
FoodieCal: A Convolutional Neural Network Based
Food Detection and Calorie Estimation System

by

Chowdhury Zerif Mashrafi
16301138

Shahriar Ahmed Ayon
16301209

Abir Bin Yousuf
16101044

Fahad Hossain
16301139

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc in Computer Science

Department of Computer Science and Engineering
Brac University
January 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Chowdhury Zerif Mashrafi
16301138

Shahriar Ahmed Ayon
16301209

Abir Bin Yousuf
16101044

Fahad Hossain
16301139

i

Approval

The thesis/project titled “A Convolutional Neural Network Based Food Detection
and Calorie Estimation System” submitted by

1. Chowdhury Zerif Mashrafi (16301138)

2. Shahriar Ahmed Ayon (16301209)

3. Abir Bin Yousuf (16101044)

4. Fahad Hossain (16301139)

Of Fall, 2020 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 11, 2021.

Examining Committee:

Supervisor:
(Member)

Muhammad Iqbal Hossain, PhD
Assistant Professor
CSE Department
BRAC University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Assistant Professor
CSE Department
BRAC University

Head of Department:
(Chair)

Mahbubul Alam Majumdar, PhD
Professor and Chairperson

Department of Computer Science and Engineering
BRAC University

ii

통신왕
Stamp

Abstract

According to recent studies across the world, we can see that a healthy diet is the key
to having a sound health and body. People nowadays are more concerned with their
diets than ever before. With the advancement of science, it is now viable to construct
a unique food identification system for keeping track of day to day calorie intake.
However, building this kind of system creates several complications on constructing
and implementing the model. In our paper, we have developed a new neural network
based model which will predict the food items from a given image and show us the
estimated calorie of the detected food items. In order to achieve our goal, we have
prepared a dataset of around 23000 images for 23 different food categories. Initially,
we have developed a single food detection system combining CNN max pooling and
ResNet. From our experimentation, we have achieved 93.33% accuracy in this case.
Furthermore, we have also taken a step forward to build a system which can detect
multiple foods by training CNN with features extracted by Inception V3. We have
achieved 89.48% accuracy for this model and we deployed both of our systems on
a webpage. The user has to upload an image of food item in the webpage and our
system will predict the food item along with the estimated calories in real time.

Keywords: Food Detection; CNN; ResNet; Inception V3

iii

Dedication

This research is dedicated to the people who are suffering from obesity and over-
weight related health hazards. We also want to dedicate it to people who are health
conscious and willing to maintain a healthy and balanced calorie intake.

iv

Acknowledgement

First and foremost, we want to show our gratitude to Allah for helping us complete
this work without any kind of major difficulties. Next, we want to thank our parents
who supported us utmost in reaching where we are now. Furthermore, we want to
thank our honorable Supervisor who helped us by giving continuous feedback and
suggestions on improving our work and reaching the ultimate goal.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Introduction . 1
1.2 Problem Statement . 2
1.3 Research Objective . 3

2 Background 5
2.1 Literature Review . 5
2.2 Convolutional Neural Network . 7

3 Proposed Model 11
3.1 Dataset Description . 11

3.1.1 Dataset Collection . 11
3.1.2 Dataset Sample . 12
3.1.3 Data Preprocessing . 12
3.1.4 Feature Extraction Techniques 14

3.2 Model Description . 19
3.2.1 Model Description for Single Food Detector 19
3.2.2 Model Description for Multiple Food Detector 21

4 Experimentation 23
4.1 Single Food Detector . 23
4.2 Multiple Food Detector . 24

vi

5 Result Analysis 27
5.1 Analysis on Single Food Detection . 27
5.2 Analysis on Multiple Food Detection 30
5.3 Limitations . 34

6 Conclusion and Future Work 35

Bibliography 37

vii

List of Tables

5.1 Prediction percentage for test image 1 28
5.2 Prediction percentage for test image 2 29
5.3 Prediction percentage for test image 3 31
5.4 Prediction percentage for test image 4 33
5.5 Output comparison for some test images 34

viii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

BoF Bag of features

CNN Convolutional Neural Network

MKL Multiple Kernel Learning

ReLU Rectified Linear Unit

SFTA Segmented Fractal Textual Analysis

SIFT Scale Invariant Feature Transform

SURF Speed-Up-Robust-Features

SVM Support Vector Machine

WHO World Health Organization

WISeR Wide Slice Residual Network

ix

Chapter 1

Introduction

1.1 Introduction

With the advent of technologies, nowadays, people have become more aware of what
they are consuming to satisfy their hunger. This is due to the fact that obesity
has become a common phenomenon in recent times. People, especially the young
generation are suffering from obesity because of lack of awareness about what kind
food they should consume. They are highly attracted to unhealthy junk foods and
uncontrolled amounts of calorie intake which leads to a variety of chronic diseases
like heart blockage, stroke, diabetes, liver problems, kidney damage etc.

The World Health Organization (WHO) has reported [19] that, in 2016, around 1.9
billion people (aged 18 years and above) around the world are suffering from over-
weight and 650 million among them are obese. 40 million children (under the age
of 5) were overweight in 2018 which is an alarming sign for the world. In 2019, an
estimated 38.2 million children under the age of 5 years were overweight or obese.
Obesity was once considered a major problem only in the highly developed coun-
tries, but nowadays it has become a common scenario in lower and middle-income
countries too, particularly in urban areas. In Africa, the number of overweight chil-
dren under 5 has increased by nearly 24% since 2000. Almost half of the children
under 5 who were overweight or obese in 2019 lived in Asia.

A recent study by National Cancer Institute [11] suggests that the fat tissue gen-
erated due to excessive calorie intake creates low-level inflammation which causes
DNA damage and leads to cancer. Also, obese people have increased level of insulin
in their blood that promotes Type-2 diabetes and eventually leads to colon, kidney,
prostrate and endometrial cancer[7].

To avoid these types of problems, people have now started to realize that they should
be well aware about the side effects of foods and what their body needs in order
to keep themselves healthy. So, food journaling has become popular to help people
keep track of how much calorie they should consume in a particular time. It also
lets people decide whether they are consuming food out of boredom or satisfying
the hunger. But the journaling maintained in an analog way by writing on note
may create monotony and it is pretty much time consuming. Besides, the youth
nowadays don’t like the idea of manually writing on notes and maintaining the food

1

journals. It sometimes becomes hectic and people may tend to forget what they had
consumed earlier which they forgot to record in the food journal. So, there is a need
to build a system which can keep track of the daily calorie intake in a digital way
and recommend people about how much to eat and how much to avoid.

1.2 Problem Statement

The availability of smartphones all over the world has enabled people to take pictures
of what they are eating. So there comes the concept of food detection using the
smartphones or camera and journaling in a digital way. Researchers are trying to
develop a system that does the food journaling automatically. That is by keeping
track of user information and helping the user to decide what suits the body best.
So, developing a system that identifies the food from an image and measures the
calorie from it can help people by decreasing the rapid rise of diseases related to
excessive calorie intake and obesity.

The people of Bangladesh are suffering from overweight and obesity problems for a
long time. In 1980, 7% of adults and 3% of children were overweight or obese in
Bangladesh. In 2013, those rates had climbed to 17% for adults but only 4.5% for
children — according to The Institute for Health Metrics and Evaluation (IHME)
of the University of Washington. The recent cases of obesity among Bangladeshi
young generation is very high. Due to the influence of western lifestyle, the internet
and advertisements on TV, the youth including children are more likely to consume
fast food and other junk foods more than before which leads to varieties of major
and minor health problems. It is alarmingly increasing in our country because of
lack of checking on calorie intake and also unhealthy food schedules.

