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Abstract
Intracranial hemorrhage is an acute bleeding within the skull which can damage
the brain tissue and can eventually lead to disability or even death. It is a serious
medical condition that occurs when blood is built up within the skull after a blood
vessel is ruptured. Brain damage can be minimized if intracranial hemorrhage is
diagnosed immediately, and the patient may regain mobility. Deploying applica-
tions of Artificial Intelligence (AI) in clinical medicine to accelerate the accuracy of
intracranial hemorrhage diagnosis aims to minimize the severity of the condition,
therefore, enhancing medical care. Adequate analysis of the Computed Tomogra-
phy (CT) scan imaging is integral for diagnosis and management. Deep Learning,
which is a subset of AI, is widely used in interpreting medical images and has shown
promising advancements in diagnosing brain hemorrhage. With time playing a cru-
cial factor, automatic lesion identification is one of the most important factors in
precision medicine dealing with huge datasets of neuroimaging compared to manual
lesion segmentation. This paper proposes a Deep Learning method called Convo-
lutional Neural Network (CNN) on neuroimaging with transfer learning techniques
to assist in the diagnosis of intracranial hemorrhage on CT scan images. We used
six pretrained CNN models (EfficientNetB6, DenseNet121, ResNet50, InceptionRes-
NetV2, InceptionV3, VGG16) and also present a traditional 11-layer CNN model for
binary classification and detection of intracranial hemorrhage using brain CT scan
images. The paper depicts a comparative analysis on the performance between the
proposed traditional and pre-trained CNN models in terms of accuracy, precision,
recall, F1 score, and AUC curve on the existing dataset. The EfficientNetB6 model
yields an accuracy of 95.99%, which is higher than any of the experimental results
of the CNN models used in this dataset.

Keywords: Deep Learning; Convolutional Neural Network; CT Scan Images; In-
tracranial Hemorrhage; EfficientNetB6; DenseNet121; ResNet50; InceptionResNetV2;
InceptionV3; VGG16.
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Chapter 1

Introduction

1.1 Background
With the advent of technology surging through all spheres of life, AI has undoubtedly
revolutionized many domains, with its largest impact in the healthcare industry. In-
tegrating AI in the healthcare ecosystem has paved the way for continual growth and
improvement in the medicine field and an increased revenue potential. The medical
industry continues to evolve as the application of AI becomes further comprehen-
sive and allows for a myriad of benefits, from analyzing big data sets of patients
to automating tasks so as to deliver better healthcare faster. Deep learning is a
sub-discipline of Artificial Intelligence’s further subset called ’Machine Learning’,
that has shown potential and prospects to deliver data-driven clinical decision sup-
port by using data along with algorithms based on artificial neural networks with
representation learning to confer invaluable automated insights to physicians and
healthcare specialists.
The brain is the most complex organ in the human body. The human brain is
very powerful and it posses nearly 100 billion neurons with nearly a quadrillion
connections that is capable of generating the highest level of consciousness and the
mental processes with which humans perceive, act, learn, and remember. Higashida
and Chair (2003) classified the typology of stroke into two categories: Ischemic
and Hemorrhagic [1]. The ischemic stroke is the most frequently occurring and it
elucidates for 80% of all the strokes whereas hemorrhagic stroke accounts for about
20% [1]. An ischemic stroke develops when there is a lack of blood flow in the
major arteries that lead to the brain. The aftermath of this stroke can result in
a temporary or permanent loss of the body’s normal functions [1]. On the other
hand, a hemorrhagic stroke is caused by a bleeding in the brain [1]. Intracranial
brain hemorrhage is a medical emergency and it is a serious type of hemorrhagic
stroke that develops when a brain’s blood vessel ruptures and this causes blood to
build up within the skull as the oxygen supply is restricted [2]. Prompt treatment
is vital to diminish the damage and save lives. The two modalities routinely used
for mapping lesion in the brain are: computed tomography (CT) and magnetic
resonance imaging (MRI). The preferred procedure is CT scan as the first step to
assess a stroke patient as it has proven to be an efficient technique in determining
if the individual is experiencing a stroke. A study suggests that more than 92%
accuracy is achieved in identifying hemorrhage strokes by CT scans [3]. Therefore,
with time playing a crucial factor, CT is the preferred approach with the advantages
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of speed, expense and reduced exclusion measure corresponding to MRI [4].
In recent years, deep learning methods have been extensively used for the delineation
of stroke on CT scans as these models are capable of outperforming humans in image
classification. The medicine and healthcare industry has substantially profited from
the application of Convolutional Neural Networks (CNN) which saves time and
produces accurate results. CNN is effectual for the recognition of patterns and
image-processing as this algorithm constructs a model which processes the images
that are taken as inputs so as to extract the features from it as well as to discern
a pattern [5]. CNN recognizes the similarities of a new input quite precisely by
using the pattern and it is in demand because of its simple architecture, minimized
training-parameters, pliancy, and it also reduces a network model’s complexity.

1.2 Motivation
As today’s medical industry continues to rapidly evolve, the concept of computer-
based clinical decision support has accelerated as a prevalent topic in research so
as to enhance the quality of decision-making in the medicine and healthcare do-
main. AI possess potential to optimize personalized care by facilitating diagnosis
and therapeutic decisions. Hence, this research aims to find a way to develop an
understanding of how incorporating the applications of AI accelerates the diagnosis
of intracranial brain hemorrhage and create a solution that leverages on data ac-
curacy for improved decision-making. The goal is to develop a solution using the
concepts of Image Processing with Convolutional Neural Network models that will
assist healthcare specialists to make an effective and improved diagnosis.

The motivations of this research are:

• To thoroughly understand the applications of Artificial Intelligence and how
it can be incorporated in our interested domain.

• To study and examine deep learning models for the automatic lesion delin-
eation and binary classification of intracranial brain hemorrhage on CT scan
images.

• To employ traditional and transfer learning approach of Convolutional Neural
Network and contrast their performance.

• To examine and evaluate the best performing model for our intended research.

