
Facial Expression Recognition: Convolutional Attentional
Masking Network and Ensemble Approach

by

Ibna Kowsar
17301130

Mashfiq Shahriar Zaman
17301167

Md. Fahmidur Rahman Sakib
17301196

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
January 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Ibna Kowsar
17301130

Mashfiq Shahriar Zaman
17301167

Md. Fahmidur Rahman Sakib
17301196

i

Approval

The thesis titled “Facial Expression Recognition: Convolutional Attentional Mask-
ing Network and Ensemble Deep Learning Model” submitted by

1. Ibna Kowsar (17301130)

2. Mashfiq Shahriar Zaman (17301167)

3. Md. Fahmidur Rahman Sakib (17301196)

Of fall, 2020 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of Bachelor of Science in Computer Science and Engineering on
January 11, 2021.

Examining Committee:

Supervisor:
(Member)

Md. Hasanul Kabir, PhD
Professor

Department of Computer Science and Engineering
Islamic University of Technology

Co-Supervisor:
(Member)

Rasif Ajwad
Lecturer

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Head of Department:
(Chair)

Mahbubul Alam Majumdar, PhD
Professor and Dean, School of Data and Sciences

Department of Computer Science and Engineering
Brac University

iii

Ethics Statement

We the members, hereby and sincerely declare that this thesis has been done based
on the findings of our extensive research. All the materials which have been used
are properly noted and cited in this report. This research work, neither in full nor
any part has never been submitted by any other person to another university or any
institution for the award of any degree or for any other purpose.

iv

Abstract

Facial expression plays a significant role in human communication. The necessity of
recognizing facial expression is increasing rapidly as it can be implemented in various
important fields such as in human-computer interactions, medical care, autonomous
transportation systems etc. The facial expression detection has been accomplished
by the analysis of convolutional neural networks on the micromotors and action
units. In this thesis, we have introduced a new variant of residual architecture
named CAMnet which uses the split attentional module and the masking module
mechanisms simultaneously. Also, the model performs better compared to other
models without using any pretrained weights on small dataset like FER2013. Addi-
tionally, along with the CAMnet an ensemble model has been implemented and we
have achieved 76.12% accuracy on the FER2013 test set.

Keywords: Facial Expression; Deep Learning; RAF; FER2013; CAMnet; Attention

v

Acknowledgement

Firstly, all praise to the Great Almighty for whom our thesis have been completed
without any major interruption in this pandemic situation.
Secondly, to our supervisor Md. Hasanul Kabir and our co-supervisor Rasif Ajwad
for their kind support and advice in our work. They helped us whenever we needed
help.
Thirdly, We want to take a moment to thank our supportive friends who have been
there to give us mental support in the hard times.
And finally to our parents without their throughout support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Acknowledgment vi

Table of Contents vii

List of Figures x

List of Tables xi

Nomenclature xii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 3
1.3 Motivation . 3
1.4 Research Objective . 3

2 Literature Review and Related Work 5
2.1 Convolution Neural Network . 5

2.1.1 Layers . 5
2.1.2 Activation Functions . 7

2.2 Existing Deep Learning Models . 8
2.2.1 VGGNet . 8
2.2.2 ResNet . 9
2.2.3 Inception . 13

2.3 Challenges with Training . 14
2.3.1 Data Dependency . 14
2.3.2 Overfitting . 14
2.3.3 Gradient Vanishing . 15

2.4 Transfer Learning . 15
2.4.1 Fine Tuning . 15
2.4.2 Features Extraction . 15

2.5 Optimization Algorithms . 15

vii

2.5.1 Stochastic Gradient Descent (SGD) 15
2.5.2 Adam . 16
2.5.3 AdaDelta . 16
2.5.4 RAdam . 16

2.6 Loss Functions . 17
2.6.1 Mean Square Error Loss . 17
2.6.2 Cross Entropy Loss . 17
2.6.3 Loss Multi Label . 17

2.7 Advanced Visualization Techniques 17
2.7.1 Gradient Based . 17

2.8 Facial Expression with Deep Learning 18

3 Dataset 21
3.1 Facial Expression Recognition (FER2013) 21

4 Implementation of Existing Model Architectures 22
4.1 Baseline Model . 22
4.2 VGG 16 . 23
4.3 VGG 19 . 24
4.4 SeNet-50 . 24
4.5 Resnet50 . 25
4.6 SeResNext101 . 26
4.7 SeResNet34 . 26
4.8 Densenet121 . 27
4.9 BAM & CBAM . 27