So, it has become a necessity to develop a system which can recommend a healthy
and balanced diet. But it is not a simple task to accomplish. It requires identifi-
cation of food items from the images captured, extracting features from the image,
processing it and then calculating and showing calorie intake for the user to have an
overall idea of how much calorie the user should take for a single day. It becomes
a great challenge even if we relieve on the overall objective and only focus on food
recognition from images captured. It presents a lot of uncertainty because there
are lots of variations of different food images of different cuisines around the world.
Even the appearance of the same food item may vary in different places around
the country according to the availability of ingredients, taste of people coming from
different regions and also the personal taste of the chef. The scientists have done
years of research and provided us with various types of hypotheses. They provided
theories with proof of identifying various food items using different types of algo-
rithms such as machine learning, image processing, convolutional neural networks,
deep learning, artificial intelligence etc. But every one of them has their own limi-
tations. Most of the existing systems have a low accuracy in detecting food items
let alone showing overall estimated calorie.

This has motivated us to step up and do an extensive research on this issue. We have
developed a system that not only identifies the food items with a great accuracy

2

from an image but also shows the amount of calorie the food item contains. In
this paper, we have proposed a model which is focused on Convolutional Neural
Network (CNN) for food detection from a given image. Initially, we have developed
a dataset of 23 food categories for identifying multiple food items. Then we extracted
features from the images using Inception V3 and trained the model with CNN. Next,
we deployed the model in a webpage which is for showing the result. In the end,
the result is evaluated in the webpage when an image is given as an input and the
system predicts what food it is along with showing the calorie amount. We believe
the development of such a system may help especially the young generation fight
obesity and overweight problems and lead to a happier and healthier life.

The rest of the paper is organized as follows - Chapter 2 evaluates the related
works done previously on the food identification process and Chapter 3 describes
the dataset that we preprocessed and also the feature extraction techniques we have
used in our model. In Chapter 4, the whole experimentation process is described
to have a clear view on how the model operates and in Chapter 5, the result of the
model is analyzed to support our claim. Lastly, Chapter 6 concludes our work.

1.3 Research Objective

The main aim of this work is to classify food items using a combination of feature
types for image feature extraction with CNN and recommend food to the user by
estimating total calorie. In previous related works we encountered that there are
many proposed models for recognizing single food items. But there is lack of systems
that can detect multiple foods and also recommend the user by showing the amount
of calorie the food contains. So, we have determined the following objectives of our
work -

• The first objective of our proposed model is to develop a model that solves
the idea of identifying multiple food items at a time based on the dataset we
trained our model with. As a result, it will easily be able to detect multiple
food items at a time from a single image.

• The second objective is to develop a dataset which we will feed our model
for training and also use for validation. For this process, we have categorized
18413 images into 23 different classes of food items. These images are used
to train the CNN model for recognizing the food item. Then another 4538
different images are used for the validation process.

• The third objective is to choose which feature extraction technique ensures
greater efficiency and accuracy. For this, we have created a combination of
feature selection techniques in our proposed model. For example: in our pro-
posed model we have combined the Max Pooling and RESNET techniques for
identifying the single food items initially. Later, we have gone for Inception
V3 for identifying multiple food items which gives more accuracy in extract-
ing features from images provided. It is seen that Segmented Fractal Textual
Analysis (SFTA) , Lab Color Space, Bag of features (BoF), Speed-Up-Robust-
Features (SURF) and other feature models show less accuracy while extracting
features from images. Besides, some of the feature extraction techniques are

3

time consuming, less efficient and show less accuracy at times. As a result,
we decided to implement Inception V3 to create a better model for feature
extraction.

• Our fourth objective is to ensure greater efficiency and higher accuracy for
food image classification. For this we trained our model with Convolutional
Neural Networks (CNN). CNN takes little time in preprocessing compared
to other image classification techniques and it provides more accurate results
than any other techniques currently available.

• Last but not the least, our fifth objective is to estimate calories through our
proposed model. After developing the model which can identify foods from
images captured, it will calculate the estimated calorie from the image by
comparing with the dataset of food calorie chart which we will feed into the
system after classification approach. As a result, anyone can easily know the
estimated calorie of the food.

4

Chapter 2

Background

2.1 Literature Review

Quite a few works have been done on the food recognition process using various
types of techniques. But each one of them have their own limitations. We have
gone through some of the earlier proposed models on Food identification and inves-
tigated them in detail. In the research paper [6], the researchers had taken pictures
in two phases, one phase containing 300 pictures taken using smartphones and an-
other phase containing 300 images taken using the Google Glass. In the second
step, they used Geo-tagging and image localization techniques to obtain location.
Obtaining location, they used API’s of Yelp and Google Places for identifying if the
images’ geo-tags match with the geo-tag of a restaurant. After locating the restau-
rant, they collected the images of the food menu from Google which can be called
as weakly-labelled training data. Next, they segmented the image of food from the
surrounding image and collected as test data. For back end classification, they used
MKL (Multiple Kernel Learning) and for feature extraction from the training and
test data, they used Harris-Laplace point detector. As the image taken in restau-
rants may vary due to lighting conditions, they used 6 descriptors- 2 color based
(Color Moment Invariants and Hue Histograms) and 4 SIFT (Scale Invariant Feature
Transform) based (C-SIFT, Opponent SIFT, RGB-SIFT and SIFT). Then they per-
formed codebook building for Bag of Words representation, kernel pre-computation
and finally classification using SMO-MKL. After performing all that, they found out
that American, Indian and Italian cuisines gave the best accuracy. But the accuracy
for Mexican and Thai cuisines are limited. With this setup using 600 images of 5
different cuisines, they found the overall average accuracy of food identification is
63.33%. Their feature extraction techniques take time for processing and it is less
efficient in terms of performance and accuracy. Besides, their model cannot identify
multiple food items from a given image. Our model overcomes the deficiencies by
using Inception V3 which takes really less time for processing and it can also detect
multiple foods from an image.

In research work [13], Martinel et al. 2018 proposed a model that has two branches-
a residual branch that encodes generic visual representation of food images and the
vertical layers of the food dishes are captivated by a slice network branch. Features
extracted from two network branches are being merged by the WISeR architec-
ture. For validating the proposed model, they used three datasets of food images-

5

UECFOOD100, UECFOOD256 and Food-101. For experimentation, they did not
train their residual branch from the very beginning as it required larger dataset with
more images which was not available. They started residual branch training from
WRN architecture which was pre-trained on ImageNet 2012 classification dataset.
But the slice branch was trained from the scratch as the slicing and vertical images
may vary and produce less accuracy. For the fine tuning of images, they cropped the
images in a smaller dimension of 256 pixels. For testing, they considered standard
10 crop testing. They performed the model training by using stochastic gradient
descent with mini-batches containing 24 samples. While comparing with the state-
of-the-art approaches, they found out that their residual branch largely outperforms
the slice branch. The residual branch for all the datasets got accuracy above 90%
and the sliced branch got accuracy of around 60%. When the WISeR architecture
was trained from scratch, they got accuracy of 78.12%, 68.37%, and 79.45% on the
three considered datasets respectively. In this work, the researchers got a higher
accuracy for the pre-trained residual branch but when it comes to the slice branch
which they trained from the scratch, they got around 60% accuracy. Our CNN
based model outperformed them by a big margin by getting an accuracy of 89.48%
which was trained from the scratch.