2



1.3 Thesis Orientation
This segment gives an overall overview of what has been discussed in each chapter
of this thesis paper. After discussing the motivation behind this study and what we
intend to do and plan to accomplish in this chapter, the remainder of the paper is
assembled in the consequential manner:

• Chapter 2 includes the Literature Review where we summarize related works
and information collected from various scholarly articles relevant to this thesis

• Chapter 3 presents the research objectives in details

• Chapter 4 includes the methodology suggested for the whole study’s workflow

• Chapter 5 describes the architecture for the traditional 11-layer CNN model
proposed for the study

• Chapter 6 discusses the pre-trained CNN models used for Transfer Learning
Approach

• Chapter 7 evaluates the performance of the CNN models

• Chapter 8 outlines the experimental results and analysis

• Chapter 9 concludes this thesis with subsequent plans

3



Chapter 2

Literature Review

As of today, stroke is a prominent cause of permanent disability in adults [6]. About
16 million first-ever strokes occur in the world, that causes a total of 5.7 million
deaths annually [7]. With a globally ageing population estimated to triple by the
year 2050, neurophysiological investigation of patients suffering from stroke with
advances of AI in cognitive neuroscience will evolve the comprehension of the most
complex human organ [6]. The stroke typology is broadly classified into two cate-
gories: Ischemic and Hemorrhagic. Ischemic stroke is the most frequent type which
is caused by a blood clot that blocks the brain’s blood vessels and nearly 87% of all
strokes are ischemic stroke [8]. Hemorrhagic stroke is another major type of stroke in
which the blood vessel of a brain ruptures and causes bleeding and it makes up about
13% of all strokes. This type of stroke is directly caused by Intracranial hemorrhages
[2]. Intracerebral hemorrhage, which is a subtype of intracranial hemorrhage, occurs
at a rate of 24.6 per million people globally.
The two modalities routinely used for mapping lesion in the brain are: computed
tomography (CT) and magnetic resonance imaging (MRI). According to Baird et
al. (2009), CT Scan is considered to be the standard convention for the precise
exclusion of brain hemorrhage [9]. Over the years, notable progress was made in
the scanner hardware, and the latest CT units can scan the entire human brain
in a matter of a few seconds [10]. With time playing a crucial factor, CT is the
preferred approach compared to MRI [4] . Using CT scan images, early detection of
ischemic strokes was done by Rajni and Bhavani (2013) with segmentation, midline
shift and image feature characteristics. In their research, they obtained accuracy
scores of 98% with Support Vector Machine (SVM), 97% with k-NN, 96% with
Artificial Neural Network (ANN) and 92% with decision tree [11]. The current
method for lesion identification is still manual and that puts forward a number of
disadvantages [12]. Even though hemorrhagic stroke appears more clearly on a CT
scan image, lesion identification of the more common ischemic stroke takes nearly
over a day using the manual delineation approach. Ischemic stroke is strenuous to
observe in CT scans, particularly during the first few hours after the stroke occurs,
which is the duration when treatment decisions are utmost vital. Therefore, by
the time the region of the abnormal brain tissue is localized, delay of treatment
propels the brain damage thus likely to worsen the individual’s chances to regain
mobility [12]. CT scan merges a procession of X-ray images taken from varied angles
and employs computer imaging to construct cross-section images of blood vessels,
soft tissues and bones within the body. Initially, the CT scan images are in the

4



transverse anatomical plane. State-of-the-art scanners scan data to be formatted
as images on alternative planes. Digital geometry analysis can produce a 3D image
of an object within the body from a collection of 2D radiographic images taken by
rotating around a fixed object. The features of the lesion of a stroke differ depending
on the imaging modality type and so these features must be cautiously extracted
from the input images to establish an accurate procedure for stroke delineation
in order to analyze the various deep architectures used for stroke diagnosis and
segmentation depending on the underlying imaging modality. It can further propose
other potential deep architectures that can be suggested to improve outcomes in
the identification of stroke lesions and the emerging developments in hemorrhage
delineation have also been detailed in this evaluation. In recent years, deep learning
methods have been extensively used for the detection of hemorrhage on CT scans.
Deep learning Artificial Intelligence models are capable of outperforming humans in
image classification. This also helps to explain the importance of two deep learning
models to the medical image processing, namely the Convolutional Neural Network
(CNN) and the fully Convolutional Network (FCN).
The detection of ’stroke’ using CNN is a prevalent and extensive research domain.
In 2018, Grewal et al. utilized DenseNet along with a bi-directional long short-term
memory (Bi-LSTM) layer aimed at hemorrhage diagnosis [13]. In their research, they
used a dataset of 77 brain CT scans on which the LSTM layer was incorporated for
combining dependencies between slices and they named this model Recurrent Atten-
tion DenseNet (RADnet) which achieved 81.82% hemorrhage prediction accuracy,
88.64% sensitivity and 81.25% precision that can be comparable to radiologists for
CT scan images. Although the types of intracranial hemorrhage examined were not
mentioned in the paper [13]. In the same year, Chilamkurthy et al. employed a mod-
ified version of ResNet18 in order to delineate intracranial hemorrhage on a dataset
of 21,095 CT scans and obtained an AUC score of 91.94% [14]. In another research,
Arbabshirani et al. suggested a simple CNN that consisted of two fully connected
layers and five convolutional layers on a dataset of 37,074 CT scan images on which
they attained an AUC score of 84.6%, sensitivity score of 73%, and specificity score
of 80% [15]. However, their model does not specify the location of the hemorrhage
in the brain.
The dataset used in this thesis was collected by Hssayeni et al. (2020) [16]. In
their paper, they employed U-Net to detect intracranial hemorrhage and achieved
an accuracy of 87.00%. Their model had a high rate of false positives that influenced
towards a lower dice score (0.31). In 2020, Anupama et al. developed a GC-SDL
model(GrabCut-based segmentation with synergic deep learning) that can identify
intracranial brain hemorrhage images in wearable networks [17]. Their proposed
method used Gabor filtering to improve the image quality by noise removal and
attained a precision of 95.79% and an accuracy of 95.73%. In the same year, Chen
et al. presented an IoT-based implementation for hemorrhage classification using
machine learning algorithms [18]. In their paper, the accuracy obtained was 80.67%
for Support Vector Machine (SVM) and 86.70% for Feedforward Neural Network
(FNN).
Li et al. also used this dataset for their research [19]. They proposed a UNet++
model which achieved a detection accuracy of 0.9859 along with a Dice score of
0.8033 on one of their datasets. However, they could not get satisfactory performance
for their second dataset, which is the one being used for this paper. Majumdar et al.

