Malware Detection in Blockchain using CNN

by

Afreen Alam
17301038
Humaira Islam
17101045
Sadman Arif Wamim
17101041
Md. Tanjim Ahmed
17301146
Hasnat Siddiqi
17301186

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
BRAC University
January 2021

(©) 2021. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

*p—

Afreen Alam Humaira Islam
17301038 17101045
Sadman Arif Wamim Md. Tanjim Ahmed
17101041 17301146

Hasnat Siddiqi
17301186

Approval

The thesis/project titled “Malware Detection in Blockchain using CNN” submitted
by

1. Afreen Alam (17301038)

2. Humaira Islam (17101045)

3. Sadman Arif Wamim (17101041)
4. Md. Tanjim Ahmed (17301146)
5. Hasnat Siddiqi (17301186)

Of Fall, 2020 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 15, 2021.

Examining Committee:

Supervisor: /gé Mw_
(Member) %fw A

Moin Mostakim
Lecturer
CSE Department
BRAC University

Program Coordinator:

(Member)
Md. Golam Rabiul Alam, PhD
Associate Professor
CSE Department
BRAC University
Prof. Mahbub Majumdar

Head of Department: g s —
(Chalr) Brac Universitv

Mahbub Alam Majumdar, PhD
Professor and Chairperson
Department of Computer Science and Engineering
BRAC University

i

통신왕
Stamp

Ethics Statement

We, Afreen Alam, Humaira Islam, Sadman Arif Wamim, Md. Tanjim Ahmed and
Hasnat Siddiqi, hereby attest that for this thesis, Malware Detection in Blockchain
using CNN, we have abided by the following rules-

1.

This paper is an original work of all the authors, which has not been previously
published elsewhere and is not being considered for publication elsewhere.

. The paper reflects the authors’ own research and analysis in a truthful and

complete manner.

. The paper properly credits the significant contributions of co-authors and co-

researchers.

. The results are placed in an appropriate manner in the context of prior and

existing research.

. The sources used in this paper are properly disclosed (correct citation).

. We take full responsibility for all the work done as authors for this paper. The

violation of the Ethical Statement rules may result in severe consequences.

We agree with the above statements and declare that this submission follows the

policies of BRAC UNIVERSITY as outlined in the Guide for Authors and in the
Ethical Statement.

Corresponding Authors’ Full Name & Signature:

J=

Afreen Alam Humaira Islam
17301038 17101045
Odun Bk 0 g
Sadman Arif Wamim Md. Tanjim Ahmed
17101041 17301146

Hasnat Siddiqi
17301186

il

Abstract

The inherent decentralized nature and peer-to-peer system of the blockchain’s popu-
larity has been on the rise in recent times and is being adopted in various innovative
applications. This technology claims to be one of the most secure inventions due to
the employment of hash functions, which makes the data stored immutable. How-
ever, security issues concerning blockchains have been highlighted in recent reports,
which begs the question: is the blockchain technology as invulnerable as it once
claimed to be? These reports talk about malware injections which lead to data
corruption, data theft as well as third parties gaining networking power. This has
become a significant worry for security in the dynamic online world. To counter
such security concerns, we propose a model which combines a convolutional neural
network with a blockchain in order to prevent malicious data transactions and thus
malware injection within a blockchain network. This convolutional neural network
detects any malware that might be present in the data before a new block is created
to be a part of the blockchain. We have compared two different CNN models: the
VGG-16 architecture and a customized model with fewer layers. When integrated
with our blockchain model, the VGG-16 convolutional neural network architecture
achieves an accuracy of 90.3% while the custom model achieves an accuracy of

88.90%.

Keywords: Malware detection; Blockchain; Convolutional Neural Network

v

Dedication

We dedicate this thesis to our parents, who have supported us and sacrificed so
much to get us this far in our lives.

We would also like to dedicate this thesis to our friends, who have cheered us on
when things got difficult and have been an immense support throughout it all. This
work is also dedicated to our supervisor who inspired us to think outside the box
and put in the hard work effort to produce better results. We would also like to
dedicate this work to BRAC University which has given us this amazing platform
to learn and grow.

Acknowledgement

Firstly, all praise to Allah for whom we could successfully complete this thesis with-
out any major interruption. We are all grateful to Him for keeping all of us healthy
in these trying times.

Next, we are grateful to our supervisor Mr. Moin Mostakim sir as well as our
co-supervisor Dr. Mohammad Igbal Hossain sir, who have provided us with their
invaluable time, support and help whenever we needed it. Our relentless effort to
achieve our goal was always appreciated by our supervisor and co-supervisor who
ensured that we never gave up.

We are thankful to our parents, without whom we could not have made it.

And lastly, we want to thank our beloved institution BRAC University as well as
all the respectable faculties and staff members who have given us an insightful ed-
ucational journey .

There were times when the tide was against us however through perseverance we

have concluded our work after a long working year and hopefully made a significant
impact.

vi

Table of Contents

Declaration
Approval

Ethics Statement
Abstract
Dedication
Acknowledgment
Table of Contents
List of Figures
List of Tables

Nomenclature

ii

iii

iv

vi

vii

ix

xi

1 Introduction
1.1 Introduction
1.2 Problem statement
1.3 Aimofstudy
1.4 Research methodology
1.5 Thesisoutline

2 Related Work
2.1 Convolutional Neural Network
2.1.1 What is a convolutional neural network?
2.1.2 Work related to convolutional neural networks
2.2 Blockchain
2.2.1 What is a blockchain?
2.2.2 Work related to blockchain
2.3 Blockchain with Neural Networks
2.3.1 A combined approach
2.3.2 Work that combines both the technologies

vil

3 Data collection and preprocessing
3.1 Dataset for training and testing the CNN model

3.2 Dataset for testing the model

3.2.1 Datacollection

4 Proposed Model

4.1 CNN Layers and Functions
4.1.1 Convolution layer L.
4.1.2 Pooling layer
4.1.3 Dropout layero
4.1.4 Flatten layer

4.1.5 Fully connected layer

4.1.6 ReLU activation function .

4.1.7 Sigmoid activation function
4.1.8 Cross entropy loss function

4.2 The custom CNN model
4.3 VGG-16 e
4.4 Blockchain e
441 GenesisBlock
442 DataBlock
4.5 Combined model
5 Experimental Setup and implementation
5.1 Machine specifications for implementation
5.2 CNN . . e
5.3 Flask API
5.4 File Conversion
5.5 Blockchain
5.6 Combined model
6 Result analysis
6.1 Results. e
6.2 Blockchain Output
6.3 Limitations

7 Conclusion and future work

7.1 Conclusion
7.2 Future work

Bibliography

viil

11
11
12
12

13
13
13
13
14
14
14
14
14
14
15
15
16
17
18
20

22
22
22
22
23
24
25

26
26
29
29

30
30
31

35

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

0.1
0.2
2.3
5.4

6.1
6.2
6.3
6.4

6.5

6.6

6.7
6.8

Quantity of Malware Images in Different Families

The architecture of the custom CNN model
The architecture of the VGG-16 model
Basic architecture of a blockchain
Topology of Private and Public blockchain
Architecture of a genesis block
Architecture of a data block L.
How the previous hash and current hash works
Workflow diagram of the model

Flask implementation,
File conversion
Any file conversion to grayscale image
User interface

Custom CNN Model Results
VGG-16 CNN Model Results
Accuracy and loss comparison between the two CNN models
Percentage accuracy of custom model in classifying malware files from

different malware families
Percentage accuracy of VGG-16 in classifying malware files from dif-

ferent malware families o000
Percentage accuracy in classifying malware files from non-malware

filesvs. Model
Detection of Malware L.
No malware detected, Blockchain is triggered

1X

List of Tables

6.1 Time required to get server response

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

o Sigma

API Application Programming Interface
CNN Convolutional Neural Network
CORS Cross Origin Resource Sharing
DDoS Distributed Denial of Service
HTML Hypertext Markup Language
HTTP Hyper Text Transfer Protocol
JSON Javascript Object Notation
PHP Hyper Text Preprocessor

ReLU Rectified Linear Unit

SHA256 Secure Hash Algorithm
SQL Structured Query Language
VGG — 16 Visual Geometry Group

x1

Chapter 1

Introduction

1.1 Introduction

In an ever increasing and evolving technology driven world, the increase of internet
access has led to an aggressive increase in cybercrimes. Cybercrimes are generally
achieved through malware attacks [1]. Malware which is short for malicious software,
is defined as any software or program that is devised with the intention to accomplish
diverse security attacks. Various malwares specialize in specific kinds of attacks.
For example, viruses cause malfunction to the files or the system itself, trojans
enable unauthorized access to the system, loss or theft of information, modification
of data, spywares can monitor a user’s activities without their knowledge, harvest
data including user credentials etc. Such attacks can have severe long term effects
on individual devices such as causing them to slow down or slow down a connection,
keeping processes active which keeps devices from ever shutting down as well as
system corruption. Large scale effects include harming business organizations by
stealing or holding to ransom valuable business data. According to Cybersecurity
Ventures [2], it is estimated that the damage caused by cybercrimes will exceed $6
trillion USD by the year 2021. While according to SafeAtLast [3], corporations lose
approximately 133,000 dollars due to ransomware assaults. It is now more crucial
than ever to provide a safe and secure environment on the internet for protecting
the privacy of people. After the release of the Bitcoin white paper by Satoshi
Nakamoto in 2008, blockchain has been one of the most widely discussed ways to
encrypt data storage and transmission in the form of decentralized, trustless, peer-
to-peer systems [4]. Blockchain technology’s unique properties make it appealing
for usage in various fields like cryptocurrencies, smart contracts, communication
systems, health care, Internet of Things, financial systems, censorship resistance,
electronic voting distributed provenance and many more. The append-only nature of
the blockchain means that transactions cannot be modified, while the transparency
aspect allows the storage of publicly verifiable and undeniable records. The peer-to-
peer system delivers ledger maintenance without the need for a centralized authority
which diminishes the concern for single point-of-failure [5].