In Subhi et al. 2018 research paper [15], the authors proposed a model which can
identify food items based on CNN algorithm. They also used a new dataset for local
Malaysian food which contains eleven food categories with (5800) images. They
utilized two datasets for their proposed model. For food/non-food classification,
they have used FOOD-101 dataset and for the grouping of food items, they have
applied their proposed local Malaysian food dataset. Additionally, they claimed
that they had performed very extensive convolutional networks (24 weight layers)
for food image classification. They proposed a more compound model containing of
multi convolutional layers blocks before the final fully connected layer. The results
confirm the significance of network depth in training visual representations. In com-
parison to our developed system, we used 48 layered Inception V3 and 152 layered
ResNet models for food detection. In addition, our dataset contained 23000 food
images. Our system was trained to detect 23 categories of food items. The system
also estimates the calorie of detected food items. Moreover, our system provided an
accuracy of 89% while detecting food items. The detected food item can be single
or multiple at times.

In the research paper by Joutou et al. 2009 [1] and Hoashi et al. 2010 [2] color,
surface, slope and Filter highlights are extracted from food pictures and a parti-
tioned classifier is prepared for each include. At last, all the classifiers are weighted
combined with the different parts of algorithms. Through their developed system
61.3% and 62.5% accuracy is accomplished for 50 and 85 categories of Japanese
foods utilizing 9 and 17 highlights (5-fold cross approval in 8500 pictures). This
system is additionally giving lower precision in terms of distinguishing food items
from a picture. The dataset contains an add-up to a picture of 8500 food items. On
the other hand, our system is exceedingly energetic in anticipating food items as
well as assessing calorie with a precision of 89.48%. Our framework was prepared
with more powerfully shaped pictures and the dataset was about 23000 pictures of
food items. Moreover, it is able to detect multiple food items from a single input

6

image containing different food items.

In Chen et al. 2012 [3], they address the issues of including descriptors within the
nourishment distinguishing proof issue and introduce a preparatory approach for
the amount estimation using depth data. Sparse coding is utilized within the Filter
and Local twofold design highlight descriptors and these highlights combined with
gabor and color highlights are utilized to speak to food items. A multi-label SVM
classifier is prepared for each feature and these classifiers are combined with a multi-
class Adaboost algorithm. For assessment, 50 categories of around the world food
items are used and each category contains 100 photos from distinctive sources such
as physically taken or from Web web collections. An overall accuracy of 68.3% is
accomplished and victory at top-N candidates achieved 80.6%, 84.8%, and 90.9%
precision appropriately when N equals 2, 3, and 5 in this way making portable ap-
plication down to earth. After examining these we are able counter our framework
with numerous subtle elements. To begin with, our framework was prepared with 23
classes and each class contained 1000 pictures. It gave a precision of 89.48% while
validating the dataset. Additionally, our framework not only recognizes food items
from a given picture but also predicts the calorie of the distinguished food items. In
addition, our framework can anticipate multiple food items at a time.

In Yoshiyuki et al. 2013 [4], researchers developed a mobile app for real-time mul-
tiple food recognition and named it as FoodCam. Within the system, users had to
draw a bounding circle over food items on the screen. Using the GrubCut-based
segmentation method this bounding circle was adjusted on the food region. The
bounding circle was segmented to regions. For each region, histograms of gradients
and Fisher Vector encoded feature vectors of color histograms computed and passed
into SVM. In the end SVM classifiers classified and predicted the food item. They
obtained an accuracy rate of 51.9% on their tests. Their main limitation is that,
while using the mobile app, the user has to draw a bounding circle over the food
items. It is quite inefficient. Besides, the accuracy they achieved is quite low com-
pared to our proposed system. In our system, we developed a web page where users
upload food images and our system predicts the food along with the calorie. We
have achieved 89.48% accuracy in our proposed model.

2.2 Convolutional Neural Network

CNN has added a new dimension to machine learning. In terms of image detection,
no feature can come close to CNN. That is why we have used convolutional neural
network for object or image detection. CNN can take a set of images of an object,
give the objects specific weights and biases and with these variables and can differ-
entiate each object or image by following a set of steps in Figure 2.1

7

Figure 2.1: Steps of CNN [20]

Convolutional neural network mainly takes an image as an input and transforms
it into a matrix with a default size. For a basic image it is basically simple to
perform but for a complex image, for example 1080p(1920x1080) dimension images,
the CNN needs to reduce the size of the matrix at the same time without losing
the main features (edges, patterns etc.) of the images so that the prediction stay
accurate [14] [16].

Now the images need a convolutional feature. For getting a convoluted feature from
the matrix sized image the algorithm uses a Kernel Matrix from where we can get
the convoluted feature [14].

While taking the image as an input, CNN uses some algorithms or methods such
as max pooling which selects the highest value from the matrix which is helpful for
images with highlighted features. There is another method for reducing the size
of images which is called average pooling which mainly collects the average value
of each pixel from the images. Average pooling is not widely used as max pooling.
Average pooling takes the average value from the matrix so the prediction is average
as well. So, we can say that max pooling performance is significantly better than
the average pooling [14] [16].

CNN mainly works in multiple layers where the first layer takes the shape of the
image as we have mentioned earlier. The output of this first layer will work as an
input for the second layer and the output of the second layer will work as an input
for the third layer and so on. This process will continue to perform until the last
and final layer. In this way, the first convolutional neural network is responsible for
extracting low level features (edges, gradient orientation etc.) of the images and the
deeper layers are responsible for extracting the high-level features from the images
[16]. For extracting high level features from complex images, CNN uses a fully con-
nected network. After making the images suitable for multi-layer perceptron, CNN
now flattens (Figure 2.2) the image into column vectors. These flattened images
are put into a neural network which we call feed forward network and then we use
back propagation for backtracking. For analyzing and finding errors, the process is
repeated in every iteration while training [14] [16].

8

Figure 2.2: Flattening Process[22]

Feed-forward neural networks are a kind of artificial neural network where the re-
lation between units does not perform a repetitive cycle. Feed forward is one of
the first one of its kind for image detection where it is much simpler than recurrent
neural network. The name feed-forward is mainly because it only forwards the data
to the next layer and since it has no loops it cannot be traversed backwards. Feed
forward network mainly takes a function f on a default size of inputs i so that f(i)=j
where we can say the training pairs (i, j) [17] which we can see in (Figure 2.3).

Figure 2.3: Feed forwarding network [12]

After feed forwarding we need back-propagation to traverse backwards to the pre-
vious layer. Back propagation is easy and simple to perform. Back propagation
mainly uses inputs and weights for calculating every neuron from the input layer
and calculates the error from the previous layer. After calculating the error, Back
propagation traverses back to the hidden layer or inner layer for adjusting the weight
in order to decrease the error. Back propagation keeps repeating this process until
the algorithm reaches the potential output. There are mainly two kinds of back
propagation and they are- Static back propagation and Recurrent back propagation
[21].

