
UAV Assisted Cooperative Caching
on Network Edge using Multi Agent Actor Critic

Reinforcement Learning

by

Sadman Araf
17101354

Adittya Soukarjya Saha
17101148

Salman Ibne Eunus
17101051

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
December 2020

© 2020. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Sadman Araf
17101354

Adittya Soukarjya Saha
17101148

Salman Ibne Eunus
17101051

i

user
Stamp

user
Stamp

Approval

The thesis/project titled “UAV Assisted Cooperative Caching on Network Edge
using Multi Agent Actor Critic Reinforcement Learning” submitted by

1. Sadman Araf (17101354)

2. Adittya Soukarjya Saha (17101148)

3. Salman Ibne Eunus (17101051)

Of Fall, 2020 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on December, 2020.

Examining Committee:

Supervisor:
(Member)

Sadia Hamid Kazi
Deputy Head and Assistant Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Dr. Mahbub Majumdar
Professor

Department of Computer Science and Engineering
Brac University

ii

통신왕
Stamp

Abstract

In recent times, Multi-access edge computing (MEC) has been introduced to assist
cloud servers by bringing the computation closer to the edge. This is a well-known
replacement to deal with the strict latency faced by users while retrieving contents
from long-distance data centers. To cope up with this latency while simultaneously
improving users’ QOS poses a limitation which can be handled through caching at
edge nodes. However, where to cache and what to cache so that a higher cache
hit rate is achieved also poses another significant issue which is addressed in this
research. In this paper we have approached the problem of dynamic caching along
with the selection of edge node that leads to better cache hit rate. We have also
proposed the use of UAVs as aerial Base Station(BS) to assist in peak hours where
a ground base station is not enough to support the surge in user requests.It also
elaborates the optimal relocation of UAVs to e↵ectively support user mobility, which
then caters a cluster of users by the K-means clustering algorithm. In addition, to
maximize the cache hit ratio we have proposed a cooperative deep reinforcement
learning algorithm which ensured a global increase in cache hit ratio and also an
e�cient allocation of storage. We have shown simulations on UAV reallocation based
on user mobility patterns and also achieved higher global cache hit ratio using our
proposed multi-agent actor-critic algorithm. In this paper, emphasis was given on
how to cache and where to cache based on the cooperation of UAV and GBS which
open doors for further research.

Keywords: Unmanned aerial vehicle(UAV), Cooperative Edge Caching, signal-to-
noise ratio, multi-agent deep deterministic policy gradient, K-means clustering

iii

Dedication

This thesis is dedicated to our parents for their limitless support and encouragement.

iv

Acknowledgement

Firstly, all praise to the Almighty God for whom our thesis have been completed
without any major interruption even throughout this time of the pandemic.

Secondly, to our supervisor, Sadia Hamid Kazi and co-supervisor, Dr. Md. Golam
Rabiul Alam, for their continuous support, immense knowledge, motivation and en-
thusiasm in our work. Without their guidance at each step, this paper would never
have been accomplished.

Lastly, to our parents who have been the main pillar of strength for us. With their
never ending support and prayers, we are now on the verge of our graduation.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature x

1 Introduction 1

1.1 Motivation . 1
1.2 Problem Definition . 2
1.3 Research Objectives . 3
1.4 Thesis Orientation . 6

2 Background Study 7

2.1 Cloud vs Fog vs Edge Computing . 7
2.2 Caching in Edge Computing . 8
2.3 Multi Access Edge Computing . 10
2.4 Computing in Mobile Edge Networks 10

2.4.1 Minimization of Latency . 11
2.4.2 Maximization of Network Capacity 11
2.4.3 Minimization of Energy Consumption 11

3 Related Work 12

4 Proposed System Architecture 18

4.1 System Model . 18
4.2 Problem Formulation . 19

4.2.1 Computation model . 20
4.2.2 Mobility Model . 21

vi

4.2.3 Communication Model . 21
4.2.4 Caching Model . 24

5 Cache Node Selection and Cooperative Caching Framework 26

5.1 Cache Node Selection Using K-Means Clustering 26
5.2 Caching using Multi-Agent Actor-Critic 29

5.2.1 Reward Function, Feature Selection and Action Space: 31
5.2.2 Caching Methodology . 34

6 Simulation Results 37

6.0.1 Data Pre-processing and Visualization 37
6.0.2 Cache Node Selection Simulation 41
6.0.3 Caching using MAAC . 44

7 Conclusion 57

Bibliography 59

vii

List of Figures

1.1 Movement of nodes in the Random Waypoint Model [4] 4

2.1 Block diagram for computing edge, fog and cloud computing in terms
of number of devices and locations in the hierarchy [5]. 7

2.2 Comparison of expected computation delays when data is o✏oaded
to edge, fog and cloud for processing and receiving the response back
to the end device [5]. 8

2.3 Comparison in terms of communication delay when end users com-
municate with edge , fog and cloud computing units [5]. 8

4.1 Joint air-ground architecture for caching. 18

5.1 Cooperative Caching between UAV and GBS 30

6.1 Cumulative or total number of movie genres for which the rating has
been provided . 37

6.2 Density of movie ratings . 38
6.3 Average movie ratings . 38
6.4 Average ratings of most popular movies 39
6.5 Movie IDs with highest rating . 39
6.6 Number of Movie requests in each time period, t 40
6.7 Clustering of UAVs according to user mobility where each UAVs are

marked with white cross . 41
6.8 Output of cache node selection according to snr values 42
6.9 Number of Users connected in each server 43
6.10 Comparing Cache hit ratio for di↵erent GBS Storage Capacity 46
6.11 Comparing Cache hit ratio for di↵erent UAV Storage Capacity 47
6.12 Comparing Global cache hit ratio for di↵erent GBS and UAV Storage

Capacity . 48
6.13 Comparing Cache hit ratio using LFU during normal hours 49
6.14 Comparing Cache hit ratio using LRU during normal hours 50
6.15 Comparing Cache hit ratio using Proposed algorithm during normal

hours . 51
6.16 Comparing global cache hit ratio for all Algorithms in normal hours . 52
6.17 Comparing Cache hit ratio using LFU during peak hours 53
6.18 Comparing Cache hit ratio using LRU during peak hours 54
6.19 Comparing Cache hit ratio using Proposed algorithm during peak hours 55
6.20 Comparing global cache hit ratio for all algorithms in peak hours . . 56

viii

List of Tables

5.1 Feature Space Selection . 31
5.2 Action Space Selection . 33

6.1 Environmental Parameters . 42
6.2 MAAC Hyperparameters . 45

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

✏ Epsilon

� Upsilon

A2A Air-to-air

A2G Air-to-ground

BS Base Station

DRL Deep Reinforcement Learning

FANET Flying Ad-hoc Network

GBS Ground Base Station

LFU Least Frequently Used

LRU Least Recently Used

MAAC Multi-Agent Actor-Critic

RAN Radio Access Network

UAV Unmanned Aerial Vehicle

UE User Equipment

V ANET Vehicular Ad-hoc Network

x

Chapter 1

Introduction

1.1 Motivation

The launching of Internet of Things(IoT) and the upcoming 5G technologies has
been the prime reason for much higher quantity of data produced by devices presently
compared to the last decade and is expected to rise rapidly in the next couple of
years [1]. As per research conducted by Cisco Visual Networking Index, by the year
2021, there is likely to be 4.6B global internet users, 27.1B network devices and
connections and also 82 percent of all tra�c is predicted to be video files and will
be rising exponentially over time. At present, cloud tackles most of the data [1] and
92 percent of all data center tra�c will come from the cloud according to the global
cloud index. Due to such plethora of interconnected devices, load of internet tra�c
will be exceedingly higher to manage and will eventually lead to network latency
and delay. In addition, as the number of connected devices are increasing, most new
technologies created require real-time processing capability. For instance- real-time
processing and quick decisions are important for self-driving cars as they have to
make the decision of braking within fraction of a second. UAVs and quad copters,
they need to be smart enough to avoid an obstacle in real time. Transferring all these
data to and forth from the cloud is time consuming and cannot provide solutions in
real time.
To address the challenge of dealing with huge data tra�c, a promising approach has
emerged which is known as Multi-access Edge Computing or Mobile Edge comput-
ing. It is a distributed framework which brings the computation of data closer to
the source device. Di↵erent architectural approaches to edge computing exist that
have been defined by di↵erent groups [2]. Cisco and Intel have promoted OpenFog,
ETSI has promoted Mobile Edge Computing. Frontier Computing, Mist Comput-
ing, Dew Computing, etc have also been promoted. Because of the computational
power being brought closer to the source, many AI applications are now a possibility.
Edge computing can exist in the form of device edge or cloud edge. In the device
edge, edge computing is provided to the users that are in the existing environment,
e.g. Microsoft Azure IOT Edge. Moreover, public cloud is further extended to form
cloud edge, where the static contents are cached and are distributed among local
edge servers, e.g., Vapor IO.

1

Edge computing provides the following solutions [3]:

1. Responsiveness: As the processing is done closer to the source device, the
response time would be quicker.

2. Security: As the data hops many times before reaching its destination, there
is always a chance of security risk. Since every raw data is not transmitted to
the cloud server, keeping the contents locally, reduces the risk.

3. Edge AI: Self driving car or flying drones needs to make decisions in real time,
so image processing can be done in the local edge rather than sending the data
to the cloud for analysis.

1.2 Problem Definition

It is often seen that at a specified point in time(rush hour), when the passengers are
taking the same route to a destination, they are faced with the occasion of clogged
routes. This could be due to tra�c signals staying red for quite sometime, or
the overwhelming number of vehicles on road towards the destinations e.g. o�ces,
etc. During those times, the passengers on board often seek the opportunity to
indulge themselves in popular contents. So, the number of requested contents at
that time is significantly high. During those times, it is not possible for GBS alone
to handle this huge amount of data requests. The introduction of UAVs without
proper positioning would not resolve the matter. In order to tackle all these problem,
we are proposing the use of UAVs along with cooperative caching with the GBSs by
the use of multi-agent actor critic reinforcement learning (MAAC) approach. We
are also incorporating K-means clustering algorithm to get the clusters of users to
serve via the UAVs. In order to properly position the UAVs, the users’ location
are taken into account through the Random Waypoint Model. Cooperation of one
GBS with another GBS may not be feasible as they might be far apart. So we
need a dynamic BS which can assist to increase the global cache rate during such
scenarios. Previously when some of the passengers were not getting their desired
content, it meant that the cache-hit ratio was low. With the use of cooperative
caching mechanism, between a particular UAV and MEC, enables a greater chance
of popular contents to be served to the users, i.e. a greater cache-hit ratio by the
MAAC as proposed.

2

1.3 Research Objectives

In this paper we implemented a Deep Reinforcement learning based algorithm to
cache contents dynamically. By intelligently analyzing context information and re-
quest frequency patterns, a context-aware caching is designed. In this proposed
scheme, the base station nodes will be aware of its environment and will make de-
cisions to cache the right content to maximize caching performance.

Next, we incorporated UAVs, which will act as flying base stations. We created a
hierarchy of base stations where MEC servers will be acting as a ground base sta-
tion and UAVs will be analyzing the mobility patterns of wireless users to e�ciently
serve them.

Thirdly, we optimized the UAVs trajectory by implementing a clustering based al-
gorithm so that the UAVs dynamically cluster based on user mobility.

