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Abstract

Among the most convenient bacteriological assessments for the diagnosis and treat-
ment with several health complications is the chest X-Ray. The World Health Or-
ganization (WHO) estimates, for instance, that pneumonic plague induces between
250,000 to 500,000 fatalities annually. Pneumonia and flu are serious challenges
towards global health as well as being a source of significant death rates globally.
[1]. In X-Ray imaging, it is a common technique to standardize the extracted image
reconstruction with usual uniform disciplines taken before the study. Unfortunately,
there has been relatively little study on several separate lung disease monitoring, in-
cluding X-Ray picture analysis and poorly labelled repositories. Our paper suggests
an effective approach for the detection of lung disease trained on automated chest
X-ray images that could encourage radiologists in their moral choice. Besides, with a
weighted binary classifier, a particular technique is also deployed that will optimally
leverage the weighted predictions from optimal deep neural networks such as Incep-
tionV3, VGG16 and ResNet50. In addition to the existing, transfer learning, along
with more rigorous academic training and testing sets, is used to fine-tune deep
neural networks to achieve higher internal processes. In comparison, 88.14 percent
test accuracy was obtained with the final proposed weighted binary classifier, where
other models give us about 76.91 percent average accuracy. For a brief recurring
diagnosis, the legally prescribed procedure may also be used which may increase the
course of the same condition for physicians. For a prompt diagnosis of pneumonia,
the suggested approach should be used and can improve the diagnosis process for
health practitioners.

Keywords: lung diseases; chest X-ray images; convolution neural network (CNN);
deep learning; transfer learning; diagnostics facilitated by electronics
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Chapter 1

Introduction

1.1 Motivation

Lung diseases are a pretty common health problem though out the world. Usually,
chest X-Rays are used to detect various lung diseases. A trained radiologist looks for
certain signs in chest X-Ray images that may indicate that one or several diseases
have infected the lung. But this is a slow process. Some of the patients are also
misdiagnosed due to the radiologists’ mistakes. Several lung diseases also cause
permanent damage to the lungs. Also, coronavirus disease is now the most common
and most concerning lung disease that is affecting millions of people around the
world. To tackle this problem, we propose a technique that leverages a deep transfer
learning algorithm and ensemble approach that improves upon the existing models
for automatically recognizing the existence of lung diseases from chest X-Ray images.

1.2 Aims and Objectives

We want to build a deep learning model leveraging various convolutional neural
network models and using the technique of transfer learning and ensembling. The
state-of-the-art model achieved an accuracy of 78.73%. Our objective is to build a
model that can beat this accuracy.

1.3 Research Methodology

Firstly, we have observed several models individually and we have attempted with
Inception-v3, VGG16, VGG19, ResNet-50 and ResNet-101 [2]. We later attached
the convolutional layers and dense layers to the output layer or last layer of those
three models (“mixed10”, “block pool5”, “avg pool” for Inception-v3, VGG16 and
ResNet-50 respectively). We pre-processed the X-Ray image data into a well-defined
form of 224 × 224 × 3 in the initial stage. The last layer of the selected models
(Inception-v3, VGG16 and ResNet-50) was then selected as a transfer layer and a
sequential model was initiated by adding convolutional layers, flatten layer, dropout
layer, fully connected layer and a two neuron output layer for classification.
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1.4 Thesis Orientation

At the beginning of chapter 2, we have talked about previous work done in this
area. Then we provide an overview of our algorithm. Then, we describe each com-
ponent/step of our model/algorithm. Finally, we discuss how all of these components
come together to build the final model. In chapter 3, we describe the implementa-
tion side of our thesis. After illustrating how our datasets are distributed, we go on
to describe the pre-processing techniques applied to the used dataset. In chapter 4,
we present the results achieved using our model and compare them with previous
models.
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Chapter 2