1.2 Problem statement

Blockchains, which were thought to be immune to cyberattacks are now being sub-
jected to various malicious attacks. Some instances of attacks on blockchain are
when in January 2019, an attacker had gained more than half of Ethereum Classic’s
blockchain’s networking power and in September 2019, when the Glupteba malware
hijacked Bitcoin’s blockchain. Using the Electrum bitcoin wallet, the Glupteba mal-
ware sends bitcoin transactions that the attackers use to gain access to systems. It
can also mine the privacy-specialized monero cryptocurrency and compromise the
security of the accounts of Instagram users [6]. Bitfinix was the target of a dis-
tributed denial-of-service (DDoS) attack in June 2017 which led to its temporary
suspension. Bitcoin and Ethereum were also subjected to such attacks which hin-
dered the platforms’ availability. Transaction stalls created by flooding the memory
pools of Bitcoin resulted in a delay of 700 million USD worth bitcoins. The publicly
verifiable property of blockchain makes it susceptible to dishonest activities. Two
such attackers took advantage of this by stealing 460 million USD worth of bitcoins
from a Japanese currency exchange called Mt.Gox [5]. A 51% attack where the
attacker takes control of a majority of the hashrate on a blockchain, was launched
against five blockchain-based cryptocurrencies leading to a loss of 5 million USD.
The attackers were able to take over the entire blockchain network and perform
double-spending where attackers can spend a digital currency more than once [5],
[7]. Furthermore, utilizing the distributed nature of blockchains, k-ary malware can
be used to infect systems by dividing malicious payloads into k parts [8]. It is im-
perative that we address these issues to make blockchains a safe technology to be
used more widely.

1.3 Aim of study

To combat such vulnerabilities, we aim to create a blockchain based architecture
where users can communicate over the network in a secure way so that no malicious
entities can inject malware into the blockchain network by utilizing the properties of
blockchains along with convolutional neural network (CNN) to aid in the detection
of malwares. We also want to make sure that data transfer is done securely and no
user node gets infected with malware through the blockchain. We further wanted
to test out different CNN models with the blockchain architecture to find out which
one worked best in terms of time and computational resource efficiency.

1.4 Research methodology

We have created a blockchain architecture and tested it with two different CNN
models: the VGG-16 architecture and a customized model. For training and testing
both the CNN models, we have used a secondary dataset which we have found to
be used in multiple research papers. To test the combined blockchain and CNN
architecture, we have used a mixture of primary dataset and secondary dataset. We
first tested the performance of the custom model integrated with the blockchain and
then tested VGG-16 in the same way. Lastly, we compare and analyze these two
models to see which model works best overall.

1.5 Thesis outline

The rest of this paper is organized as follows:

Chapter 2 contains the literature review, which discusses previous work done in
this field. It summarizes previously published relevant papers and briefly explains
convolutional neural networks, blockchains, and algorithms developed on these so
far.

In chapter 3, we have explained about our datasets and why we worked with sec-
ondary dataset. We have discussed the data for the CNN model and the data for
the combined blockchain and CNN model separately.

Chapter 4 explains the proposed model and workflow for this research.
In chapter 5, we have explained how we implemented our proposed model.

Chapter 6 concludes and summarizes our work and discusses further research that
can be done in this field.

Chapter 2

Related Work

2.1 Convolutional Neural Network

2.1.1 What is a convolutional neural network?

CNN is a profound neural network initially intended for picture investigation. CNN
is structured by the association and usefulness of the visual cortex and intended to
replicate the physicality of neurons inside the human cerebrum. Each set of neurons
within the CNN are broken down into a 3D structure which is in turn assigned a
small portion of the image. Similarly, each gathering of neurons has some expertise
in distinguishing one piece of the picture. Convolutional operations are performed
by the numerous filters of the convolutional layers. It steadily contains two funda-
mental activities, convolution and pooling. Convolutional layers are produced using
a few element maps, and every unit of highlight maps is produced convolving a little
area from the information feed which is known as the nearby responsive field. Pool-
ing layers are generally utilized following convolutional layers which were created to
rearrange the data and decrease the size of highlight maps. As such, in convolutional
layers, pooling layers make a dense element map from each element map. Further-
more, these layers are also known as subsampling layers. The two most common
cycles for pooling are max-pooling and average-pooling. A CNN compresses a fully
connected network by reducing the number of connections and sharing weights on
the edge. In addition to this, max-pooling further reduces complexity. For the train-
ing purpose, like MLP learning weights, CNNs will gain proficiency with the most
ideal filters for perceiving explicit patterns and examples. However, CNN learns
various filters in the process. An attribute is taught to each filter. As a result, in
cach layer, it learns various filters [9].

2.1.2 Work related to convolutional neural networks

Research on malware has shown that malwares can generally be classified into cat-
egories and this paper suggests the deep learning method of convolutional neural
network (CNN) for this purpose. The approach is data independent where the
first step is malware visualization as image. Malware binary file is converted into
grayscale image which is used as the input to the CNN. A CNN which is a feed-
forward neural network, consists of three layers: convolutional layers, pooling layers
and fully connected layers. The output of the CNN is a set of scores for all the

different malware classes and the class which has the maximum score is chosen as
the prediction for that particular malware class. The network is trained using the
cross-entropy loss function where .bytes files were used for training. Two different
settings were used to carry out the experiment which produced results with more
than 98 percentage of accuracy [10].

The model used to classify malware proposed in this paper is inspired by the concept
of tagging proposed by Yong et al. (2017). This model has four layers: the CNN
layer, the GRU layer, the DNN layer as well as the sigmoid layer. There are three
sub layers of the CNN layer: the first layer that is the convolution layer, is where
the user defined or distributed uniformly filter is transformed with the input matrix
to create a second matrix that is transferred to the activation layer. The ReLU,
tanh, or sigmoid activation functions are added to the matrix in the activation layer
and the effects are passed on to the pooling layer. For the production of the output
value of CNN, max pooling or average pooling is applied in the third layer which
is the pooling layer. The GRU layer and the DNN layer are composed of equal
number of user defined GRU and DNN units. The GRU passes on the output to
the correspondent DNN, where it is evaluated by weighing and summing and then
sent to the activation functions. The output produced is in the form of a vector
where the dimensions are the number of nodes of the GRU and DNN. Finally, all
the DNN outputs are composed into a single output and passed onto the sigmoid
function where it classifies the output. In the training stage, a truth value is given
to the neural system. The difference between this and output classification is the
error that can be used in backpropagation for training and changing weights. The
dataset used for the experiment contains 21741 samples, out of which 10868 are
for training and the remaining are for testing. The dataset contains 9 different
families of malware. This model achieves an accuracy of 92.66 percentage, which is
considered state-of-the-art but its accuracy can be further improved by putting in
more effort [1].

Hamzeh (2019) implements a static malware detection approach that uses raw bytes
to extract features and constructs a unique and parallel convolutional neural net-
work architecture (CNN). Since the length of byte sequences in each file varies, the
file header is known to be the parallel-CNN input, which is generally the first 1024
bytes of the file. In comparison, to construct a fixed and exclusive numerical vector
for each byte, word embedding methods are implemented. Embedding approaches
were designed to solve the problems of text classification; however, their method-
ology employs one of the most effective embedding techniques called word2vec by
considering each byte as a word. The method that is proposed could be summarized
in two steps: (1) generating numerical vectors for bytes using the word2vec model,
(2) distribution to parallel-CNN of these vectors to execute highlight extraction and
detection of malware. It is a static byte-level approach; therefore, it does not need to
dismantle or extract the graph which is calling the function or finding API calls that
are time-consuming and often vulnerable to error. They also presented CNN with a
parallel framework capable of automatically extracting n-gram characteristics and
reducing dimensions, so the complexity of finding a proficient algorithm for element
extraction is removed [11].

In this paper, the authors state that more than one criteria is required to evaluate a

CNN model which will allow for the ability to deal with the imbalance of datasets.
Therefore, they proposed a CNN model for the classification and identification of
malware and non-dominated sorting genetic algorithm IT (NSGA-II) to tackle the
imbalance of datasets. For visualizing the malicious codes, they used the idea of
converting executable binary files of malicious codes into grayscale images. The
architecture of the neural network used in this paper consists of two layers of con-
volution, one layer of pooling and two dense layers. Using the Rectified Linear Unit
(ReLU) activation function, the convolutional layers extract different features from
the input images while max pooling is used for downsampling the features map in
the pooling layer. The last layer utilizes softmax regression that changes over the
yield of the forward proliferation of the neural system into a probability distribu-
tion. Due to the quantities of certain malware images being larger than others, an
imbalanced dataset is created which is regarded as a multi objective optimization
problem. Undersampling is thus used to eliminate some samples from the sample set
and the NSGA-II algorithm is applied for the optimization of the sampling weights
of different malware families. 1-TPR and FPR are the two objective functions found
which were evaluated using the cross-entropy loss function and the Pareto optimal
solution which met the evaluation criteria was chosen. An increase in the accuracy,
recall rate, along with reduced loss and TPR was achieved when experiments using
the proposed model were carried out. However, this paper proposed a method for
dealing with small scale images which would not suffice in the real world where much
larger resolution of images have to be dealt with [12].

2.2 Blockchain

2.2.1 What is a blockchain?

Since the inception of blockchain back in 2008 (first outlined in 1991), slowly yet
gradually it is becoming the reliable name of security when it comes to sharing
data online or keeping data tamperproof. In simple words, blockchain is actually
a database that is shared through a network of computers. But unlike a typical
database storing information, blockchains store data in blocks that are then chained
together. It is really hard to alter when a record or information has been attached to
the database or chain. To describe the functionality of blockchain in brief, securely
storing the specific information in a block contains few of the steps. First of all, the
data is checked by the network. The computers in the network are called ‘nodes’.
These nodes examine the validity of the information. The data that have been
approved by the network are then added into a block. A unique code called ‘hash’
is found in each block. It also holds the hash of the previous block in the chain. A
hash code is usually generated by a math function that takes digital information and
constructs a string of letters and numbers from it. Two of the important attributes
of hash codes are: 1. Regardless original file’s size, a hash function always produce
a code of same length. 2. A new hash key will be generated if there is any change in
the original input. So if a manipulation does occur by the hackers, the next block in
the chain still contains the old hash. So the hacker will have to recalculate this to
restore the chain and then the next one and so forth. It will take an immense amount
of computational power to recalculate those hashes, thus making the chances of the
hack being successful rather impossible [13].

It is quite feasible to store various types of information on blockchain, but the most
common till date has been a transaction ledger. A blockchain consists of two key
components: a decentralized network that enables and verifies transactions, and
the network’s immutable ledger. This shared transaction ledger can be accessed
by everyone inside the network, but there is no single point of failure from which
documents or digital assets can be compromised or manipulated. There is also no
organization controlling the data because of the decentralized trust. In the case of
the cryptocurrency called Bitcoin, uses blockchain technology in a decentralized way
such that no person or community has control—rather, all users maintain control
collectively. Another vastly used blockchain technology is Ethereum. After Bitcoin,
it is the second largest crypto-currency by market capitalization. Ethereum’s feature
includes open-source, decentralized blockchain with smart contract feature. Smart
contract is basically a transaction protocol that is intended to automatically conduct,
monitor or record legally appropriate events and actions according to the terms of
a contract.