Furthermore, we integrated the air-ground caching by communication, caching, com-
putation and control of mobility:

1. Communication model: In the sky, the capacity of the channel from the UAV
to the cloud is limited and the UAVs transmission to the users is over mmWave
and that the distance to the user is closer than the distance to the data center.
In the ground, the MEC attached to the RSU communicates with the data
center using a fiber backhaul link. We assume each RSU has a limited number
of channels which can be used by a user one at a time.

2. Caching model: A hierarchy of caching of the contents will be established
in the ground and as well as in the air base station. We are proposing a
multi-agent actor-critic based cooperative reinforcement learning approach.

3. Computation model:

• Computation at GBS: When a user requests a content, it is o✏oaded to
the nearest GBS, and it will execute it if the server has enough compu-
tational resources. If not, it will be o✏oaded to the nearest UAV.

• Computation at UAV: A UAV will compute the requested content only
if it’s computational constraints are met and if it has enough battery.

3

4. Mobility model: Since higher accuracy is to be aimed while e↵ectively predict-
ing the next states of the users, we are proposing the RandomWaypoint Model
as our most sought after mobility model. Random Waypoint aims to model
mobile users into uniformly distributed waypoints or nodes. These nodes wait
a random pause time at each waypoint before starting to move towards the
next waypoint. As a result this perfectly models the user movements as shown
in Figure 1.1.

Figure 1.1: Movement of nodes in the Random Waypoint Model [4]

Our main contributions of this work are as follows:

• Communication model is built up using a concrete channel model which con-
siders the downlink transmission only as download data content is relatively
far greater compared to the amount of service request. The path loss of line-
of-sight (LoS) and non-line-of-sight (NLoS) links is modeled according to the
log-normal shadowing model by choosing specific channel parameters which
ultimately lead to the calculation of the signal to noise ratio(SNR) that serves
as a crucial parameter in the communication model as certain decisions are
made on the basis of this threshold.

• A multi-agent actor-critic based cooperative reinforcement learning approach
is being used for the caching model of the system. Computation model is
designed in such a way that it takes into account the computational resources
as well as storage constraints of the UAVs, MECs while serving the cached
content requested by the users.

• Control of mobility is handled by placing UAVs in public congregation areas by
using RandomWaypoint Model which is the mobility model used for accurately
predicting the users’ location.

4

• To put our proposed framework to test, we compared the learning-based per-
formance with caching policies, mainly least frequently used (LFU) and least
recently used (LRU).

5

1.4 Thesis Orientation

This report emphasized to integrate the air and ground networks to create a hierar-
chy of caching to reduce the content transmission latency and to improve the quality
of experience for the users. The goal of the authors is to implement a Deep Rein-
forcement learning based algorithm to cache contents based on context awareness.
The overall report focuses on the steps followed by the researchers.

Firstly, Introduction part, Chapter 1, states the motivation behind research which
inspired authors to address this particular problem statement. The goals of our
research and summary of the work is briefly discussed here.

In Background Study section, Chapter 2, we have compared the performance of
Cloud, Fog and Edge computing using various performance metrics to show that
Multi Access Edge Computing leads to the minimization of latency, maximization
of network capacity and minimization of energy consumption as it caches data close
to the user. The purpose of background study was finding out the limitations of
previous works and researches.

In Literature Review section, Chapter 3, we have discussed about papers from com-
puter science background which have addressed similar issue. In addition to that,
some statistical papers are mentioned which refers to the available secondary data.

In Proposed System Architecture section, Chapter 4, we talked about our System
model and Problem formulation. In problem formulation, we further elaborated sev-
eral models which we have proposed namely - computation model, mobility model,
communication model and caching model.

In Cache Node selection and Cooperative Caching Framework section, Chapter 5,
we have explained our algorithm for cache node selection using K-means clustering
and also caching of contents using Multi-Agent Actor-critic Reinforcement Learning.

In Simulation Results section, Chapter 6, we have shown our results of simulation
using various data sets and explained our results of simulation to prove our hypoth-
esis.

In Conclusion section, Chapter 7, we finally conclude our report by clearly explaining
our unique research contributions and also talked briefly about future resource scopes
in this field.

6

Chapter 2

Background Study

2.1 Cloud vs Fog vs Edge Computing

The performance analysis between cloud, fog and edge computing must be done
before digging much deeper into the details of Edge computing to prove it’s capability
and usability. The Internet of Things (IoT) is anticipated to utilise multi access
edge computing to reduce delay and then make use of computing power through
o✏oading IoT, which gather large amount of data but has less storage capacity
with individual devices and cloud computing is used in general to examine the data.
However, cloud computing gives rise to higher latency than edge computing. To
decrease the bandwidth consumption and data transfer latency, edge computing is
a more adequate substitute of cloud computing.
The three layers shown in the Fig 2.1 can be connected with each other by making
use of gateways. We compare the delay in these three layers with the aid of numerical
analysis obtained from simulation. The simulation configuration is similar to ones
given in [4].

Figure 2.1: Block diagram for computing edge, fog and cloud computing in terms
of number of devices and locations in the hierarchy [5].

We have considered computation delay as shown in Fig 2.2 and communication
delay as shown in Fig 2.3. When cloud computing is used there will be highest
delay compared to fog and edge computing , as shown in Fig 2.3. There will be
lowest delay compared to cloud computing and fog computing when multi access
edge computing is used as shown in Fig 2.3.

7

Figure 2.2: Comparison of expected computation delays when data is o✏oaded to
edge, fog and cloud for processing and receiving the response back to the end device
[5].

Figure 2.3: Comparison in terms of communication delay when end users commu-
nicate with edge , fog and cloud computing units [5].

2.2 Caching in Edge Computing

Quality-of-experience(QoE) is a key aspect to be focused on as the mobile data tra�c
will continuously increase as the users will get a grip on upcoming technologies in
the near future.[4] In order to localize flow of data, the content caching strategy
is designed in such a way such that the cached content is transmitted from the
centralized location to end users in cache-enabled mobile networks.
Mobile edge caching thereby provides the following solution:

1. Reducing redundancy in the data tra�c through caching of popular contents
at mobile edge networks which can then be served to the customers locally.

2. Improvement in the QoE of users.

However, to make mobile edge caching significant, some key features are needed to
be taken into consideration:

8

1. Positioning of Cache/ Cache placing: Caching popular contents at BS(Base
stations) drastically cuts down redundancy in data tra�c since duplication
of the same popular content is being eliminated. This is due to the fact
that the requests of users for the same content does not need to be fetched
twice. Having 5th Generation networks, device to device(D2D) communication
ensures exploitation of low-cost storage units at UEs(User Equipments), so
constant delivery of the data can be made certain.

2. Popularity of Content: Currently mobile edge caching presumes that a Zipf
distribution is maintained in terms of content popularity, but this is subject
to change due to variations in predilection of the users. So, having a fore grip
on content popularity is not possible, since user groups are connected with
individual edge nodes.

3. Algorithms and Caching policies: QoE improvement, o✏oading of tra�c, re-
duction in energy consumption; all these lead up to cache hit ratio either di-
rectly or indirectly. Caching policies successful in wired caching like LRU(least
recently used) and LFU(least frequently used) could be less successful in terms
of mobile edge caching since these do not consider the operating environment’s
characteristics that include user mobility, uncertainty of the topology of the
mobile network, fading and interfered wireless channels, etc. Context aware
caching policy takes into account the contexts that users might face, for in-
stance the diversity of devices, location, individual characteristics, etc.

But since it is quite sophisticated to take all the parameters, modelling the com-
plicated environment is hard, and as a result the mobile edge caching is di�cult
to achieve due to deteriorating performance levels in caching. On the other hand
intelligent caching policy works by careful consideration of the ever changing nat-
ural dynamics of the wireless systems and taking those new states and actions to
make the edge nodes learn about the complex operating environment. The feedback
generated is incorporated into the policy in order to achieve intelligence in mobile
edge computing.
Apart from mobile edge caching, other forms of caching such as proactive caching
have also been used for MEC. Proactive Caching as an approach can be split into
two stages [5]:

• The o✏ine phase comes first , where a workflow-specified heuristic is automat-
ically determined for pre-computation causing decisions that are cached to be
accessed when a process is ongoing.

• The second stage is the online phase where the heuristics that was previously
determined are used for the management of cache.

Another type of caching is available as well, which is cooperative caching. Basically
in a network when more cache is coordinated and the sharing of resources takes
place so that other applications can be served, this mechanism portrays cooperative
caching. So, for instance if a particular node’s local cache does not contain the
required data item, then the data requests can be sent to a nearby cooperating
cache, which delivers the data that has been requested, faster than the original data
server [6].

9

To increase the availability of data, data caching and replication is done which proves
to be a prerequisite in the environment of wireless network. Due to the fact that
the system is unsteady and at the same time dynamic as well, at any point in time,
nodes have the scope of entering and leaving the system [6]. Caching can boost the
performance of request processing by aiding in the shortening of the routing path
of a data request, since that particular data may be near to the origin node of the
request.

2.3 Multi Access Edge Computing

Multi-access Edge computing(MEC) cuts down the usage of back-haul or internet
bandwidth remarkably as it is able to process huge quantity of data which are close
to the source. It also provides the assistance to reduce costs and confirms that the
applications can function without accessing expensive and high delay back-haul links
[7]. Moreover, since, di↵erent types of Base Stations(BSs) were utilized, it will led
to diverse edge networks in future. In edge networks, caching will be established at
several locations in various Base Stations(BSs). When the requested content is not
found at the edge node during the starting point of the process, it has to be fetched
from the central server and the edge server will then keep a copy of the content
so that it can be used if requested later. This will reduce the delay notably while
sending the contents to end users as the data is no longer needed to be retrieved
from the central server every time and therefore will not give rise to a slow back-haul
link. [8] Also, due to the improvement and installation of less expensive storage units
and di↵erent BSs, deploying caching mechanisms at Small Base Stations(SBSs) has
now became simple and cost e↵ective. The content selection process has to take the
decision about which contents must be cached, which contents should be upgraded
and the amount of time for which the contents will be cached. To ensure e↵ective
usage within MEC-enabled network, network resources like - cache storage size,
computing, energy and communication bandwidth should not exceed the maximum
limit. Furthermore, to give rise to the productivity of MEC, data which is to be
cached, placing the caching data and removing contents from the cache storage by
taking into consideration the quality of data, diversity and the mobility of the end
users should be done in an optimized manner. Caching optimization handles any
limitations linked to optimization on network as well as end user performances,
for example - network architecture, analytical point of view and content caching
strategies.

2.4 Computing in Mobile Edge Networks

Edge computing is also a major part of the future 5G technologies. By implementing
edge computing, di↵erent content providers can give solutions that allow content,
services and applications to be delivered quicker than if they were delivered from
the cloud. Mobile subscribers will also have a smooth experience even if content
providers cannot come up with a solution for edge computing as 3rd-party partners
will utilize the open radio network edge to provide infrastructure-as-a-service (IaaS),
specially the services that depend heavily on mobility e.g. fleet management, trans-
portation and logistics. The implementation of edge computing will benefit the 5G

10

technologies as follows [9]:

2.4.1 Minimization of Latency

The Round Trip Time(RTT) for a wireless network system that is running on 5G
is typically 1ms, which when compared to that of a 4G wireless network system is
10 times less. When a MEC server serves it’s end users, it takes a shorter period of
time than the content that is being delivered from a central server in a centralized
data center. In accordance with that, a higher delay is generated for the tasks
that are o✏oaded to the cloud for applications that require data o✏oading, and
these extensive delays are not accepted in many applications. So, in order to reduce
the latency , implementation of high-density small base stations(SBSs) with edge
computing is even more feasible thing to do.