Methodology

2.1 Related Work

Around 15 percent of cases with COVID-19 are serious. In a hospital, that means
they may need to be treated with oxygen. Approximately 5% of individuals have
serious infections and require a ventilator. There is also a disorder called acute
respiratory distress syndrome in people who get pneumonia (ARDS). It’s an illness
that develops suddenly and causes issues with breathing. Extreme inflammation in
your lungs triggers the latest coronavirus. It affects the cells and tissue in your lungs
that line the air sacs. These sacs are where you process the oxygen you breathe and
transmit it to your blood. Tissue breaks off and clogs your lungs because of the
damage. It will thicken the walls of the bags, making it very difficult for you to
breathe [3].

In recent times, mainly CNN-based algorithms have been used to solve medical im-
age classification related problems. SegNet [4], U-Net [5], AlexNet [6], GoogLeNet
[7], VGGNet-16 [8], ChestNet [9], CardiacNet [10] and ResNet-50 [11] are a some of
the more well-known models for medical image related classification problems. For
determining optimum network hyper-parameters, models like evolutionary-based al-
gorithms [12], BPNN [13] (a multi-layer supervised feed-forward neural network),
CpNN [13] (an unsupervised simple neural network with two layers) and reinforce-
ment learning have been developed. For conducting lung nodule detection [14] and
pulmonary tuberculosis classification, these algorithms are regularly used.

In addition, the majority vote of a jury of experts acted as a benchmark on the con-
firmation collection of Chest Radiographs Classification. The reliability of CheXNet
on the validation range was contrasted with the level of performance of 9 medical
experts using the AU-ROC as the measuring instrument. The average time to go
through and classify the around 400 images in the validation set was noticeably
longer for the radiologists than for the automated model. The main problem of this
study was that both CheXNet and radiologists were not allowed to use patients’ pre-
vious data and this experiment was limited to a dataset from a single institution [15].

However, in recent studies [16], multi-layer, probabilistic, learning vector quanti-
zation, and generalized regression neural networks have been used for diagnosis of
chest and lung diseases. The diagnosis of lung diseases such as TB, pneumonia,
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etc. using chest radiographs in [17] was implemented using a neural network for
grouping after pre-processing images using normalization. The research works de-
scribed in this paragraph had been used effectively in classifying diseases but their
performance was not up to par with the contemporary deep learning models.

2.2 Our Proposed Model

When we were trying to develop the model, the first focus was how to predict from
more than one model and take the average probability to predict the final output
label or class. As a consequence, we end up developing an ensemble model of three
well known convolutional neural networks. First of all, we have observed several
models individually and we have attempted with Inception-v3, VGG16, VGG19,
ResNet-50 and ResNet-101. However, we decided to select only three based on
their performance over the Pneumonia dataset while training. Because of resource
limitation, we could not select more than three models for performing ensemble
operation. Later on, we have added a flatten layer, a dropout layer and 2 dense layers
as well after the last convolutional layer of those three models (for InceptionV3,
VGG16 and ResNet50, they are “mixed10”, “block pool5”, “avg pool” respectively).
Lastly, we have taken the output from these sequential models as the input of an
averaging layer and considered the output layer of that averaging layer as our desired
classification categories.

Figure 2.1: Ensemble Model using InceptionV3, VGG16 and ResNet50. Using the
features extracted from these three models we leveraged fully connected layers and
averaging layer for the final prediction

We will first describe the various components and layers of our training model before
moving onto the main part of our algorithm. Each of these layers has different
parameters that can be optimized.

4



2.2.1 Convolutional Layer

A convolutional layer is the major building block of any Convolutional Neural Net-
work. A convolutional layer consists of several filters/kernels of a specific dimension
and the whole network tries to learn the value of these filters. The filter is applied
by sliding it across the input image and performing dot multiplication (Figure 2.2).
The output values of the dot multiplication depend on the shapes that appear on
the image. The filter size is usually much smaller than an input image. Thus, the
network tries to learn filters that will respond to a specific region of the input en-
abling it to detect shapes and patterns in a specific image area. Convolutional layers
are heavily used in medical image analysis related problems [18], [19].