5 Proposed Method 29
5.1 Convolutional Attentional Masking Network 30

5.1.1 Convolutional Attention Unit (CAU) 31
5.1.2 Masking Block . 32

6 Experimental Analysis and Discussion 34
6.1 Experimental Setup . 34

6.1.1 Data Pre-processing . 34
6.1.2 Data Augmentation . 34
6.1.3 Regularization Techniques . 35
6.1.4 Dropout . 35
6.1.5 Normalization . 35
6.1.6 Early Stopping . 36
6.1.7 Training Set . 36
6.1.8 Validation Set . 36
6.1.9 Evaluation Criterion . 36

6.2 Result and Evaluation . 37
6.2.1 Implementation of CAMnet 37
6.2.2 Implementation of Ensemble Model 39

7 Conclusion and Future Work 44
7.1 Conclusion . 44
7.2 Future Work . 44

viii

Bibliography 45

ix

List of Figures

1.1 Traditional FE classification framework Adapted from [3] 2
1.2 Deep Learning based FE classification framework 2

2.1 VGG19 Model Architecture . 8
2.2 Resnet 34 Model Architecture . 10
2.3 Resnet 50 Block Architecture . 10
2.4 SeResNet Block Architecture . 11
2.5 ResNext Block Architecture . 12
2.6 ResNest Block Architecture . 13
2.7 Inception V3 Block Architecture . 14
2.8 Grad-CAM Visualization (CAMnet weights) 18

3.1 Sample images of FER2013 Dateset 21

4.1 Accuracy and Loss Graph for Baseline Model Architecture 23
4.2 Accuracy and Loss Graph for Vgg 16 Transfer Learning 23
4.3 Accuracy and Loss Graph for Vgg 19 24
4.4 Accuracy and Loss Graph for SeNet50 25
4.5 Accuracy and Loss Graph for Resnet50 25
4.6 Accuracy and Loss Graph for Seresnext 101 26
4.7 Accuracy and Loss Graph for Seresnet 34 26
4.8 Accuracy and Loss Graph for Densenet121 27
4.9 Accuracy Graph for BAM & CBAM 27

5.1 Resnet34 Block . 29
5.2 CAMnet Block . 29
5.3 Convolutional Attentional Masking Network (CAMnet) 30
5.4 CAU Block . 31
5.5 Masking depth 2 . 32
5.6 Masking depth 3 . 33

6.1 Result image from resizing algorithm 34
6.2 Learning curve for CAMnet with NPW 38
6.3 Confusion Matrix of CAMnet 34 (ours) 38
6.4 Confusion Matrix of Seresnet 34 . 39
6.5 Confusion Matrix of Densenet 121 . 40
6.6 Confusion Matrix of Seresnext 101 41
6.7 Confusion Matrix of CBAM Resnet 50 41
6.8 Confusion Matrix of BAM Resnet50 42

x

List of Tables

3.1 Dataset Table of sample classes of FER2013 21

6.1 Augmentation Parameter . 35
6.2 Confusion Matrix for FER2013 classes 37
6.3 CAMnet feature tuning results . 37
6.4 Comparision with existing resnet34 based architecture 39
6.5 Performance table of the trained architectures on FER2013 42
6.6 Comparision with existing architecture 43

xi

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

BAM Bottleneck Attention Module

CAMnet Convolutional Attentional Masking Network

CAU Convolutional Attentional Unit

CBAM Convolutional Block Attention Module

CNN Convolutional Neural Network

DSST Discrete Separable Shearlet Transform

DTAN Deep Temporal Appearance Network

DTGN Deep Temporal Geometry Network

FACS Facial Action Coding System

FER Facial Expression Recognition

HOG Histogram of Oriented Gradients

LBP Local Binary Pattern

LDP Local Directional Pattern

LSTM Long Short-Term Memory

MSE Mean Square Error

ResNet Residual Network

SeNet Squeeze and Excitation Network

SGD Stochastic Gradient Descent

SIFT Scale Invariant Feature Transform

SVM Support Vector Machine

xii

Chapter 1

Introduction

Facial expressions have been considered as important elements in the process of
human communications which helps to understand the inner states of others. Also,
the most natural and instant indication about one’s reactions can be obtained from
the facial expression [1]. Humans can realize the facial expressions of others through
vision and also understand the inner states through the analysis of the human brain.
However, the method of attempting to analyze and recognize facial features from
the visible perspective by a computer has been a challenging procedure and has been
referred to as the automatic facial expression recognition system [2].