9

Static back propagation mainly works on static inputs and static outputs, so it is
mostly used for static image recognitions. On the other hand, recurrent back prop-
agation is mainly used for non-static inputs and outputs. Back propagation takes
full use of the chains of fully connected nodes and networks by traversing back to
hidden layers and it can work with any number of nodes and inputs [21] which is
shown in Figure 2.4

Figure 2.4: Back Propagation Process [21]

10

Chapter 3

Proposed Model

3.1 Dataset Description

3.1.1 Dataset Collection

Single Food Detector: Initially, we made a food dataset with 20 different food
items. We managed to put together 1000 images per food item and started to work
with our single food detector system. There were total 20000 images in our dataset
and we made sure that all of these images are put in the right categories. The 20
food classes we used for our dataset are:

• Chicken Wings, Chocolate Cake, Churros, Cupcakes, Deviled Eggs

• Donuts, French Fries, Fried Rice, Grilled Cheese Sandwich, Hamburger

• Hot and Sour Soup, Hotdog, Macarons, Oysters, Pancakes

• Pizza, Samosa, Seaweed Salad, Steak, Waffles

Multiple Food Detector: For constructing the dataset for multiple food detector,
we used the same 19 categories as the Single food detector. We did not use French
Fries for the multiple food detection and instead, we added 4 new categories in the
dataset. Around 23000 images from 23 different food classes were used in construct-
ing this dataset. Again, we made sure that all the food classes had the correct
images in them before training our algorithm. Both Training Dataset and Valida-
tion dataset were thoroughly checked in both of our datasets (Single and Multiple
food). The 23 food classes we used for our dataset are:

• Chicken Wings, Chocolate Cake, Churros, Cupcakes, Deviled Eggs

• Donuts, Fried Rice, Grilled Cheese Sandwich, Hamburger, Hotdog

• Hot and Sour Soup, Ice cream, Lobster Bisque, Macarons, Oysters, Pancakes

• Pizza, Samosa, Seaweed Salad, Steak, Waffles, Tacos, Tuna Tartare

11

3.1.2 Dataset Sample

We have used total 23 different food categories for making both of our datasets
and each food class contains 1000 images. As a result, it is very difficult to show
a good sample from the database. We tried to show at least 80 to 90 images from
our dataset and we managed to put together 90 images in total in Figure 3.1. This
image given below contains at least 3 to 4 images from each food category and it
is visible from this sample image that we used various types and calories of food
for constructing our dataset. In case of single food detector, we expect our system
to work in such a way that it can detect the name of these foods and predict their
calories correctly. We want our system to predict these food items from any input
image containing these items. On the other hand, our multiple food detector is
expected to predict all the food categories that can be seen in a single input image.
If there are 2 or 3 food classes in an image, our system will be able predict all of
them and with good accuracy. So, after constructing our datasets, we focused on
preprocessing our data.

Figure 3.1: Sample Images from the Dataset

3.1.3 Data Preprocessing

Single Food Detector

For the dataset we used for detecting single items from an image, we had to import
some necessary libraries, initialize directory and resize the images before extracting
features. These are the libraries we had to imaport in order to make our dataset
compatible with our model:

• os

12

• tensorflow

• numpy as np

• ImageDataGenerator

After importing these libraries, we initialized the directory of our dataset so that
the model can get the images and start resizing them and after that start extracting
features. We uploaded our whole dataset in the Google Drive and mounted and
copied the path in our code. We made a folder named 20 food predict and we
had a new folder there. In that new folder, there were 2 folders named Train and
Validation. We had to initialize the directories of these 2 folders later in the code.

After locating the dataset directory our model started extracting features and for
that, all of the images had to be reshaped as image height = 224 and image width
= 224.

This is the whole Data Preprocessing process that was done so that our model can
start extracting features from the images in our dataset.

Multiple Food Detector

For the dataset we used for detecting multiple items from an image, we had to follow
the same steps as before which are: importing some necessary libraries, initializing
directory and resizing the images before extracting features. These are the libraries
we had to import:

• os

• tensorflow

• numpy as np

• glob

• matplotlib.pyplot as plt etc.

After importing these libraries, we initialized the directory of our dataset so that
the model can get the images and start resizing them and after that start extracting
features. We uploaded our whole dataset in the Google Drive and mounted and
copied the path in our code. We made a folder named 23 food predict and we had
a folder named Multiple Food Detector there. In that folder, there were 2 folders
named Train and Validation. We had to initialize the directories of these 2 folders
later in the code.

Lastly, our images were resized so that our model can start extracting features and
the images were reshaped as Image height=299, Image Width= 299 and Number of
Classes = 23. After resizing the images, we proceeded to extract features using our
inception v3 model.

13

3.1.4 Feature Extraction Techniques

Residual Network (ResNet)

Residual Network (ResNet) is a type of deep convolutional network which was first
introduced by He et al. (2016) [9]. It was introduced to solve the “vanishing gradi-
ent” problem which was a barrier for achieving greater accuracy in image recognition.
The fundamental concept of ResNet can be described as follows –

To solve the complex problems and achieve great accuracy, we pile up additional
layers in a convolutional network. For example, for any kind of image recognition,
the first layer may identify the edges from the image, the second layer may detect
the color variant, the third layer may identify what sort of objects are present in
the image and so on. But there is a limit on how many layers we can stack in the
network because after a certain threshold, the error rate increases and the perfor-
mance degrades. We can show this using a graph [9] shown in Figure 3.2

Figure 3.2: Error Percentage for increased layers on Convolutional Network

From the left graph we can see that the percentage of errors occurred while training
images with 56 layers is relatively higher compared to using 20 layers. The graph
on the right shows error percentage which also indicates that the deeper the layer
goes, the higher the error rate becomes.

Here comes the concept of Residual Network (ResNet) which was introduced to train
and test thousands of convolutional layers with a strong performance. In this con-
cept, the authors [9] have used a term called Identity Shortcut Connection or Skip
Connection. This skip connection basically figures out which layers degrade the ac-
curacy and skip those in training. It collects all the layers that have no significance
(also known as Identity Mappings) in training and skips over them. As a result, it
compresses the model into fewer layers which enables the model to train faster. The
authors [9] have allowed the network to learn residual mapping instead of letting
the network learn underlying mapping. The residual blocks consist of layers. For
example, ResNet-50 has 50 layers of residual blocks (Figure 3.3). These blocks pile
up on top of each other to form the residual network. The authors [9] have argued
that the stacking of layers on top of each other does not degrade the accuracy and

14

performance of the model because only the identity mappings are stacked here and
the rest of the model works the same. As the irrelevant layers are skipped, it im-
proves the performance of the model. In the proposed residual network model, the
authors have denoted the underlying mapping as H(x) and let the network fit resid-
ual mapping which gives H(x) := f(x) - x. Finally, the original mapping is casted
into H(x) := f(x) + x. Here, F(x) is denoted as the residual function. The authors
[9] have claimed that it is easier to get to the solution of optimization of residual
mapping F(x) than optimizing the underlying mapping H(x). The structure of the
residual block is shown below:

Figure 3.3: Residual Block [9]

The main architecture of ResNet (Figure 3.4) is inspired by the design of VGGNet-
19. The VGGNet is a type of convolutional neural network that has introduced the
importance of depth of the network. It basically consisted of 19 layers with mostly
3X3 filters. This architecture is combined with the identity shortcut connections to
transform the model into the residual network. The residual network uses global
average pooling which is similar to the one used in GoogLeNet. It was learned with
a network depth of upto 152 layers which is known as ResNet-152. The researchers
have found out that the ResNet shows better accuracy and it is computationally
more efficient than GoogLeNet and VGGNet.

15

Figure 3.4: From the Left: the VGG-19 model [5], in the Middle: the plain 34-layer
network and in the Right: Residual Network with 34 layers [9]

Inception V3

Inception V3 was first introduced in a research paper developed by Szegedy et al.[10].
It was developed with a goal to modifying the earlier version of Inception architec-
tures by reduceing the computational complexity. In several biomedical applica-
tions GoogLeNet [8] achieved tremendous classification performance and Inception
V3 turns out to be an extended version of this network. It is a 48 layered network
architecture. In terms of computational efficiency, Inception Networks have outrun
the VGGNet. A change is made in an Inception Network only when it is confirmed
that computational advantages are not lost. Several techniques including factorized
convolutions, regularization, dimension reduction etc. are applied to optimize the
network and in an Inception v3 model. This results in losing the constraints and
obtaining an easier model.

Inception architecture:

1. Factorized Convolutions: It helps reducing computational efficiency by re-
ducing the number of parameters involved in a network. In addition, It keeps a
check on organize proficiency.