5 3 4 2 1
10 8 7 5 5
5 5 5 5 5
3 2 1 1 5
4 6 5 1 0

~
2 -1 1
3 0 1
-2 -1 0

=
33

(a)

5 3 4 2 1
10 8 7 5 5
5 5 5 5 5
3 2 1 1 5
4 6 5 1 0

~
2 -1 1
3 0 1
-2 -1 0

=
33 18

(b)

5 3 4 2 1
10 8 7 5 5
5 5 5 5 5
3 2 1 1 5
4 6 5 1 0

~
2 -1 1
3 0 1
-2 -1 0

=
33 18
6

(c)

5 3 4 2 1
10 8 7 5 5
5 5 5 5 5
3 2 1 1 5
4 6 5 1 0

~
2 -1 1
3 0 1
-2 -1 0

=
33 18
6 7

(d)

Figure 2.2: An example of convolution operation done by the convolutional layer on
an input image of dimension 5× 5 with a kernel of dimension 3× 3. The area where
the kernel is applied and the result of the dot multiplication is shown in red color
in each step of the figures

2.2.2 Activation Functions

An activation function [20] is used to decide whether a neuron should be activated
or not. The output values of a network layer can be anything between −∞ to ∞.
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Figure 2.3: ReLU activation function plot

So, we may need to bound the values within a limit before sending it to the next
layer. This is a job for activation functions. We describe the activation functions
used in our method below-

Rectified Linear Unit (ReLU)

Rectified linear unit [21] is widely used among all other activation functions. It is
a non-linear function that tries to reduce the activation by converting the negative
inputs to zero and thus it becomes easier to train the data of the model. The ReLU
function does not activate all the neurons simultaneously which gives it an advantage
over other activation functions. In mathematical form, the function looks like-

f(x) = max(0, x)

The ReLU equation tells us that:

• If the input x is less than or equal to 0, set output equal to 0

• If the input is greater than 0, set output equal to input

A function plot of this function can be seen in figure 2.3.

Softmax

The softmax function [22] is used to transform the outputs to probability values so
that the sum of the outputs is equal to 1. This is usually used with the final output
layer in a classification problem. It basically converts each prediction to probability
values for each class. The softmax function looks like-

f(x) =
exi∑k
i=1 e

xi
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Here xi is the output value of i-th neuron given i = 1, 2, 3 . . . , k and the bigger the
value of xi, the greater the probability we will get for that instance. An example of
softmax function for our network output [0,1] is shown below-
Here, denominator = e0+e1 = 1+2.71828 = 3.71828 From table 2.1, we can say that

Chest X-Ray x ex Probability
Normal 0 1 0.27

Pneumonia 1 2.71828 0.73

Table 2.1: Probability calculation in softmax function

he network is 73% confident that the X-Ray image is classified under Pneumonia.

2.2.3 Average Pooling Layer

A pooling layer [23] is usually used after a convolutional layer. This layer down-
samples the output of a convolutional layer. This helps in reducing the number of
parameters to learn and controlling over-fitting. An average pooling operation takes
the average value from a specific pixel region while down-sampling. The size of the
pixel region is specified and is applied to the input matrix with a specific stride.
Figure 2.4 shows an example operation of average pooling layer.

10 6 7 3
5 4 1 2
8 8 12 1
9 1 5 4

6.25 3.25
6.5 5.5

Figure 2.4: The matrix on the left is the input upon which average pooling is being
applied. The one on the right is the resultant down-sampled matrix. In this example,
the filter dimension is 2× 2 and stride is 2. The average value of each colored area
is being taken and the output values are also color coded to represent the area from
where it was taken

2.2.4 Flatten Layer

Usually, the output from the convolutional layers and max-pooling layers are multi-
dimensional. But, in most of the networks, the final few layers are fully connected.
The input to the fully connected layers must be one dimensional. So, we use a flatten
layer to convert the multi-dimensional data to one-dimensional data by flattening
it.