1.1 Background

As facial [3] expressions are dominant information channels in interaction, research
on facial expressions have gaining a lot of popularities over the past decades not only
in the fields of perceptual and cognitive science, but also in computer animations
and Affective Computing Vision [4, 5].
Emotions not only play significant roles in human interaction but also in the way
of computer usage. Moreover, a domain named Affective computing targets user
feelings while the user interacts with computers and applications [5]. To increase
the productivity and effectiveness of computers, Affective computing vision has been
used to make computerized systems to concede human feelings. The purpose of emo-
tion recognition is to systematically classify temporal states of emotion depending
on the input data.
Facial emotions are the layout of various micromotor motions in the face [6]. There-
fore, the facial movements can infer a person’s emotional situation such as happi-
ness, fear, anger, disgust, sadness and surprise. Moreover, the Facial Action Coding
System (FACS) is the first broadly used approach to classify human expressions
experimentally [6]. In the conventional approaches which have been used to detect
facial expressions, the recognition process has three major segments, at first the face
and facial landmark points have been detected, after that spatial and temporal fea-
tures have been extracted from the detected facial points. In this part, various facial
features extraction algorithms have been utilized namely HOG, SIFT, LBP, LDP,
etc [7–10]. Lastly the facial expression has been classified. In the facial expression
recognition step, some of the existing pre-trained facial expression classifiers have
been implemented such as the SVM, random forest, AdaBoost and other classifier
to classify the facial expressions from the extracted facial features.

1

Figure 1.1: Traditional FE classification framework
Adapted from [3]

Meanwhile, in contrast to traditional approaches utilizing the handcrafted features,
the emerging and newly developed deep learning models have achieved state-of-the-
art detection accuracies. These models have outperformed the existing machine
learning models because of the availability of the big data [11].Deep learning based
facial expression recognition approaches have significantly reduced the preprocessing
methodologies by introducing “end-to-end” learning in the pipelined based architec-
ture directly from the input images [12] and also the face-physics dependent models.
The convolutional neural network (CNN) has shown better accuracy in facial expres-
sion recognition among all other types of deep learning models. In the CNN based
approach, at first the input images have been convolved through a collection of fil-
ters to produce feature maps. After that, each feature map has been combined to a
fully connected layer and lastly the facial expression has been detected as belonging
to a particular class of emotion among the 7 output emotions by implementing the
softmax layer.

Figure 1.2: Deep Learning based FE classification framework

However, there are some difficulties in the process of facial expression recognition
which need to be addressed. Firstly, the availability of mislabeling images in the
dataset creates problems for the model while training and classifying the emotions
of a particular class properly. Also, for the unlabeled data, traditional machine
learning algorithms like Haar-cascade, HOG, LBP may not extract facial features
accurately if they are not handcrafted properly. Also, the FER2013 is quite small in
size and some of the classification classes do not have sufficient images to train the
deep neural networks. Moreover, decoding compound expressions such as happily
fearful which consists of the action units of both happy and fear, is a challenging
task. Besides there are some similarities between the fear and sad classes as the
AU of both classes overlaps. Lastly, the variations in the pose, occlusion and aging

2

situations make the whole recognition procedure more difficult.

1.2 Problem Statement

As our study is focused on deep learning models, it is mandatory to have bigger
dataset to get the expected performance from the model. However, all the existing
dataset on FER is not big enough to train by using larger network architectures.
Moreover, as the deep learning models are data hungry and also if the image size
is not large enough we cannot go deeper using a architecture without loosing image
details. Most of the existing work on FER has been done using simple network like
VGG16 or even smaller model with depth of 5-10. Though using transfer learning
is quite an advantage on deep learning field, it is not applicable for FER2013, RAF
as they are not large enough and on the other hand, FER2013 has 48 × 48 size of
images on its dataset and RAF has 100×100 size of images. Therefore, resizing and
prepossessing is a challenging task here as resizing may result in block effect, false
edge effect and undershoot-overshoot problem. As the existing Resnet50, SeNet,
inception V3, VGG16, VGG19 architectures shows over-fitting problems indicating it
is closely fitted to a particular set of dataset. Hyperparameter tuning methodologies
need to be used to reduce the overfitting problem. Also, the state-of-the-art paper
has achieved 76.85% accuracy using ensemble method.