2.4.2 Maximization of Network Capacity

It is anticipated that the wireless network of 5G is going to enable huge volumes
of mobile data per region than the existing network of 4G [10]. In order to tackle
this surreal amount of expected data , wireless networks of future require large
capacity in the radio access networks(RANs) as well as in front-haul and back-
haul. Technologies that involve o✏oading of data and context-aware computation
o✏oading are looked forward, to deal with the di�culties in the RAN on top of
utilizing more spectrum with higher spectrum e�ciency. The introduction of MECs
along with the caching of contents could aid the network capacity, through caching
of popular contents at the BSs and the edge, and also by the reduction of back-haul
bandwidth.

2.4.3 Minimization of Energy Consumption

A number of optimization strategies have been proposed in networks and separate
devices to decrease the energy consumed. To obtain computational o✏oading in
next generation networks which are heterogeneous in nature, the energy cost re-
lated to computing of task and transmission of file is assessed as one of the main
element of cost [11]. It is really significant to design an energy e�cient data or
computation o✏oading scheme, which cooperatively optimizes radio resources and
consumes energy while decreasing the overall delay in transmission. The end devices
are characterized into three di↵erent types with respect to their capability and de-
mand. Wireless channels of MBSs (Micro Base Stations) and SBSs are designated
to mobile devices according to their priority until all devices gains the channels re-
quired. At each iteration, the scheme validates that lower energy is consumed by
the system, with a huge quantity of end users in particular.

11

Chapter 3

Related Work

Already few researches have been done in the domain of edge computing, especially
bringing in reinforcement learning to make the decisions of caching, which have
been very e�cient in dealing with the significant issues of the edge caching systems.
Alongside this cooperative edge caching has opened up doors for research in the lit-
erature of edge caching, in order to improve the performance. This segment contains
the discussion about how authors in related works have approached to solve some
of the issue.

In [12], the researchers has came up with caching based on deep learning for self-
driving cars, which were positioned on Multi-access Edge Computing hardware
through approaches that involved Deep Learning. A Convolutional Neural Net-
work (CNN) approach is used to forecast genders as well as age of people via facial
recognition which satisfies the demands of the people in self-driving cars. In order
to forecast the probability of contents which are asked when the self-driving car is in
a certain location, this paper proposed a MultiLayer Perceptron (MLP) framework
that is applied at DC(Data Center). Then, the outputs generated from the MLP
prediction are placed at edge servers, basically at Road-side Units(RSUs) which
are propinquity to the self-driving cars. In addition, AutoRegressive (AR) and the
AutoRegressive Moving Average (ARMA) prediction algorithms are not taken into
consideration here. Here, MLP has a great role since it holds the capacity to manage
both linear and non-linearly prediction issues. The self-driving car then downloads
MLP outputs from the MEC architecture because of the contents that are needed
to be cached, which is then matched with the final output from the CNN. K-means
and binary classification clustering algorithms are chosen since these are e�cient in
terms of computation shown by the comparison using deep learning and exploiting
4C parts in MEC server reduced content-downloading latency for the development
of the caching in the self-driving car. To solve the formulated problem, they imple-
mented Block Successive Majorization-Minimization (BS-MM) algorithm.

In [13], the authors makes use of deep learning algorithms to train and predict the
future popularity of contents which allows better caching decisions. They have put
forward a caching scheme which can be broken down into three parts, first they
predicted the future target class of each content, then they predicted the popu-
larity score in future of each content, and in the end cached the contents which
had high popularity scores. They have also worked out an optimization problem

12

which decreases the content access delay in the near future. To solve the problem
they proposed a deep layered neural network based prediction system which works
together with the information centric MEC architecture. Finally, they compared
di↵erent models in the deep learning paradigm such as - Convolutional Neural Net-
work(CNN), Convolutional Recurrent Neural Network (CRNN), Recurrent Neural
Network(RNN), and using a randomized search algorithm chooses the model that is
best to predict the target popularity class and request count in future. The paper
considers the cloud as the master node which will train the deep learning model,
and the base station is considered as the Slave node which will collect the raw data
and cache accordingly to the master node and handle the content requests by the
user.

In [12], the authors portrays a case when each multi-access edge server carries out
their activity separately. Every MEC servers cannot carry out all computational
and big data request originated from end devices and the edge server is not able to
supply considerable amount of gains in overhead reduction of data exchange among
users devices and data cloud. As a result ,joint computation, caching, communi-
cation, and control(4C) at the edge with MEC server collaboration is a must. To
git rid of these limitations, the issue of joint 4C in big data MEC is articulated
as an optimization problem whose objective is to optimize a linear combination of
the bandwidth consumption and network latency cooperatively. Furthermore, the
articulated problem is seen as a non-convex. Therefore, a proximal upper bound
problem of the originally formulated problem is put forward. To look for a so-
lution to the proximal upper bound problem, the Block Successive Upper bound
Minimization(BSUM) method is implemented. Moreover ,di↵erent algorithms like-
Douglas Rachford splitting method , Gauss-Southwell and Randomized selection
rules , BSUM, etc were also compared and the BSUM method was found more suit-
able for 4C than other algorithms. It also explained 3C(Communication, caching
and computation) and properly described why 4C is more suitable in this case.

In [14], it primarily discusses about the advantages of edge cache such as, when
there is a joint e↵ort with the edge computation,the edge cache can occur in many
places, such as macro BSs (MBSs), small cell BSs (SBS), and mobile devices. The
edge cache also caches the content based on integrative components, in which not
only the popularity of the contents, but also the content active time, content size,
and other elements should be considered. When we know the popularity of the
content, the system can pre-cache the content according to the proactive content
caching approach during the o↵-peak duration, or else, the reactive content caching
strategy must be utilized. To lessen the limitations on the cache storage capacity
and the radio resource, the coded caching is suggested. The contents are divided into
multiple packets and the packet is used as side information for coded communication
over the shared link are more sensible than only caching the most popular files. The
edge cache moves the content closer to the user and allows the end user to get
the content locally causing a reduction in the tra�c load in the back-haul, which
makes the SE(Spectral E�ciency) better and lessen the transmission delay in a
massive amount. Therefore, Since the sum total of consumed energy consists of
transport energy and the caching energy and the cost of edge cache is much less
costly than the centralized cache limited by the back-haul transmission, and the

13

corresponding EE(high energy e�ciency) in Radio-Access Networks(RANs) can be
greatly improved. They have done an extensive research on edge cache placement
which includes the system architecture, key techniques, and their corresponding
performances. The main, technical problems and performance of the reactive and
proactive cache strategies for content placement are also briefly explained. Moreover,
the coded and not coded cache are summarized entirely along with their advantages
and disadvantages in various application environments. The performance gains from
edge cache are highlighted and various main points on SE, EE, and latency are
demonstrated. Finally, the future limitations and open issues are recognized for the
convergence of the edge cache and 5G network for IoT.

In [15] they considered a multi-user MEC system in order to handle the issue of
resource allocation policies and computation o✏oading strategies.The optimization
objective that was set in this paper was the sum of the cost of intervals as well as
energy consumption. A C-RAN dynamic resource allocation framework based on
deep RL (DRL) was proposed in this paper that reduced duration and the energy
consumed while keeping in check that every user demand is satisfied[8]. Compu-
tation o✏oading problems and resource allocation problems were proposed to be
solved through a DRL-based theme in which the o✏oading of user computational
tasks is proportional which was not seen to be done in other papers. They have
defined the state, action and reward functions of the DRL agents and then gone
o↵ to formulate issues regarding the allocation of resources and made application of
Deep Neural Network(DNN) to make an approximation of the action-value function
of the action decision to draw out information directly from the present state.

The authors of the literary work in [16] used the Wolpertinger architecture to cache
contents and improve the short and long term cache hit ratio. They then compared
their agent with a deep Q network and showed that their work was better when it
comes to runtime. In their proposed methodology, they have divided their framework
into three parts, actor network, critic network and the K-nearest neighbor. They
trained the policy using Deterministic policy Gradient(DDPG) for both the actor
and the critic. The algorithm at first takes the current content request and cache
state as input, and a proto actor is given as output. Afterwards, the proto actor
given as input, is received by the KNN which then forms an action space based on
l2 distance between each action. Finally, the critic network takes the action space
as input and updates the actor network depending on the Q value. They compared
their performance with other caching strategies in terms of cache hit rate for the
short term and the long term and saw a greater cache hit rate.

In [17] they put emphasis on developing a smart content caching at mobile network
edges to ease unnecessary tra�c and enhance the productivity of content deliv-
ery. The information about users’ preference is very helpful here and significant
for productive content caching, yet often unavailable in advance, so they have used
machine learning techniques to know the preference of the users based on historical
demand data and decides about which of the video files is required to be cached
at the MEC servers.They have come up with a multi-agent reinforcement learning
(MARL)-based cooperative content caching policy for the MEC architecture where
the preference of data by users’ is not known and only the historical content de-

14

mands can be observed. They figured out the cooperative content caching problem
as a multi-agent multi-armed bandit problem and thus proposed a Multi Agent Re-
inforcement Learning based algorithm to come up with the solution of the problem.
They also implemented Q-learning in MEC edge servers to know how to coordinate
their caching decisions in multi-agent systems. MEC servers learn the Q-values
of their own caching decisions and coexists with those of other MEC servers.The
simulation experiments are carried out on a real data set from MovieLens and the
quantitative results have shown that the proposed MARL based cooperative content
caching scheme can reduce delay in a considerable amount while downloading con-
tents and thus content cache hit rate can be improved when compared with other
well-known caching strategies.

In [18] the authors have put forward the idea of implementing an integrated frame-
work which is capable of enabling caching, dynamic orchestration of networking
as well as computing resources to upgrade the performance of future-gen vehicular
networks.They have formulated the strategy for resource allocation in this frame-
work as a joint optimization problem, as they have taken into consideration the
gains of networking, caching and computing as well.Since enormous complexity of
the system arises when all three technologies are considered together, they decided
to use a DRL approach.They made use of deep Q network to estimate a Q value-
action function, that has been exploited in wireless networks, to attain resource
allocation, automatically.The paper demonstrated that significant improvements in
the performance of vehicular networks can be attained through caching, integrated
networking, and computing.They have used a di↵erent type of hardware and vir-
tualized vehicular networks that enable direct programming of vehicular network
controls and abstraction of the infrastructure underneath, for a range of applica-
tions of connected vehicles, with better e�ciency and greater flexibility in managing
vehicular network.