Blockchains can also be public and private. Public blockchain needs no permission.
Inside the blockchain, anyone can access the network, read, write and participate.
It’s also decentralized and does not have any single entity which controls the network.
Private blockchain on the other hand needs permission. Based on access control,
private blockchain restrict individuals who might participate in the network. More
than one entities control the network which leads to third parties to transact.

2.2.2 Work related to blockchain

Blockchain has been a revolution for the security of the Internet with it being de-
centralized within a peer to peer network. blockchain maintains a ledger mechanism
where a copy is saved by all the members of the chain. When a transaction takes
place, it is verified by other members by decrypting a hash function generated. Be-
ing decentralized and open to everyone in the chain, the trustlessness factor comes
into play. The mechanism eliminates two crucial security threats namely: Dou-
ble Spending and Record Hacking. As every transaction generates a hash function
which needs to be validated by miners in a peer to peer network, it prevents multiple
transactions (Double Spending) to be made. Furthermore, as everyone owns a copy
of every single transaction made, it is impossible to alter the blocks of transaction
(Record Hacking). But blockchain is far from being immune to other cybercrime
due to the fact that each node as an entity holds the possibility to be hacked and
manipulated otherwise. Therefore, further enhancements in the technology has been
suggested which can better help to combat cyber threats [14].

A paper was suggested to deal with malware identification, an engineering that
continuously stores and transmits the attack signatures safely with the ultimate
goal of prompt detection. It is a standard format for the storage and distribution
of signature-based IDS attack signatures to support nodes running various IDS by
constructing a blockchain-based private and public engineering. The blockchain
architecture enables public nodes to securely enter and evaluate stored attack signa-
tures in real time without permission. It is developed using the Ethereum blockchain
platform to extract, convert, store and distribute cyberattack signatures using both
public and private blockchain features. The proposed architecture is divided into 3

phases in which only approved nodes that detect attacks can extract the signature.
Transactions that are submitted and the privilege of the owner are authenticated;
the signature is transformed to standard format and checked in the storage of signa-
tures. Smart contract manages both authentication and signature conversion, while
validation is done by blockchain consensus protocol. Transaction and owner veri-
fication ensures that transactions are not submitted by unauthorized nodes. They
created a script that converts signatures from one IDS to a common format com-
patible with another for signature format development. After effective conversion
to standard format, the pending transaction is installed into a block by an accepted
node. The block is submitted for validation to the blockchain network. The trans-
action address is given to the owner after a new block has been chained to the
blockchain (sender). The current state of the blockchain (i.e., the update of a new
block) is communicated to each node within the blockchain network. A duplicate of
the update is obtained by each node (approved and unapproved) in the blockchain
network. Blockchain nodes ask for transaction addresses and ABI to download at-
tack signatures mined by other consortium members into the blockchain from the
database [15].

A new framework namely Consortium Blockchain is introduced which combines the
idea of both a public and a private blockchain. This helps in giving a better control
for the trustlessness problem even with the distributed peer-to-peer network. The
workflow suggests that feature extraction can be done in order to verify malicious
entities. For the approach, two separate methodologies are taken into consideration
namely, static and dynamic feature analysis. The static feature analysis method
extracts the physical attributes of an application and cross checks against samples
in a block chain. The dynamic feature analysis method works with the performance
measures of an application. This verification is done by a semi decentralized (consor-
tium) blockchain which validates the transactions of the global (public) blockchain.
Any transaction taking place within the framework, takes a mixed route, eliminating
the risks of an intervention trying to manipulate the data. A further breakdown of
the model can be sorted into four layers: network, storage, support and application.
The network layer being responsible for connecting and synchronizing the nodes.
The storage layer acts as a database holding the entries of any malicious entities,
which are used in the cross check. The application layer is the user interface and
the support layer is the bridge connecting the application layer to the storage layer
with managing key aspects for any transaction [16].

A further enhanced approach to the Consortium Blockchain theory is made in this
paper by taking two private blockchains, one being internal and the other being ex-
ternal. The model has been experimented for mobile applications in the app store.
The internal private blockchain holds the Static and the Dynamic feature extractors.
The static feature extractor helps in obtaining the physical analysis of an applica-
tion such as library, package and permissions while the dynamic feature extractor
works on dedicated performance analysis of the applications behavior such as CPU
and memory usage. The external private block chain works with detection engines.
These engines are responsible for scanning hidden applications using machine learn-
ing techniques and tokenization. Finally, the results are appended to the consortium
block chain which helps in determining the authenticity of the application [1].

Jawad et al. (2020) presents a behavior capturing and confirmation methodology in
blockchain upheld smart-IoT frameworks that can have the option to show the trust-
level confidence to outside networks. They characterized a custom Behavior Monitor
and implemented a chosen node that can remove the action of every device and break
down the behavior utilizing deep machine learning strategy. They also focused
on applying a filter on sensor-level that can stabilize output from single/multiple
sensors to avoid faulty or malicious sensors in the network. Furthermore, they
conveyed Trusted Execution Technology (TEE) which can be utilized to give a
protected execution environment (enclave) for sensitive application code and data
on the blockchain. The first phase of deployment signifies that a single device from
each zone is designated as a Main or Master node, which can be considered as a
certification authority. Hardware Model of IoT The hardware design they worked
with in their proposed system for prototyping comprises multiple raspberry pi’s. The
main/master node is configured on raspberry pi-3 for the sake of more resources.
In order to configure blockchain a local private blockchain is deployed on a master
node (Raspberry pi-3) of each zone and populated with the hashes of transactions
generated from smart- devices. The main achievement in this research is to define a
behavior monitor that can classify the behavior of the devices and compute a level-
of-trust for each zone. As referenced before, all the nodes (followers) in a particular
zone try to do their tasks (read, compose) by means of the master/main node.
The procedure of behavior identification and observing comprises the stages: Data
assortment, Feature extraction, Training model, Continuous Behavior Monitoring
[17].

2.3 Blockchain with Neural Networks

2.3.1 A combined approach

Quite a bit of work has been put into combining the two technologies to build secure
systems. Blockchains and neural networks have been gaining a lot of attention
over the past few years. However, combining these two is a relatively new idea.
Nevertheless, this combination has shown a lot of potential. This section discusses
a few such works.

2.3.2 Work that combines both the technologies

A new architecture which they call the “DeepRing” architecture has been proposed.
Its purpose is to protect a DNN i.e., an Al system from malicious attacks and ad-
versaries and it combines the architecture of a CNN along with the security centered
features of a blockchain such as cryptographic encryption at each progression, tran-
sitive hash, and its decentralized nature. The architecture is mainly inspired by a
blockchain and the only difference from a blockchain is that the DeepRing is made
up of a finite number of blocks forming a ring as opposed to a blockchain’s infinite,
ever growing number of blocks. Each block represents a layer of the DNN and does
the following: stores parameters of the layer, computes output of the layer, updates
the ledger after output computation, furthermore, approves output of the following
layer. As mentioned before, this architecture represents a ring, and the starting

and ending point of the ring is called the Ouroboros block. This block does not
correspond to any layer of the DNN but has a lot of important functions and is the
focal point for detecting attacks. They have tested this architecture using two types
of attacks: by tampering with the parameters of the most important layers in the
network or by perturbing the inputs to the network. For tampering with the param-
eters, they have proposed an algorithm. They have modeled VGG-19 architecture
proposed by Simonyan and Zisserman (2014) trained on MNIST2, CIFAR-10, and
Tiny-ImageNet3 in a Deep-Ring framework. They have additionally viewed a neural
network with five thick layers with the accompanying properties: Number of nodes
in each layer [900, 600, 300 , 100, number of classes| and ReLU activation for all lay-
ers except the output layer. Softmax activation is used for the output layer. They
have trained this network on MNIST and CIFAR-10 datasets. Then they have
experimented on the architecture in the aforementioned two ways. Results show
that When the original model is used for recognition, the VGG-19 model 10 yields
99.07 percentage, 83.89 percentage, and 76.12 percentage object acknowledgment
precision on MNIST, CIFAR-10, and Tiny ImageNet databases respectively. When
parameters or inputs are tampered with and no security measures are provided, the
accuracy drops by 20.71 percentage, 47 percentage and 34 percentage on CIFAR-
10, MNIST and Tiny ImageNet respectively. In this way, the proposed DeepRing
engineering is without flaw in light of multiple verification blocks, for example, ap-
proval /consensus and hash functions. In the future, they have plans to work on this
architecture to make it more efficient in terms of computational complexity and to
defend against input image perturbation [18].

This paper proposes a deep learning-based blockchain framework to surpass the se-
curity challenges of a centralized software defined industrial network such as single
point of failure and distributed denial of service (DDOS) attacks. A BlockSDSec
model is designed along with a DDOSattack model. The BlockSDSec model con-
sists of four layers namely, the Application Layer, the Control Layer, the forward-
ing/Blockchain Layer and the Host Layer. Since the proposed model segregates the
security and services part of software defined network (SDN) from management and
control, the Application Layer constitutes of all the security applications. The Con-
trol Layer is responsible for the registration and verification of any new switches or
devices using zero proof of knowledge (ZKP) algorithm. Moreover, the validation
of incoming packets from existing switches in the blockchain which request for a
flow table update is also performed in this layer. By forwarding the request of flow
table entry to a deep boltzmann machine (DBM) anomaly detector algorithm, the
validity of the switch request is checked. The DBM flow analyzer identifies differ-
ent attack patterns by working on features such as, Percentage of pair-flows (PPF),
growth of single-flows (GSF'), growth of different-ports (GDP) etc. Comprising the
OpenFlow switches which are connected to each other forming a private blockchain
is the Forwarding/Blockchain Layer. A new block is added to the chain only after it
passes the validation phase and receives a consensus. The results of the experiment
carried out using the proposed model show a 5 to 10 percent better performance in
accuracy compared to existing models [4].

10

Chapter 3

Data collection and preprocessing

There are two methods of data collection: Primary data collection and Secondary
data collection. For the CNN model, we have mainly used secondary data and for
the proposed model, we have used a mixture of primary data and secondary data:
the malware dataset is secondary while the non malware dataset is primary.

3.1 Dataset for training and testing the CNN model

For training and testing of the CNN model, we have used the Malware Image dataset
from Vision Research Lab (Malimg) [19]. The Malimg dataset consists of grayscale
images belonging to 25 malware families, with the total number of malware images
being 9,339. We have used around 6537 images as the training set and 2802 images as
the test set.This dataset already contained the grayscale images which were classified
into 25 different malware families.