2.2.5 Dropout Layer

Dropout layers are mainly used between fully connected layers to reduce over-fitting.
At each back-propagation phase, it does not consider some of the connections of
hidden layers (by randomly setting their output to 0) and so it forces the other
neurons of the hidden layers to learn about the data patterns in a more generalized
manner.
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2.2.6 Fully Connected Layer

It is convenient to use fully connected layers in the last few layers of a convolutional
neural network. A neuron of a layer like this sends its output to all the neurons
of the next layer, hence the name fully connected layer. The convolutional layers
provide a feature space and the fully connected layers try to learn a pattern from
that feature space. The idea behind the fully connected layer can be seen in figure
2.5.

Figure 2.5: Fully Connected Layer

A fully-connected layer is composed where all neurons of the previous layer integrate
information of each neuron of that layer. The flattening layer and the first dense
layer are the entirely associated layers in our research methodology. Here, the inputs
via feature analysis are extracted and weights are performed to determine the feature
vectors or classification in the first hidden layers of 1024 neurons.

2.2.7 VGG16

VGG16 is a convolutional neural network model that was proposed in [8]. VGG16
mainly consists of several convolutional layers with ReLU activation function, max-
pooling layers, fully connected layers with ReLU activation function and softmax
activation function in the final output layer.
The input to this network is 224 × 224 × 3 RGB image. This image is passed
through several convolutional layers with kernels of dimension 3× 3. The filters in
max-pooling layers are of dimension 2 × 2 and are applied with a stride of 2. The
architecture of this network is shown in figure 2.6.
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2 Convolutional Layers:
Kernel dimension 3x3

64 kernels
 ReLU Activation

Input: 224x224x3

Max Pooling Layer:
Filter dimension 2x2

stride 2

224x224x64

2 Convolutional Layers:
Kernel dimension 3x3

128 kernels
 ReLU Activation

112x112x64

Max Pooling Layer:
Filter dimension 2x2

stride 2

112x112x128

3 Convolutional Layers:
Kernel dimension 3x3

256 kernels
 ReLU Activation

56x56x128

Max Pooling Layer:
Filter dimension 2x2

stride 2

56x56x256

3 Convolutional Layers:
Kernel dimension 3x3

512 kernels
 ReLU Activation

28x28x256

Max Pooling Layer:
Filter dimension 2x2

stride 2

28x28x512

3 Convolutional Layers:
Kernel dimension 3x3

512 kernels
 ReLU Activation

14x14x512

Max Pooling Layer:
Filter dimension 2x2

stride 2

14x14x512

2 Fully Connected Layer:
4096 Neurons

ReLU Activation

7x7x512

1 Fully Connected Layer:
1000 Neurons

Softmax Activation

1x1x4096

Figure 2.6: The detailed architecture of VGG16 with the number of kernels in
convolutional layers and activation functions used in each layer is shown in this
figure. The output dimension of each layer is also shown here

2.2.8 Inception-v3

Before inception, most CNN models were just deeply stacked convolutional layers.
However, inception is a complex network that leverages a lot of tricks to increase
performance. There are several versions of inception that iteratively improves upon
the previous one. First two versions of inception was introduced in [7] and [24] called
inception-v1 and inception-v2. Inception-v3 was introduced along with inception-
v2 in [24]. The inception network uses kernels of multiple dimensions in the same
convolutional layer. This makes the network wider rather than deeper, thus reducing
the probability of over-fitting. The architecture of this network is shown in figure
2.7.