In [19] the authors have optimized the QoE of wireless devices and caches contents,
learning from human centric information. They proposed a echo state network
based on conceptors which stores users historical mobility patterns and uses the
result to predict users behavior. In the UAVs they planned to cache contents based
on content popularity to reduce transmission delay. In the system model, they have
grouped the remote radio(RRH) head using K-mean clustering and deployed UAVs
with caching capabilities to serve the ground user and RRH. The caching in the
UAVs are done during o↵-peak hours or during the docking period. They have also
formulated the mobility,transmission and quality of experience model. The mobility
model decides the placement of the UAV to ensure optimization of trajectory. In
the transmission model, the communication between UAV to user, UAV to baseband
unit(BBU) and RRH to users are defined. Finally, in the quality of experience model,
they have taken into consideration, the delay of the user’s content and the device
type. Using all the models they formulated the minimization problem which finds
the minimum rate to ensure the quality of experience and determine the minimum
power required by the UAV to transmit. As their solution, at first they predicted the
users behavior to store users location and content request distribution in the BBU.
Using the predictions, the association of the users with the RRH is determined. The
remaining users are clustered to associate with the UAV. After that the UAV decides

15

the contents to cache, based on the users associated with them and then calculates
the rate of transmission for each content. Using the rate of requirement, the UAV
positions itself and finally transmits content to the users utilizing the least power.

Basically in [20], the authors discussed about delivering seamless connectivity to
the aerial users by making use of transmission via coordinated multi-point (CoMP)
alongside caching. In the cases of networks where there were clusters of cache-
enabled SBSs, they came up with a novelty i.e. an upper bound expression was
derived which focused on coverage probability that acted as a function of the sys-
tem parameters.Their study showed that in the case of aerial users, the probability
of coverage significantly made an improvement from 10% to 70%, once transmission
via CoMP was used. This was particularly for the cases where a collaborative dis-
tance of 200 m was taken into consideration along with a lower SIR threshold. The
contribution found in the paper is mainly improvement in the received SIR when
cellular-connected UAVs in high altitudes are considered that made use of trans-
mission via CoMP. Through this form of transmission nearby SBSs transfer the
previously cached contents to the aerial UE where these contents are downloaded.
It was also seen that, in this paper they used certain tools from stochastic geometry
resulting in the derivation of a tighter upper bound on the content coverage prob-
ability. Content availability, target bit rate as well as collaborative distance were
set as the parameters for achieving performance of an aerial user. The central point
of this literary work was on analyzing CoMP transmission for the UAVs that were
cellular-connected in networks that were cache-enabled.

The authors in [21] discussed about numerous UAVs, leading to the formation of
a sub-network in the aerial region for assisting the vehicular sub-network on the
ground by means of A2A and A2G communications.They talked about how UAVs
can be used for disaster rescue and polluted area investigation with the help of two
layer cooperative networking.They presented three types of communication link in
multi-UAV-aided VANET which includes V2V links,A2A links and A2G links. For
transmission of data amongst UAVs, the aerial sub-network used the A2A links.
In A2A links for instance, XBee-PRO (IEEE 802.15.4) as well as Wi-Fi (IEEE
802.11), the radio interfaces which act in a heterogeneous manner can be taken
into consideration as their operation in the unlicensed spectrum and can be com-
bined seamlessly. The air–to-ground networks are primarily used for transmission of
sensing data and are responsible for controlling information in between the ground
and aerial sub-networks. Sub-networks in the ground are a type of sparse VANET,
where intermittent V2V links are utilized for carrying out the interchange of infor-
mation among vehicles. On the other hand, e�ciency of the system control schemes
significantly determine the cooperative networking performance. At first the base
stations transmit the commands for scheduling. Upon receiving them, the UAVs
as well as the rescue-vehicles start working in a cooperative fashion. Four con-
trolling schemes are taken into account during the process of collaborative control.
Those are Onboard control , Onboard sensing , Onboard processing and Onboard
diagnosis.These schemes work in coordination for the control schemes to work in a
productive manner.

The authors in their literary work [22] proposed a novel air-ground integrated mo-

16

bile edge network that would work through scheduling and deployment of UAVs in
order to provide aid in caching, communication as well as computing in edge net-
works.Proposal of the AGMEN contained numerous drone cells that were dispatched
in a flexible way, for the provision of agile RAN coverage for the temporal and spatial
changes of users and tra�c of data. The AGMEN architecture that they proposed
involved a two-layer networking architecture. One of the layers involved deployment
of UAVs thereby creating a multi-UAV aerial network, mobile users and vehicles
whereas the other layer which formed the ground network was made up through the
RAN infrastructure. The UAVs had upgrades in the form of add-ons such as em-
bedded processors, communication modules, sensors as well as storing devices which
boosted these into becoming multi-functional network controllers. For transmission
of information amongst UAVs, which includes coordinating and controlling informa-
tion, sensing data to form a FANET, they used A2A communications through radio
interfaces that worked in a heterogeneous manner and WiFi too. Some specific
tasks were made possible to be conducted in this paper using exchange of infor-
mation and control of mobility such as DTNs, monitoring of tra�c, connectivity
maintenance of wireless sensor networks, etc. For serving mobile users, self driving
cars, IoT devices, etc. the heterogeneous RAN in the ground network that was pro-
posed within the AGMEN architecture came into play which included small cells,
macrocells and WiFi. In order to establish cooperation between the ground network
and the aerial network, they made use of A2G communication-links. The ground
control center controlled the UAVs mobility whereas collection of data from the
aerial-networks were transmitted over to control center in the ground for advanced
processing, so that proper exploitation of these data could be done. They have used
wireless fronthaul connection so that the UAVs could properly serve BSs and also
ensured large-scale sensing through UAVs. These lead up to users getting flexible
internet access. It can be inferred from this paper that the UAVs play a major part
as popular contents can be cached in these as well as scheduling of computing tasks
can also be done through use of AGMEN.

17

Chapter 4

Proposed System Architecture

4.1 System Model

As first we are proposing a joint air-ground architecture for content caching as shown
in figure 4.1 which will consist of both the ground base station and UAV. In the
ground we have the base stations, which will cache contents dynamically. In the
air, the UAVs will position themselves according to user mobility to support the
caching for the mobile users. In related papers, the cloud server sends the global
parameters chosen after every request that is being made by the users, i.e. both
the GBS and UAVs send out data to the cloud server and the cloud server in turn
provides information to the GBS and UAV after every request. This causes the
backhaul tra�c to be at a significant level. In order to overcome this limitation, our
proposed methodology considers the fact that at the start of each time stamp, which
is of 1 hour, the cloud server sends out the global parameters to the UAV and the
GBSs only once in that whole time stamp. The GBSs and UAVs continously send
out data to the cloud server, but the cloud server only sends out information once,
at the starting of each time stamp. In this way, all of the data is being processed by
the cloud server, but only after considering all of these data after every request that
is generated. As only once the data gets sent out from the cloud server, it reduces
the amount of backhaul tra�c.

Figure 4.1: Joint air-ground architecture for caching.

18

4.2 Problem Formulation

The integration of the air and the ground networks leads to some constraints that
must be satisfied to optimize the problem of e�cient caching. In order to construct
those necessary constraints, at first we needed to define some vectors. Throughout
the paper, G = {g1, g2, . . . , gN}, has been used to refer to the number of ground
base stations where gN represents the capacity of the Server n to cache contents.
The ”N” in this case corresponds to the total number of servers of the GBSs. On
the other hand, U = {u1, u2, . . . , uM}, has been used to denote the number of
unmanned aerial vehicles where uM represents the capacity of the servers of the
UAVs to cache contents. The ”M” in this case corresponds to the total number of
servers of the UAVs. The data that we are considering from the MovieLens dataset,
are the movies. So, we have chosen D = {d1, d2, . . . , dI}, to represent the total
movie items and dI corresponds to the ith movie item’s movie size. Alongside
this, time has been assumed to be taken into slots where each slot represents a
certain time period, represented by T = {1, 2, . . . , T}. In addition to this, each user
is being associated with the closest UAV-GBS pair. So, we have defined rtn,x,i =
{rn,x,1, rn,x,2, . . . , rn,x,I} where rtn,x,i = 1 represents the information that the data
item,i, which is requested by the user,x, is being served by the closest GBS at time
t. Similarly we have also defined rtm,x,i = {rm,x,1, rm,x,2, . . . , rm,x,I} where rtm,x,i = 1
represents the information that the data item,i, which is requested by the user,x,
is being served by the closest UAV at time t. Besides this, the caching state of
GBS,n is defined as cti,n = {ct1,n, ct2,n, . . . , ctI,n} where cti,n is the movie item stored
in ith position of the nth GBS. Similarly the caching state of UAV,m is defined as
cti,m = {ct1,m, ct2,m, . . . , ctI,m} where cti,m is the movie item stored in ith position of the
mth UAV at time t. Finally, to record the request frequency of movie item i at time
t, F t = {f t

1, f
t
2, . . . , f

t
I} is introduced.

19

4.2.1 Computation model

1. At GBS(Ground Base Station): In the model that we are proposing, a re-
quested rtn,x,i, where x is the xth user, is executed by GBS, if GBS has
enough computation power. We have considered gn as the capacity of a GBS
of server n where n✏N. Furthermore, we define yx!n ✏ {0, 1} as a decision
variable, which indicates whether or not GBS at server, n, has to compute the
request rtn,x,i by user x, where yx!n is given by equation 4.1:

yx!n
x =

8
<

:

1, if rtn,x,i requested by user x
is computed at GBS, n

0, otherwise.
(4.1)

Each GBS at server,n, needs to satisfy the following constraint given by equa-
tion 4.2:

IX

i=1

di y
x!n
x · cti,n  gn (4.2)

which means that the summation of the size of all the movie items,i, that are
cached in GBS,n and the decision of whether or not to o✏oad the task, along
with the caching state of the GBS, cn, at a particular time t, has to be less
than the capacity of the GBS at the particular server,n.

2. At UAV: In the case of the UAV, a requested task rtm,x,i, where x is the xth

user, is executed by UAV, if UAV has enough computation power. We have
considered Um as the available computational resources at UAV server m✏M.
Furthermore, we define yx!m ✏ {0, 1} as a decision variable, which indicates
whether or not UAV at server,m, has to compute the task rtm,x,i o✏oaded by
user x, where yx!m is given by equation 4.3:

yx!m
x =

8
<

:

1, if rtm,x,i requested by user x
is computed at UAV, Um

0, otherwise.
(4.3)

Each UAV at server,m, needs to satisfy the following constraint given by equa-
tion 4.4:

IX

i=1

di y
x!m
x · cti,m  um (4.4)

which means that the summation of the size of all the movie items,i, that
are being cached in UAV,m by users,x, and the decision of whether or not to
o✏oad the task, along with the caching state of the UAV, cm,at a particular
time t, has to be less than the capacity of the UAV at the particular server,m.

20

4.2.2 Mobility Model

In order to accurately predict the mobility of the users, the Random waypoint model
is being applied which pauses time whilst changing the direction and/or speed. The
mobile nodes (MNs) which in our case can be considered as the users, begin at a
starting point where it resides for a certain amount of time. After the pause, the
MNs starts moving towards the randomly chosen destination points. The speed of
the MNs can be randomly chosen but in order to keep the model on a fixed track, we
have chosen to keep the minimum and maximum speed fixed. In addition to this, a
particular waiting time for each node is chosen in order to select the next nodes to
be travelled to if the waiting time for the chosen node exceeds the one that has been
fixed. Alongside these factors we also took into account the pause probability, the
residual time and the initial speed which are crucial to successfully run the Random
Waypoint model.