1.3 Motivation

In the process of human communication, facial expressions have been considered as
an important fundamental element. Furthermore, emotions not only play significant
roles in human interaction but also in the way of computer usage. Moreover, a do-
main named Affective Computing utilizes the user’s feelings while the user interacts
with computers and applications. To increase the productivity and effectiveness of
computers, Affective Computing Vision has been used to make computerized sys-
tems to concede human feelings. Depending on the emotion recognition process,
the data, content and layout have been displayed to give the user a more pleasant
scenario [6]. Besides, the recent works on facial expression recognition have been
done by implementing the ResNet based models, VGG19, Inception architectures
instead of using the Attentional mechanism. However, in the field of deep learn-
ing, Attention mechanism has achieved significant results compared to the existing
architectures by emphasizing only on the important regions of the input. So, in
this regard, we have been motivated to introduce a new variant of Residual network
utilizing the concepts behind the Attentional module to increase the accuracy be-
cause of the increasing demand of facial expression recognition and the possibilities
of outperforming the existing models.

1.4 Research Objective

As stated in problem statement, our main focus of this study is to come up with
a new variant of architecture which will be able to go deeper and yet will achieve
better performance without loosing much image details. Also, our focus is to use
the idea of residual block and attention mechanism to merge them into to shallow

3

network to make a deeper attentional module. The research is also focused on using
different hyper-parameter tuning approach to get a desired output without using
pretrained weights or any auxiliary data.

Therefore, in this research, we have focused on introducing a new variant of con-
volutional neural network architecture and at the same time to get a better perfor-
mance on facial expression recognition. The major contributions of this thesis are
stated as follows:

• Novelty: We have introduced a new variant of Residual Network named as
Convolutional Attentional Masking Network (CAMnet).

• Performance: Compared to other existing non-pretrained model, we have
achieved better result on emotion classification from facial expressions.

• Accuracy: Our ensemble model has achieved 76.12% accuracy on test set
which is 0.7% less than current state-of-the-art.

The rest of the report has been organized in the following manner. Chapter 2 dis-
cusses the literature reviews and related work on FER. Chapter 3 describes the
implemented dataset. Subsequently, in chapter 4, we have articulated implemen-
tation of existing model and our proposed method has been narrated in chapter 5.
After that, our experimental setup have been stated in chapter 6. Finally, chapter
7 concludes our thesis.

4

Chapter 2

Literature Review and Related
Work

2.1 Convolution Neural Network

A number of CNN models have been introduced gradually from the beginning of
the year 1990. The one of the initial successful applications of CNNs is the LeNet-
5 architecture [13]. It consists of 3 layers: convolution, pooling and lastly non-
linearity. The fully connected layers have been used as the final classifier. After
that, AlexNet [14] which belongs to the Deep CNNs that significantly popularized
convolutional networks in computer vision. This network, compared to LeNet, was
deeper consisting of about 60 millions of parameters and has implemented Relu as a
non-linearity function and the method of overlapping Max Pooling and stacking the
convolutional layers. Furthermore, VggNet [15] or VeryDeep has become popular
for good performance because of the very deep architecture. This network has
used much smaller 33 filters in each convolutional layer. After that, Inception or
GoogLeNet [16] has a significant advantage in reducing the number of parameters
as they use the idea of average pooling instead of using fully connected layers with
convolutional layers. Lastly, the Residual Network [17], the main contribution of
this architecture is to use the batch normalization method and adding shortcut
connections to feed forward the network for training deeper architectures. Moreover,
all the CNN architecture has some basic operations which have been illustrated in
this chapter.

