.1.1 Web Service [13, 14, 15]

The following benefits of web service convinced me to implement my project using web
service.

A Web service is a unit of managed code that can be remotely invoked using HTTP, that
is, it can be activated using HTTP requests. So, Web Services allows you to expose the
functionality of your existing code over the network. Once it is exposed on the network,
other application can use the functionality of your program.

Web Services uses standardized industry standard protocol for the communication. All
the four layers (Service Transport, XML Messaging, Service Description and Service
Discovery layers) use the well defined protocol in the Web Services protocol stack. This
standardization of protocol stack gives the business many advantages like wide range of
choices, reduction in the cost due to competition and increase in the quality.

 9

Web Services are self-describing software modules which encapsulates discrete
functionality. Web Services are accessible via standard Internet communication protocols
like XML and SOAP. These Web Services can be developed in any technologies (like
c++, Java, .NET, PHP, Perl etc.) and any application or Web Services can access these
services. So, the Web Services are loosely coupled application and can be used by
applications developed in any technologies. For example, I have heard of people
developing Web Services using .NET applications technologies and using the Web
Services in JAVA applications.

Web Services are self describing applications, which reduce the software development
time. This helps the other business partners to quickly develop application and start doing
business. This helps business to save time and money by cutting development time.

Web Services automatic discovery mechanism helps the business to easy find the Service
Providers. This also helps your customer to find your services easily. With the help of
Web Services your business can also increase revenue by exposing their own Web
Services available to others.

3.2 The extensible Markup Language (XML) [16, 17, 18]

XML is a simplification of the Standard Generalized Markup Language (SGML), which
is a standard system for defining the content and format of an electronic document.

�Extensibility: allowing users to define their own tags (or attributes) to suit the data
being represented.

�Structure: allowing nested structures of any depth, hence being well suited to lexical
database schemas.

�Validation: allows the structure of the data to be validated before use by
applications.

The need for this sort of markup for the web has influenced rapid development with
XML. The advantage of using a globally recognized markup language for the dictionary
is that the research benefits from the various general purpose tools available, rather
than have to develop specific tools. The dictionary file also becomes more portable than a
plain text file, because now for anyone to use the data all they need is access to any XML
tools (if not the same products used in this project).

3.3 IIS (Internet Information Server) 6.0 [21]

The web server that specified as the development server must have the .NET Framework
and IIS (Internet Information Server) 6.0 or later installation on it. Since the software will
be developed first in the local computer IIS is required. After the entire development the
dictionary service will be posted on to the Web Server.

 10

3.4 Stylus Studio: [19]

Stylus Studio's support for XML, XQuery, XML Schema, XPath, SQL/XML,
HTML/XHTML, SOAP, WSDL, UDDI, EDI and Legacy Data Integration, Web
Services, Java/J2EE & Microsoft .NET. To make the schema of my dictionary database
and to edit XML file I used stylus studio.

3.5 Platform Requirements:

Since the dictionary service will be developed by Web Service in .NET Framework any
windows operating system like Windows Vista; Windows XP will support it.

From the client side the system is totally platform independent. Clients can use the
dictionary service from any platform like Linux, Windows 98, Windows XP, Win Vista,
and Mac OS.

3.6 Data source:
To implement the dictionary I needed data to make my database. I collected data for
English to English dictionary from Wordsmith dictionary [12]. Because, it is data
representation of the web dictionary is almost my dictionary. For English to Bangla,
Bangla to English and Bangla to Bangla dictionary I used Bangla Academy dictionaries
[9, 10, and 11].

 11

Chapter 4: Design

4.1 Schema Design
To implement the dictionary I designed a well formatted XML schema. I took the design
concept from [20].

Building a Dictionary Info XML File for the Dictionary Program:

Dictionary root Element:

<dictionary>
.
.
.
</dictionary>

Type : Element
Name : Dictionary
Min Occur: 1
Max Occur : 1
Null able : False

This is simply the root element of the specification file. All other specification elements
are contained within it.