Adialer.C
Agent.FYI
Allaple A
Allaple.L
Alueron.gent)
Autorun.K
C2LOP.genlg
C2LORPP
Dialplatform.B
Dontovo. A
Fakerean
Instantaccess
Lolyda.AA1
Lolyda AA2
Lolyda. AA3
Lolyda. AT
Malex.genlJ
Obfuscator. AD
Rbotlgen
Skintrim.N
Swizzor.genlE
Swizzor.genll
VB.AT
Wintrim.BX
YunerA

0 1000 2000 3000

Malware family

Quantity

Figure 3.1: Quantity of Malware Images in Different Families

11

3.2 Dataset for testing the model

3.2.1 Data collection

For testing the model, we have used a mix of malware and non-malware data. This
dataset contains a total of 350 files, of which 250 are malware and 100 are non-
malware. The malware part of the dataset is from the Microsoft malware dataset
[20] which contains .bytes files from 9 different families of malware which are:

1. Ramnit

2. Lollipop

3. Kelihos_ver3

4. Vundo

5. Simda

6. Tracur

7. Kelihos_verl

8. Obfuscator. ACY
9. Gatak

Originally the Microsoft dataset consisted of 21741 samples out of which 10868 are
training samples and 10873 are testing samples. There are two kinds of files in it -
.bytes files and .asm files. The raw data for each file are hexadecimal representations
of the file’s binary content. Since we have collected the data from Microsoft Malware
Classification Challenge, the dataset provided is not classified into their respective
malware families. With the help of the csv file composed of the class labels associated
with the train set, we chose 250 .bytes files comprising approximately 28 samples
from each of the 9 malware families.

The non-malware part consists of files from our local machine, which includes 28
pdf files, 28 powerpoint files, 20 images, 15 doc files and 9 txt files.

12

Chapter 4

Proposed Model

We wanted to create a blockchain model such that it would not allow users to
upload any malicious content to the blockchain during the transaction process. To
accomplish this we thought of combining Convolutional Neural Network with the
blockchain architecture. We have used CNN to identify malware by visualizing files
as grayscale images. Image representation of malwares allow us to detect any small
changes made in a file by potential attackers [10]. Two different CNN models have
been used to test which kind of architecture works better when integrated with
a blockchain model. In our combined model we have used a private blockchain
architecture. The details of the models used are described in this chapter.

4.1 CNN Layers and Functions

4.1.1 Convolution layer

In the convolutional layer, one matrix comprises a set of learnable parameters called
kernel, and the other matrix acts as the restricted portion of the receptive field
and the output is dot product of these matrices. Despite the size of the kernel
being smaller than an image, it allows a more in depth sparse interaction. The
dimensions generated by the kernel are proportional to the height and width of the
image. This two-dimensional representation, referred to as an activation or map of
features, provides the response of the kernels for each spatial location of the image,
and the sliding size is referred to as the kernel stride [21]. Padding is used when the
filter does not fit the input image perfectly and we want to avoid losing pixels on
the perimeter of the image for which the extra pixels are generally set to 0 [22].

4.1.2 Pooling layer

Pooling layers serve the purpose of reducing the sensitivity of convolutional layers
to location and of spatially downsampling the representation [23]. While pooling
downsamples the image in terms of height and width, the number of channels (depth)
remains the same [24]. There are different kinds of spatial pooling functions such as
max pooling, average pooling and sum pooling. We have used max pooling which
works with the largest component from the rectified feature map [25].

13

4.1.3 Dropout layer

To prevent a model from overfitting, dropout layers are used which operate by
randomly setting the outgoing edges of hidden units (neurons that make up hidden
layers) to 0 at each training phase change [26].

4.1.4 Flatten layer

To transform the data into a one dimensional array as input for the fully connected
layer, we use the flatten layer. A single long feature vector is the result of flattening
the output of the previous layers [27].

4.1.5 Fully connected layer

Fully connected layers are feed forward neural networks where all the neurons are
fully connected to all the neurons in the preceding and subsequent layers [24], [21].

4.1.6 ReLU activation function

Rectified linear activation function is a piecewise linear function which provides the
activation sum input with more sensitivity and prevents fast saturation. The acti-
vation function used by rectified linear units is g(z) = max{0, z}. Since rectified
linear units are nearly linear, they retain many of the properties of linear activa-
tion functions which allow for easier optimization with gradient-based methods and
generalisation while acting as a nonlinear function which always outputs negative
values as 0. Usage of ReLLU activation function in hidden layers improves the overall
performance of the network [28], [29].

4.1.7 Sigmoid activation function

Sigmoid activation function or logistic function is a nonlinear activation function
which is S-shaped. The input to the function is translated to a value between 0
and 1. This property makes sigmoid activation function be useful when used in
the output layer of the network for predicting the probability as an output. This
property of the sigmoid function, makes it a great candidate to be used in our CNN
models [30], [29].

4.1.8 Cross entropy loss function

Loss functions are used to minimize errors in the network during the training process.
To measure the performance of a model whose output is a probability value between
0 and 1, cross-entropy loss, or log loss is used [31], [32].

14

4.2 The custom CNN model

In our first model we have used five layers, namely two convolution layers and three
dense layers. We divide the Malimg dataset into 80 percent train set and 20 percent
test set ratio. The input to the first convolution layer is a grayscale image of fixed
size 64 x 64. In the first convolution layer we used 30 filters of 3 x 3 kernel size
and in the second layer of convolution we used 15 filters of 3 x 3 kernel size with
default stride. Next, we used a pool size of 2 x 2 in the max pooling layers. Default
strides are used for both convolution and max pooling layers. The first dropout
layer drops 25 percent neurons whereas the second dropout layer drops 50 percent
of the neurons. 128 neurons are applied in the first dense layer and for the second
dense layer 50 neurons are used. The two convolution and dense layers use the
ReLU activation function. However, the last dense layer uses the sigmoid activation
function to classify whether an image belongs to any of the malware classes or not.
We have used the cross entropy loss function with Adam optimizer.

’%; ; =

INPUT CONVOLUTION + RellU POOLING NVOLUTION » Fe POOLING

DROPOUT -~~~ 7=~

FULLY FULLY
LATTE CONNECTED pROPOUT CONNECTED
FLATTEN * ReLU -]

Figure 4.1: The architecture of the custom CNN model

4.3 VGG-16

For our second model, we have used the VGG-16 model which consists of 16 layers,
namely thirteen convolutional layers and three dense layers. The VGG-16 is a con-
volutional neural network architecture presented by K. Simonyan and A. Zisserman
from the University of Oxford in the paper “Very Deep Convolutional Networks
for Large-Scale Image Recognition” [33]. This framework has 16 layers that have
weights, hence the name VGG-16. This network has approximately 138 million pa-
rameters. We divide the Malimg dataset into 70 percent train set and 30 percent
test set ratio. We used a stack of convolutional layers followed by the max pooling
layer, doubling the filter size after each max pooling layer. This helps to better

15

analyze the feature map. The input in this model is taken as a grayscale image of
size 224 x 224. In the first layer we used 64 filters of 3 x 3 kernel size with ReLLU
activation keeping the padding the same. Next we used another Convolution layer
with similar stats. We then used a max pooling layer of pool size 2 x 2 and stride
2 x 2. After that we run two layers of conv2D with 128 filters. We then again add
another max pooling layer with the pool size of 2 x 2. After that we add three more
convolutional layers with 256 filters followed by another max pooling layer. We
then add two sets of three convolutional layers with 512 filters along with the max
pooling layer. After that we add the flatten layer accompanied by two dense layers
with 4096 neurons with ReLLU activation. Finally we add another dense layer which
has the same number of neurons as the number of classes in the malware dataset.
We use a sigmoid activation in this layer to determine whether the input belongs
to any classes of the malware dataset. Cross entropy loss function with RMSprop
optimizer is used for optimization of the model. Fig 4.2 shows the architecture of
the VGG-16 model [34].

224 %224 x 3 224 % 224 x 6d

t 5}!:'{:: 06 = 266
J’//f 28w FE w12 TnTxil2
Pdx1dxB12 | 1x1x4096 1x 1 % 1000
r:I] convolution+ RelS
] max pooling
5 fll]|_‘.‘ connected+Reall
] sigmoid

Figure 4.2: The architecture of the VGG-16 model

4.4 Blockchain

Blockchain is one kind of a database where information is grouped together and
stored in blocks. They are distributed, decentralized peer-to-peer networks with a
public ledger. Each newly created block is chained to the previous block through
cryptography, which keeps the transactions’ confidentiality intact, establishing a
chain of data called the Blockchain [35], [36]. There are various types of blockchain
networks - public, private, permissioned and consortium blockchains [37].

16

Block0 | (&==) Bock 1 | (=) Block2 | reeeeee Block n

Genesis
Block

Figure 4.3: Basic architecture of a blockchain

Public Blockchain: Public blockchains are permissionless which means anyone
can be a part of the blockchain network and participate in it. It is a decentralized
system where a single entity does not have control over the entire network [36].

Private Blockchain: Private blockchains are more centralized and are permis-
sioned. There are restrictions on the people who can participate in it with the use
of access controls. One or more entities are responsible for governing the entire
network [36].

Public Private
Blockchain Blockchain

Figure 4.4: Topology of Private and Public blockchain

For our model we have used a private blockchain architecture in which a central
organization has control over the network. Due to the lower number of authorized
participants in private blockchains, the transactions per second are lower and the
network is thus easily scalable. A private blockchain also consumes significantly less
resources in terms of energy and power to function [36].

4.4.1 Genesis Block

The genesis block is the first block of any blockchain. It is also called block zero
and it acts as a prototype for all the other blocks in a blockchain. Every block in a

17

blockchain stores the hash value of the previous block. However, since the genesis
block is the first block, it does not store any such value, which means its “previous
hash value” is zero. For our architecture, the genesis block contains a dummy string
of data along with the hash and timestamp. The genesis block is automatically
created when our blockchain is initiated [38].

SHA256

Timestamp

Data

Figure 4.5: Architecture of a genesis block

4.4.2 Data Block

All the other blocks in the blockchain, besides the genesis block, are called data
blocks. These are the main storage units in a blockchain. Whenever a transaction
is made, it is recorded in these blocks. In our blockchain architecture, each data
block contains information uploaded by the user, namely the sender address, receiver
address as well as the hashes of the previous and current blocks, the timestamp and
nonce. The blocks are added in a linear fashion with the help of a chain similar to

a linked list [39].

Previous Hash
Current Hash
Timestamp
Sender Address
Receiver Address
File

MNonce

Figure 4.6: Architecture of a data block

18

The components in each of the blocks are described in details below-

Previous hash: Each block in our blockchain architecture is connected via the
previous hash. The usage of cryptographic hash functions in the creation of the
blocks makes blockchains resistant to data modification. The hash function used in
our model is SHA256. Known to be immutable, the SHA256 algorithm is irreversible
and thus maintains data integrity [40]. In our blockchain architecture, all the blocks
are linked to their previous block and therefore to the genesis block.