2.2.9 ResNet-50

ResNet-50 [11] allows us to train extremely deep neural networks successfully be-
cause it eliminates the vanishing gradient problem. In this model, the concept of
skip connections was introduced first (concept depicted in figure 2.8). In a model
like this, the output of a layer can be passed to a distant layer along with the imme-
diate layer. This ensures that all the layers perform at the same capacity. There are
5 stages in this model, each stage consisting of various combinations of convolution
layers. The architecture of this model is shown in figure 2.9.
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(a) Inception1 (b) Inception2 (c) Inception3

Convolutional Layer:
Kernel dimension 3x3

32 kernels
Stride 2

Input: 299x299x3

Convolutional Layer:
Kernel dimension 3x3

32 kernels
Stride 1

149x149x32

Convolutional Layer Padded:
Kernel dimension 3x3

64 kernels
Stride 1

147x147x32

Pooling Layer:
Filter dimension 3x3

Stride 2

147x147x64

Convolutional Layer:
Kernel dimension 3x3

80 kernels
Stride 1

Convolutional Layer:
Kernel dimension 3x3
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Softmax
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(d)

Figure 2.7: The detailed architecture of inception-v3. The figures in a, b, c are taken
from [24]. The layers named Inception1, Inception2 and Inception3 refers to
the networks shown in a, b, c
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Figure 2.8: Residual Learning
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Figure 2.9
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Figure 2.9
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Convolutional Layer:
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(f) Main Model

Figure 2.9: This figure shows the detailed architecture of ResNet-50 model with
each stage of the model shown in sub-figures a, b, c, d, e. Stages 1, 2, 3, 4 and 5
are then combined in sub-figure f as the main model
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2.2.10 Sequential Model Representation of Inception-v3, VGG16
and ResNet50

A sequential model representation of the models that we used is shown in figure
2.10. This figure was generated using Keras [25] library.

(a) Inception-v3 (b) VGG16 (c) ResNet-50

Figure 2.10: Illustration of sequential models

2.2.11 Ensemble Modeling

Ensemble modeling [26], [27] is a hierarchical process of taking a collection of multi-
ple diversified models for making predictions. Here, the inputs for each model stay
the same in shape and also the output shape stays the same to get adjusted in the
averaging layer. Most importantly, this type of modeling reduces error or false neg-
ative and false positive predictions. However, there is a term and condition to set
up the ensemble mode and that is, the models that are being used to get ensembled
have to be different in architecture independently. The concept of ensembling is
illustrated in figure 2.11.

Figure 2.11: Basic structure of an ensemble model
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In a nutshell, an ensemble model is a single model that comprises multiple models
and predicts the instance with better feature analysis and better accuracy.

Averaging or Average Layer

In this layer, we have taken the output from the three models as the input and the
output of this layer is the average of those three inputs. From the average output
probability, our model has predicted two classes or labels.

Output Layer

In this layer, the “ENSEMBLE BETA” finally predicts the relative probability of
the two predefined classes or labels or neurons. As a result, we can predict the actual
class of that input X-Ray at the very early step of our architecture by comparing
the two predicted probability based on feature analysis and averaging.

Let’s say, for example, if the output layer provides the following NumPy array:

prediction = [0.33, 0.67]

We can see that the probability at index 0 is less than the probability at index 1 of
the prediction matrix. So, the predicted class will be Pneumonia or labeled as 1. An
illustration of this layer is depicted in figure 2.12 (Figure generated using Keras).

Figure 2.12: Illustration of the output layers of the ensemble model hierarchy
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2.3 Workflow Diagram

The working diagram (figure 2.13) is an overview of the distinct stages we have
taken to train and validate our prototype. We separated our flow of work into
three fundamental segments, named after the phase of transfer learning, the phase
of training-cross-validation and the phase of testing.