Dictionary Entry:

<dictionary>
 <entry>
 ���..
 ���..
 ���..
 </entry>
</dictionary>

For each word <entry> element is used. This element is the first child
of the <dictionary> element. There the total number of <entry> element
is equal to the number of words present in the XML.

Type : Element
Name : entry
Min Occur: 1
Max Occur : unbound
Null able : False

 12

Headword and Iniquities: This is necessary for the specification file. There should one
headword per entry. If multiple headwords are spelled the same way, then iniquities is
needed to distinguish them.

<dictionary>
 <entry>
 <hw unq="1">bank</hw>
 ���..
 </entry>

 <entry>
 <hw unq="2">bank</hw>
 ���..
 </entry>
 ������
 �������
</dictionary>

Type: Element
Name: hw
Data type: XSD: string
Max occur: 1
Min Occur: 1

Type: attribute
Name: unq
Data type: string
Restriction: required

Pronunciations: After defining the headword element inside entry
element pronunciation element <pro> is defined.

Type: Element
Name: pro
Data type: XSD:string
Max occur: 1
Min Occur: 1

Example:

<dictionary>

 <entry>
 <hw unq="1">bank</hw>
 <pro>baengk</pro>

 </entry>

 13

</dictionary>

Compound word:

Type: Element
Name: compound
Data type: XSD:string
Max occur: 1
Min Occur: 0

This tag is used for the Bangla words.
<entry>
 <hw unq="1"></hw>
�����compound!</compound>

 </entry>

Gender:
This tag is used to store the gender of the headword. It is placed
after compound tag.

Type: Element
Name: gender
Data type: XSD:string
Max occur: 1
Min Occur: 0

�����gender!ăĔá�ĒĊǩ</gender>

source_language:
This tag is placed after gender. It is especially for the Bangla words.

Type: Element
Name: source_language
Data type: XSD:string
Max occur: 1
Min Occur: 0

Example:

<source_language>čáɾþĖ </source_language>

Derivation:
This tag is also used for Bangla words.

Type: Element
Name: derivation
Data type: XSD:string
Max occur:1
Min Occur:0

<derivation>ï̙��ãï</derivation>

 14

Parts of Speech:
Parts of speech element is required for each entry element. A word may have several
parts of speech example: noun, adjective. All are written through the
<parts_of_speech> element. If there is one more parts of speech element
then one more <parts_of_speech> will be defined inside entry.

For each entry element <parts_of_speech> design:

Type: Element
Name: parts_of_speech
Min Occur: 1
Max Occur: unbound
Null able: False

Example:

<dictionary>

 <entry>
 <hw unq="1">bank</hw>
 <pro>baengk</pro>
 <parts_of_speech>

 </parts_of_speech>

 </entry>

</dictionary>

Parts Of Speech Name:

Each parts of speech element contains <pos_name> element.
Design of <pos_name> for each <parts_of_speech>:

Type: Element
Name: pos_name
Data type: XSD:string
Max occur: 1
Min Occur: 1

Example:

<parts_of_speech>
 <pos_name>noun</pos_name>

 </parts_of_speech>

 15

POS element:
 As one part of speech a word may have one or more meaning. So they
are written inside the <pos> element. If one part of speech has more
meaning then more <pos> elements are written.

Design of <pos>:

Type: Element
Name: pos
Min Occur: 1
Max Occur: unbound
Null able: False

Example:

<parts_of_speech>
 <pos_name>noun</pos_name>
 <pos>

 </pos>

 <pos>

 </pos>

 </parts_of_speech>

Meaning element:

Inside the <pos> element <meaning> element is written which contains
the definition of the word.

Design:

Type: Element
Name: meaning
Data type: XSD:string
Max occur: 1
Min Occur: 1
Example:

<parts_of_speech>
 <pos_name>noun</pos_name>
 <pos>
 <meaning>a heap or mass of something<meaning>

 </pos>

 <pos>

 </pos>

 16

 </parts_of_speech>

Use in sentence element: After the <meaning> element the <use_in_sen>
element is written which contains a sentence using the word.