2.1.1 Layers

Convolutional Layer

All the convolutional layers have a number of filters and the parameters which need
to be learned. Moreover, the dimensions of these filters are always smaller than the
input filter. Each of the filters has been convoluted over the input image channels to
compute an activation map [18]. The convolutional layers output has been calculated
by stacking the activation maps of all filters. Moreover, as the convolutional layers
are locally connected, it allows the architecture to learn filters which maximally
respond to a local portion of the input. Also, from the convolutional operations
between the filter, the input and the parameters of the filters the activation map
has been created. It also shares the weight with the local position and this sharing

5

weights helps to decrease parameter numbers as well as for the efficient learning and
better generalization.
In Equation 2.1,2.2, Am−1 represents an input image and computes an output image
Am by doing convolution over k channels. Also, Wm

ok is a matrix that parameterizes
a special filter which can be used by a karnel to detect feature details from an
image. Moreover, the matrices share the learned parameters to the networks forward
connections.

A(m)
o = gm

(∑
k

W
(m)
ok ∗ A

(m−1)
k + b(m)

o

)
(2.1)

Wok ∗ Ak[s, t] =
∑
p,q

Ak[s+ p, t+ q]Wok[P − 1− p,Q− 1− q] (2.2)

Pooling Layer

The pooling layer has been usually incorporated between two convolutional layers. It
helps to reduce the number of parameters and furthermore computation complexities
by implementing a down-sampling mechanism for the representation. This function
can be max or average. The max pooling layer has been used frequently because of
its better performance.
Equation 2.3 illustrates that an input image Am−1 can be convoluted by a pooling
layers of size pm× qm with a stride of α,β for a k channel region image which results
in an image Am.

A(m)
o [s, t] = k·

(∑
p,q

(A(m−1)
o [αms+ p, βmt+ q])p

) 1
p

(2.3)

Linear or Fully Connected Layers

The linear layer can be defined as a function which has the capability of applying a
linear transformation on the vertical input of dimension I and can output a vector
dimension of O [18]. Moreover, the layer has a bias parameter, b which is shown in
Equation 2.4, 2.5.

y = A · x+ b (2.4)

yi =
i∑

j=1

(Ai,jxj) + bi (2.5)

The linear layer has been developed based on the fundamental processing unit of the
brain which is known as the neuron. Furthermore, there are about 86 billion neurons
and they are connected with a total number of 1014 − 1015 synapses. The neuron
works in a systematic way such as receiving input signals and then produces output
signals. Similarly, the linear layer is a simplified version of the dendrites of a group
of neurons connected with the same inputs. For an activation function, sigmoid acti-
vation function has been used to imitate the 1-0 impulse carried away. Nevertheless,
the activation function is the identity function which outputs the actual values.

6

2.1.2 Activation Functions

The neural networks have the ability to estimate any non-convex functions and the
outcome of the non-linear activation functions. Moreover, these functions take a
vector as an input and perform a fixed point-wise operation. Mainly, there are three
types of activation functions, Binary, Linear and Non-Linear. For deep learning we
only focus on Non-linear activation functions.
To control the gradient and learning rate of deep learning models there has been
several activation functions introduced. The following section demonstrates the
activation functions that are used in current research.

Sigmoid

The mathematical form of the sigmoid non-linear function has been given below in
Equation 2.6

n = σ(m) =
1

1 + exp−m
(2.6)

This function flattens a real value between 0 to 1. When the neuron’s activation
becomes close to either 0 or 1, the gradient of the regions becomes almost 0. Fur-
thermore, this back-propagation method has lackings at modifying the parameters
of itself and the parameters of the previous neural layers [19]. Also, it converges
slowly and it is not centered on zero.

Hyperbolic Tangent (TanH)

The TanH function follows the following mathematical term as of Equation 2.7

y = 2σ(2x)− 1 (2.7)

This function flattens the input tensors real numbers between -1 and 1. Also, it has
similar disadvantages like the sigmoid activation function [20].

Rectified Linear Unit (ReLu)

The ReLu function can be easily understood by observing the Equation 2.8

y = max(0, x) (2.8)

Relu has been illustrated that it can accelerate the training. As the convergence
of SGD can be accelerated greatly by using it, the Relu function is becoming a
popular choice gradually to be used. Moreover, the performance of the function does
not suffer from the vanishing or exploding gradient and the function implements
reasonable operations rather than implementing the expensive exponentials. But
Relu function has some disadvantages such as removing the negative information
and does not perform well for all sorts of datasets and architectures [21]. The Relu
activation function always returns 0 if the output is less than 0 else it gives identical
output to the input.