5



used a dataset of 134 CT cases containing 4,300 images [20]. They created a modified
version of the U-Net model for detecting intracranial hemorrhages which worked on
2D slices. Their model consisted of 9 convolutional layers and they found that
using data augmentation improved the accuracy of the model. For augmentation,
they used random flipping and random rotation of 10 degrees in either direction.
Their model attained a sensitivity score of 81% per lesion and 98% specificity per
case. However, for training their model, they only used cases with hemorrhages while
keeping the normal cases only for testing, which might distort the results. Prevedello
et al. [21] proposed two models that utilized CNNs. The former focuses on predicting
intracranial hemorrhage, mass effect, and hydrocephalus (HMH) localization whilst
the latter is utilized to find suspected acute infarct (SAI). These two models combine
elements of CNN with recurrent neural networks (RNN) to detect hemorrhage. They
used a dataset of 50 scans and found an AUC score of 0.91 on HMH and 0.81 on
SAI. Chang et al. created a hybrid CNN model using slice slabs [22]. In their study,
a dataset containing 10,159 Computed Tomography scans was utilized for training.
They gained an accuracy of 97.5%. However, their dataset had a small quantity
of cases that were positive, only 82 out of the 983 cases were positive and they
also did not categorize the subtypes of ICH [22]. For detecting ICH, Jnawalia et
al. suggested an ensemble of three distinct CNN algorithms [23]. These models
are based on the AlexNet and GoogleNet structures, which were stretched to a 3D
method by absorbing all slices. Their dataset consisted of 40,367 3D head CT scan
images and they achieved an AUC score of 0.87 on the ensemble model.
For detecting and categorizing ICH regions, Ye et al. proposed a three-dimensional
convolutional and recurrent (CNN-RNN) model [24]. The CNN model used was
VGG16, and the RNN technique used was the bidirectional gated recurrent unit
(GRU). Their dataset contained 2836 cases among which 1836 had ICH and 1000
were normal and the total number of images were 76,621. They gained AUC scores of
> 0.8 AUC all subtypes. However, the amount of cases with intracranial hemorrhage
was 65% which is significantly exorbitant in comparison to an actual clinical envi-
ronment [24]. In our research, we investigate and examine the different approaches
used and then suggest an improved solution influenced from the knowledge of the
previous workings.
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Chapter 3

Research Objectives

Some of the papers mentioned in Chapter 2 have attained significant outcomes on
the specific dataset we are working with. Nonetheless, we found some constraints in
the existing research reports which are noted as follows: (1) Some only focused on
one single pre-trained CNN model in their paper and did not outline any comparison
of its performance with other existing transfer learning methods [13], [14], (2) others
did not achieve satisfactory results on the dataset we have used in this paper [18].
Hence, in this thesis, we suggest the implementation of transfer learning approach
of six different pre-trained CNN models (EfficientNetB6, DenseNet121, ResNet50,
InceptionResNetV2, InceptionV3, VGG16) and a simple traditional CNN model
based on 11-layer architecture and make a comparative analysis of their performance
to address the limitations mentioned as above. We employ the models for the binary
classification and the automated detection of intracranial brain hemorrhage on brain
CT scan images using the transfer learning approach of CNN. The significance of it
is an attempt to assist the healthcare experts by reducing the time required for the
detection of this particular medical condition and thus improving clinical diagnosis.
The principal contributions of this paper are mentioned as follows:

1. This research employs more than one transfer learning CNN model. We have
used six pre-trained CNN models and a traditional 11-layer CNN model that
can automatically identify infarct and bleeding in Intracranial Hemorrhage
CT scans.

2. Some of the pre-trained models’ performance have yielded satisfactory results
which is remarkably enhanced than existing research works done on this spe-
cific dataset.

3. This paper outlines a comparative analysis on the performance of the CNN
models employed in this thesis.

4. A real-world application of this study is implemented by deploying a simple
web application.

7



Chapter 4

Methodology

4.1 Workflow of the Methodology
In this segment, the methodology suggested for this thesis is demonstrated. We
begin the workflow with the collection and organization of the dataset followed by
applying pre-processing techniques to it. The workflow comprises of a traditional
CNN model of 11-layered architecture and the transfer learning approach of six pre-
trained CNN models (EfficientNetB6, DenseNet121, ResNet50, InceptionResNetV2,
InceptionV3, VGG16) and then compare their performance based on the metrics of
accuracy, precision, recall, F1 score, Confusion Matrix and AUC curve to eventually
evaluate the best model for the detection and binary classification of intracranial
hemorrhage on brain CT scan images. Figure 4.1 represents a detailed block diagram
of the methodology’s workflow. The methodology is sequentially outlined in the
given steps as shown below:

Step 1: Data Collection
Step 2: Data Pre-processing
Step 3: Traditional CNN model
Step 4: Pre-trained CNN models for Transfer Learning
Step 5: Evaluate the CNN models’ performance

4.2 Description of the Data

4.2.1 Data Collection
The dataset is acquired from the physionet repository [16]. It contains head CT scan
images in JPG format. The images are from a study sanctioned by the Research
and Ethics Board in Iraqi Ministry of Health-Babil Office, which was conducted in
Al Hilla Teaching Hospital-Iraq in 2018 [25]. Their study comprises a total of 82
patients of which 46 are male subjects and 36 are female subjects. Only 31 out of the
82 patients are diagnosed with intracranial hemorrhage. Hence, for every patient
on average 30 images are available. Table 4.1 represents the subject demographics.
From the dataset, a total of 5001 images are accumulated among which 2501 images
are of brain CT scans and the rest 2500 images are that of bones. We discard the
bone images since we only need the brain CT images to train the CNN models for
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Figure 4.1: Full Workflow of the Methodology.