16

2. Smaller Convolutions: For faster training, it replaces bigger convolutions with
smaller convolutions. For example: A “5 X 5” convolution having 25 parameters,
replacing it by two “3 X 3” filters has only 18(3x3+3x3) parameters.

Figure 3.5: Replacing to smaller convolution. Recreated from [18]

Analyzing the figure, we can see that a 3x3 convolution in the middle and a fully-
connected layer is fully below it. As both 3x3 are seen to be sharing weights among
themselves, total number of computation can easily be reduced.

3. Asymmetric convolutions: It is seen that a “3 x 3” can be replaced by 1x3
convolution and it is followed by a 3x1 convolution. If we replace a 3x3 convolution
by a 2x2 convolution, total number of parameters are found higher than proposed
asymmetric convolution.

Figure 3.6: Basic Inception module. Recreated from [8]

Figure 3.7: Expanded Inception module with filter blank. Recreated from [8]

17

4.Auxiliary Classifier: During training, an auxiliary classifier is seen to be in-
serted between layers. The loss incurred here is also added to main network loss.
In Inception v3, the working mechanism of an auxiliary classifier is to work as a
regularizer.

Figure 3.8: Auxiliary Classifier. Recreated from [18]

5. Grid size reduction: Pooling operation results in grid reduction. Besides, a
more efficient techniques is proposed to combat the bottlenecks of computational
cost.

Figure 3.9: Grid size reduction. Recreated from [18]

Finally we get the complete architecture of Inception v3 utilizing all these concepts.

Figure 3.10: Inception V3 (Complete Architecture). Recreated from [10]

18

Key features of Inception V3 model:

1. Use of RMSprop:

• Gradient based optimization technique used in neural network training

• Normalizes gradient by moving average of squared gradient

• Uses adaptive learning rates instead of treating as a hypermeter

• Change in learning rate over time

2. Use of Batch Normalization:

• Standardizes the inputs to a layer for each mini-batch

• Significantly affects the system by stabilizing the learning process

• Training epochs being reduced dramatically while training

• Sets the mean and standard deviation of inputs for the layer as mean observed
during training

• Can be modified into Batch Renormalization

3. Use of 7×7 factorized Convolution

3.2 Model Description

3.2.1 Model Description for Single Food Detector

The whole workflow of our work can be described using a work-flow diagram. From
this work-flow diagram shown in Figure 3.11, we can provide an overview of our
work and all of the steps we followed to build our system. This is the model we used
to build up the single food item detector:

Figure 3.11: Work-Flow Diagram of the Proposed System

19

Constructing Dataset: Firstly, when we were building the single food detector, we
wanted to work with 20 different food categories. We collected around 20000 images
for our dataset (1000 images per food category) and divided them into Training
dataset and Validation dataset.

• Exactly used 15097 images belonging 20 classes in the Training dataset

• Exactly used 4223 images belonging to 20 classes for the Validation dataset

Data Preprocessing: In order to make a dataset compatible with the system,
some steps need to be followed. So, we had to import necessary libraries, initialize
directory, resize all the images in our dataset before extracting features, standardize
the data and assign different classes to different categories of food. These are the
steps that we followed for preprocessing our entire dataset.

Extracting Features: After we used the Average pooling layer of CNN to identify
unique features from all the images in our dataset and these features were used to
train the CNN.

Transfer Learning: After extracting features from all the images in our dataset,
we started building the ResNet152V2 model. We used ResNet152 version 2 for our
ResNet model and used imagenet as weights. We will keep the extracted features
from the 20 classes of our dataset in the in the last layer of the pre-trained ResNet
model to get better prediction accuracy. This whole process is called Transfer Learn-
ing.

Figure 3.12: Last Dense Layer of ResNet Model

Training CNN: After finalizing required models, we proceeded to train the CNN
(Convolutional Neural Network). We fed the features to CNN which were extracted
using ResNet152V2 model. We tried different epochs for training but the final epoch
and batch size we used Batch size = 32, Image height = 224, Image weight = 224,
Number of classes =20, Epochs = 30.

Save Model: We saved our model after the training was done and then started
working on our webpage. We saved our training code as 20f-predicts in our local
directory.

Designing Webpage: We designed our webpage as our requirement. We wanted
our system to take an image as input and give us the food name and food calorie
as output. So we kept an upload image portion in our webpage and then we set the
output to be shown right beside the uploaded image.

20

Deploying Model into the Webpage: After designing the webpage, we im-
ported necessary libraries such as sys, os, re, tensorflow, flask, glob and we also had
to write the prediction output code here for all the food categories. Then we loaded
our trained model (model/my h5 model.h5) in the deployment app.py code.

Uploading Images: After deploying the model, we collected some test images to
see if our model is predicting right or not. Then we started uploading images into our
webpage and started analyzing the output. We collected the testing images mostly
from the food groups in Facebook, Google and some of the images were taken from
our personal mobile devices as well.

Analyzing Outputs: After uploading an image, we have to click a button named
predict and the webpage showed us the name of the food that was predicted from the
uploaded image along with the calorie count. After getting the output, we had to
analyze if the prediction was correct or not, the percentage of the given prediction.

3.2.2 Model Description for Multiple Food Detector

The whole workflow of our work can be described using a work-flow diagram. From
this work-flow diagram shown in Figure 3.13, we can provide an overview of our
work and all of the steps we followed to build our system. These are the major
procedures of our code and even if some minor procedures are not shown here, they
are included inside these major procedures.

Figure 3.13: Work-Flow Diagram of the Proposed System

Constructing Dataset: Firstly, when we were building the multiple food detec-
tor, we wanted to increase food categories and so we decided to add 3 more food
categories with the previous dataset (23 classes in total). We collected around 23000
images for our dataset and again divided them into Training Dataset and Validation
Dataset as before. We used exactly 18413 images belonging to 23 classes for Train-
ing Dataset and exactly 4538 images belonging to 23 classes for Validation Dataset.

Data Preprocessing: In order to make a dataset compatible with the system,
some steps need to be followed. So, we had to import necessary libraries, initialize
directory, resize all the images in our dataset before extracting features, standardize

21

the data and assign different classes to different categories of food. These are the
steps that we followed for preprocessing our entire dataset.

Building Inception V3 Model: After finishing data preprocessing, we focused
on building the inception v3 model which will be used to extract features from the
images.

Extracting Features: After building the inception v3 model, we used the model
to assign individual weight to all the images in our dataset and these weights were
used to train the CNN. The weights were saved in a file named inception model.hdf5.

Training CNN: After finalizing required models, we proceeded to train the CNN
(Convolutional Neural Network). We fed the features to CNN which were extracted
using inception v3 model. We tried different epochs for training but the final epoch
that we used:

• Epochs = 12, Batch Size= 16

• Train sample = 16046, Validation Sample= 3959

Save Model: We saved our model after the training was done and then started
working on our webpage. We saved all of our training, visualize and inception v3
code in the train folder.

Designing Webpage: We designed our webpage as our requirement. We wanted
our system to take an image as input and give us the food name and food calorie
as output. So we kept an upload image portion in our webpage and then we set the
output to be shown right beside the uploaded image.

Deploying Model into the Webpage: After designing the webpage, we imported
necessary libraries such as tensorflow, flask, glob, prettytable and we also had to
initialize the food categories and the respective food calories for those categories.
Then we loaded our trained model in the deployment app.py code. Uploading Im-
ages: After deploying the model, we collected some test images to see if our model
is predicting right or not. Then we started uploading images into our webpage and
started analyzing the output.

Analyzing Outputs: After uploading an image, we have to click a button named
predict and the webpage showed us the name of the food/foods that were predicted
from the uploaded image along with the calorie count and prediction accuracy. We
also wrote the code in such way so that we get a table of prediction chart for every
image we upload. This chart is shown in the command prompt.