Current hash: The functionalities of hash functions, in our case the SHA256
hash function, allows the unique identification of the blocks in a blockchain network
which is linked cryptographically [41]. By using the sender address, receiver address,
timestamp and nonce, the hash function is generated in our blockchain architecture.

Hash of previous
block header

Hash of previous S Hash of previous
block header block header

Merkle
reot

N\

Merkle
root

Block 1
Transactions

Merkle
root

Block 2
Transactions

Block 3
Transactions

Figure 4.7: How the previous hash and current hash works

Timestamp: When a block is mined, the timestamp for it is saved which tells us
when this block was mined. This makes every block in a system unique and immune
to mutation by third parties as this timestamp is also used to create a unique hash
for the block.

Nonce: Nonce stands for “number used once”. It is a random whole number that
is added to a hashed block in a blockchain. This is the number that miners solve
for,that is, adjust its 32 bit field to turn it into a valid number which can then be used
to hash the value of a block. In our blockchain architecture rather than randomly
generating numbers which could have a possiblity of repetition, we incremented the
nonce for each block. This nonce along with timestamp and user information is used
for creating the hash [42], [43].

19

4.5 Combined model

When a user fills up the form on the interface with the sender address, receiver
address and the file, these information are stored in the database. The file is also
uploaded in a folder on the server. A python script on the server which runs the Flask
API, takes the file from the folder and converts it into a grayscale image. It then
loads the CNN model and evaluates the input against the model. The output of the
CNN model is a nested list which contains either 1 or 0 depending on the malware
class. The sigmoid function classifies the test input with the highest probability
of similarity for each class of malware. If the similarity threshold exceeds 0.5, it
gives an output of 1 respective to that class. This way the script can determine
whether the output contains any positive values which the script then can classify
as a malware. If not, the file is considered to be non-malicious. The output is then
passed along to the browser through a HTTP request via the Flask API. At the
same time the blockchain model is triggered in the back-end. The main method
in the blockchain model calls upon the Flask API running in the server with the
help of Axios get request. If the response from the HTTP request is classified as a
malware, the main method exits the script and the block is never made. However, if
the response is classified to be a non-malware, then the main method creates a new
transaction with the user inputs. A new block is thus created with the help of the
SHA256 algorithm which generates a hash function using the input values: sender
address and receiver address, timestamp, nonce and the previous hash. Once the
block is created, it is then put in a queue to be mined. This hash value is also stored
in the database to keep track of the user file. The server node is then responsible
for mining the block. A predetermined difficulty level is set which offers optimal run
times and also avoids the risk of getting flooded with block generations. Once the
block is mined, it is then appended to the chain which marks a secure completion
of the transaction. The workflow of the model is shown in Fig 4.8.

20

User gives input
1. Sender Address
2 Receiver Address

3 File
v
File is passed onto Address iz stored in
server database
v

File converted to
Grey Scale Image

Image runs through
CHNN model

CNM APl is called
from BElockchain

If image is
classified as
mahware

Pass Address from
Database to Block

Server starts mining
of Block

Display Error

T Block mined
successiully

Add Block to Chain

407

Figure 4.8: Workflow diagram of the model

21

Chapter 5

Experimental Setup and
implementation

5.1 Machine specifications for implementation

For implementing and testing of all the models, we have used:
e CPU: AMD Ryzen 7 3700X

e GPU: AMD RX 5700 8GB
e RAM: 16 GB 2666 MHz

5.2 CNN

We have used Python programming language (Python 3) and Spyder IDE to create
our CNN model. To set up the environment for the CNN model we have used the
Keras library as well as the scikit-learn library. For our custom CNN model we
have trained it for 15 epochs while for the VGG-16 model we have trained it for 5
epochs. For the custom CNN model, we used the default 234 steps per epoch and
10 validation steps and for the fully connected layer we used 128 neurons. For the
VGG-16 CNN model, we used 70 steps per epoch and 5 validation steps to get a
stable performance and for the fully connected layer we used 4096 neurons.

5.3 Flask API

A web API using Flask is created to assist the Blockchain in communicating with the
CNN model. Flask is a web framework for python which allows users to build a web
application by providing the necessary tools and libraries including the management
of HTTP requests. Flask works by mapping HT'TP requests or URLs to python
functions, also known as routing. JSON (JavaScript Object Notation) format is
used to return the data through the web API. Therefore, we chose Flask to host
the CNN model in our local machine. To create a custom API for our model we
first installed Flask and then imported the Flask library. As we are using multiple
languages, we installed Flask-Cors and imported the CORS library which allows
cross origin resource sharing. Flask helps to create a local server which shows the
output of the CNN model on http:127.0.0.1:5000 at all times.

22

app = Flask{__name_)
CORS(app)
cors = CORS{app, resocurces={

rE
"origins™: "*"
1

1)

Bapp . route("/™)
def get():

return value

if _ name__

== "'__main__":
app.runi}

Figure 5.1: Flask implementation

5.4 File Conversion

To convert the user files into grayscale images, we first read the file as raw binary
input. Then the length of the data is put in a numpy array. The data is converted
to a vector and the data length array is taken in to be the shape of a square which
is then padded with zeros. Next, we reshape the arrays with the squared padded
length. Using the OpenCV library, we convert it to an image to be processed by the
CNN model.

input file name = './uploads/test.bytes’';

with cpen(input_file name, ‘rb'} as binary file:
data = binary_file.read()

data_len = len(data)

d = np.frombuffer(data, dtype=np.uints)

sqrt_len = int(ceil(sqrt{data_len)))

new_len = sqrt_len*sgrt_len

pad_len = new_len - data_len

padded d = np.hstack({(d, np.zeros(pad_len, np.uint8)))

im = np.reshape(padded d, (sgqrt_len, sgqrt_len))

cv2.imwrite(". /uploads/test.png’, im)

Figure 5.2: File conversion

Grayscale

Any File Tmage

Figure 5.3: Any file conversion to grayscale image

23

5.5 Blockchain

Using JavaScript we have built a blockchain model which runs on Node.js. We have
used the Crypto-js library and the SHA256 module that helps in the calculation of
the hash function. For creating the blockchain model, we used the following classes:

Transaction class: This class takes the sender address, receiver address and file
to create a transaction.

Block class: The block class takes the transaction, timestamp and hash of the
previous block to create a new block.

Blockchain class: This class is responsible for creating the genesis block, mining
of the pending transactions and adding a new block to the blockchain.

The functions implemented in the classes are explained below:

Create Genesis Block function: Creates the first block of the chain.

FUNCTION createGenesisBlock ():
RETURN class Block(time.now, °‘genesis block’7);

Get Latest Block function: Calls the currently mined block from the chain.

FUNCTION getLatestBlock ():
RETURN block from chain.length — 1;

Mine Pending Transaction function: This function calls upon the pending list
of blocks, initiates the mineBlock function and passes the difficulty setting and then
appends the mined block to the chain.

FUNCTION minePendingTransaction ():

NEW instance Block = class Block(date.now(), pendingTransactions;
block . mineBlock (difficulty);

chain . push (Block);

Create Transaction function: This function is responsible for creating an un-
mined block. It imports the data input from the user and creates an instance of the
transaction and pushes it to the pending transactions list.

FUNCTION createTransaction () —
NEW instance transaction;
pendingTransaction.push(transaction);

Mine Block function: This function is responsible for the mining of the pending
list of transactions. This function calls the calculateHash() and updates the current
hash of the block.

FUNCTION mineBlock ():
WHILE (hash.substring !== array.difficulty)

{
hash = calculateHash ();

nonce -++;

24

Calculate Hash function: This function is used to generate the hash of the block.
It imports the SHA256 library and all the necessary data of the input and returns
the hash function in a string.

FUNCTION calculateHash ()
RETURN SHA256(index+previousHash+timestamp+data+nonce). toString ();

5.6 Combined model

For our final model we first created a user interface using HTML and PHP to allow
users to upload a file onto the blockchain. The inputs from the users are inserted
into an SQL database and the user files are uploaded to a local folder in the server.
In the server, we keep a python script running by implementing a Flask API, which
classifies the file by running against the CNN model and passes the result through
a HTTP request. We bundle the blockchain code in a javascript file which is called
from the PHP. We used the webpack module to wrap the javascript as it offers
easier calling of javascript modules in the web browser. The blockchain javascripts
calls the HTTP request from the Flask API and depending on the result, the block
creation and mining process is either initiated or skipped. Fig 5.6 shows the form
where user provides information.

Address1 | [Address2 |[Choose File | 0aSTGBVR...cpsgC.bytes | Upload File |

Figure 5.4: User interface

25

Chapter 6

Result analysis

6.1 Results

For training and testing the custom CNN model it took approximately 3 minutes to
run 15 epochs. When this model was saved to be loaded from the python script it
had a total size of 4.5 megabytes. On the other hand, it took around 45 minutes to
run 5 epochs for training and testing the VGG-16 model and the size of the saved
model is 1 gigabytes. Since the custom CNN model had significantly fewer layers
and thus neurons in comparison to the VGG-16 model, in addition to the training
and testing time being less, the size of the saved file was also smaller. After training
and testing both the models, the custom CNN model had an accuracy of 95.8% and
the VGG-16 model had an accuracy of 94.9%.