For this model to work e�ciently, first of all we have taken a uniform distribution,
defined a truncated power law distribution as well as defined an exponential distri-
bution. The Random Waypoint Model took in the number of nodes i.e.(users), the
simulation area which is the dimension of “x” multiplied by “y”, the minimum and
maximum velocity as well as the corresponding waiting time needed for the nodes.
Once these were taken into account, the nodes’ movements were assigned simply by
getting the product of the direction and the node velocity. After the updated node
position has been calculated, the distance between the new node position and the
waypoint is calculated. If we arrived at the correct node, then the information for
the arrived nodes is being updated. This decision of arriving at the desired node is
being taken by comparing if the previously calculated distance is less than or equal
to the velocity at which the node was travelling and also by checking if the waiting
time for the node was less than or equal to 0.

If by any chance the nodes have surpassed the waypoint then a step back is done
to ensure that the position of the arrived node is now assigned to that of the way-
point. In this way the Random Waypoint model is being used to predict mobility
of the users and tackles one of the “ C’s ” in the UAV assisted dynamic caching of
infotainment on edge using Joint 4C.

4.2.3 Communication Model

In order to clearly define the di↵erent communication ways between the users, GBSs,
UAVs as well as the cloud, some sort of channel model has to be defined which takes
into account particular aspects of communication. So, what we do is build up a
concrete channel model which has been explained below:

The time horizon of UAV-GBS is split into T equal time slices, indexed by t
✏{1, 2, ..., T} and the UAV-GBS transmission occurs through the mmWave frequency
band for the A2G links. For the channel model, the downlink transmission is only
been taken into consideration due to the fact that the sheer volume of download
data content is relatively far greater compared to the amount of service request that
are being fetched.The path loss of LoS and NLoS links is modeled according to the
log-normal shadowing model by picking specific channel parameters, given by the

21

following set of equations 4.5 and 4.6:

1. For UAV:

lLoSu (ut
m, v

t
x) = lFS (d0) + 10µLoS

�
dtm,x

�
+ ��LoS

lNLoS
u (ut

m, v
t
x) = lFS (d0) + 10µNLoS

�
dtm,x

�
+ ��NLoS

(4.5)

2. For GBS:

lLoSg (gtn, v
t
x) = lFS (d0) + 10µLoS

�
dtn,x

�
+ ��LoS

lNLoS
g (gtn, v

t
x) = lFS (d0) + 10µNLoS

�
dtn,x

�
+ ��NLoS

(4.6)

where the attributes that have been used in the equations 4.5 and 4.6 represent the
following meanings:

ut
m = position of the mth UAV in the tthtime index

gtn = position of the nth GBS in the tthtime index

vtx = the xth user’s position in the tthtime index

dtm,x = the distance from the mth UAV to the xth user in the tth time index

dtn,x = the distance from the nth GBS to the xth user in the tth time index

lFS (d0) = free space path loss from a reference distance

The lFS (d0) is calculated by applying the following formula that takes into account
a number of attributes:

lFS (d0) = 20 log (d0fc4⇡/c) (4.7)

where the attributes in equation 4.7 represent:

d0 = reference distance
fc = carrier frequency
c = speed of light

The equation in 4.7 is used for both the cases of the UAV and the GBS as well, to
calculate the free space path loss from a reference distance.
From the formula that we previously defined for calculating the path loss of line-of-
sight (LoS) and non-line-of-sight (NLoS) links, we again took one parameter each
for modelling the links using the shadowing model which are as follows:

X�LoS, X�NLoS = Shadowing random variable

The elevation angle �t,m between the UAV and the user plays a crucial factor in
determining the probability of the LoS links given by the equation 4.8 :

�t
m = ht

m/
�
ut
m � vtx

�
(4.8)

where the attributes in equation 4.8 represent:

22

�t
m = elevation angle between UAV and User

ht
m = height of the mth UAV in the tth time index.

The probability of the LoS link for the UAV is calculated through the following
equation 4.9:

Pr(LoS)m =
1

1 + Ze�W (�t
m�Z)

(4.9)

where the attributes in equation 4.9 represent:

Z,W = constants depending on environment

The elevation angle �t,n between the GBS and the user is a key factor in determining
the probability of the LoS links. So, �t,n = Z is considered for this case. The prob-
ability of the LoS link for the GBS is calculated through the following equation 4.10:

Pr(LoS)n =
1

1 + Ze�W (�t,n�Z)
! Pr(LoS)n =

1

1 + Z
(4.10)

The height and density of the buildings largely a↵ects the probability of LoS con-
nection. For instance, rural areas have very low density of buildings, i.e. there are
less number of buildings in close proximity that results in higher LoS probability
whereas an urban area exists a lower LoS probability. So, the total path loss is
expressed as follows:

1. For UAV:

PLtotalm = Pr(LoSm)⇥ PLLoSm + Pr(NLoSm)⇥ PLNLoSm (4.11)

2. For GBS:

PLtotaln = Pr(LoSn)⇥ PLLoSn + Pr(NLoSn)⇥ PLNLoSn (4.12)

where each component of the equations 4.11 and 4.12 corresponds to:

PLLoSm = lLoSm (ut
m, v

t
x)

PLNLoSm = lNLoS
m (ut

m, v
t
x)

Pr(LoS)m = The probability of the LoS link for UAV

PLLoSn = lLoSn (gtn, v
t
x)

PLNLoSn = lNLoS
n (gtn, v

t
x)

Pr(LoS)n = The probability of the LoS link for GBS

23

Another significant factor which has to be closely looked at is the signal to noise
ratio(SNR). Let �x denote the SNR of the xth user, which can be expressed as follows:

1. For UAV:

�x,u =
Pa |hm|2

10PLtotalu/10�2
(4.13)

2. For GBS:

�x,g =
Pa |hn|2

10PLtotalg/10�2
(4.14)

where the transmit power of the cache node is being denoted by Pa , | hm |2 is the
Rayleigh fading channel gain. This value of SNR has a certain threshold for each
GBS, UAV. So, the communication model is defined in such a way that exceeding
the threshold of GBSs causes the users to then communicate with the UAV and
even if that fails, as a last resort the communication occurs between the user and
the cloud. In this way the communication model was developed.

4.2.4 Caching Model

One of the most crucial parts is to cache the data that is going to be provided to the
users. Till now what has been seen is that based on some factors the caching was
done which mainly included popular content demand. Since caching of contents in
the devices or nodes used is significant to the end users, i.e. the ground users in this
case, the main problem remains on how to best predict this cache. Several caching
policies are already in place such as context aware caching policy taking into account
the contexts that users might face, for instance the diversity of devices, location,
individual characteristics, etc. Alongside choosing the caching policy, another prob-
lem arises as to where to cache the data. A hierarchy of cache models including
caching in the GBSs and UAVs and integration of all these two nodes proves to be a
major challenge. As a result, for the caching problem we have proposed to maximize
the global cache hit ratio, t of the UAV and GBS to improve the backhaul tra�c
reduction and improve QoE. The global reward function can be formulated by the
equation 4.15:

 t =
1

R

RX

r=1

� · lr + v · or (4.15)

where lr represents the hit ratio of the local server and or represents the hit ratio
in the neighboring server at request r. The weights � and � is used to balance
the rewards gained by the GBS and other UAV. When � is 0, it means there is no
cooperation with the neighboring server. So the weights can be tuned to set the
cooperation among the servers.

24

Based on the the discussion that was made above, maximization of global cache
hit ratio can be formulated by the equation 4.16 as an optimization problem which
would then lead to the best caching decision to be chosen. In order to do this, the
constraints of equation 4.2 and 4.4 have been taken into account.

max 1
T

PT
t=1

t

s.t.
PI

i=1 di y
x!n
x · cti,n  gn, 8di 2 D, 8n 2 N,yx!n

x 2 {0, 1}
PI

i=1 di y
x!n
x · cti,m  um, 8di 2 D, 8m 2M,yx!m

x 2 {0, 1}

Ct
i,n 6= Ct

i,m, Ct
n 2 N,Ct

m 2M

1  n  N, 1  m M

(4.16)

However, to reach the exact solution for a cache state to output the maximum global
cache hit ratio, will be computationally very expensive as the above problem is NP
hard.
In the later sections, in order to address the challenges of cooperative caching, a
cooperative DRL approach is being proposed in which the GBS server would adjust
caching decisions with the UAVs based on the actions and states, following a global
reward.

25

Chapter 5

Cache Node Selection and

Cooperative Caching Framework

5.1 Cache Node Selection Using K-Means Clus-

tering

From the communication model that we proposed earlier we ended up with the
channel model as well as the SNR which caused our joint air-ground architecture
to segregate the users. Since the path loss, which is being calculated from the
channel model, is dominated by the distance between the user and the UAV or
GBS, the initial position of the UAVs and GBSs are taken into account. This can
be done based on the joint air-ground architecture. The application of the K-means
algorithm is done as the minimum distance from a centroid to each user can be
attained. The K-means algorithm mainly consists of two parts namely initialization
and iteration. For initialization, the m cluster centers are required to be determined.
A position is picked at random to be the cluster center. From there on, in the
iteration part, each users are assigned to its closest cluster center i.e, the set of the
mth cluster um is defined. After that,the new cluster center is recomputed until
the iteration error is less than a threshold that had been previously set. In this
way each particular UAV gets assigned to a cluster and the K-Means Clustering
algorithm holds true leading to proper cache node selections.

26

Algorithm 1: Cache Node Selection Using K-Means Clustering:

Input: User’s mobility matrix Mn; Number of clusters K;
Output: Communication link a 2 {0, 1, 2}.
1: while t  T
2: Use K-means to derive the centroid of clusters [u1, u2, . . . uM], where um is the
position of the mth UAV at the current time index t.
3: while v  X, where vx 2 X do
4: while n  N where gn 2 G do
5: Use the distance between the user and the GBS kvtx � gtnk to derive the
path loss PLGBS

6: Calculate the user SNR �x,n
7: Compare the user SNR �x,n with the SNR threshold ⌘GBS.

If �x,n > ⌘GBS:
set cx = 1
a.append(0)
Store �x,n

8 end while
9: while m  U, where um 2 U do
10: Use the distance between the user and the UAV kvtx � ut

mk
to derive the path loss PLUAV

11: Calculate the user SNR �x,m
12: Compare the user SNR �x,m with the SNR threshold ⌘UAV.
13: If �x,m > ⌘UAV:

set cx = 1
a.append(1)
Store �x,m

14: end while
15: If cx 6= 1 then
16: a.append(2)
17: end while
18: return a

User’s mobility matrix Mn is taken as the input from the Random Waypoint Model
that has been generated. In addition to this, the communication links, a 2 {0, 1, 2}
signifies that for a = 0 communication of the users are being done with the GBSs; a =
1 means communication of the users with the UAVs; a = 2 shows that communication
is done between the user and the Cloud. The K-means algorithm is used to generate
the centroid of clusters [u1, u2, . . . , uM] by taking the total number of clusters.

27

For V number of users, first of all, each GBS is checked to see if the Signal to Noise
Ratio(SNR) value, �x, is greater than the SNR threshold. In order to calculate the
SNR value, the PLTotal value is used from the Channel Model equations. Only if
these constraints are met, then 0 value is appended to the connection matrix and
the SNR values are stored for each possible connection,which will then be utilized
in Algorithm 2. Else, the same set of conditions are being run for the UAVs and if
the criteria are met, then the value of 1 gets appended to a. If the above conditions
are not satisfied, then the value of 2 is set to a. In this way the selection of caching
nodes is done by picking out caching nodes from clusters defined from the use of
K-means clustering algorithm.