Design of <use_in_sen>:

Type: Element
Name: use_in_sen
Data type: XSD:string
Max occur: 1
Min Occur: 1

Example:

<parts_of_speech>
 <pos_name>noun</pos_name>
 <pos>
 <meaning>a heap or mass of something<meaning>
 <use_in_sen>there were banks of stones by the road<use_in_sen>

 </pos>

<parts_of_speech>

Synonyms element: Each <pos> element contains one <synonyms> element.
One word for a particular meaning may have several synonyms. They are
written in the <syn> element. <syn> elements are define inside the
<synonyms> element. The word may not have synonyms. In that case no
<synonyms> element will be written.

Design of <synonyms>:

Type: Element
Name: synonyms
Min Occur: 0
Max Occur: 1
Null able: False
Design of <syn>

Type: Element
Name: syn
Data type: XSD:string
Max occur: unbound
Min Occur: 1

Example:

<pos>
 <meaning>a heap or mass of something<meaning>
 <use_in_sen>there were banks of stones by the road<use_in_sen>

 17

 <synonyms>
 <syn>pile</syn>
 <syn>heap</syn>
 <syn>mass</syn>
 </synonyms>

 </pos>

Antonyms element: <antonyms> element is designed same as <synonyms>
element. Different antonyms are defined by <ant> element.

Design of <antonyms>:

Type: Element
Name: antonyms
Min Occur: 0
Max Occur: 1
Null able: False

Design of <ant>

Type: Element
Name: ant
Data type: XSD:string
Max occur: unbound
Min Occur: 1

 18

 Figure: hierarchy of XML schema

 19

4.2 Client and Service Design:

4.2.1 Three-Tier Architecture

My dictionary project is a three-tier software system. A basic diagram of the system
architecture may be found below.

figure: Three-Tier Architecture

4.2.2: Client Design:

My client side is complete application. It can also be three �tier. The users of the
dictionary give their inputs from web browsers. The Client Tier contains the main
presentation of the dictionary. The users will get the following presentations from
here:

Menu page: Here the users will get the name of the four types of dictionaries.
Then the will select any types according to their choice.

English to English dictionary page: From this page the user will give input in a
text field and press the submit button. Then he will see the output in the same
page. Other dictionary pages work exactly like this page.

 20

In the client application server there will have some business logic. The
responsibility of this part is to send input as XML format to the web service. When
the service responses it accepts. In my dictionary the web service will return a
XML nodeList which contains words information�s. Now the logical job of this
part is to parse the xml document and display to the browser.

4.2.3: Service Design:

All of the business logics are implemented in the service part.

For a simple word search service request to the database for a word and take the
response. After that it sends back to the client application.

If the users request for the words which starts with/ends with then the logical part
will just invoke database and return the response to the client.

Generating suggestion list is the other important part of the service. If users give a
wrong input the service will generate suggestion list and send back to the client.
To do that it uses different algorithms

 21

Chapter 5: Implementation

5.1 Algorithms:
The Metaphone or Double Metaphone algorithm is used for spell checking. If a
user looks for a wrong word in not in the dictionary then to generate suggestion
list this algorithm is used. For ranking the words of the suggestion list Edit
distance algorithm is used.

5.1.1 Metaphone [4]

The Metaphone algorithm, proposed by Lawrence Philips, 1990, is also a system
for transforming words into codes based on phonetic properties. Metaphone
analyzes both single consonants and groups of letters called diphthongs, according
to a set of rules for grouping consonants, and then mapping groups to Metaphone
codes.

The Metaphone Rules

 Metaphone reduces the alphabet to 16 consonant sounds:
B X S K J T F H L M N P R 0 W Y
That isn't an O but a zero - representing the 'th' sound.

Transformations
Metaphone uses the following transformation rules:

Doubled letters except "c" -> drop 2nd letter.
Vowels are only kept when they are the first letter.