this research. For the purpose of binary classification, these 2501 brain images are
then assembled into two groups - Hemorrhage and Normal. That is, 1104 images
of hemorrhage and 1397 normal brain images are used in the training of these deep
learning CNN models. Figure 4.2 shows a visual representation of this ratio of
hemorrhage and normal brain images. The improvised dataset is further divided
into a ratio of 9:1. That means 90% of this dataset are employed for ’training’ and
the spare 10% are utilized for the purpose of ’testing’. Then 20% out of this training
dataset are kept for validation which is used to dispense an unbiased evaluation of
a model fit on the training dataset. So, the dataset splitting is of the following ratio
70:20:10 for training, validation, and test respectively which is shown in Fig 4.3.
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Table 4.1: Subject Demographics

Total Number of Subjects 82 Sex 46 Male
36 Female

Age 27.8 ± 19.5 Age Group 1 day - 72 years
Quantity of Normal Images 46 Number of subjects with ICH 36

Figure 4.2: Ratio of Hemorrhage and Normal Brain Images

Figure 4.3: Dataset Splitting
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4.2.2 Data Pre-processing
Data pre-processing is a method which is designed to remove unnecessary variables
that do not contribute to improving the accuracy of the CNN models. Moreover, it
makes all the necessary transformations on the raw data that can help in improv-
ing the CNN models’ performance to give better results and accuracy [26]. Our
data pre-processing is segmented into two parts: a) Image Resizing, and b) Data
Augmentation. The dataset consists of images of various sizes which can impact
and affect the architecture to give low accuracy. Therefore, these images are resized
using the open-source Keras library. The input shape is taken as 224x224 pixels
for all the models as most architectures downsample the input size of the images to
224x224. This resizing helps to considerably reduce the training time of the neural
network models. We set the batch size to 32. Furthermore, data augmentation is
applied on our training dataset to handle the problem of sparse data. It is used to
artificially increase the dimensions of the training dataset by generating modified
copies of the dataset’s images [27]. The following geometric transformations were
applied:

• RandomFlip

• RandomZoom

• RandomCrop

• RandomRotation

Figure 4.4 shows a visual representation of a brain CT scan image before and after
data augmentation is performed on it.

Figure 4.4: Before and After Augmentation.
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Chapter 5

Proposed Traditional CNN Model

The architecture of the traditional 11-layer CNN model is discussed in this section.
Table 5.1 depicts a summary of this proposed traditional 11-layer CNN model. A
traditional CNN is primarily constructed with convolutional layer, pooling layer
and fully-connected layer. Additionally, the other two principal parameters used
are: Activation function and Dropout layer. Along with that regularization type
L1 and L2 with a dropout of 40% was added to insure that the model do not get
overfitted.Figure 5.1 shows a visual representation of a traditional CNN model. A
description of the layers that are selected in the traditional 11-layer CNN model are
given below:

1. Convolutional Layer: A total of four Conv2D layers have been selected in
this layer.

2. Pooling Layer: For this layer, Maxpooling2D is used for every Conv2D layer.
So the number of layers sum up to four in the Pooling layer.

3. Fully Connected Layer: Weights, biases and the neurons are incorporated
in this layer and it is composed of :

(a) Flatten Layer: This layer is applied after selecting the pooling layer so
that it can flatten the whole network.

(b) Dense Layer: Two dense layers are employed after the flatten layer in
the model so as to feed all the outputs from the previous layer to all its
neurons.

(c) Activation Function: The ‘Sigmoid’ Activation Function is implemented
on the dense layer. The equation of this function is specified in Eq 5.1.

f(x) =
1

1 + e−x
(5.1)

In Eq 5.1, x is a real number and a trivial constant. The ’sigmoid’ activation function
is an S-shaped curve and the value of this ranges from 0 to 1, which means it can
easily predict the probability. Hence, the sigmoid function has been selected as the
preferred choice for this type of binary image classification.
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Table 5.1: A SUMMARY OF THE TRADITIONAL 11-LAYER CNN MODEL

Type of Layer Output Shape Parameter #
conv2d (Conv2D) (None, 254, 254, 32) 896
max pooling2d (MaxPooling2D) (None, 127, 127, 32) 0
conv2d-1 (Conv2D) (None, 125, 125, 64) 18496
max-pooling2d-1 (MaxPooling2D) (None, 62, 62, 64) 0
conv2d-2 (Conv2D) (None, 60, 60, 128) 73856
max pooling2d-2 (MaxPooling2D) (None, 30, 30, 128) 0
conv2d-3 (Conv2D) (None, 28, 28, 128) 147584
max pooling2d-3 (MaxPooling2D) (None, 14, 14, 128) 0
flatten (Flatten) (None, 25088) 0
dense (Dense) (None, 512) 12845568
dense -1 (Dense) (None, 1) 513

Figure 5.1: Architecture of Traditional CNN Model

13



Chapter 6

Pre-trained CNN Models for
Transfer Learning

The pre-trained CNN models employed in this paper are EfficientNetB6, DenseNet121,
ResNet50, VGG16, InceptionV3, and InceptionResNetV2. Since the traditional 11-
layer CNN model performed poorly and did not yield a satisfactory result because
the dataset used is small with only about 2500 images. So in order to optimize
the performance of these neural network models, we migrated to transfer learning
approach. We have also added 40% dropout which implies that 40% features are
set to 0 during training. But while testing, all the neurons are used and so the
model will become more robust. Moreover, we also used regularization techniques
of type L1 and L2 to prevent the models from overfitting. A summary of each of
the pre-trained models’ architecture used in this paper are mentioned as follows:

6.1 EfficientNetB6
Mingxing Tan and Quoc V. Le (2019) proposed the EfficientNet model [28]. Figure
6.1 shows a visual representation of the EfficientNetB6 Architecture. They examined
at model scaling and determined that balancing the depth, width, and resolution of
the network can result in a good result, performance can be improved. Therefore,
they developed a new scaling method for neural networks which can uniformly scale
the network’s depth, width, and resolution. Then they scaled it up to build the Ef-
ficientNets family of deep learning models, which outperformed the previous models
in terms of accuracy and efficiency. [28]. The compound scaling method was used
at first in order to scale the dimensions of the network. A grid search approach was
utilized to discover the relationship between the network’s various scaling dimen-
sions. In this way, they discovered the scaling coefficients necessary for scaling up
each dimension [28]. In the architecture of the EfficientNet model, they used Neural
Architecture Search to automate the creation of the design. In this way, both the
efficiency and the accuracy can be optimized on the basis of FLOPS or floating-point
operations per second. MBConv or Mobile Inverted Bottleneck Convolution is used
in the EfficientNet architecture [28].
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Figure 6.1: EfficientNetB6 Architecture [28].