22

Chapter 4

Experimentation

4.1 Single Food Detector

Firstly, we focused on building a system that will be able to detect one food item
from an image and also show the calorie count for that particular food item. As we
mentioned earlier, we used Max-pooling layer from CNN to extract features from
our dataset images and we stored these features or weights of the images into our
pre-trained ResNet model. After saving the weights in the model, we started train-
ing our CNN using to that model. We used activation = relu for the first two Dense
layers and for the output Dense layer, we used activation = softmax for units = 20.

Then, we initialized our ResNet model and then we used the dense layer for class
prediction. We used dropout to prevent our model from over-fitting. We used ReLu
activation function for both of our dense layers and finally, for initializing the out-
put, we used softmax activation function for our last layer. After initializing the
activation functions, we initialized loss function as categorical crossentropy and we
used learning rate = 0.001. Then we used accuracy as matrics.

Categorical Cross-Entropy loss is used to train a CNN to provide output as predic-
tion percentages for all the images given as input. It is mainly used for multi-class
classification. We used ReduceLROnPlateau and reduced the learning rate to 0.0001
after 19th epoch as our system was not learning properly. As we mentioned before,
we used epochs=30 and batch size=32 for training our CNN. After the training was
done for all 30 epochs, we got the following result from our algorithm shown in
Figure 4.1:

Figure 4.1: Train loss, Train accuracy, Validation loss, Validation accuracy

From the figure 4.1, we can see that we got 93% accuracy and 80.61% validation

23

accuracy for 30 epochs. We can also see that, as the epoch count goes up, the loss
percentage goes down for training. Moreover, as the epoch count goes up, accuracy
of our training also goes up. As we put fewer images for validation dataset, the
change in validation accuracy and validation loss are not as consistent as training
accuracy and training loss.

We wanted to get at least 90% training accuracy from our system and we got 93.33%.
As a result, we saved this trained model and worked with this saved model in
our webpage. We linked our model to our webpage as followed: Model Path=
‘model/my model.h5’ Model= load model (Model Path)

After deploying this model, we tested our webpage by uploading some test images
and started analyzing the outputs.

4.2 Multiple Food Detector

We now focus on detecting multiple food in an image. For this we build a model
using inception v3 model to get higher accuracy for multiple food image. The model
extracted features from all the images in the dataset and saved them as weights.
Then we used these saved weights in the inception v3 model to train our CNN.

Firstly, we initialized our inception V3 model and then we used the dense layer for
class prediction. We again used a dropout function to prevent our model from over-
fitting. We used ReLu activation function for both of our dense layers and finally, for
predicting the output, we used sigmoid activation function for our last layer because
we are using categorical crossentrophy for our algorithm. Finally, we used learning
rate=0.0001 and momentum=0.9.

After initialization we have used learning rate=0.0001 and momentum=0.9 and have
used accuracy metrics. Then we started training our CNN according to our saved
model. This time we have used 12 epochs and batch size=16.We got the following
result shown in Figure 4.2:

Figure 4.2: Train loss, Train accuracy, Validation loss, Validation accuracy

From the above figure we can see that for 12 epochs we got 89.48% accuracy and
89.93% validation accuracy. Moreover, as the epoch count goes up, accuracy of our
training also goes up. As we put fewer images for validation dataset, the change
in validation accuracy and validation loss are not as consistent as training accuracy

24

and training loss. We can show the changes in loss and accuracy with respect to
epochs as these following 2 graphs in Figure 4.3 and Figure 4.4:

Figure 4.3: Changes in loss with respect to epochs

From the above figure, we can see that as epoch count goes up, training loss goes
down and the validation loss goes down as well. At epoch=10, loss is 61.32% and
validation loss is at 55.54%. When the epoch goes to 11, loss comes down to 58.66%
and validation loss goes down to 54.13%. Finally, when the epoch is at 12, loss
percentage is the lowest and it is at 55.91% and the validation loss goes down to
54.25%. This is how the loss and validation loss goes down with respect to increasing
epochs. The loss and validation loss are at their highest at the start of the training
and they are at their lowest percentage in the last epoch.

Figure 4.4: Changes in accuracy with respect to epochs

From the above figure, we can see that as epoch count goes up, training accuracy
goes up and the validation accuracy goes up as well. At epoch=10, accuracy is
88.06% and validation accuracy is at 89.63%. When the epoch goes to 11, accuracy
goes up to 88.80% and validation accuracy goes down to 89.57%. Finally, when the

25

epoch is at 12, accuracy percentage is the highest and it is at 89.48% and the valida-
tion accuracy goes up to 89.93%. This is how the accuracy and validation accuracy
go up with respect to increase in epochs. The accuracy and validation accuracy
are at their highest at the last epoch and they are at their lowest percentage in the
starting epoch.

After the training was done, we saved our model and initialized our saved model in
our webpage. We linked our webpage with our model as followed:
After finishing the code for deployment, we opened our webpage in our browser and
started uploading test images and analyzing our outputs. We designed our webpage
in a way that we can upload an image and get the prediction for that image in real
time. The design of our webpage is as shown in the Figure 4.5:

Figure 4.5: Webpage Layout

These were the experiments that we conducted with our systems (Single and Mul-
tiple food detectors). At first, we build the system in a way so that it can detect
single food item from an input image. After we have seen that our system was able
to detect food items successfully, we wanted to change our model so that our system
can detect multiple food items from a single image. So we started using inception
v3 model and finally, we were able to make a complete Food Detection System.

26

Chapter 5

Result Analysis

5.1 Analysis on Single Food Detection

After designing the webpage, we started to test our webpage by uploading some
images and analyzing the outputs. Firstly, we had to click the choose button and it
took us to our local directory. We uploaded an image of deviled eggs and uploaded
the image shown in Figure 5.1 into our webpage.

Figure 5.1: Test image 1

After uploading the image, we had to click the predict button and after clicking the
button, our page showed the output for this image as Figure 5.2:

Figure 5.2: Output for test image 1

From this input image, we can see that these are deviled eggs and our Single Food
Detector System was already trained with around 1000 images of deviled eggs. So,

27

our system was successful in detecting the food item and it also printed the calories
for deviled eggs with 100% confidence. We also got a prediction chart for all the 20
foods in our dataset as followed:

Food Category Prediction Percentage
Chicken Wings 79.86%
Chocolate Cake 22.16%

Churros 33.14%
Cup Cakes 92.02%

Deviled Eggs 99.97%
Donuts 56.90%

French Fries 31.53%
Fried Rice 34.78%

Grilled Cheese Sandwich 52.91%
Hamburger 45.96%

Hot and Sour Soup 30.94%
Hot Dog 55.03%
Macarons 53.86%
Oysters 62.63%

Pancakes 87.87%
Pizza 24.59%

Samossa 45.63%
Seaweed Salad 4.3%

Steak 19.99%
Waffles 82.48%

Table 5.1: Prediction percentage for test image 1

From the image of Deviled eggs, our system predicted that:
The probability of the image being Chicken wings is 79.86%
The probability of Chocolate Cake is 22.16%.
The probability of Churros is 33.14%.
And our system predicted that the probability of the image being Deviled eggs is
99.98%.
The table 5.1 is showing the probability of all our food items after detecting the
input image and it is only printing the outputs where prediction percentage is above
96%. To be more specific, we kept the threshold of our prediction percentage at 96
and any food item below that accuracy will not be shown as output.