B -> B unless at the end of a word after "m" as in �dumb"
C -> X (sh) if -cia- or -ch-
 S if -ci-, -ce- or -cy-
 K otherwise, including -sch-
D -> J if in -dge-, -dgy- or -dgi-
 T otherwise
F -> F

 22

G -> silent if in -gh- and not at end or before a vowel
 In -gn- or -gned- (also see dge etc. above)
 J if before i or e or y if not double gg
 K otherwise
H -> silent if after vowel and no vowel follows
 H otherwise

J -> J
K -> silent if after "c"
 K otherwise
L -> L
M -> M
N -> N
P -> F if before "h"
 P otherwise
Q -> K
R -> R
S -> X (sh) if before "h" or in -sio- or -sia-
 S otherwise
T -> X (sh) if -tia- or -tio-
 0 (th) if before "h"
 Silent if in -tch-
 T otherwise
V -> F
W -> silent if not followed by a vowel
 W if followed by a vowel
X -> KS
Y -> silent if not followed by a vowel
 Y if followed by a vowel
Z -> S

Initial Letter Exceptions

Initial kn-, gn- pn, ac- or wr- -> drop first letter
Initial x--> change to "s"
Initial wh--> change to "w"

5.1.2 Double Metaphone [5]

Lawrence Philips, 2000, also proposed double metaphone. Metaphone worked fine
in most of the cases but there were a few cases that metaphone cannot handle Such
as, Bryan (BRYN) was not matched to Brian (BRN). MacCafferey is encoded to

 23

MKKF, an out-and-out bug. Retaining Soundex's choice of preserving the first
letter (in Metaphone, only for words that started with vowels), "Otto" for example,
cannot be matched to "Auto." More difficult to deal with, and contributing
considerably to inelegance, are the consonants that are pronounced differently in
different words. For example �gh� in light and rough.

English has a tendency to accumulate a large number of words from non-English
sources, notably French, Latin, and Greek. When transliterating from the Greek
alphabet, the letter that is pronounced �kh� is Greek (a sound that does not exist in
English � think �chutzpah�), is spelled �ch� and pronounced �k�: �orchestra�,
�chorus�, etc. Most importantly, some familiar names can just as plausibly be
pronounced more than one way. Henry Kissinger and Kim Basinger are example
of that type. Basinger is pronounced in both way as �Basin-gger� or �Basin-jer�.

These problems led Philips to propose another phonetic encoding, Double
metaphone, which perform better but not perfect. Main improvement of this
encoding is it will give two keys for words and names that can be plausibly
pronounced more than one way.

For example, in case of Kuczewski, there are two ambiguous sounds, so
"Kuczewski" now comes back as KSSK for the American version, "Kuhzooski,"
as well as KXFS for "Kutchefski." (�X' is used to represent the "sh" sound, and �0',
zero, to represent "th," as in original Metaphone.)

Example:
Spelling SPLN
Spoiling SPLN

5.1.3 Double Metaphone Phonetic encoding for Bangla [8 page27-47]:

To encode Bangla words we need to consider context and also need to generate
multiple codes for the same string. These constraints can be handled in Double
metaphone algorithm, which we did for Bangla. It is termed as Double metaphone
phonetic encoding. The table is given below for encoding.

 24

 25

 26

 27

 28

5.1.4 Approximate string matching algorithm [3,25]

This method uses an approximate string-matching algorithm to check the
closeness of dictionary words with the misspelled word. In suggestion it gives the
words that are close to it.

The words `computer' and `commuter' are very similar, and a change of just one letter, p-
>m will change the first word into the second. The word `sport' can be changed into `sort'
by the deletion of the `p', or equivalently, `sort' can be changed into `sport' by the
insertion of `p'.