6.2 DenseNet121
DenseNet (Dense Convolutional Network) is a network architecture designed to in-
crease the depth of deep learning networks while making training easier and more
efficient by employing shorter layered connections.DenseNet model is basically a
convolutional neural network where each of its layer is connected to all the other
layers further deep in the network; for example, the first layer is connected to the
second, then to third, then to fourth so on and so forth [29]. As a result, the model
requires fewer parameters than a typical CNN because no redundant feature map-
pings must be learned [30]. Therefore it is such an efficient and widely used model.
Table 6.1 shows a summary of the DenseNet121 model.

Table 6.1: Summary of DenseNet121 Model

Layers Output Size DenseNet121
Convolution 112 × 112
Pooling 56 × 56

Dense Block-1 56 × 56 [ 1 × 1 ] × 6,
[ 3 × 3 ] × 6

2-Transition Layer (1) 56 × 56
28 × 28

Dense Block-2 28 × 28 [ 1 × 1 ] × 12,
[ 3 × 3 ] × 12

2-Transition Layer (2) 28 × 28
14 × 14

Dense Block-3 14 × 14 [ 1 × 1 ] × 24,
[ 3 × 3 ] × 24

2-Transition Layer (3) 14 × 14
7 × 7

Dense Block-4 7 × 7 [ 1 × 1 ] × 16,
[ 3 × 3 ] × 16

2-Classification Layer 1 × 1
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Every dense block includes a different number of layers by repeating the same layers
along with two convolutions each. A 1x1 sized kernel gets added as the bottleneck
layer and a 3x3 kernel gets added in order to perform the convolution function, as
shown in table 6.1. Again, each transition layer contains a 1x1 convolutional layer
and a 2x2 average pooling layer as well with a stride of 2. Hence DenseNet-121 gets
the following layers in its architecture - one 7x7 Convolution, fifty-eight 3x3 Con-
volution, sixty-one 1x1 Convolution, four AvgPool and one Fully Connected Layer.
Building up to 120 Convolutions and 4 AvgPool. A visual representation of the
DenseNet121 Architecture is presented in Figure 6.2.

Figure 6.2: DenseNet121 Architecture [29].

6.3 ResNet50
ResNet or Residual Networks is a neural network architecture which is used for
computer vision related tasks. ResNet won the 2015 ImageNet challenge. Using
ResNet, training very deep neural networks containing over and above 150 layers
had become possible, which was a major breakthrough. ResNet comes in a variety
of flavors, each with a different number of layers but the same basic premise. The
term ResNet50 refers to a variation that can work with up to 50 neural network
layers. ResNet solves the vanishing gradient problem successfully. Because if the
network is very deep, then the calculation of the gradients can get to zero when the
chain rule is applied many times. This means that the weights are never updated
and no learning occurs in the model [30]. Figure 6.3 shows a visual representation
of the ResNet50 Architecture.

Figure 6.3: ResNet50 Architecture [30].
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Table 6.2: Summary of ResNet50 Model

Layer Name Output Size ResNet50
Conv1 112 ×112 7 × 7, 64 stride 2
Conv2 56 × 56 3 × 3 max pool, stride 2

[1 × 1, 64 ] × 3
[3 × 3, 64 ] × 3
[1 × 1, 256 ] × 3

Conv3 28 × 28

[1 × 1, 128 ] × 4

[3 × 3, 128 ] × 4

[1 × 1, 512 ] × 4

Conv4 14 × 14

[1 × 1, 256 ] × 6

[3 × 3, 256 ] × 6

[1 × 1, 1024 ] × 6

Conv5 7 × 7

[1 × 1, 512 ] × 3

[3 × 3, 512 ] × 3

[1 × 1, 2048 ] × 3

The ResNet 50 architecture, as shown in Table 6.2, is made up of a convolution layer
with 7 × 7 sized kernel as well as 64 unique kernels, all of these kernels also have a
stride size of 2. All of these together, is making up in a single layer. For this first
convolution layer, a max pooling layer with a stride size of 2 has also been used.This
model has 1 × 1, 64 kernel and a 3 × 3, 64 kernel, along with a 1 × 1, 256 kernel.
These three layers has been repeated three times that gives the model nine levels.
Afterwards, there is a kernel of 1 × 1, 128, again with with another kernel of 3 × 3,
128, along with another kernel of 1 × 1, 512. However, These layers are get repeated
four times giving the model another 12 layers along with the first 9. Again,there is
a 1 × 1, 256 kernel,a 3 × 3, 256 kernel and a 1 × 1, 1024 kernel has been added
and repeated six times, resulting in adding another total of 18 layers. In the last
parts of this model a 1 × 1, 512 kernel, two 3 × 3, 512 and 1 × 1, 2048 kernels get
added too, which gives total of nine layers. Finally,an average pool is run and the
model is completed with a fully connected layer with 1000 nodes and subsequently
a softmax function gets attached. However, this activation functions as well as
the max/average pooling layers do not get counted. All of the mentioned layers
together actually makes the total number of layers for the ResNet50 architecture
that eventually accumulates to 50 layers.
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6.4 VGG16
Simonyan and Zisserman (2014) had suggested the VGG16 CNN model [31]. On
ImageNet, a dataset with 14 million pictures divided into 1000 classes, VGG16
obtained a test accuracy of 92.7%. This model comprises 13 convolutional layers, 5
max-pooling layers, and 3 fully connected layers, and it was trained for weeks using
NVIDIA Titan Black GPUs. As a result of the AlexNet ReLU tradition, there are 16
layers with customizable settings, 13 convolutional layers, and 3 fully linked layers.
This is the reason why the model was named as VGG16 [31]. This network adds
more layers to AlexNet and employs lower size filters (2x2) and (3x3) than AlexNet.
It has 138 million parameters and takes up around 500 megabytes of storage [32].
Table 6.3 shows a summary of the VGG16 model. Here, the first block contains 64
filters, which are then doubled in the subsequent blocks until the total number of
filters reaches 512. Two fully connected hidden layers and one output layer complete
this model. The neuron numbers in the two fully connected layers are the same,
at 4096. The output layer has 1000 neurons, which corresponds to the Imagenet
dataset’s number of categories [32]. Figure 6.4 shows a visual representation of the
VGG16 Architecture.