7

Leaky ReLu

To reduce the “dying ReLu problem” Leaky Relu has been implemented. It will
show a small negative slope having such values as 0.01 instead of the function being
zero. Moreover, this function computes f(x) in the following manner, Equation 2.9

f(x) = 1(x < 0)(αx) + 1(x ≥ 0)(x) (2.9)

where α has been considered as a small constant [22].

Parametric Rectified Linear Unit (PReLU)

PReLU has been used to generalize the traditional rectified unit with a slope for the
negative values which has been stated as functions in Equation 2.10, 2.11

f(yi) = yi, if yi ≥ 0 (2.10)

f(yi) = aiyi, if yi ≤ 0 (2.11)

The yi is the nonlinear activation’s input on the ith channel, the slope of the negative
part is controlled by ai. Moreover, the subscript i in ai indicates the capabilities of
varying the nonlinear activation on various channels. PReLus have been used for
the linear layers to maintain the positive and negative responses of filters [23].

2.2 Existing Deep Learning Models

2.2.1 VGGNet

The authors have shown in this paper [15] that the accuracy of the convolutional
network can be increased drastically in detecting large-scale images by increasing
the depth of the networks. The authors have proposed a more accurate ConvNet
architectures which have the capabilities to acquire impressive accuracy on ILSVRC
classification and localisation tasks and can also perform well on image recognition
datasets. Moreover, the described model has also shown magnificent performance
while using as a part of simple pipelines. The inputs of the described ConvNets have
a size of 224*224 RGB images. The most important advantage of using VGG-16 is
that it is a much straightforward network. The conv layers are just 33 filters with
a stride of 1 having the same padding. Moreover for all max pooling layers have 22
filters with a stride of 2.

Figure 2.1: VGG19 Model Architecture

8

In the pre-processing step, the mean RGB value has been subtracted from each
pixel of the training dataset. Subsequently, a stack of convolution layers have been
followed by three Fully-Connected layers whereas the first two have 4096 channels in
each. Also, the rectification non-linearity has been used in all the hidden layers. The
authors have achieved remarkable accuracy for classifying large images using very
deep convolutional networks consisting up to 19 weight layers. Though the main
drawback of using the VGG-19 neural network it has implemented using 19 layes.
It is understandable that the VGG-16 and VGG-19 achieves the same performance
and their usability depends on the implemented situation. Vgg19 architecture have
been shown in Figure 2.1. However, VGGNet has about 138 million parameters
and its complexity is relatively higher than other existing architectures. Hence, the
training proccess is very slow for VGGNet. Due to the depth and number of fully
connected nodes, the weight of VGG16 is over 533 MB and for VGG19 it is over
574MB. As as result, implementing the weight of VGGNet is a challenging task.

2.2.2 ResNet

To reduce the difficulties of the training period, the layers have been explicitly
redesigned to learn residual functions containing reference to the inputs and not to
learn unreferenced functions [17]. Here, the desired underlying mapping has been
H(x, and the stacked nonlinear layers fit the mapping of G(x) = H(x)x. As a
result, the actual mapping has become G(x) + x. The equation G(x) + x has been
proposed to reduce the degradation problem by feeding forward to neural networks
by creating the proposed shortcut connections. The skip connections have been
implemented to achieve the identity mapping and also to add the outputs with the
outputs of the stacked layers. The convolutional layers of the architecture mostly
have 3 × 3 filters and the value for stride is 2. In the end of the network, a global
average pooling layer and a n-way (class number) fully-connected layer and softmax
have been added. Finally, the total number of weighted layers can be 18, 34, 50,
101, 152.
The important feature of ResNet is to train deep neural networks because of having
skip connection and it can also generalize well. ResNet can also increase the speed
of convergence. However, it has some disadvantage such as it only focuses on the
depth of the architecture not the width, and also it learns all the features of each
layer whether the feature is important or not and passes it to the next layer using
residual block.