The edit distance of two strings, s1 and s2, is defined as the minimum number of point
mutations required to change s1 into s2, where a point mutation is one of:

1. change a letter,
2. insert a letter or
3. delete a letter

 29

Example

E(�Bannp�,�Bank�)=2

Bannp
Banp [delete n]
Bank [replace p by k]

5.2 Implementation of service:

A user can use any one of the implemented four types of dictionary. From the
client part user sends a word as input. From the general overview the functions of
the web service is to load the corresponding XML file and send the information to
the client.

For XML parsing DOM has been used in this project.

5.2.1 DOM (Document Object Model) [22,23,24]

The DOM is a platform-independent, programming- language-neutral application
programming interface (API) for HTML and XML documents.

Its core outlines a family of types that represent all the objects that make up an
XML document: elements, attributes, entity references, comments, textual data
and processing instructions. With that, it defines the logical structure of documents
and the way a document is accessed and manipulated. (DOM specifies how XML
documents are represented as objects, so that they may be used in object-oriented
programs.) Increasingly, XML is being used as a way of representing many

 30

different kinds of information that may be stored in diverse systems, and much of
this would traditionally be seen as data rather than as documents. Nevertheless,
XML presents this data as documents, and the DOM may be used to manage this
data to allow programs to access and modify the content and the structure of XML
documents from within applications. Anything found in an XML document can be
accessed, changed, deleted, or added using the DOM, except for the XML internal
and external subsets for which DOM interfaces have not yet been provided. After
an XML document has been parsed into a collection of objects conforming to
DOM, the object model can be manipulated in any way that makes sense. This
mechanism is also known as the "random access" protocol, as any part of the data
can be visited at any time. The DOM usually resides in memory (it is the output of
an XML parser), but it can also be stored on disk (to save on the time needed to
parse the XML repeatedly) as a Persistent DOM (PDOM). When an XML
document is large and not likely to change much, as is the case for dictionaries,
using its PDOM representation can significantly speed up XQL querying.

5.2.2 Searching the meaning of a word:

public XmlNode[] word_search(string word, string dType)

The above method works for word searching. Among the two parameters first one
takes user input and second one indicates Dictionary types. I.e. English to English,
English to Bangla, Bangla to English or Bangla to Bangla. Based on the dictionary
type the corresponding xml is loaded into a DOM object. From there the total
information for the inputted word is taken to a XmlNode array. The array is then
returned to the client.

For Example, if a user search for the Bangla meaning of the word �capital� then
English to Bangla Xml will be taken in the DOM object. Then the information will
returned to client application.

5.2.3 Searching words which starts with/ends with *:

If user wants to find the word list which start with �con� he will get condition,
conflict, control so on.

public XmlNode[] wordsStartWith(string wsw, string dType)

The above method is used to implement this feature. �Wsw� is the inputted string
and dType represent the dictionary type. Then from the document object the words

 31

are find which starts with the user inputted string. Then the words are sending to
the client application.

To find the words which ends with a sub word then the following method are used
which works like the previous method.

public XmlNode[] wordsEndWith(string wew, string dType)

5. 2.4 Spelling Check and making suggestion list:

If user looks for a word which is not in the dictionary database or misspell the
word then spell checking is required. After getting the inputted word firstly it will
be searched in the xml document. If the word is not found then a suggestion list
will be generated which are alphabetically around the inputted word.

To generate the suggestion list firstly, the inputted word will be encoded using
Double Metaphone Algorithm. It will generate a key. After that we find the keys
for all the words in the dictionary. The keys which match with the input string key
they will be in suggestion list.

For example, if the user looks for the meaning of the misspelled word �supress �
then at first we generate sound of the word using [5] which gives SPRS. Then I
find keys for all the words of the dictionary database and take the words with same
sound SPRS in the suggestion list.

Surprisingly
Surprising
Spares
Suppressed
Suppress
Surprises
Surprised
Surprise

The following method is used to generate suggestion list.

public String[] MakingSuggestionList(string wrongWord, string dType)

In the above function 1st parameter takes the wrong word as input and the 2nd
parameter is dictionary type. Then it calls another function
public DoubleMetaphone(String word)

This method is used to generate sound of the inputted word.