28

5.2 Caching using Multi-Agent Actor-Critic

There have been many proactive caching algorithms which cache popular contents in
BSs’ and UEs’ during o↵-peak hours, but such techniques do not adapt to changing
popularity and is not feasible when the contents are in large scale.

As a result, DRL is an appropriate alternative to tackle this issue. A DRL agent
can be deployed at local servers and can dynamically adapt to changing condi-
tions.According to [23], policy control problem can also be solved by DRL, i.e finding
out which content to store in cache. Caching in DRL is usually done by replacing
contents which were less frequently requested. But caching contents without co-
operation with nearby servers will lead to ine�cient caching, as both the servers
may store the same content. As a result, cooperation is also very important while
implementing DRL in edge networks.Ensuring cooperation should avoid duplicate
data caching and fully utilize the computational capacity of each servers.

To ensure cooperation, each server has to know the caching state and request features
of it’s neighboring servers. But communicating information among servers will lead
to additional overheads. So an e�cient cooperative caching framework should be
enabled.

After selecting where to cache, using the cache node selection algorithm, we would
need to develop a dynamic caching policy which would decide what to cache in the
UAV and GBS server. As a result, we have developed a multi-agent actor-critic
algorithm to serve our purpose. For simplicity, we are assuming that a user request
will be handled by the closest GBS and UAV, since they would have better SNR,
rather than a server which is located far away.After receiving a user request, the
server selects the caching action, and sends the features and actions to the cloud
server, which acts as a centralized server. The server then evaluates the action
performed by the UAV and GBS, and based on how they performed, sends the
updated policies back to them to improve their respective caching actions. The
evaluation is done using temporal di↵erence error and is used to update the local
server models. Since, our goal is to maximize global cache hit ratio, the content can
be served by any one of the servers. As a result, the servers need to cooperate to
reach the global goal. For example, if GBS cannot serve a content request, then the
request is passed to the UAV server, depending if the UAV has the requested item.

29

Figure 5.1: Cooperative Caching between UAV and GBS

Using centralized DRL, we will be training our model. The cache bu↵er in the
GBS will determine a local action from the data requests that it received. The
local cache actions, bu↵er states and request features from all GBS and UAV, will
be sent to the central cloud server at each time step. The cloud server evaluates
the actions sent by the local servers, and sends the updated policy depending on
the parameters that it has received. The update that the central server sends will
consist of only the parameters and cooperation reward. This will indicate the local
servers as to which caching policy to be used, in the next time step. As a result, the
transmission overheads will be insignificant. For instance, when a user request is
received by either the UAV or GBS, they make the caching decisions based on their
current local model. Then they send the caching states,actions and request features
to the central server. The central server evaluates the received states and trains
it’s parameters to better evaluate the caching actions. The evaluation is made by
the Critic network that sends the TD-errors to the local servers which uses them to
update their action policy.

30

5.2.1 Reward Function, Feature Selection and Action Space:

Before designing the algorithm for the proposed framework, we need to define the
reward function, feature selection and action space.

Feature Selection

Notation Description
Cr

n The cache state of GBSn at r
Cr

m The cache state of UAVm at r
crn The nth data item in GBS at r
crm The mth data item in UAV at r
dr The data item in Cache at time r
⌦r The feature of a data item in Cache at r
↵r The request arrival time of data item at r
!r The total request frequency of data item at r
!t
s Short-term request frequency of data item at t
!t
m Medium-term request frequency of data item at t
!t
l Long-term request frequency of data item at t

µ Average user rating of item

Table 5.1: Feature Space Selection

It is extremely important to recognize the features that would lead to better cache
hit ratio. Conventionally, a binary matrix Cr

n =
�
cri,n | di 2 D, gn 2 G

and Cr

m =�
cri,m | di 2 D, um 2 U

can be pre-defined for GBS and UAV respectedly, however

it would be ine�cient to train using a sparse matrix and will be computationally
more expensive.Also it would not be realistic to know about the total data items
beforehand in practical scenarios as stated in [24].

As a solution, we are proposing a fixed length caching state of size N for GBS and M
for UAV which can be described as Cn = {c1, c2, . . . , cN} and Cm = {c1, c2, . . . , cM}
respectively.Here cn = {dn,⌦n}, where dn represents the item in nth location and ⌦
represents the feature.

31

For our work, we have considered 6 features {↵,⌦,⌦s,⌦m,⌦l, µ} as described in
Table 5.1. When the bu↵er is full these will be used to determine the content that
is to be replaced when a new request comes in. The first two features,are used for
conventional caching techniques such as LRU and LFU where ↵ is the arrival time
of each request, so that when a new request arrives, the bu↵er can replace the least
recent one with the new one.The second one ⌦r can be defined as ⌦ =

P
r f

r
x,i where

f r
x,i represents the frequency of data item i at rth request by user x. Next we have
also considered the short !t

s, medium !t
m and long term !t

l request frequency of
items as introduced by [23]. They are calculated as follows:

⌦t
s =

tX

t�⌧s

X

r

f r
x,i (5.1)

⌦t
m =

tX

t�⌧m

X

r

f r
x,i (5.2)

⌦t
l =

tX

t�⌧l

X

r

f r
x,i (5.3)

where ⌧s,⌧m,⌧l are considered as 5,10 and 50 time steps. Finally, since the dataset we
used had user ratings for each movie, we also considered using average rating µ as a
feature since rating is treated as a popularity metric in deep learning paradigm. So
we will be replacing the least rated movie in the bu↵er when a new request arrives.

32

Action Space

Notation Description
a1 Cache with least recently requested item
a2 Cache with least frequently requested item
a3 Cache with least frequently requested item in last ⌧s steps
a4 Cache with least frequently requested item in last ⌧m steps
a5 Cache with least frequently requested item in last ⌧l steps
a6 Cache with least rated item

Table 5.2: Action Space Selection

In our proposed framework, the output of the Actor network will determine the
caching action and we will also need to define them like we selected our features.
Instead of bothering about the replacement behavior of the cache bu↵er the action
will simply output a caching policy which will be used by the servers to update their
state. As a result, our proposed algorithm will output the caching policy, which will
be followed in the next time step by the server to cache and replace items. By this
approach our action space will be greatly reduced and will be discrete. The policy
vector can be denoted by An = {a1, a2, . . . , an} where an represents the policy which
will be used to make caching decisions.For example, a1 represents replacing cached
items that are least recently requested. So, when the actor network signals a1 for the
local server, the policy will cache a new item by replacing the least requested item
throughout that time step. For our work, we have determined six action policies as
defined in Table 5.2, which are; replacing items which were requested least recently,
which had least request frequency,least request frequency in last 5,10,50 time steps
and the least data ratings.

Reward Function

To ensure the cooperation among the UAV and GBS, we have considered the global
cache hit ratio as an appropriate choice. In our framework, the content cached in
the GBS as well as the content stored in the UAV, both contribute to our global
reward. So, the reward function at rth request can be considered as the weighted
sum of both the servers as stated in the problem statement 4.15, i.e

 r = � · lr + � · or (5.4)

33

5.2.2 Caching Methodology

Algorithm 2: GBS-UAV Cooperative Caching Algorithm:

1: Initialize: Actor network ⇡n (Cn | ⇥⇡
n) and ⇡m (Cm | ⇥⇡

m) with weights ⇥⇡
n and ⇥⇡

m

; Target Actor network ⇡0
n and ⇡0

m with weights ⇥0
n ⇥⇡

n and ⇥0
m ⇥⇡

m ; Critic
network Qn,m

�
C1,C2, ,Cn,m, an,m | ⇥Q

n,m

�
with weights ⇥Q

n,m ; Target Critic
network ⇥0

n,m ⇥n,m ; Cache Bu↵er state Cn and Cm; Replay Bu↵er Bn,m

2: for t = 1, T do
3: Select action atn = ⇡n (Cn | ⇥⇡

n) and atm = ⇡m (Cm | ⇥⇡
m) with current policy

4: for r = 1,Rt do
5: if Cr

n and Cr
m not full then

6: if rti in Cr
n or Cr

m

7: Update cache and hit ratio then end
8: else
9: Update in Cr which has better Snr
10: Update hit ratio then end
11: else
12: Keep track of caching state Cr

n and Cr
m

13: if rti in Cn or Cm then
14: Perform atn or atm, then send the state Cr�1

n or Cr�1
m , action, new state

Cr
n or Cr

m to the cloud server and update the hit ratio.
15: else
16: Perform at in C which has better Snr then send the state Cr�1, action,
new state Cr to the cloud server and update the hit ratio.
17: end
In cloud:

18: The cloud server calculates reward r
n and r

m for G and U and store
(Cr

n, a
r
n,

r
n,C

r+1
n) and (Cr

m, a
r
m,

r
m , Cr+1

m) for all r it received during t in Bn,m

19: Sample a random mini batch of S transitions
�
Cs

n,m, a
s
n,m,

s
n,m,C

s+1
n,m

�
from Bn,m

20: Set ysn,m = s
n,m + �Qn,m

�
Cs+1

1 . . . · Cs+1
N,M , ⇡n,m

�
C i+1

n,m

�
| ⇥0

n,mQ
�

21: Calculate TD based on present parameters:
�n,m = 1/S

P
s

�
ysn,m �Qn,m

�
Cs

1 . . .C
s
N,M, a

s
n,m | ⇥Q

n,m

��

22: Update the critic network Qn,m by minimizing the Huber loss: z (�n,m)
23: Update Critic target network: ⇥0Q

n,m ⌧⇥Q
n,m + (1� ⌧)⇥0Q

n,m

24: Send �n,m to GBS and UAV
The UAV and GBS actor network is updated by:

25: For GBS: r✓n⇡J = r✓n⇡ log ⇡n (Cn, an)�n,m

26: For UAV: r✓m⇡J = r✓m⇡ log ⇡m (Cm, am)�n,m

27: Update GBS Actor target network: ⇥0⇡
n ⌧⇥⇡

n + (1� ⌧)⇥0⇡
n

28: Update UAV Actor target network: ⇥0⇡
m ⌧⇥⇡

m + (1� ⌧)⇥0⇡
m

29: Cr�1
n Cr

n

30: Cr�1
m Cr

m

31: end

Finally, this is our proposed algorithm, which consist of the critic and actor networks
implemented in the central server and local bu↵ers accordingly.

34

Now, the work flow of the algorithm that we are proposing will be discussed below:
At a given time step, based on the user position and user requests, the SNR is
calculated using Algorithm 1. As a result, if a connection is possible to a server,
will be known during that time period. Then each users request is handled by the
nearest UAV-GBS pair. If the item is not available in either of the servers then the
data is fetched from the cloud server to serve the user, and the item is cached in
either UAV or GBS that has a better SNR value.The server will then process the
content request and make a caching decision based on the current caching action
policy as updated at the beginning of the time step. Then, the states,actions and
new states is sent to the central server at the end of the time period. In the central
server, the Critic network will evaluate the rewards based on the features and actions
as well as calculate the TD-error. This will allow the Critic network to update it’s
parameters by minimizing the loss function. Finally, the TD-error will be sent to
the UAV-GBS pair to update their caching policies. The process will repeat in the
next time-stamp.