Figure 2.13: Workflow diagram for our model training and evaluation

Here, in each phase, we have used a different subset of chest X-Ray images as input
and have performed particular actions. In our first phase of transfer learning, we
have built an ensemble model and trained it for 40 epochs and we have also settled
weight parameters as “imagenet”. Secondly, we have re-trained our pre-trained
model and also checked the validation of our model’s training accuracy, whether
it is under-fitting or over-fitting. Lastly, we have done predictions on an unknown
label subset of chest X-Ray images to our model and evaluated it on behalf of the
predicted label.
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2.3.1 Transfer Learning Phase

Transfer learning (TL) is a concept of machine learning (ML), where the model gets
trained with an initial weight knowledge and then the learned weights are applied
to solve the relatable problem [28].

Figure 2.14: Transfer learning phase

First of all, we have trained our ensemble model with the Chest-Xray8 dataset and
let the model learn about two classes, one is a normal patient class and another one
is an abnormal or diseased patient class. Afterwards, we have saved the model with
the gained knowledge of weights and have named it “ENSEMBLE BETA”. The
idea is shown in figure 2.14.

2.3.2 Training and Cross-Validation Phase

Secondly, we have loaded our “ENSEMBLE BETA” model and re-trained it with a
Pneumonia dataset, which is known as fine-tuning [28] and along with that, we have
also cross-checked the validation accuracy as well as validation loss, whether the
accuracy is increasing or not and the loss is decreasing or not. Later on, depending
on our analysis, we have generated the graphs of validation accuracy and validation
loss that have been discussed in chapter 4 of result and discussion. This phase is
depicted in figure 2.15.

Figure 2.15: Training and cross validation phase
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2.3.3 Testing Phase

This is our final step and in this step we have used 16 X-Ray images of the chest
that are totally unknown to our model and have predicted their label. Table 2.2
shows the result of the predictions. Figure 2.16 shows the concept behind this phase.

Figure 2.16: Testing phase

Actual Image Names Predicted by “ENSEMBLE BETA” Category
NORMAL2-IM-1427-0001 0 Normal
NORMAL2-IM-1430-0001 0 Normal
NORMAL2-IM-1431-0001 0 Normal
NORMAL2-IM-1436-0001 0 Normal
NORMAL2-IM-1437-0001 1 Pneumonia
NORMAL2-IM-1438-0001 0 Normal
NORMAL2-IM-1440-0001 0 Normal
NORMAL2-IM-1442-0001 0 Normal
person1946 bacteria 4874 0 Normal
person1946 bacteria 4875 1 Pneumonia
person1947 bacteria 4876 1 Pneumonia
person1949 bacteria 4880 1 Pneumonia
person1950 bacteria 4881 1 Pneumonia
person1951 bacteria 4882 1 Pneumonia
person1952 bacteria 4883 1 Pneumonia
person1954 bacteria 4886 1 Pneumonia

Table 2.2: Predicted output label of the 16-sample input chest X-Ray images

From table 2.2, we can see that our model has classified the input images into either
0 or 1, naming Normal and Pneumonia respectively.
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Chapter 3

Implementation

3.1 Source of Datasets

• ChestX-Ray8 dataset: Constructed in [10]

• Pneumonia dataset: Kaggle [29]

3.2 Data Samples

Sample X-Ray images are shown in figure 3.1.

Figure 3.1: The first row of images are X-Ray images of patients whose lungs are
in normal condition (not pneumonia affected). The second row of images are the
X-Ray images of lungs of pneumonia patients
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3.3 Data Visualizations

Figure 3.2: Illustration of data balance using bar chart of “Labels(Normal, Abnor-
mal)” column of Chest X-Ray8 dataset

Figure 3.3: Illustration of correlation mapping of different attributes or features
with the label or class of Chest X-Ray8 dataset
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Using some standard histograms and correlation mapping using numpy and seaborn
libraries, we have tried to visualize the dataset of chest-xray8. In parallel, we could
see the balance of that same population in various attributes by analyzing the his-
tograms. Last and not least, we have noted the attributes that would be most closely
correlated.

3.4 Dataset Classification

3.4.1 Training Set

The phase during which classified example data with the results or feedback labels
are given to the deep supervised learning framework.