Epoch 18/15

234/234 [] - 11
2.9593

Epoch 11/15

234/234 []-11
2.9647

Epoch 12/15

2347234 []-11
8.9652

Epoch 13/15

234/234 []-11
@.9599

Epoch 14/15

234/234 []-11
@8.9582

Epoch 15/15

234/234 [] - 11
@8.9663

W

46ms/step - loss: @.1568 - accuracy: @.9467 - val loss: 8.1468 - val accuracy:

n

46ms/step - loss: ©.1683 - accuracy: ©.9485 - val loss: 8.1329 - val_accuracy:

n

46ms/step - loss: B.1415 - accuracy: 8.9517 - val_loss: 8.1243 - val_accuracy:

7

46ms/step - loss: ©.1296 - accuracy: ©.9558 - val loss: 8.1422 - val_accuracy:

n

46ms/step - loss: 8.1373 - accuracy: ©.9569 - val loss: 8.1434 - val_accuracy:

n

46ms/step - loss: 8.1198 - accuracy: @.9584 - val_loss: 8.124@ - val_accuracy:

Figure 6.1: Custom CNN Model Results

Epoch 1/5

7e/7e [] - 559s B8s/step - loss: @.8784 - accuracy: 8.5294 - val_loss: 1.8211 - val accuracy: 8.545@
Epoch 2/5

70/78 [1
Epoch 3/5

70/7@ [1
Epoch 4/5

Ta/7e [] - 549s 8s/step - loss: @.3848 - accuracy: @.3544 - val loss: @.8834 - val_accuracy: 1.8888
Epoch 5/5

7e/7e [] - 549s Bs/step - loss: @.451@ - accuracy: 8.9494 - val_loss: 6.5754e-84 - val_accuracy:
1.eee8

5685 Bs/step - less: @.7745 - accuracy: 8.5783 - val_leoss: 8.5842 - val_accuracy: 8.6350

5555 8s/step - loss: @.6942 - accuracy: B.6539 - val_loss: @.3795 - val_accuracy: @.5988@

Figure 6.2: VGG-16 CNN Model Results

26

VGG-16 Model Custom CNN Model

—— Accuracy

175 Validation Accuracy
— loss

150 —— Validation Loss

Acuracy
=
o
=1

— Accuracy
Validation Accuracy

— loss

po4 — Validation Loss

0.0 0.5 10 15 20 15 30 35 4.0 o 2 4] B 10 12 14
Epoch Epoch

Figure 6.3: Accuracy and loss comparison between the two CNN models

After testing our blockchain architecture with both of the CNN models we saw that
the longest time required by the custom CNN model to get a HT'TP server response
was 0.5 seconds while the shortest time recorded was 0.3 seconds. The longest time
needed to get a HT'TP server response by the VGG-16 model was 24.6 seconds and
the shortest time was 6.2 seconds. Again, due to the VGG-16 model having a larger
saved file size which has to be loaded every time a user gives an input, the delay
experienced is much longer than the custom CNN model.

Model Shortest time(s) | Longest time(s)
Custom CNN model 0.3 0.5
VGG-16 6.2 24.6

Table 6.1: Time required to get server response

As we had tested our entire architecture using the Microsoft dataset [20] which had
malwares from completely different families than the ones which we had used to train
and test our individual CNN models, the results show that both the CNN models
used were able to detect malwares belonging to various classes quite well. While the
custom model had an accuracy of 85.7% and 89.27%, the VGG-16 model had an
accuracy of 77.1% and 92.3% when classifying non-malware files and malware files
respectively.

27

Percentage accuracy

5
A A A

Malware family

Figure 6.4: Percentage accuracy of custom model in classifying malware files from
different malware families

Percentage accuracy

A R Y S
& b b & & S «
& & $ &

Malware family

Figure 6.5: Percentage accuracy of VGG-16 in classifying malware files from different
malware families

Overall, in terms of accuracy in correctly identifying malware files from non-malware

files, we have discovered that the custom CNN model can do so 88.9% of the time
and the VGG-16 model is able to do it 90.3% of the time.

100

75
)
©
=
g
e 50
(=1
]
c
S
& 25

VGGI16 Custom model

Madel

Figure 6.6: Percentage accuracy in classifying malware files from non-malware files
vs. Model

It is evident from the results that when integrated with the blockchain the VGG-16
model, with a total of 4096 neurons, has a higher accuracy than the custom model,
which has 128 neurons, in identifying malwares of different families as well as an
overall higher accuracy when detecting malware and non-malware files correctly.
However, the VGG-16 model consumes a significantly higher amount of time and
computational resources when doing so which makes it more expensive. Further-

28

more, from our testing we have seen that the VGG-16 model lacked in stability in
comparison to the custom CNN model.

6.2 Blockchain OQutput

When the user uploaded file is detected to be a malware, the blockchain function is
terminated and a malware warning is shown.

Server response: K {Output: "Malware"} bundle.js:2

bundle.js:2
Malware detected

Figure 6.7: Detection of Malware

When the user uploaded file is not classified as a malware, the blockchain function
is triggered and a block is mined.

+
4]
3

Malware"} bundle.js:2

=]

Server response: W {Output: "N

bundle.js:2
Starting of the miner..

senderfAddress: Addressl receiverfddress: Address2 bundle.js:2
Block mined: bundle.js:2
288285a542e7583T5cdadl2alelf5830edEfacblcBEfalbc2o52bailabtd 957 bea

Block successfully mined! bundle.js:2
Passing data to PHP... bundle.js:2

Figure 6.8: No malware detected, Blockchain is triggered

6.3 Limitations

We have faced numerous limitations while conducting our research. First and fore-
most, due to current circumstances, we did not have access to the Thesis Lab of
BRAC University which would have provided us with the higher computational
power required for the implementation of our thesis. For the testing and training
process of our CNN models, we had to implement and run sophisticated machine
learning algorithms using very limited resources. We especially struggled during
the VGG-16 model training and testing process because it required maximum CPU
usage, with each epoch taking quite a lot of time to finish. Moreover, after a cer-
tain number of epochs we faced kernel and system crashes. This limited us in the
sense that we could not test the CNN models under different research conditions,
for example, increasing the epoch, steps per epoch etc.

29

Chapter 7

Conclusion and future work

7.1 Conclusion

The once claimed unbreakable blockchain technology is now seen to become vul-
nerable against the ever growing cyber threats. Therefore, our main motive was to
come up with an architecture where an efficient malware detecting neural network
integrated with a blockchain based model could detect such attacks and stop them
from infecting the said blockchain network. In this day and age where more and
more people and organisations are adopting blockchain technologies for mainstream
usages as well as the continually rising demands of cryptocurrencies, greater number
of attackers are exploiting the security loopholes in blockchain based models. The
idea of a combined architecture of a blockchain and a convolutional neural network
to provide protection against malicious attacks is relatively new. Our model is a
novel approach and only an initialization to a new walk of research. We were suc-
cessful in designing and implementing a blockchain model which incorporates CNN
in its architecture in such a way that any malicious data transactions cannot be
made. This helps to eliminate any risk of hackers trying to bypass the blocks within
the blockchain.

We have also compared the VGG-16 architecture with a customized one in order to
find out which CNN model could detect malwares and prevent attacks in a more
resource efficient way when combined with the blockchain. Our experimentation has
shown that when integrated with the blockchain architecture, the VGG-16 model
achieves a higher accuracy in comparison to the custom model. However, the VGG-
16 model which has a greater number of layers is much more resource exhaustive.
Therefore, in real world scenarios it would be wise for organisations to factor in
these concerns when deploying such a model. We believe that the addition of con-
volutional neural networks to blockchains would be useful for organisations to add
a layer of protection against malicious entites. Thus, we can say that with further
improvements to our architecture it has a potential to be developed in full-scale for
usage in real world systems.

30

7.2 Future work

Even though, our concept model shows potential in defending blockchain against
malware attacks, there is certainly a lot of scope for improvement. One key challenge
we faced was to figure out a cost efficient way to keep the stored files within the
blocks without making them heavy. This can also help to eliminate the need of a
centralized database. Another room for improvement can be implementing the CNN
within the peer nodes. This can help to turn the private blockchain into a public
blockchain, which eliminates any single point of authority. Furthermore, we tested
our architecture with only two CNN models. Therefore, there lies a chance of better
results if the various kinds of CNN models available are tested as well. Also, these
models can be further optimized and trained with much larger data sets, especially
VGG-16. Methods to allow faster response from server when loading heavier CNN
models could be extremely useful. Moreover, a method to dynamically train the
CNN models with new malware dataset collected from the malicious user inputs
could be developed. Added to that, the blockchain can be deployed in a public
server and analyzed in real time. Also, multiple encryption techniques other than
SHA256 can be used to create hash and nonce. Therefore, testing in a public domain
can prove essential to fully understand the potential of the model.

31

Bibliography

1]

[10]

[11]

C. H. Kim, E. K. Kabanga, and S.-J. Kang, “Classifying malware using con-
volutional gated neural network. in: International conference on advances in
computing and technology.,” Feb. 2018. por: 10.1109/CSE/EUC.2019.00095.

S. Morgan. (2020 (accessed: January 6, 2021)). “Cybercrime to cost the world
$10.5 trillion annually by 2025,” [Online]. Available: https://cybersecurityventures.
com/cybercrime-damages-6-trillion-by-2021/.

A. Bera. (2019 (accessed: January 6, 2021)). “22 shocking ransomware statis-
tics for cybersecurity in 2021,” [Online]. Available: https://safeatlast.co/blog/
ransomware-statistics/.

M. Singh, G. S. Aujla, A. Singh, N. Kumar, and S. Garg, “Deep learning based
blockchain framework for secure software defined industrial networks,” 2020.
DOI: 10.1109/T11.2020.2968946, .

M. Saad, J. Spaulding, D. Nyang, L. Njilla, C. Kamhoua, S. Shetty, and A. Mo-
haisen, “Exploring the attack surface of blockchain: A systematic overview,”
Apr. 2019. por1: 10.1002/9781119519621.ch3.

B. Bambrough. (2019 (accessed: January 6, 2021)). “Warning issued after
malware is found to have hijacked bitcoin blockchain,” [Online|. Available:
https://www.forbes.com /sites/billybambrough/2019/09/07 /serious-malware-
warning-over-bitcoin-blockchain /#4ce21be07c28.

J. FRANKENFIELD. (2020 (accessed: January 6, 2021)). “Double-spending,”
[Online]. Available: https://www.investopedia.com/terms/d/doublespending.
asp#:~:text=Double%5C%2Dspending %5C % 20is % 5C %20the % 5C %20risk,
power%5C%20necessary %5C%20t0%5C%20manipulate%5C %20it.

Vasa. (2019(accessed: January 6, 2021)). “How to use blockchains for spread-
ing viruses? a study on use of distributed systems in malware deployment,”
[Online]. Available: https://medium.com /towardsblockchain / how-to- use-
blockchains-for-spreading-viruses-690abadc65ct.

Wikipedia. ((accessed: January 6, 2021)). “Convolutional neural network,”
[Online]. Available: https://en.wikipedia.org /wiki / Convolutional neural_
network?fbclid=IwAR1w11KozT-9a2¢cM6SP2Z0fLngY 1wbOxxuTJuzthgtFvPBFL-
57u_wpkSo0.

M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and F. Igbal,
“Malware classification with deep convolutional neural networks.,” 2018.