Actor Network

The actor networks are located in the local servers, i.e in the UAV and GBS, which
takes caching state and request features as input. The network is denoted by ⇥⇡

n,
which seeks the optimal caching policy by mapping the state C to action a. In
each time step, the actions are choosen by the UAV and GBS based on the current
parameters of the network.

atn = ⇡
�
Ct | ⇥⇡

�
(5.5)

Critic Network

Critic network: For evaluating the values of the selected actions performed by the
local server, the critic network is used. As it’s input, it takes all the caching state
and actions performed by the GBS and UAV at time t. The action policy of a
particular server is determined by the global states and actions performed by the
UAV and GBS at time t. Then, the job of the critic is to calculate the TD-error,

�n,m =
1

S

X

s

�
ysn,m � �Qn,m

�
Cs

1 , . . . , C
s
N,M , asn,m | ⇥Q

n,m

��

ysn,m = s
n,m +Q·

n,m

�
Cs+1

1 , . . . , Cs+1
N,M , ⇡n,m

�
Cs+1

n,m

�
| ⇥Q

n,m

� (5.6)

where � is the discount factor which enables a balance between recent and future
accumulated reward, S is the size of the mini-batch that will be sampled, and ⇥Q

n,m

is the network parameters.
After calculating the TD error the critic network is updated by the Huber loss
function as defined in 5.7:

Huber loss, z(�n,m) =

⇢
0.5 (�n,m)

2 /beta, if |�n,m| < beta
|�n,m|� 0.5 ⇤ beta, otherwise

(5.7)

35

And for the GBS and UAV, the actor network is updated using the policy gradient:

r✓n⇡J = r✓n⇡ log ⇡n (Cn, an)�n,m

r✓m⇡J = r✓m⇡ log ⇡m (Cm, am)�n,m
(5.8)

36

Chapter 6

Simulation Results

6.0.1 Data Pre-processing and Visualization

For our simulation part, we are using MovieLens dataset [25] to implement the
content caching policy. This dataset is mainly composed of rating data of certain
movies by di↵erent users. The MovieLens 1M dataset records around 1 million
ratings of users along with User ID, Movie ID and timestamp. The movie rating
process is analogous to the content request process. We have assumed that when an
audience is rating a movie at a particular time it means the user is also requesting
the movie file in that specific time. It is also assumed that the server is updat-
ing the caching decision every hour, so the timestamp is divided into 1 hour each.

First of all, we explored the dataset to know about it’s contents and how we can use
it to simulate edge caching in MEC servers and UAV.

Figure 6.1: Cumulative or total number of movie genres for which the rating has
been provided

In the figure 6.1, we have analysed the dataset to find the cumulative or total number
of movie genres for which the rating has been provided. Comedy and dramas are
the top genres here.

37

Figure 6.2: Density of movie ratings

This figure in 6.2, quantifies the density of movie ratings and shows that movie
ratings of around 3.5 value are more in number, mean rating and those movie genres
are mainly drama, comedy and also mystery.

Figure 6.3: Average movie ratings

This figure in 6.3, shows the average movie ratings, with 95 percent of the average
movie ratings above 2.5. This can be explained by the fact that users watch better
movies due to good ratings of those movies.

38

Figure 6.4: Average ratings of most popular movies

This plot in 6.4, shows the movieIds which have more average rating. It shows that
movieIds less than 1500 have more average ratings.

Figure 6.5: Movie IDs with highest rating

Figure 6.5, shows the number of ratings received for each type of Movie Ids which
shows the Ids with the highest rating.

39

Figure 6.6: Number of Movie requests in each time period, t

This exploratory data analysis and visualizations which have been shown have helped
us to understand the number of requests made per time stamp. For our work we
have considered the ratings given by the users as the requests made, which is a valid
assumption also done in previous works. As a result, ratings of movies given in an
hour is considered as the number of requests by each user in each time period, t and
shown in the plot 6.6.

40

6.0.2 Cache Node Selection Simulation

Figure 6.7: Clustering of UAVs according to user mobility where each UAVs are
marked with white cross

Here the K-means clustering algorithm has been used as the estimator where the
total number of clusters is taken to be equal to the number of UAVs that we have as
each UAV is capable of serving one specific cluster of users. In this case the cluster
number = 3. We also set a tolerance threshold = 1e�4 which is a hyper parameter
used to more accurately run the K-means clustering algorithm which is also used as
a terminating value for the segmenting error. In order for the algorithm to work on
the huge number of users, it has been fitted on the user mobility matrix to give us
a good prediction. The graph below depicts the ideal positioning of the UAVs once
run on the user mobility matrix and it is clearly visible that there are 3 distinct
regions due to the 3 clusters for the UAVs to serve.

41

Descriptions and Notations Value
UAV-BS height,H 60m
Users,x 100
GBS, N 3
UAV, M 3
GBS link carrier frequency, fc,GBS 2.1GHZ
UAV-BS transmit power,PUAV 20dBm
GBS transmit power,PGBS 40dBm
UAV link carrier frequency, fc,UAV 38GHZ
Free-space reference distance, do 5
Shadowing random variables, X�LoS, X�NLoS 8.3, 8.27
UAV, snr -93
GBS, snr -97
Environment dependent constant, Z,W 11.9, 0.13
Path loss Exponent, 2

Table 6.1: Environmental Parameters

In Table 6.1, we have several parameters which we are mainly using for cache node
selection. The first one is the height of the UAV from the user which is taken to be
60m. We have considered the snr threshold of UAV and GBS to be -93 dBm and
-97dBm which is considered as a good connection as in [26] Then we have GBS link
carrier frequency which is the frequency of the Ground base station that operates
at 2.1 GHZ. We also have UAV-BS transmit power which gives the power of UAV
transmission as 20dBm and Ground base station transmitting power as 40dBm.
The UAV links are operated in mmWave band with carrier frequency of fc,UAV
= 38GHZ. Finally we have shadow random variables, environmental constants and
path loss exponents which are used to calculate the total path loss.

Figure 6.8: Output of cache node selection according to snr values

The Figure 6.8 shows the SNR values of each user being connected to a corresponding

42

node based on the threshold, while running the cache node selection algorithm.

Figure 6.9: Number of Users connected in each server

Finally, in 6.9 we have a visualization which shows the connection of 100 users to a
corresponding node after averaging through 1000 time steps. Most number of users
get connected to cache node 0 which are the GBSs, and those of which that didn’t
get connected to a GBS, gets connected to the cache node 1, that are the UAVs. If
neither of them provides a good connection, the user has to retrieve it’s data from
the cache node 2 which is the cloud server.

43

6.0.3 Caching using MAAC

For our research, we compared our proposed algorithm to two other conventional
caching techniques used in edge caching.

• Least Recently Used(LRU): The method caches item based on the time they
arrived i.e if the cache bu↵er is full and a new item is to be cached, then the
algorithm replaces the item that arrived least recently.

• Least Frequently Used(LFU): In this method the request frequency of an item
is tracked, so that when a new item is requested the the algorithm replaces
the least frequently requested item from the cache server that is full.

Both this algorithm caches items that are relatively popular. But struggles to pro-
vide good hit rates when the popularity of requested item is uniform. This is where
our proposed algorithm does better. Firstly, our dynamic approach does not depend
only on the popularity of contents as a result it is able to adjust quickly when the
popularity of content keeps changing or does not follow a pattern. Secondly, due
to our collaborative approach the same item is not cached at both places which is
not the case for the conventional approaches. Thirdly, since our proposed algorithm
makes decision based on multiple features of a data item, allows it to make better
caching decisions at each time step.

44

MAAC network Parameters:

We have considered the actor network with two fully connected hidden layers of
shape 256 and 128 with learning rate of 0.001. In the critic network we have two
fully connected hidden layers of shape 128 and 64 units with learning rate of 0.004.
We have used Adam as the optimizer for both networks. And finally we initialized
the replay bu↵er, Bn,m with size 10000, and set the mini-batch, S sample size to 28.

Hyperparameters Values
Bu↵er Size,Bn,m 10000
Batch Size,S 28
GBS storage,G 50
UAV storage,U 25
Movie Size,D 5
Action Size 6
Gamma,� 0.9
Tau,⌧ 0.002
Reward weight,� 0.7
Reward weight,� 0.3
Actor FC1 256 neurons
Actor FC2 128 neurons
Critic FC1 128 neurons
Critic FC2 64 neurons
Actor Learning Rate 0.001
Critic Learning Rate 0.004

Table 6.2: MAAC Hyperparameters

45

Caching Algorithm Simulation

In the figures below, we have compared the cache hit ratios for di↵erent storage
capacities using our proposed model along with the conventional approaches. Using
the normal hours we have done all the simulations below.

Figure 6.10: Comparing Cache hit ratio for di↵erent GBS Storage Capacity

In the figure above in 6.10, there is a linear rise in all three algorithms’s cache hit ra-
tios as we increase the GBS’s storage capacity. Our proposed algorithm achieves the
best hit ratio in all cases. However, the lru struggles to get a high Mec reward even
when the storage capacity is high. Meanwhile, the lfu and our proposed algorithm
kept a consistent gap along all storage capacities.

46

Figure 6.11: Comparing Cache hit ratio for di↵erent UAV Storage Capacity

In Figure 6.11, there was not enough increase in the hit ratio for LRU. However, the
LFU achieved a better reward than our proposed model. This is because we first
check for a connection in GBS and cache our item in the server which has a better
snr value. Since GBS are also closer to most requests, the most requested items are
cached in GBS and not in the UAV. As a result, to achieve a greater global hit ratio,
the algorithm is sacrificing it’s performance for the case of UAV. The performance
decreases initially, because the proposed algorithm was adjusting it’s cooperation,
and then the increase is linear as we increase the UAV’s storage.

47

Figure 6.12: Comparing Global cache hit ratio for di↵erent GBS and UAV Storage
Capacity

Finally, in Figure 6.12, we have shown the change in global reward as with di↵erent
UAV and GBS storage. LRU performed the worst among all the algorithms. Our
proposed model achieved the highest reward in all sizes. However, there is a smaller
gap with LFU initially because of the drop in UAV’s reward initially to adjust coop-
eration. But, afterwards there is a consistent gap between the proposed algorithm
and LFU as the storage sizes where further increased.

48

Caching in Normal Time

The reason we used UAVs’ was to assist GBS in situations where a GBS is not
enough to handle the flood of user requests and another GBS might be located far
away. In such a scenario, there will be a greater transmission delay to fetch the
file from a GBS or from the central server located far away. This will result in a
deterioration in user experience.

As a result, the purpose of this work is to show better cache hit ratio in situa-
tions when there is a high number of user requests i.e in peak hours. Alongside in
situations where the number of requests is normal.
First we will be comparing the result of the algorithms in normal hours. For the
simulation, we chose time period 1500-2000 from the Movie Lens data set, discarding
a period where the total number of user request was less than 15. The average
number of request in a given hour during this period was 137.

Figure 6.13: Comparing Cache hit ratio using LFU during normal hours

The Figure 6.13 shows the cache hit ratios for LFU during normal hours. There
is a gradual increase for the first 100 hours both for the GBS and UAV and then
becomes constant.

49

Figure 6.14: Comparing Cache hit ratio using LRU during normal hours

In Figure 6.14, after the initial rise, there is a temporary fall,afterwards the reward
is constant for all time steps.

50

Figure 6.15: Comparing Cache hit ratio using Proposed algorithm during normal
hours

The proposed model in figure 6.15 rose sharply and then stayed constant for all time
steps. The UAV reward was lower than that of LFU’s however the MEC reward was
greater.