3.4.2 Validation set

The set of instances used and quite often referred to as the learning set across
training.

3.4.3 Testing Set

In certain situations, for ”real-world” testing, a final group of instances is used for
the algorithm model iterates to improve significantly with the validation set, it may
learn key features of the training set. With an ”unseen” test collection, good output
increases the assurance that the algorithm would provide corrective feedback in the
physical world.

3.5 Data Pre-processing

3.5.1 Resize Images

The prime objective of our transfer learning process is to make a diagnosis of pneu-
monia disease from X-Ray images with the most positive results. For this reason,
as shown, we have grouped some prototypes and independently trained them. The
dataset accommodates X-Ray images from patients where some of the patients are
diagnosed with pneumonia and some patients are not. Since we will be using a pre-
trained ResNet-50 model, while training the network, each image will be re-sized
into a fixed size of 224 × 224. For this purpose, we will be using Scikit Image [30],
TensorFlow [31], and Caffe frameworks [32]. The ImageDataGenerator [33], [34]
class in Keras is used for scaling pixel values in our image dataset before modeling.
This class combines our image dataset during formation, validation, or assessment,
then, while requested, it will restore images to the algorithm through batches and
apply the scaling operations as required. When modeling with neural networks,
this provides a powerful and reasonable methodology for scaling image data. The
ImageDataGenerator handles the percentage of pixels scaling methods as well as a
variety of different feature selection methods. A reference to leveling is allowed by
the ImageDataGenerator class which mostly operates the mean calculated on the
training dataset as feature-wise centering. Statistics calibrated before regression on
the training sample are needed here.

21



3.5.2 Normalization and Scaling Images

Principal component analysis (PCA) [35], [36] is used to compute the eigen flat fields
of a set of flat fields. Each X-Ray projection is then normalized using a linear combi-
nation of the most important eigen flat fields. From experiments, we know that the
proposed dynamic flat field correction results in a significant reduction of systematic
errors in projection intensity normalization in comparison with the conventional flat
field correction. For this purpose, we will be using the ImageDataGenerator class of
Keras. Scaling information to the extent of 0-1 is known as normalization. We can
get this by constructing the re-scale argument to a ratio by which each pixel can be
multiplied to attain the wanted range.

Figure 3.4: Pre-processing phases of the dataset

3.5.3 Data Augmentation

We augment our data by applying a set of random transformations to the images
for increasing our model performance. We apply rotation (90◦, 180◦and 270◦) and
translation to the images and also horizontally and vertically flip the images. For
this purpose, the ImageDataGenerator class of Keras will be used.
The Keras [25] deep learning neural network library can fit models using image
data augmentation via the ImageDataGenerator class. Image data augmentation is
needed to enlarge the training dataset to upgrade the achievement and capability of
the model to generalize. The dataset images are not used directly. As an alterna-
tive, only augmented images are supplied to the model. Random augmentation of
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images allows both modified and near copy of the images to be produced and used
for training. The validation dataset and the test dataset are specified by a Data
Generator. Most of the time, a separate ImageDataGenerator instance is used that
may have the same pixel scaling configuration as the ImageDataGenerator instance
used for the training dataset, but not data augmentation. The reason is data aug-
mentation is only used as a technique for artificially enlarging the training dataset
in contemplation of making better model performance on an unsegmented dataset.
An image shifting means moving all pixels of the image in one direction, it can
be both horizontally or vertically, but the dimensions of the images are the same.
The width shift range and height shift range arguments to the ImageDataGenerator
constructor direct the amount of horizontal and vertical shift sequentially.
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Chapter 4

Results and Discussion

4.1 Individual Model

Dataset Keras model val categorical accuracy val loss

Pneumonia

Inception-v3 76.69% 1.9598
VGG16 82.99% 0.9277
VGG19 73.74% 1.5533

ResNet50 81.03% 0.5689
ResNet101 65.62% 1.6825

Table 4.1: Validation accuracy and loss in the experimented individual model

4.2 Before Transfer Learning into “ENSEMBLE

BETA”