A. Bakhshinejad and A. Hamzeh, “Parallel-cnn network for malware detec-
tion,” 2019. por: 10.1049/iet-ifs.2019.0159.

32

https://doi.org/10.1109/CSE/EUC.2019.00095
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://safeatlast.co/blog/ransomware-statistics/
https://safeatlast.co/blog/ransomware-statistics/
https://doi.org/10.1109/TII.2020.2968946,
https://doi.org/10.1002/9781119519621.ch3
https://www.forbes.com/sites/billybambrough/2019/09/07/serious-malware-warning-over-bitcoin-blockchain/#4ce21be07c28
https://www.forbes.com/sites/billybambrough/2019/09/07/serious-malware-warning-over-bitcoin-blockchain/#4ce21be07c28
https://www.investopedia.com/terms/d/doublespending.asp#:~:text=Double%5C%2Dspending%5C%20is%5C%20the%5C%20risk,power%5C%20necessary%5C%20to%5C%20manipulate%5C%20it
https://www.investopedia.com/terms/d/doublespending.asp#:~:text=Double%5C%2Dspending%5C%20is%5C%20the%5C%20risk,power%5C%20necessary%5C%20to%5C%20manipulate%5C%20it
https://www.investopedia.com/terms/d/doublespending.asp#:~:text=Double%5C%2Dspending%5C%20is%5C%20the%5C%20risk,power%5C%20necessary%5C%20to%5C%20manipulate%5C%20it
https://medium.com/towardsblockchain/how-to-use-blockchains-for-spreading-viruses-690a5a4c65cf
https://medium.com/towardsblockchain/how-to-use-blockchains-for-spreading-viruses-690a5a4c65cf
https://en.wikipedia.org/wiki/Convolutional_neural_network?fbclid=IwAR1w1lKozT-9a2cM6SP2Z0fLngY1wbOxxuTJuzthgtFvPBFL-5Zu_wpkSo0
https://en.wikipedia.org/wiki/Convolutional_neural_network?fbclid=IwAR1w1lKozT-9a2cM6SP2Z0fLngY1wbOxxuTJuzthgtFvPBFL-5Zu_wpkSo0
https://en.wikipedia.org/wiki/Convolutional_neural_network?fbclid=IwAR1w1lKozT-9a2cM6SP2Z0fLngY1wbOxxuTJuzthgtFvPBFL-5Zu_wpkSo0
https://doi.org/10.1049/iet-ifs.2019.0159

[14]
[15]

[16]

[18]

[19]

[20]

[21]

[25]

Z. Cui, L. Du, P. Wang, X. Cai, and W. Zhang, “Malicious code detection
based on cnns and multi-objective algorithms.,” Mar. 2019. po1: 10.1016/j.
jpdc.2019.03.010.

M. MURRAY. (June 15, 2018 (accessed: January 6, 2021)). “A reuters visual
guide: Blockchain explained,” [Online]. Available: https://graphics.reuters.
com/TECHNOLOGY-BLOCKCHAIN/010070MF1E7/index.html.

J. J. Xu, “Are blockchains immune to all malicious attacks?,” 2016. DO1: 10.
1186/s40854-016-0046-5.

O. Ajayi, M. Cherian, and T. Saadawi, “Secured cyber-attack signatures dis-
tribution using blockchain technology,” 2019.

J. GU, B. SUN, X. DU, J. WANG, Y. ZHUANG, and Z. WANG, “Consortium
blockchain-based malware detection in mobile devices,” Feb. 2018. por: 10.
1109/ACCESS.2018.2805783.

J. Ali, A. S. Khalid, E. Yafi, S. Musa, and W. Ahmed, “Towards a secure
behavior modeling for iot networks using blockchain,” Jan. 2020. DoOT1: arXiv:
2001.01841v1.

A. Goel, A. Agarwal, M. Vatsa, R. Singh, and N. Ratha, “Deepring: Protecting
deep neural network with blockchain,” Apr. 2019. [Online]. Available: https:
//www.researchgate.net/publication/33262989.

L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images:
Visualization and automatic classification,” Jul. 2011. pDo1: 10.1145/2016904.
2016908.

Microsoft. (2015 (accessed: January 6, 2021)). “Microsoft malware classifica-
tion challenge (big 2015) classify malware into families based on file content
and characteristics,” [Online]. Available: https://www.kaggle.com/c/malware-
classification /data.

M. Mishra. (2020 (accessed: January 6, 2021)). “Convolutional neural net-
works, explained,” [Online]. Available: https:/ /towardsdatascience . com /

convolutional-neural-networks-explained-9cc5188c¢4939#:~:text=Convolutional %

5C % 20Neural % 5C % 20Network % 5C % 20 Architecture, and % 5C % 20a % 5C %
20fully %5C%20connected%5C%20layer.

A. Zhang, Z. C. Lipton, L. Mu, and A. J. Smola. ((accessed: January 6,
2021)). “Padding and stride,” [Online]. Available: http://d2l.ai/chapter_
convolutional-neural-networks /padding-and-strides.html#stride.

——, ((accessed: January 6, 2021)). “Pooling,” [Online]. Available: http://
d2l.ai/chapter_convolutional-neural-networks/pooling.html.

Arunava. (2018 (accessed: January 6, 2021)). “Convolutional neural network:
An introduction to convolutional neural networks,” [Online]. Available: https:
/ /towardsdatascience.com / convolutional- neural- network- 17fb77e76c054:~:
text=Fully %5C%20Connected %5C%20Layer %5C %20is%5C%20simply, into%
5C%20the%5C%20fully %5C%20connected %5C %20layer.

Prabhu. (2018(accessed: January 6, 2021)). “Understanding of convolutional
neural network (cnn) — deep learning,” [Online]. Available: https://medium.
com /@RaghavPrabhu /understanding- of- convolutional- neural- network- cnn-
deep-learning-99760835f148.

33

https://doi.org/10.1016/j.jpdc.2019.03.010
https://doi.org/10.1016/j.jpdc.2019.03.010
https://graphics.reuters.com/TECHNOLOGY-BLOCKCHAIN/010070MF1E7/index.html
https://graphics.reuters.com/TECHNOLOGY-BLOCKCHAIN/010070MF1E7/index.html
https://doi.org/10.1186/s40854-016-0046-5
https://doi.org/10.1186/s40854-016-0046-5
https://doi.org/10.1109/ACCESS.2018.2805783
https://doi.org/10.1109/ACCESS.2018.2805783
https://doi.org/arXiv:2001.01841v1
https://doi.org/arXiv:2001.01841v1
https://www.researchgate.net/publication/33262989
https://www.researchgate.net/publication/33262989
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2016904.2016908
https://www.kaggle.com/c/malware-classification/data
https://www.kaggle.com/c/malware-classification/data
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939#:~:text=Convolutional%5C%20Neural%5C%20Network%5C%20Architecture,and%5C%20a%5C%20fully%5C%20connected%5C%20layer
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939#:~:text=Convolutional%5C%20Neural%5C%20Network%5C%20Architecture,and%5C%20a%5C%20fully%5C%20connected%5C%20layer
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939#:~:text=Convolutional%5C%20Neural%5C%20Network%5C%20Architecture,and%5C%20a%5C%20fully%5C%20connected%5C%20layer
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939#:~:text=Convolutional%5C%20Neural%5C%20Network%5C%20Architecture,and%5C%20a%5C%20fully%5C%20connected%5C%20layer
http://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html#stride
http://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html#stride
http://d2l.ai/chapter_convolutional-neural-networks/pooling.html
http://d2l.ai/chapter_convolutional-neural-networks/pooling.html
https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05#:~:text=Fully%5C%20Connected%5C%20Layer%5C%20is%5C%20simply,into%5C%20the%5C%20fully%5C%20connected%5C%20layer
https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05#:~:text=Fully%5C%20Connected%5C%20Layer%5C%20is%5C%20simply,into%5C%20the%5C%20fully%5C%20connected%5C%20layer
https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05#:~:text=Fully%5C%20Connected%5C%20Layer%5C%20is%5C%20simply,into%5C%20the%5C%20fully%5C%20connected%5C%20layer
https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05#:~:text=Fully%5C%20Connected%5C%20Layer%5C%20is%5C%20simply,into%5C%20the%5C%20fully%5C%20connected%5C%20layer
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148

2]

[27]

[30]

[31]

[32]

[33]

[34]

C. Maklin. (2019 (accessed: January 6, 2021)). “Dropout neural network layer
in keras explained,” [Online]. Available: https://towardsdatascience.com /
machine-learning-part-20-dropout-keras-layers-explained-8c9f6dcdc9ab#:~:
text=Dropout %5C%20is%5C %20a%5C%20technique%5C%20used,, update%
5C%200f%5C%20the%5C %20training%5C %20phase.

J. Jeong. (2019 (accessed: January 6, 2021)). “The most intuitive and eas-
iest guide for convolutional neural network,” [Online]. Available: https://
towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-
neural-network-3607be47480.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

J. Brownlee. (2020 (accessed: January 6, 2021)). “A gentle introduction to the
rectified linear unit (relu),” [Online]. Available: https://machinelearningmastery.
com /rectified-linear-activation- function-for- deep-learning-neural-networks /
:~:text =The % 5C % 20rectified % 5C % 20linear % 5C % 20activation % 5C %
20function , otherwise % 5C % 2C % 5C % 20it % 5C % 20will % 5C % 20output %
5C%20zero.&text=The%5C %20rectified % 5C %20linear % 5C % 20activation %
5C % 20function % 5C % 20overcomes % 5C % 20the % 5C % 20vanishing % 5C %
20gradient%5C%20problem,learn%5C%20faster %5C %20and %5C%20perform %
5C%20better.

S. Sharma. (2017 (accessed: January 6, 2021)). “Activation functions in neural
networks,” [Online]. Available: https://towardsdatascience.com /activation-
functions-neural-networks-1cbd9f8d91d6.

M. Glossary. (2017(accessed: January 6, 2021)). “Loss functions,” [Online].
Available: https://ml-cheatsheet.readthedocs.io /en /latest /loss_functions.
html.

K. Mahendru. (2019(accessed: January 6, 2021)). “A detailed guide to 7 loss
functions for machine learning algorithms with python code,” [Online]. Avail-
able: https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-1loss-
functions-machine-learning-python-code/.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” Apr. 2015. DOI: arXiv:1409.1556.

R. Thakur. (2019 (accessed: January 6, 2021)). “Step by step vggl6 implemen-
tation in keras for beginners,” [Online]. Available: https://towardsdatascience.
com /step-by-step-vggl6-implementation-in-keras-for-beginners-a833c686ae6c#:
~:text =VGG16 % 5C % 20is % 5C % 20a % 5C % 20convolution % 5C % 20neural
competition%5C%20in%5C %202014. & text=It %5C %20follows % 5C %20this %
5C%20arrangement %5C % 200f , by % 5C % 20a.% 5C % 20softmax % 5C % 20for %
5C%200utput.

L. Conway. (2020 (accessed: January 6, 2021)). “Blockchain explained,” [On-
line]. Available: https://www.investopedia.com/terms/b/blockchain.asp.

T. K. Sharma. (2019 (accessed: January 6, 2021)). “Public vs private blockchain:
A comprehensive comparison,” [Online|. Available: https://www.blockchain-
council . org / blockchain / public - vs - private - blockchain - a- comprehensive -
comparison,/.