Then we proceeded to test our system with more images. We uploaded another
image and clicked the predict button and our system showed the output like shown
in Figure 5.3:

28

Figure 5.3: Output for test image 2

As we can see from this image, this is a chocolate cake. As our system was trained
with 1000 images of chocolate cake, our system was able to detect it from the given
image. It also printed the calories per slice in a chocolate cake and printed the
accuracy as well. We also got a probability chart for all the 20 food categories in
our dataset as followed:

Food Category Prediction Percentage
Chicken Wings 44.26%

Chocolate Cake 99.99%
Churros 57.65%

Cup Cakes 92.21%
Deviled Eggs 47.90%

Donuts 83.82%
French Fries 33.86%
Fried Rice 65.59%

Grilled Cheese Sandwich 69.71%
Hamburger 12.98%

Hot and Sour Soup 13.02%
Hotdog 14.81%

Macarons 45.40%
Oysters 17.45%

Pancakes 71.89%
Pizza 45.86%

Samosa 21.81%
Seaweed Salad 40.38%

Steak 85.08%
Waffles 58.16%

Table 5.2: Prediction percentage for test image 2

From the image of Chocolate cake, our system predicted that:
The probability of the image being Chicken wings is 44.26%
The probability of Deviled eggs is 47.90%
The probability of Churros is 57.66%

29

And our system predicted that the probability of the image being Deviled eggs is
99.99%.
The Table 5.2 is showing the probability of all our food items after detecting the
input image and it is only printing the outputs where prediction percentage is above
96%. To be more specific, we kept the threshold of our prediction percentage at
96 and any food item below that accuracy will not be shown as output. Here only
Chocolate cake is detected because only chocolate cake has prediction percentage
above 96%.

5.2 Analysis on Multiple Food Detection

After designing our webpage, we started to test out system with some sample images.
We chose an image using the Choose button and uploaded an image in our website
(Figure 5.4). After uploading, our webpage looked like this:

Figure 5.4: Test image 3

After uploading this image, we clicked the Predict button and the output was shown
like the image given below in Figure 5.5:

Figure 5.5: Output for test image 3

This test image contained Hamburgers, Donuts, Macarons and Milkshakes. We
had hamburgers, donuts and macarons in our dataset and our CNN was trained to
predict these items from an image. As we did not have milkshakes in our dataset,
our system did not detect milkshake. As we can see from the output, our system
successfully predicted that the image contained hamburgers, donuts and macarons

30

as well. Our system also printed the calories for these food items and also showed
the prediction accuracy as output. We also got a probability chart for this image
for all the 23 categories from our dataset. The probability chart was shown in the
command prompt as followed:

Food Category Prediction Percentage
Chicken Wings 25.10%
Chocolate Cake 24.65%

Churros 89.12%
Cup Cakes 88.44%

Deviled Eggs 54.64%
Donuts 99.89%

Fried Rice 25.06%
Grilled Cheese Sandwich 92.29%

Hamburger 99.69%
Hot and Sour Soup 09.47%

Hotdog 93.66%
Ice Cream 56.85%

Lobster Bisque 41.54%
Macarons 99.73%

Oysters 28.03%
Pancakes 95.17%

Pizza 07.99%
Samosa 23.62%

Seaweed Salad 01.89%
Steak 11.76%
Sushi 78.32%
Tacos 10.68%

Tuna Tartare 30.79%
Waffles 82.20%

Table 5.3: Prediction percentage for test image 3

From the image shown in Figure: 5.5, our system predicted that:
The probability of the image being Chicken wings is 25.10%
The probability of Donuts is 99.88%
The probability of Hamburger is 99.69%
And our system predicted that the probability of the image being Macarons is
99.72%.

The table 5.3 is showing the probability of all our food items after detecting the
input image and it is only printing the outputs where prediction percentage is above
96%. To be more specific, we kept the threshold of our prediction percentage at 96
and any food item below that accuracy will not be shown as output. Here Ham-
burger, Donuts and Macarons are detected because their prediction percentage are
above 96%.

Again, we tested our system with new images. We chose an image from our local

31

directory and uploaded the image in our webpage. After uploading, we clicked the
predict button and then we got this output as given below in Figure 5.6:

Figure 5.6: Output for test image 4

From this test image, we can see that there are 2 pizzas and a hamburger. Our
system was trained with 1000 images of hamburger and also trained with 1000 im-
ages of pizza. As a result, our system was able to detect both of these food items
successfully. Our system is saying that it is 98% certain that there is a hamburger
in this image and it is 99% confident that there are pizzas in this image as well. We
also got a probability chart for this image for all the 23 categories from our dataset.

From this image, our system predicted that:
The probability of the image being Chicken wings is 27.10%
The probability of Fried Rice is 59.50%
The probability of Hamburger is 98.26%
And our system predicted that the probability of the image being Pizza is 99.16%.

The table 5.4 is showing the probability of all our food items after detecting the input
image and it is only printing the outputs where prediction percentage is above 96%.
To be more specific, we kept the threshold of our prediction percentage at 96 and
any food item below that accuracy will not be shown as output. Here Hamburgers
and Pizza are detected because their prediction percentages are above 96%. The
probability chart was shown in the command prompt as followed:

32

Food Category Prediction Percentage
Chicken Wings 27.10%
Chocolate Cake 20.37%

Churros 19.72%
Cup Cakes 63.96%

Deviled Eggs 78.12%
Donuts 49.81%

Fried Rice 59.50%
Grilled Cheese Sandwich 53.69%

Hamburger 98.26%
Hot and Sour Soup 28.49%

Hotdog 65.89%
Ice Cream 25.05%

Lobster Bisque 21.19%
Macarons 54.03%
Oysters 88.23%

Pancakes 79.65%
Pizza 99.17%

Samosa 35.62%
Seaweed Salad 09.45%

Steak 67.05%
Sushi 85.84%
Tacos 59.89%

Tuna Tartare 85.08%
Waffles 58.16%

Table 5.4: Prediction percentage for test image 4

Analyzing Top Food Items:
For this section, we randomly chose 5 food items and 4 test images shown in Figure
5.7 which have these selected food items and we analyzed the prediction accuracy for
these 5 food classes.We got prediction percentages for all the 23 food classes in our
command prompt. We only took the prediction percentages for these 5 food items
and showed the percentages in a tabular form. In the table 5.5, we have shown all
the percentages respective to the 4 images uploaded in our webpage as input:

Figure 5.7: More Test images

33

Test Image No. Pizza Hamburger Hotdog Steak Oysters
5 97.37% 98.02% 89.24% 44.69% 86.08%
6 71.75% 62.25% 19.30% 99.98% 49.06%
7 50.77% 88.25% 24.02% 48.80% 99.88%
8 58.94% 97.74% 99.72% 97.89% 36.18%

Table 5.5: Output comparison for some test images

5.3 Limitations

In all of the papers we read on the food detection, they had some limitations in their
system. Some of them had low accuracy, some of them could not detect multiple
foods accurately and so on. In this paper, we tried different models to overcome
these limitations and we managed to overcome some of these limitations as we have
shown earlier with our result analysis. However, we found out that our Multiple
Food Detecting System has some flaws too. These flaws are not severe but as they
are the limitations of our system and as a result, we have to show them. All of our
limitations occurred for the inconsistency in the images in our Dataset. For example:

• Hot and Sour Soup and Lobster Bisque in our Dataset are pretty similar. So,
when we upload some test images of Lobster Bisque in our system, it was
predicting that the image is of both Lobster Bisque and Hot and Sour Soup.

• Another example is: Hot Dogs and Tacos are similar looking and when we
input some images of Tacos, our system predicts that the image can be both
Tacos and Hot Dog. Tacos will have better accuracy but as we kept the
threshold at 96, Hot Dog is also shown in the output.