Figure 6.4: VGG16 Architecture [31].
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Table 6.3: Summary of VGG16 Model

Type of Layer Shape of the Output Parameter #
conv2d (Conv2D) (None, 224, 224, 64) 1792
conv2d-1 (Conv2D) (None, 224, 224, 64) 36928
max_pooling2d (MaxPooling2D) (None, 112, 112, 64) 0
conv2d-2 (Conv2D) (None, 112, 112, 128) 73856
conv2d-3 (Conv2D) (None, 112, 112, 128) 147584
max_pooling2d-1 (MaxPooling2D) (None, 56, 56, 128) 0
conv2d-4 (Conv2D) (None, 56, 56, 256) 295168
conv2d-5 (Conv2D) (None, 56, 56, 256) 590080
conv2d-6 (Conv2D) (None, 56, 56, 256) 590080
max_pooling2d-2 (MaxPooling2D) (None, 28, 28, 256) 0
conv2d-7 (Conv2D) (None, 28, 28, 512) 1180160
conv2d-8 (Conv2D) (None, 28, 28, 512) 2359808
conv2d-9 (Conv2D) (None, 28, 28, 512) 2359808
conmax_pooling2d-3 (MaxPooling2D) (None, 14, 14, 512) 0
conv2d-10 (Conv2D) (None, 14, 14, 512) 2359808
conv2d-11 (Conv2D) (None, 14, 14, 512) 2359808
conv2d-12 (Conv2D) (None, 14, 14, 512) 2359808
max_pooling2d-4 (MaxPooling2D) (None, 7, 7, 512) 0
flatten (Flatten) (None, 25088) 0
dense (Dense) (None, 4096) 102764544
dropout (Dropout) (None, 4096) 0
dense-1 (Dense) (None, 4096) 16781312
dropout-1 (Dropout) (None, 4096) 0
dense-2 (Dense) (None, 1000) 4097000

6.5 InceptionV3
By altering Inception designs, Inception V3 primarily focuses on using less comput-
ing power. Table 6.4 shows a summary of the InceptionV3 model. This sparsely
linked architecture’s key notion is the inception layer which comprises 11 convolu-
tional layers with their output filter banks concatenated into a single output vector.
This vector then performs the function as the input of the next stage [33]. Figure
6.5 shows a visual representation of the InceptionV3 Architecture.
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Table 6.4: Summary of InceptionV3 Model

Type Kernel Size / Stride Input Size
Conv 3 × 3/2 299 × 299 × 3
Conv 3 × 3/1 149 × 149 × 3
Conv Padded 3 × 3/1 147 × 147 × 32
Pool 3 × 3/2 149 × 149 × 64
Conv 3 × 3/1 73 × 73 × 64
Conv 3 × 3/2 71 × 71 × 80
Conv 3 × 3/1 35 × 35 × 192
3 × Inception 1 × 1 and 3 × 3/1 35 × 35 × 288
5 × Inception n × 1, 1 × n, and n × n/2 17 × 17 × 768
2 × Inception 1 × 1, 1 × 3, 3 × 1 and 3 × 3/2 8 × 8 × 1280
Pool 8 × 8 8 × 8 × 2048
Linear Logits 1 × 1 × 2048
Softmax Classifier 1 × 1 × 1000

Figure 6.5: InceptionV3 Architecture [34].
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6.6 InceptionResNetV2
InceptionResNetv2 is a CNN architecture that is an advanced form of the Inception
family of architectures [35]. However, unlike regular Inception models, it includes
residual connections instead of the architecture’s filter concatenation method. The
model is trained on the ImageNet database comprising more than a million images.
The architecture has 164 layers. It has blocks called Inception-ResNet blocks where
residual connections are implemented in synchronization with multiple convolutional
filters [35]. The basic network architecture of InceptionResNetV2 is shown in Figure
6.6. On the traditional layers, batch normalization is used, but not on the summa-
tions of the residual connections. Residual connections are used as shortcuts in the
model and which enables the model to have better performance [35].

Figure 6.6: InceptionResNetV2 Architecture [35].
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Chapter 7

Performance Evaluation of the
CNN Models

With the aim of analysing the performances of the traditional and pre-trained CNN
models so as to evaluate and outline a comparative analysis of the results; F1 score,
precision, accuracy, recall, Confusion Matrix and AUC curve have been calculated
for each of these models. In this chapter, we first present the equations of the
performance metrics used for the study. Then we demonstrate the AUC Graphs
and the Confusion Matrices of each of the Convolutional Neural Network models
subsequently.

7.1 Performance Metrics
The equations of the performance metrics used are specified as follows:

• Accuracy Formula [36] :

Accuracy =
TP + TN

P +N

=
TP + TN

TP + TN + FP + FN

(7.1)

• Precision Formula [36] :

PPV =
TP × TPR

TP + FP

= 1− FDR
(7.2)

• Recall Formula [36] :

PPV =
TP × TPR

TP + FN

= 1− FDR
(7.3)
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• F1-Score Formula [36] :

F1 = 2× PPV × TPR

P +N

=
2× TP

(2× TP ) + FP + FN

(7.4)

Here, the respective abbreviations are - TP = True Positive, TN = True
Negative, P = Positive Case, N = Negative Case, FP = False Positive, FN =
False Negative, PPV = Positive Predictive Value, TPR = True Positive Rate,
FDR = False Discovery Rate

7.2 AUC Graphs
The Area Under the Curve (AUC) is the measurement of a classifier’s ability to
differentiate among the classes [37]. Because AUC is scale-invariant as well as
classification-threshold-invariant, it not only measures the degree of separability but
also offers an aggregated measure of performance over all conceivable classification
thresholds. The higher the AUC score, the enhanced is the model’s performance at
distinguishing between the positive and negative classes. The AUC plots of all the
CNN models used in this thesis are shown in Figure 7.2.

AUC plot for EfficientNetB6. AUC plot for DenseNet121.
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(a) AUC plot for ResNet50. (b) AUC plot for VGG16.