Dataset Phase of the model val categorical accuracy val loss
Pneumonia Ensemble model with-

out weight knowledge
78.45% 1.5383

Table 4.2: Validation accuracy and loss before transfer learning into the ensemble
model after 40 epochs
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4.3 After Transfer Learning into “ENSEMBLE

BETA”

Dataset Phase of the model val categorical accuracy val loss
ChestX-Ray8 Ensemble model with-

out weight knowledge
61.05% 1.234

Pneumonia Ensemble model with
weight knowledge

88.14% 0.5033

Table 4.3: Validation accuracy and loss after transfer learning into the ensemble
model after 40 epochs

4.4 Learning Curve

In machine learning, learning curves are most often used and are frequently a plot
that exhibits iterations or time or history on the x-axis and the consistency of
learning or classification on the y-axis. It helps to test as well as evaluate the model
at the beginning of training. We included a tqdm callback to see the percentage
of training and minimize the progress callback to decrease the number of learning
when another ratio halted progressing with a patience value of 3. For 40 periods of
history or oscillations, we have trained and validated our model and established the
following prediction performance and validation loss graph.

Figure 4.1: Validation accuracy curve of Ensemble Beta

From figure 4.1, we can observe that the validation accuracy has an increasing slope
and it stops increasing and becomes constant at the very end of training and gets
fixed with an accuracy of 88.14%.
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Figure 4.2: Validation loss curve of Ensemble Beta

On the other hand, from the figure 4.2, we can observe that the validation loss is
decreasing having a negative slope and it illustrates the efficiency of our model EN-
SEMBLE BETA.

4.5 Comparison with Other Models

We have compared our model with the other existing models that we have covered
during over literature reviewing and have listed the accuracy in table 4.4.

Model val categorical accuracy
CheXNet [37] 76.80%

CNN with Lightened Image on Increased Contrast 75.65%
CNN with Lightened Image on Increased Contrast with ResNet 78.73%

Our model (Ensemble Beta) 88.14%

Table 4.4: Comparison of others model versus our model
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Figure 4.3: Illustration of different models versus our model using a bar chart

Since it has two positive aspects, our ensemble model with transfer learning is effi-
cient. First of all, ensemble model gives higher accuracy as, it reduces the over-fitting
and during our model testing we have seen an increasing sloped curve for valida-
tion accuracy and decreasing sloped curve for validation loss. Secondly, ensemble
technique helps us to reduce the bias and variance error by maintaining a trade-
off in between these two parameters and this helps to learn less noisy data while
training.As a result higher precision was obtained comparing with other existing
models.
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Chapter 5

Conclusion and Future work

We analyzed the existing CNN lung disease classification techniques, their corre-
lations and also stated in-depth our planned ”ENSEMBLE BETA” structure in
terms of its proposed architecture, transfer learning stage, classification model, im-
plementation stage, predictive validity and effectiveness in this research paper. Fur-
thermore, this research has future demands, as now we are going through Corona
virus pandemic and now the lung diseases are getting prioritized to be detected in
the early stage. As a consequence, health professionals will be capable of classify-
ing the normal against the disordered X-Ray and would have reasonable steps on
time. Conversely, we encountered some challenges even during the implementation
phase when training the dataset with a sufficiently smaller like 16 or greater like
64, 128, . . . , k as batch size during the implementation phase. Moreover, we might
use GoogleNet, AlexNet and other powerful machine learning models to ensemble
and check whether the experiment gives better performance or not and we will use
a better configuration PC set up with a good amount of GPU. In conclusion, this
research project can be strengthened by classifying different lung diseases conse-
quently in the future, rather than just predicting pneumonia from standard X-Ray
images.
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