 32

If the user uses Bangla dictionary, the Bangla wrong word will be encoded to
English using the Double Metaphone Bangla encoding transformations.
Similarly like English, all the other dictionary words are encoded to English. The
encoded words which match are taken to the suggestion list.

public String BMEncode(String word)

This method is used for Bangla metaphone encoding. It takes a Bangla word as
parameter and returns the encoded English key.

5.2.5 Ranking the words in the suggestion list:

Now in the suggestion list if the user gets the expected word in the middle or at the end
then user might be angry. So to make the better suggestion list it is necessary to raking
the words. For that edit distance is used.

Public int EditDistance (string source, string target)

This method will take the target string as the user inputted misspelled words and
the other words in the primary suggestion list as source string. Then distance will
be find and stored for all the primary suggestion list words. Then their distances
will be sorted using bubble sort as ascending order. Now the words will be re
arranged. Now it will give a better suggestion list.

For example:
X = supress
Words Edit Distance

E (Surprisingly, X) 7
E (Surprising, X) 5
E (Spares, X) 3
E (Suppressed, X) 3
E (Suppress, X) 1
E (Surprises, X) 3
E (Surprised, X) 4
E (Surprise, X) 3

Better suggestion list:

 33

Suppress 1
Spares 3
Suppressed 3
Surprises 3
Surprise 3
Surprised 4
Surprising 5
Surprisingly 7

Similarly, for ranking the suggestion list of Bangla words, I applied
The Edit Distance method for the encoded keys of the Bangla words. I took to
ideas of making the better suggestion list from [8].

5.3 Implementation of client:

The client application contains the implementation of the parsing data.
When the web service returns a nodelist then in the client application the nodelist
is parsed using Document Object Modeling (DOM) parser. After that it just
displays the contents of nodelist in the web page. If the user used Bangla to Bangla
dictionary then it display the contents in the web page used for Bangla dictionary.

wordNodes = dic.word_search(searchWord,"E2E");

The above method is used for sending request to the web service .The function
parameters are inputted dictionary word and 2nd one is dictionary type. The
returned result is stored in nodeList wordNodes. The wordNode is then parsed.

 34

Chapter 6: Result and Discussion

The end users don�t have headache how the software implemented. They just want
a user friendly and well organized software. I tried to make the dictionary as much
informative and well organized as possible.

The user will first see the above webpage. From here they will click any one type
of dictionary link. This will dispatch that dictionary page.

Figure: The home page of the dictionary

Say the user clicked �English to English�. He/She will see the following web
page. In that web page the users will type an English word in the text box and
press the search button. Then they will get the meaning of the inputted word.
In the display I separated the meanings of the dictionary words as parts of speech.
A word can be used as different parts of speech. Under each parts of speech there
may have multiple meanings. For each meaning I displayed uses in sentence,
antonyms, and synonyms. The antonyms, synonyms are displayed as link. If users
click to that link then the meaning of that link will be displayed.

 35

Figure: Display the meaning in English for a English word.

 36

Now If the user misspells the inputted word then it will show the error message
like bellow and give the suggestion list. Here you see for the mistake of the
spelling �spelling� it gives five words as suggestion list. Theses words are also
displayed as link. If anyone is clicked then the meaning will be displayed.

Figure: output for misspelled word(English to English)

From the above page if the user click in the �home� link it will returned to the
main page of the dictionary. Similarly, like English to English dictionary if they
click �Bangla to Bangla� they will get page for Bangla to Bangla dictionary
[figure:]. The access of this page is like English to English dictionary. The
differences are the input will be in Bangla and the display result will also be in
Bangla.

 37

Figure: word meaning from Bangla to Bangla dictionary.

 38

figure: suggestion list for wrong Bangla search.

The other dictionaries like English to Bangla and Bangla to English are same.

 39

Chapter 7: Conclusion

In the above chapters it has been shown that why my dictionary is language
independent, where I am unique. It has been discussed how the web service and
client has designed and implement. It is also shown the techniques of spell
checking for Bangla and English languages.