AUC plot for InceptionV3. AUC plot for InceptionResNetV2.

AUC plot for Traditional CNN
Model.

Figure 7.3: Training and Validation AUC Graphs of all the Models
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7.3 Confusion Matrix
A confusion matrix is used to evaluate and summarize the performance of a classi-
fication model. Hence, we have constructed confusion matrices of each of the CNN
models employed in this thesis using the test data at the end of training. The
Confusion Matrices of all the CNN models are shown in Figure 7.4.

Confusion Matrix for VGG16 Confusion Matrix for DenseNet121

Confusion Matrix for ResNet50
Confusion Matrix for Efficient-
NetB6
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Confusion Matrix for InceptionRes-
NetV2

Confusion Matrix for Traditional
CNN Model

Confusion Matrix for InceptionV3

Figure 7.5: Confusion Matrices of all the Models
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Chapter 8

Experimental Results and Analysis

8.1 Performance Analysis
In this section, we contrast the performance of the traditional CNN model of 11-layer
architecture and six pre-trained CNN models, namely EfficientNetB6, DenseNet121,
ResNet50, InceptionResNetV2, InceptionV3, and VGG16.
From the experimental results outlined in Table 8.1 and Table 8.2, we can deduce
that the pre-trained models’ performance are vastly superior than that of the tradi-
tional model. Figure 8.1 presents a bar graph on the accuracy of the CNN models.
EfficientNetB6 has accomplished the highest accuracy of 95.99%. The accuracy at-
tained by the other pre-trained CNN models are such that: DenseNet121 was 95.59%
, ResNet50 was 94.40% , InceptionResNetV2 was 90.79% , InceptionV3 was 87.99%
and VGG16 was 68%. However, the traditional CNN model has achieved the lowest
accuracy of 50% and it performed poorly because the given dataset was small with
only about 2500 images whereas a minimum of 10,000 images are required for any
CNN model to get a decent accuracy. However, the use of transfer learning models
on the same dataset shows how powerful pre-trained models can be because of their
higher learning rate during training and faster convergence. We also observe that
the results of the VGG16 and the traditional 11-layer CNN model shown in Table
8.1 and Table 8.2 are quite similar. It is noted that all the high performing models
have a large number of layers in their architecture whereas the two underperforming
models, namely VGG16 and the traditional 11-layer CNN model have comparatively
the lowest number of layers in their architecture.
DenseNet121 attained the highest AUC Score of 99.40%, followed by ResNet50 with
an AUC Score of 99%. For the AUC graph comparison for all the CNN models as
shown in Figure 8.2, we noticed that the models with a large number of layers have
shown much better AUC performance whereas VGG16 (77.74%) and the Traditional
CNN Model (50%) have underperformed significantly because of their fewer number
of layers. Therefore, it can be noted that the number of layers plays a crucial role
in the classification accuracy. Hence, the greater the number of layers, the better is
the accuracy and the overall performance of the models.
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Table 8.1: PERFORMANCE COMPARISON IN TERMS OF ACCURACY,PRE-
CISION,RECALL AND F1 SCORE

Models Accuracy Precision Recall F1
EfficientNetB6 95.99% 97.52% 94.40% 95.93%
DenseNet121 95.59% 92.53% 99.20% 95.75%
ResNet50 94.40% 92.37% 96.80% 94.53%
InceptionResNetV2 90.79% 88.64% 93.60% 91.05%
InceptionV3 87.99% 86.82% 89.60% 88.19%
VGG16 70.80% 80.95% 54.40% 65.07%
Traditional CNN model 50.00% 50.00% 100.00% 66.67%

Figure 8.1: Bar Graph on the Accuracy of the Models

Figure 8.2: AUC Graph comparisons of all the Models.
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Table 8.2: PERFORMANCE COMPARISON IN TERMS OF AUC AND CONFU-
SION MATRIX

Confusion Matrix
Models AUC Score TP TN FP FN
EfficientNetB6 98.40% 118 122 3 7
DenseNet121 99.40% 124 115 10 1
ResNet50 99.00% 121 115 10 4
InceptionResNetV2 97.20% 117 110 15 8
InceptionV3 95.40% 112 108 17 13
VGG16 77.74% 68 109 16 57
Traditional CNN model 50.00% 125 0 125 0

8.2 Training and Validation Accuracy and Loss

EfficientNetB6

Using EfficientNetB6 model, we attained a testing accuracy of 95.99%. Fig 8.3
(a),(b) represent the accuracy and loss graphs for EfficientNetB6 respectively. In
the training and validation loss graph, we perceived that the loss decreases suffi-
ciently over time, which means that there is no underfitting. We also observed that
the training and validation curves are converging. Hence, we can say that there is no
overfitting for EfficientNetB6. There are some fluctuations in the validation curve
which are caused by the relatively small amount of data available.

(a) Training and Validation Accu-
racy for EfficientNetB6

(b) Training & Validation Loss for
EfficientNetB6

Figure 8.3: Training & Validation Accuracy & Loss with EfficientNetB6.
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DenseNet121

From the DenseNet121 model, we received a testing accuracy score of 95.59%. Fig
8.4 (a),(b) represent the accuracy and loss graphs for DenseNet121 respectively. In
the training and validation loss graph, we observed that there is sufficient reduction
in loss and the curves are also converging. Therefore, we deduced that there is no
overfitting and no underfitting for the DenseNet121 model.

(a) Training and Validation Accu-
racy for DenseNet121

(b) Training & Validation Loss for
DenseNet121

Figure 8.4: Training & Validation Accuracy & Loss with DenseNet121.

ResNet50

In the ResNet50 model, we achieved a testing accuracy of 94.40%. Fig 8.5 (a),(b)
represent the accuracy graph and loss graph for ResNet50 respectively. The loss
values in Figure 8.5(b) reach very close to zero. We also noticed that the curves
converge with each other. So, this means that there is no overfitting and no under-
fitting for the ResNet50 model.