51

Figure 6.16: Comparing global cache hit ratio for all Algorithms in normal hours

Finally, in Figure 6.16 the proposed algorithm achieved greater global reward through-
out the simulation. However, we have ran the proposed model twice using the
weights of the first iteration in the second iteration. This resulted in the sharper
rise in global hit rate in the beginning. The first iteration had a poor start because
the model was initialized with random weights and as a result it took few time peri-
ods to adjust it’s parameters to achieve a higher global hit rate. This also shows, if
a request pattern is repeated, which is the case for people going for work everyday
on the same time requesting almost similar items. The proposed algorithm takes
more e�cient caching actions resulting in better global reward.

52

Caching in Peak Time

Finally we will be comparing the result of the algorithms in peak hours. For the
simulation, we chose time period 4800-6000 from the Movie Lens data set, discarding
a period where the total number of user request was less than 15. The average
number of request in a given hour during this period was 314.

Figure 6.17: Comparing Cache hit ratio using LFU during peak hours

In Figure 6.17 the LFU shows a similar shape that it showed during normal hours.
Initially increasing and then having a constant hit ratio for the rest of the simulation.
The hit ratio has improved than what it was during the normal period. This is
because, since the number of requests per hour increased. There is a greater chance
for users to request the items more frequently, and since LFU caches based on the
frequency of items it provided a better hit ratio as well.

53

Figure 6.18: Comparing Cache hit ratio using LRU during peak hours

For the peak hours in Figure 6.18, the LRU struggled to provide a good hit ratio.
There is an increase initially, however the hit rate gradually falls after few time steps
and remained constant afterwards. The reason for this is the randomness of LRU.
Out of the three algorithms LRU is more prone to caching newer items. As a result,
it cached items that were not frequently requested by the users during that period.

54

Figure 6.19: Comparing Cache hit ratio using Proposed algorithm during peak hours

In Figure 6.19 the proposed algorithm had a higher initial rise than in the normal
period and then remained constant.

55

Figure 6.20: Comparing global cache hit ratio for all algorithms in peak hours

Finally, in figure 6.20 it can be seen that our proposed model achieved the highest
global hit ratio throughout the simulation. Our algorithm was able to make more
e�cient caching actions because of the combination of multiple features that the
MAAC was able to utilize.

56

Chapter 7

Conclusion

In this paper, we have researched the di↵erent scenarios of content caching at the
edge network. We have found researches which have cached contents in the user’s de-
vice, vehicles, ground base station or road side unit, and also in the sky using UAVs.
We have gone through the network, computational, caching and collaborative con-
straints that exist in the di↵erent networks such as in VANET,FANET,D2D,A2G.
After going through the works, we have been inspired to come up with solutions
that haven’t been tackled before in edge computing. For example, we planned to
integrate the air and ground networks to create a hierarchy of caching to reduce the
content transmission latency and to improve the quality of experience for the users.
We have considered computation, caching, communication and control of mobility,
to cache. In addition to this, the control of mobility was not previously been used
in papers to cache. It is noteworthy to mention that, we have considered a cluster-
ing approach to dynamically allocate UAVs based on user mobility where the user
position is modelled through the use of Random Waypoint. We have designed a
cooperative multi-agent actor-critic based reinforcement learning algorithm, which
has been trained and tested, where the edge device is intelligent enough to make
caching decisions based on users content request.

However, there are some scopes for further improvement of our work. We have taken
into account only the closest UAV and GBS pair since it will provide a better smaller
SNR value. If the UAV and GBS cannot serve, then the request is sent to the cloud.
This means that we have not considered a Multi GBS-UAV architecture, where there
is communication among GBS and UAVs to reach a global cache hit maximization.
This is one of the areas where there is future scope of work for researchers.

57

Bibliography

[1] Cisco Annual Internet Report - Cisco. Accessed: Jan. 08, 2021. [Online]. url:
https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-
internet-report/index.html.

[2] What is Edge Computing?. Author: Michael by Michael Wang - Medium. Ac-
cessed: Jan. 08, 2021. [Online]. url: https://medium.com/@miccowang/what-
is-edge-computing-f997c0ab39fc.

[3] A Beginner’s Guide to Edge Computing — by Velotio Technologies - Velotio
Perspectives — Medium. Accessed: Jan. 08, 2021. [Online]. url: https : / /
medium.com/velotio- perspectives/a- beginners- guide- to- edge- computing-
6cfea853aa11.

[4] Nasser M. Sabah and Aykut M. Hocanin. “Gamma random waypoint mobility
model for wireless ad hoc networks”. In: Int. J. Commun. Syst. 26 (2013),
pp. 1433–1445.

[5] H. Zhu et al. “”Proactive caching a framework for performance optimized
access control evaluations””. In: IEEE International Symposium on Policies
for Distributed Systems and Networks, POLICY 2009 (2009), pp. 92–94. doi:
10.1109/POLICY.2009.31.

[6] A. O. A. Salem, T. Alhmiedat, and G. Samara. “Cache Discovery Policies of
MANET”. In: (2013).

[7] Michael Till Beck et al. “Mobile edge computing: A taxonomy”. In: Proc. of
the Sixth International Conference on Advances in Future Internet. Citeseer.
2014, pp. 48–55.

[8] Y. Mao et al. “A Survey on Mobile Edge Computing: The Communication Per-
spective”. In: IEEE Communications Surveys Tutorials 19.4 (2017), pp. 2322–
2358. doi: 10.1109/COMST.2017.2745201.

[9] M. Agiwal, A. Roy, and N. Saxena. “Next generation 5G wireless networks:
A comprehensive survey,” IEEE Communications Surveys and Tutorials”. In:
Institute of Electrical and Electronics Engineers Inc. 18.3 (2016), pp. 1617–
1655. doi: 10.1109/COMST.2016.2532458.

[10] A. Osseiran et al. “Scenarios for 5G mobile and wireless communications: The
vision of the METIS project”. In: IEEE Commun. Mag 52.5 (2014), pp. 26–35.
doi: 10.1109/MCOM.2014.6815890.

[11] K. Zhang et al. “Energy-E�cient O✏oading for Mobile Edge Computing in
5G Heterogeneous Networks”. In: IEEE Access 4 (2016), pp. 5896–5907. doi:
10.1109/ACCESS.2016.2597169.

58

https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
https://medium.com/@miccowang/what-is-edge-computing-f997c0ab39fc
https://medium.com/@miccowang/what-is-edge-computing-f997c0ab39fc
https://medium.com/velotio-perspectives/a-beginners-guide-to-edge-computing-6cfea853aa11
https://medium.com/velotio-perspectives/a-beginners-guide-to-edge-computing-6cfea853aa11
https://medium.com/velotio-perspectives/a-beginners-guide-to-edge-computing-6cfea853aa11
https://doi.org/10.1109/POLICY.2009.31
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2016.2532458
https://doi.org/10.1109/MCOM.2014.6815890
https://doi.org/10.1109/ACCESS.2016.2597169

[12] Anselme Ndikumana and Choong Seon Hong. “Self-driving car meets multi-
access edge computing for deep learning-based caching”. In: 2019 International
Conference on Information Networking (ICOIN). IEEE. 2019, pp. 49–54.

[13] Kyi Thar et al. “Deepmec: Mobile edge caching using deep learning”. In: IEEE
Access 6 (2018), pp. 78260–78275.

[14] Zhuying Piao et al. “Recent advances of edge cache in radio access networks
for internet of things: Techniques, performances, and challenges”. In: IEEE
Internet of Things Journal 6.1 (2018), pp. 1010–1028.

[15] Xiaoyan Jin et al. “Computation O✏oading and Resource Allocation for MEC
in C-RAN: A Deep Reinforcement Learning Approach”. In: 2019 IEEE 19th
International Conference on Communication Technology (ICCT). IEEE. 2019,
pp. 902–907.

[16] Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. “A deep reinforcement
learning-based framework for content caching”. In: 2018 52nd Annual Confer-
ence on Information Sciences and Systems (CISS). IEEE. 2018, pp. 1–6.

[17] Wei Jiang et al. “Multi-agent reinforcement learning based cooperative content
caching for mobile edge networks”. In: IEEE Access 7 (2019), pp. 61856–61867.

[18] Ying He, Nan Zhao, and Hongxi Yin. “Integrated networking, caching, and
computing for connected vehicles: A deep reinforcement learning approach”.
In: IEEE Transactions on Vehicular Technology 67.1 (2017), pp. 44–55.

[19] Mingzhe Chen et al. “Caching in the sky: Proactive deployment of cache-
enabled unmanned aerial vehicles for optimized quality-of-experience”. In:
IEEE Journal on Selected Areas in Communications 35.5 (2017), pp. 1046–
1061.

[20] Ramy Amer et al. “Caching to the sky: Performance analysis of cache-assisted
CoMP for cellular-connected UAVs”. In: 2019 IEEE Wireless Communications
and Networking Conference (WCNC). IEEE. 2019, pp. 1–6.

[21] Yi Zhou et al. “Multi-UAV-aided networks: Aerial-ground cooperative ve-
hicular networking architecture”. In: ieee vehicular technology magazine 10.4
(2015), pp. 36–44.

[22] Nan Cheng et al. “Air-ground integrated mobile edge networks: Architec-
ture, challenges, and opportunities”. In: IEEE Communications Magazine 56.8
(2018), pp. 26–32.

[23] Chen Zhong, M. Cenk Gursoy, and Senem Velipasalar. “A deep reinforcement
learning-based framework for content caching”. In: Mar. 2018, pp. 1–6. doi:
10.1109/CISS.2018.8362276.

[24] Yuming Zhang et al. “Cooperative Edge Caching: A Multi-Agent Deep Learn-
ing Based Approach”. In: IEEE Access PP (July 2020), pp. 1–1. doi: 10.1109/
ACCESS.2020.3010329.

[25] MovieLens 1M Dataset - GroupLens. Accessed: Jan. 08, 2021. [Online]. url:
https://grouplens.org/datasets/movielens/1m/.

[26] UAV Navigation in depth: How to measure the quality of the datalink - UAV
Navigation. Accessed: Jan. 08, 2021. [Online]. url: https://www.uavnavigation.
com/company/blog/uav-navigation-depth-how-measure-quality-datalink.

59

https://doi.org/10.1109/CISS.2018.8362276
https://doi.org/10.1109/ACCESS.2020.3010329
https://doi.org/10.1109/ACCESS.2020.3010329
https://grouplens.org/datasets/movielens/1m/
https://www.uavnavigation.com/company/blog/uav-navigation-depth-how-measure-quality-datalink
https://www.uavnavigation.com/company/blog/uav-navigation-depth-how-measure-quality-datalink

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Problem Definition
	Research Objectives
	Thesis Orientation

	Background Study
	Cloud vs Fog vs Edge Computing
	Caching in Edge Computing
	Multi Access Edge Computing
	Computing in Mobile Edge Networks
	Minimization of Latency
	Maximization of Network Capacity
	Minimization of Energy Consumption

	Related Work
	Proposed System Architecture
	System Model
	Problem Formulation
	Computation model
	Mobility Model
	Communication Model
	Caching Model

	Cache Node Selection and Cooperative Caching Framework
	Cache Node Selection Using K-Means Clustering
	Caching using Multi-Agent Actor-Critic
	Reward Function, Feature Selection and Action Space:
	Caching Methodology

	Simulation Results
	Data Pre-processing and Visualization
	Cache Node Selection Simulation
	Caching using MAAC

	Conclusion
	Bibliography