• Lastly, the angle at which the image is taken is very important for our system to
detect food items accurately. For example: all of the images in the Hamburger
dataset are taken from one side so that the patty is visible. So, if we input
an image of Hamburger from the top view, the patty will not be seen by
our system and so our system will not be able to detect Hamburger in that
scenario.

Finally, we are certain that if we work with better and bigger dataset, we can surely
overcome these limitations.

34

Chapter 6

Conclusion and Future Work

Our main purpose of this study is to identify the calorie of the food from a given
image which will help people overcome diseases like obesity, diabetes, heart problem,
kidney failure, high blood pressure and other diseases caused by being overweight.
We believe that if people know about the calories of the food, it will help them
to lead a healthier life by keeping track of how much calories they are consuming.
We have researched and also looked into various methods for the food recognition
process. We have studied deep learning and machine learning and feature extraction
techniques such as ResNet, MobileNet, Inception etc. We have also studied Max-
Pooling and some api such as keras, tensorflow etc.

CNN is most suitable for image or object detection processes. CNN can provide or
give better outputs than other machine learning and deep learning algorithms. In
case of performance, CNN outperforms other neural networks and machine learning
and deep learning algorithms on conventional 2D or 3D image recognition tasks and
other object detection tasks. CNN’s are also useful for single dimension problems
like time series, and in our case, 3D image classification where the images we used
are food. In terms of statistical results, they also have high calculating efficiency in
terms of object or image classification system.

At this stage of our research, we focused on building a Webpage based on CNN
algorithm which is able to classify different types of foods and show us the nutrition
value of these foods. In the upcoming stages, we are planning on developing a mo-
bile app that not only identifies the food items with a great accuracy from an image
captured on the smartphone but also it will review the medical reports of the user
to suggest whether the amount of calorie should be taken or not. Moreover, in the
near future we want to work with a bigger dataset for example: a dataset of 100 or
more Bengali food items using this model we have shown in this paper. As such a
dataset is not available, we are thinking of making our own dataset with 2000 or
more images for each food category.

We think this app will be very beneficial for this generation because people are
obsessed with junk foods these days and they also do not want to get obese. So,
while eating these high calories contained foods, they just have to take a picture
using our app and can keep track of how many calories they are consuming in that
particular time.

35

Bibliography

[1] T. Joutou and K. Yanai, “A food image recognition system with multiple
kernel learning,” in 2009 16th IEEE International Conference on Image Pro-
cessing (ICIP), IEEE, 2009, pp. 285–288.

[2] H. Hoashi, T. Joutou, and K. Yanai, “Image recognition of 85 food categories
by feature fusion,” in 2010 IEEE International Symposium on Multimedia,
IEEE, 2010, pp. 296–301.

[3] M.-Y. Chen, Y.-H. Yang, C.-J. Ho, S.-H. Wang, S.-M. Liu, E. Chang, C.-H.
Yeh, and M. Ouhyoung, “Automatic chinese food identification and quantity
estimation,” in SIGGRAPH Asia 2012 Technical Briefs, 2012, pp. 1–4.

[4] Y. Kawano and K. Yanai, “Real-time mobile food recognition system,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2013, pp. 1–7.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] V. Bettadapura, E. Thomaz, A. Parnami, G. D. Abowd, and I. Essa, “Lever-
aging context to support automated food recognition in restaurants,” in 2015
IEEE Winter Conference on Applications of Computer Vision, IEEE, 2015,
pp. 580–587.

[7] E. J. Gallagher and D. LeRoith, “Obesity and diabetes: The increased risk
of cancer and cancer-related mortality,” Physiological reviews, vol. 95, no. 3,
pp. 727–748, 2015.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[10] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

[11] N. C. Institute, Obesity and cancer risk, https ://www.cancer .gov/about-
cancer/causes-prevention/risk/obesity/obesity-fact-sheet, 2017.

[12] T. Gupta, Deep learning: Feedforward neural network, Dec. 2018. [Online].
Available: https : / / towardsdatascience . com / deep - learning - feedforward -
neural-network-26a6705dbdc7.

36

https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet
https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet
https://towardsdatascience.com/deep-learning-feedforward-neural-network-26a6705dbdc7
https://towardsdatascience.com/deep-learning-feedforward-neural-network-26a6705dbdc7

[13] N. Martinel, G. L. Foresti, and C. Micheloni, “Wide-slice residual networks
for food recognition,” in 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), IEEE, 2018, pp. 567–576.

[14] S. Saha, A comprehensive guide to convolutional neural networks-the eli5 way,
Dec. 2018. [Online]. Available: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[15] M. A. Subhi and S. M. Ali, “A deep convolutional neural network for food
detection and recognition,” in 2018 IEEE-EMBS Conference on Biomedical
Engineering and Sciences (IECBES), IEEE, 2018, pp. 284–287.

[16] R. Balsys, Convolutional neural networks (cnn) explained step by step, Feb.
2020. [Online]. Available: https://medium.com/analytics-vidhya/convolutional-
neural-networks-cnn-explained-step-by-step-69137a54e5e7.

[17] Feedforward neural network, Dec. 2020. [Online]. Available: https://en.wikipedia.
org/wiki/Feedforward neural network.

[18] V. Kurama, A guide to resnet, inception v3, and squeezenet, Jun. 2020. [On-
line]. Available: https://blog.paperspace.com/popular-deep-learning-architectures-
resnet-inceptionv3-squeezenet/.

[19] W. H. Organization, Obesity and overweight, https://www.who.int/news-
room/fact-sheets/detail/obesity-and-overweight, 2020.

[20] Shashikant, Convolutional neural network: A step by step guide, Jan. 2020.
[Online]. Available: https://towardsdatascience.com/convolutional- neural-
network-a-step-by-step-guide-a8b4c88d6943.

[21] Back propagation neural network: Explained with simple example. [Online].
Available: https://www.guru99.com/backpropogation-neural-network.html.

[22] Using the keras flatten operation in cnn models with code examples. [Online].
Available: https://missinglink.ai/guides/keras/using-keras-flatten-operation-
cnn-models-code-examples/.

37

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://medium.com/analytics-vidhya/convolutional-neural-networks-cnn-explained-step-by-step-69137a54e5e7
https://medium.com/analytics-vidhya/convolutional-neural-networks-cnn-explained-step-by-step-69137a54e5e7
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://blog.paperspace.com/popular-deep-learning-architectures-resnet-inceptionv3-squeezenet/
https://blog.paperspace.com/popular-deep-learning-architectures-resnet-inceptionv3-squeezenet/
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://towardsdatascience.com/convolutional-neural-network-a-step-by-step-guide-a8b4c88d6943
https://towardsdatascience.com/convolutional-neural-network-a-step-by-step-guide-a8b4c88d6943
https://www.guru99.com/backpropogation-neural-network.html
https://missinglink.ai/guides/keras/using-keras-flatten-operation-cnn-models-code-examples/
https://missinglink.ai/guides/keras/using-keras-flatten-operation-cnn-models-code-examples/

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Tables
	Nomenclature
	Introduction
	Introduction
	Problem Statement
	Research Objective

	Background
	Literature Review
	Convolutional Neural Network

	Proposed Model
	Dataset Description
	Dataset Collection
	Dataset Sample
	Data Preprocessing
	Feature Extraction Techniques

	Model Description
	Model Description for Single Food Detector
	Model Description for Multiple Food Detector

	Experimentation
	Single Food Detector
	Multiple Food Detector

	Result Analysis
	Analysis on Single Food Detection
	Analysis on Multiple Food Detection
	Limitations

	Conclusion and Future Work
	Bibliography

		2021-01-20T19:43:02+0600
	Dr. Md. Golam Rabiul Alam