(a) Training & Validation Accuracy
for ResNet50

(b) Training & Validation Loss for
ResNet50

Figure 8.5: Training & Validation Accuracy & Loss with ResNet50.
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InceptionResNetV2

The InceptionResNetV2 model achieved a testing accuracy of 90.79%. Fig 8.6 (a),(b)
represent the accuracy graph and loss graph for InceptionResNetV2 respectively.
There are some fluctuations in Figure 8.6(b) due to the low amount of data. How-
ever, the loss values decrease sufficiently and the curves converge with each other
which means that there is no overfitting and no underfitting here.

(a) Training and Validation Accu-
racy for InceptionResNetV2

(b) Training & Validation Loss for
InceptionResNetV2

Figure 8.6: Training & Validation Accuracy & Loss with InceptionResNetV2.

InceptionV3

Using the InceptionV3 model, we found the testing accuracy to be 87.99%. Fig
8.7 (a),(b) represent the accuracy and loss graphs for InceptionV3 respectively. Al-
though there are fluctuations in the training and validation curves, they converge
with each other which suggests that there is no overfitting. The values of the train-
ing and validation loss also decrease enough to suggest that there is no underfitting
for InceptionV3 model.

(a) Training and Validation Accu-
racy for InceptionV3

(b) Training & Validation Loss for
InceptionV3

Figure 8.7: Training & Validation Accuracy & Loss with InceptionV3.
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VGG16

The VGG16 model doesn’t produce a decent result since the testing accuracy value
is only 70.80%. Fig 8.8 (a),(b) represent the accuracy and loss graphs of VGG16
respectively. The training and validation loss functions decrease significantly which
means that there is no underfitting for VGG16 model. The curves also converge
meaning that there is no overfitting here. The VGG16 model has only 16 layers,
which is quite low in comparison to the other pre-trained CNN models used in this
thesis.

(a) Training& Validation Accuracy
for VGG16

(b) Training & Validation Loss for
VGG16

Figure 8.8: Training & Validation Accuracy & Loss with VGG16.

Traditional CNN Model

The 11-layer traditional CNN model performs very poorly as it reports a testing
accuracy of only 50%. Fig 8.9 (a),(b) represent the accuracy and loss graphs for the
Traditional CNN Model respectively.

(a) Training & Validation Accuracy
for Traditional CNN Model

(b) Training & Validation Loss for
Traditional CNN Model

Figure 8.9: Training & Validation Accuracy & Loss with Traditional CNN Model.
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8.3 Accuracy Comparison on Related Works
In this section, a comparison on the accuracy attained by this thesis paper and
related recent papers on the same dataset as mentioned in Chapter 2 Literature
Review are established. The dataset used is collected from the physionet reposi-
tory by Hssayeni et al. (2020) [16]. In their study, they employed U-Net to detect
intracranial hemorrhage and achieved an accuracy of 87.00%. In 2020, Chen et
al. presented an IoT-based implementation for hemorrhage classification where the
accuracy obtained was 80.67% for Support Vector Machine (SVM) and 86.70% for
Feedforward Neural Network [18]. In the same year, Anupama et al. developed
a GC-SDL model that can detect intracranial hemorrhage images in wearable net-
works and their proposed method obtained an accuracy of 95.73% [17]. Table 8.3
demonstrates a summary of the accuracy review achieved by this paper and other
research works recently done on this particular dataset that is being used in this
paper. It is observed that the CNN model (EfficientNetB6) employed in this paper
attained the highest accuracy of 95.99% compared to the other methods.
Figure 8.10 illustrates a bar graph on this accuracy review.

Table 8.3: Accuracy Review on this Dataset

Approaches Methods Accuracy
This Paper CNN 95.99%
Anupama et al. [17] GC-SDL 95.73%
Hssayeni et al. [16] U-Net 87%
Chen et al. [18] Feedforward Neural Network 86.70%
Chen et al. [18] SVM 80.67%

Figure 8.10: Bar Graph on Accuracy Review
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8.4 Deployment Considerations
A simple web application based on the best performing model (EfficientNetB6)
of this study has been deployed on hosted on Heroku to demonstrate a real-world
application. The user is asked to select a head CT image and submit it to the website
in order to determine if the CT scan shows any signs of intracranial hemorrhage.
The site supports widely used image formats such as JPG, PNG and JPEG image
formats. After analysing the characteristics of the input image, the application tells
whether this image is classified as a hemorrhage or normal within a timeframe of 4 to
10 seconds. The website mainly runs on python 3.6, tensorflow 2, flask, Gevent. We
furthermore two other libraries - Scikit Learn and Scikit Image to process the image
inputs. The website is built with an intention to run it from any possible device that
is capable of running a web browser. Therefore, the user interface of the website has
been kept responsive and very lightweight with the help of Heroku’s standard-1X
dynos consisting of 512 MB of memory which allowed the web application to have
the user not requiring any further processing power to maximise user convenience.
Furthermore, the application does not record any user history and this in turn helps
to secure patient confidentiality. The source code for the web application of our
proposed model is accessible at [38]. Figure 8.11 illustrates successful classification
of hemorrhage CT scan as well as normal CT scan images using this web application.

Figure 8.11: Successful Detection of (A) Hemorrhage and (B) Normal CT Scan.
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Chapter 9

Conclusion

Health is the greatest asset and advances in technology have been profoundly shap-
ing healthcare by opening up more avenues of extensive research and exploration to
improve the quality of life. This research wanted to address the challenge of a lead-
ing life-threatening medical emergency and figure out how incorporating AI in this
sphere could help to assist healthcare experts for an improved and effective clinical
diagnosis. The primary intention was to provide a deep learning-based approach
using CNN models that detects and narrows down the lesion delineation on CT
scan images of the commonly occurring intracranial hemorrhage. In this paper, a
comparative analysis is presented on the performance of seven CNN models: six pre-
trained CNN models (EfficientNetB6, DenseNet121, ResNet50, InceptionResNetV2,
InceptionV3, VGG16) and one traditional CNN model of 11-layer architecture for
the detection and binary classification of intracranial brain hemorrhage. Efficient-
NetB6 has accomplished the highest accuracy of 95.99%. By accomplishing our
goal, not only will we be able to use technology to help individuals suffering from
hemorrhage but also better our understanding of the most complex organ of the
human body. In the future, our subsequent research plan is to implement multi-
class classification and to use deep learning ensemble techniques to obtain enhanced
predictive performance compared to just any of the constituent CNN models alone
that are used on this published dataset.
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