34

https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab#:~:text=Dropout%5C%20is%5C%20a%5C%20technique%5C%20used,update%5C%20of%5C%20the%5C%20training%5C%20phase
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab#:~:text=Dropout%5C%20is%5C%20a%5C%20technique%5C%20used,update%5C%20of%5C%20the%5C%20training%5C%20phase
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab#:~:text=Dropout%5C%20is%5C%20a%5C%20technique%5C%20used,update%5C%20of%5C%20the%5C%20training%5C%20phase
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab#:~:text=Dropout%5C%20is%5C%20a%5C%20technique%5C%20used,update%5C%20of%5C%20the%5C%20training%5C%20phase
https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480
https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480
https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480
http://www.deeplearningbook.org
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function,otherwise%5C%2C%5C%20it%5C%20will%5C%20output%5C%20zero.&text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function%5C%20overcomes%5C%20the%5C%20vanishing%5C%20gradient%5C%20problem,learn%5C%20faster%5C%20and%5C%20perform%5C%20better
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function,otherwise%5C%2C%5C%20it%5C%20will%5C%20output%5C%20zero.&text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function%5C%20overcomes%5C%20the%5C%20vanishing%5C%20gradient%5C%20problem,learn%5C%20faster%5C%20and%5C%20perform%5C%20better
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function,otherwise%5C%2C%5C%20it%5C%20will%5C%20output%5C%20zero.&text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function%5C%20overcomes%5C%20the%5C%20vanishing%5C%20gradient%5C%20problem,learn%5C%20faster%5C%20and%5C%20perform%5C%20better
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function,otherwise%5C%2C%5C%20it%5C%20will%5C%20output%5C%20zero.&text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function%5C%20overcomes%5C%20the%5C%20vanishing%5C%20gradient%5C%20problem,learn%5C%20faster%5C%20and%5C%20perform%5C%20better
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function,otherwise%5C%2C%5C%20it%5C%20will%5C%20output%5C%20zero.&text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function%5C%20overcomes%5C%20the%5C%20vanishing%5C%20gradient%5C%20problem,learn%5C%20faster%5C%20and%5C%20perform%5C%20better
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function,otherwise%5C%2C%5C%20it%5C%20will%5C%20output%5C%20zero.&text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function%5C%20overcomes%5C%20the%5C%20vanishing%5C%20gradient%5C%20problem,learn%5C%20faster%5C%20and%5C%20perform%5C%20better
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function,otherwise%5C%2C%5C%20it%5C%20will%5C%20output%5C%20zero.&text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function%5C%20overcomes%5C%20the%5C%20vanishing%5C%20gradient%5C%20problem,learn%5C%20faster%5C%20and%5C%20perform%5C%20better
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function,otherwise%5C%2C%5C%20it%5C%20will%5C%20output%5C%20zero.&text=The%5C%20rectified%5C%20linear%5C%20activation%5C%20function%5C%20overcomes%5C%20the%5C%20vanishing%5C%20gradient%5C%20problem,learn%5C%20faster%5C%20and%5C%20perform%5C%20better
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-functions-machine-learning-python-code/
https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-functions-machine-learning-python-code/
https://doi.org/arXiv:1409.1556
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c#:~:text=VGG16%5C%20is%5C%20a%5C%20convolution%5C%20neural,competition%5C%20in%5C%202014.&text=It%5C%20follows%5C%20this%5C%20arrangement%5C%20of,by%5C%20a%5C%20softmax%5C%20for%5C%20output
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c#:~:text=VGG16%5C%20is%5C%20a%5C%20convolution%5C%20neural,competition%5C%20in%5C%202014.&text=It%5C%20follows%5C%20this%5C%20arrangement%5C%20of,by%5C%20a%5C%20softmax%5C%20for%5C%20output
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c#:~:text=VGG16%5C%20is%5C%20a%5C%20convolution%5C%20neural,competition%5C%20in%5C%202014.&text=It%5C%20follows%5C%20this%5C%20arrangement%5C%20of,by%5C%20a%5C%20softmax%5C%20for%5C%20output
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c#:~:text=VGG16%5C%20is%5C%20a%5C%20convolution%5C%20neural,competition%5C%20in%5C%202014.&text=It%5C%20follows%5C%20this%5C%20arrangement%5C%20of,by%5C%20a%5C%20softmax%5C%20for%5C%20output
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c#:~:text=VGG16%5C%20is%5C%20a%5C%20convolution%5C%20neural,competition%5C%20in%5C%202014.&text=It%5C%20follows%5C%20this%5C%20arrangement%5C%20of,by%5C%20a%5C%20softmax%5C%20for%5C%20output
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c#:~:text=VGG16%5C%20is%5C%20a%5C%20convolution%5C%20neural,competition%5C%20in%5C%202014.&text=It%5C%20follows%5C%20this%5C%20arrangement%5C%20of,by%5C%20a%5C%20softmax%5C%20for%5C%20output
https://www.investopedia.com/terms/b/blockchain.asp
https://www.blockchain-council.org/blockchain/public-vs-private-blockchain-a-comprehensive-comparison/
https://www.blockchain-council.org/blockchain/public-vs-private-blockchain-a-comprehensive-comparison/
https://www.blockchain-council.org/blockchain/public-vs-private-blockchain-a-comprehensive-comparison/

[37]

[38]

[39]

[40]

[41]
[42]

[43]

IBM. ((accessed: January 6, 2021)). “What is blockchain technology?” [On-
line|. Available: https://www.ibm.com/blockchain/what-is-blockchain.

TecraCoin. (2019 (accessed: January 6, 2021)). “What is genesis block and
why genesis block is needed?” [Online]. Available: https://tecracoin.medium.
com/what-is-genesis-block-and-why-genesis-block-is-needed-1b37d4b75e43.

M. Vidrih. (2018 (accessed: January 6, 2021)). “What is a block in the blockchain?”
[Online]. Available: https://medium.com / datadriveninvestor / what - is- a-
block- in- the-blockchain- ¢7a420270373# : ~: text =The % 5C % 20blockchain %

5C % 20is % 5C % 20a % 5C % 20chain , his % 5C % 20body % 5C % 20(block % 5C %
20body).

Y. Takefuji and H. Szu. (2019(accessed: January 6, 2021)). “Blockchain is
vulnerable against classic database approach,” [Online]. Available: http://
medcraveonline . com / MOJABB / blockchain - is - vulnerable - against - classic -
database-approach.html.

V. L. Lemieux, “Trusting records: Is blockchain technology the answer?,” 2016.

J. FRANKENFIELD. (June 27, 2020 (accessed: January 6, 2021)). “Nonce,”
[Online]. Available: https://www.investopedia.com /terms/n /nonce.asp#:
~:text = A % 5C % 20nonce % 5C % 20is % 5C % 20an % 5C % 20abbreviation ,
blockchain%5C%20miners%5C %20are%5C%20solving%5C%20for.

P. Kotamraju. (May, 2019 (accessed: January 6, 2021)). “What is a nonce in
block chain?” [Online]. Available: https://www.tutorialspoint.com /what-is-
a-nonce-in-block-chain.

35

https://www.ibm.com/blockchain/what-is-blockchain
https://tecracoin.medium.com/what-is-genesis-block-and-why-genesis-block-is-needed-1b37d4b75e43
https://tecracoin.medium.com/what-is-genesis-block-and-why-genesis-block-is-needed-1b37d4b75e43
https://medium.com/datadriveninvestor/what-is-a-block-in-the-blockchain-c7a420270373#:~:text=The%5C%20blockchain%5C%20is%5C%20a%5C%20chain,his%5C%20body%5C%20(block%5C%20body)
https://medium.com/datadriveninvestor/what-is-a-block-in-the-blockchain-c7a420270373#:~:text=The%5C%20blockchain%5C%20is%5C%20a%5C%20chain,his%5C%20body%5C%20(block%5C%20body)
https://medium.com/datadriveninvestor/what-is-a-block-in-the-blockchain-c7a420270373#:~:text=The%5C%20blockchain%5C%20is%5C%20a%5C%20chain,his%5C%20body%5C%20(block%5C%20body)
https://medium.com/datadriveninvestor/what-is-a-block-in-the-blockchain-c7a420270373#:~:text=The%5C%20blockchain%5C%20is%5C%20a%5C%20chain,his%5C%20body%5C%20(block%5C%20body)
http://medcraveonline.com/MOJABB/blockchain-is-vulnerable-against-classic-database-approach.html
http://medcraveonline.com/MOJABB/blockchain-is-vulnerable-against-classic-database-approach.html
http://medcraveonline.com/MOJABB/blockchain-is-vulnerable-against-classic-database-approach.html
https://www.investopedia.com/terms/n/nonce.asp#:~:text=A%5C%20nonce%5C%20is%5C%20an%5C%20abbreviation,blockchain%5C%20miners%5C%20are%5C%20solving%5C%20for
https://www.investopedia.com/terms/n/nonce.asp#:~:text=A%5C%20nonce%5C%20is%5C%20an%5C%20abbreviation,blockchain%5C%20miners%5C%20are%5C%20solving%5C%20for
https://www.investopedia.com/terms/n/nonce.asp#:~:text=A%5C%20nonce%5C%20is%5C%20an%5C%20abbreviation,blockchain%5C%20miners%5C%20are%5C%20solving%5C%20for
https://www.tutorialspoint.com/what-is-a-nonce-in-block-chain
https://www.tutorialspoint.com/what-is-a-nonce-in-block-chain

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Introduction
	Problem statement
	Aim of study
	Research methodology
	Thesis outline

	Related Work
	Convolutional Neural Network
	What is a convolutional neural network?
	Work related to convolutional neural networks

	Blockchain
	What is a blockchain?
	Work related to blockchain

	Blockchain with Neural Networks
	A combined approach
	Work that combines both the technologies

	Data collection and preprocessing
	Dataset for training and testing the CNN model
	Dataset for testing the model
	Data collection

	Proposed Model
	CNN Layers and Functions
	Convolution layer
	Pooling layer
	Dropout layer
	Flatten layer
	Fully connected layer
	ReLU activation function
	Sigmoid activation function
	Cross entropy loss function

	The custom CNN model
	VGG-16
	Blockchain
	Genesis Block
	Data Block

	Combined model

	Experimental Setup and implementation
	Machine specifications for implementation
	CNN
	Flask API
	File Conversion
	Blockchain
	Combined model

	Result analysis
	Results
	Blockchain Output
	Limitations

	Conclusion and future work
	Conclusion
	Future work

	Bibliography

		2021-01-20T19:48:26+0600
	Dr. Md. Golam Rabiul Alam