7.1: After implementing the dictionary I found few problems:

 (7.1.1)The dictionary access is slow because it just use flat XML file as database.

 (7.1.2)While spell checking it generates metaphone key for all words entry which
is also a slow process.

 (7.1.3)My web service is not language independent because it has implemented
using C#.NET.

(7.1.4)Right now the dictionary is not useable because of in sufficient data in the
XML.

7.2: Future improvements

My future works on it based on the above problems.
(7.2.1) I will introduce DBMS to handle data so that it becomes faster.
(7.2.2) Then I will try to improve spell checking technique to make it better.
(7.2.3) I will start inputting data to make my dictionary useable.
(7.2.4)I will implement the dictionary service using JAVA to make my dictionary
completely programming language independent.

 40

References:

[1]. http://dotnetjunkies.com/Article/C333976F-1EA4-42C1-BFEE-63F3C09CD94B.dcik

[2]. http://nlp.stanford.edu/kirrkirr/ausweb99/paper.html

[3]. http://nlp.stanford.edu/IR-book/html/htmledition/edit- distance1.html

[4] Lawrence Philip�s Metaphone Algorithm, available online at
http://aspell.sourceforge.net/metaphone/index.html

[5].Lawrence Phillips, �The Double Metaphone Search Algorithm�, C/C++
Users Journal, 18(6), June 2000, available online at
http://www.cju.com/document/s=8038/cuj0006phillips/

[6].Kevin Jansz,Student of the University of Sydney, Australia - thesis work on
�Intelligent processing, storage and visualization of dictionary information�.

[7].Sng Wee Jim, student of the NANYAND Technology University- thesis work on
�Optimizing KIRRKIRR: An Electronic Dictionary Browser�.

[8]. Naushad UzZaman, student of BRAC University, undergraduate thesis on
 �PHONETIC ENCODING FOR BANGLA AND ITS APPLICATION TO SPELLING
CHECKER, TRANSLITERATION, CROSS LANGUAGE INFORMATION
RETRIEVAL AND NAME SEARCHING�.

[9] Bangla Academy Bengali-English Dictionary
[10]Bangla Academy Bangla to Bangla Dictionary (Baboharik Bangla Obidhan)
[11] Bangla Academy English to Bangla Dictionary
[12] www.wordsmyth.net/
[13]http://www.w3schools.com/webservices/default.asp
[14]http://www.w3.org/TR/2002/WD-ws-arch-20021114/
[15] http://www.altova.com/whitepapers/webservices.pdf.
[16] www.xml.com/
[17]www.w3schools.com/xml/default.asp
[18] www.w3.org/XML/
[19]www.stylusstudio.com/docs/v2006/d_xslt.html
[20] http://nlp.stanford.edu/kirrkirr/dictionaries/dictionaryinfo.html
[21] http://en.wikipedia.org/wiki/Internet_Information_Services
[22] www.w3schools.com/dom/default.asp
[23] www.dotnetspider.com/kb/Article1100.aspx
[24] www.xmlfiles.com/
[25] www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Edit/

http://dotnetjunkies.com/Article/C333976F-1EA4-42C1-BFEE-63F3C09CD94B.dcik
http://nlp.stanford.edu/kirrkirr/ausweb99/paper.html
http://nlp.stanford.edu/IR-book/html/htmledition/edit-
http://aspell.sourceforge.net/metaphone/index.html
http://www.cju.com/document/s=8038/cuj0006phillips/
http://www.wordsmyth.net/
http://www.altova.com/whitepapers/webservices.pdf
http://www.xml.com/
http://www.w3.org/XML/
http://nlp.stanford.edu/kirrkirr/dictionaries/dictionaryinfo.html
http://en.wikipedia.org/wiki/Internet_Information_Services
http://www.w3schools.com/dom/default.asp
http://www.dotnetspider.com/kb/Article1100.aspx
http://www.xmlfiles.com/
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Edit/

 41