ResNet34

At first the inputs have been processed through the 7× 7 Convolutional layer in the
beginning and the total number of filters in the first layer will be 64. After that,
pooling operation has been applied. Moreover, the resnet architecture has been
created by stacking residual blocks. Here, each residual block has two 3 × 3 conv
layers. Relu activation function has been applied between the two layers. The output
from the second convolutional layer will be summed together with the unchanged
input that has been entered to the residual block. Moreover, relu activation function
has been applied on the summed value. Typically, the total number of filters has
been doubled and downsample has been applied using a stride value of 2. Finally,

9

no fully connected layer at the end of architecture. ResNet34 model architecture
have been illustrated in Figure 2.2.
The strength of ResNet34 is that it can easily reduce the vanishing gradient problem
because of its skip connection. The main advantage of using ResNet 34 block is it
only has 3.6 × 109 FLOPs indicating less computational complexities. However, it
uses the idea of basic block and can not increase efficiency like other deeper network.

Figure 2.2: Resnet 34 Model Architecture

ResNet50 Block

In the case of ResNet 50 which is shown in Figure 2.3, the block has one 3 × 3
convolutional layer and also two 1× 1 convolutional layers. The 1× 1 convolutional
layer which has 64 filters has been used to project to 28× 28× 64. Sequentially, the
3 × 3 conv operates over only 64 feature maps. Lastly, the 1 × 1 conv, 256 filters
projects back to 256 feature maps. Here, the “Bottleneck” layer has been used to
improve the efficiency of the architecture.
ResNet50 overcomes the efficiency problem that has ResNet34 and it can go deeper
as it uses the blottlenet block. However, adding skipped connections with bottleneck
to the network creates dimension mismatch problem which needs to be checked in
each layer. Also, its complexity is higher as it has FLOPs of 3.8 × 109 and the
number of parameter 25.6 million.

Figure 2.3: Resnet 50 Block Architecture

SeResNet Block

In SeResNet architecture which can be seen in Figure 2.4, after getting output from
the residual block, global pooling function has been applied on the output. After

10

that it has been passed through A fully connected layer and relu activation function
has been applied. Furthermore, it has been passed through a fully connected layer
and Sigmoid activation function has been applied. After that, it has been scaled
to match with the height and width of the input and also this output and the
unchanged input has been summed up together [24].

Figure 2.4: SeResNet Block Architecture

SeResNet has capability to increase channel interdependencies without increasing
any computational cost. It has almost the same FLOPs as ResNet50 and other
deeper residual network. However, it can only implemented on bottlenek block
based architecture and therefore, it also has the same problem that is has to check
dimension in each layer also batch norm based computational complexity still per-
sists.

ResNext Block

ResNext block is a homogeneous neural network model which has reduced numbers
of hyperparameters than the conventional ResNet. The block has a cardinality of
32 means that the same transformations have been applied for 32 times and the
result has been summed up together at the end [25]. Furthermore, the network
shares the same set of hyperparameters if the blocks produce the same dimensional
features spatial maps and if the width of the block has been multiplied by a 2 then
its spatial map will be downsampled by the same factor. The block follows the
split-transform-merge strategy which has been visualised in Figure 2.5.
ResNext50 has improved the accuracy using lower number of parameter and lower
complexity as it has FLOPs of 4.1× 109 and total number of parameters 25 million.
Moreover, the disadvantage of the architecture is that the complexity has been
increased and as the width of each block is changed dimensionality mismatch need
to be check for each cardinality.

11

Figure 2.5: ResNext Block Architecture

ResNest Block

ResNest is a new variant of residual network which has been created by stacking
the Split-Attention blocks [26] which has been shown in 2.6. The inputs have been
divided into several feature map groups called cardinals. In each cardinal group
the input has been splitted into multiple segments which contain one 1 × 1 conv
layer and one 3 × 3 conv layer. Then the output has been passed through the
split attention block. A combined representation for each cardinal group can be
obtained by merging via an element-wise summation across multiple splits. The
representations of the cardinal groups have been concatenated along the channel
dimension. Furthermore, the output has been passed through a 1 × 1 conv layer
because the output feature-map and the input do not have the same shape. This
output and the input has been summed up together by using a shortcut connection.

12

Figure 2.6: ResNest Block Architecture

In this architecture, the authors have addressed that, it can reduce the computional
complexity of the architecture like SeResNet and doing the attentional operation
to each individual groups. However, the total number of parameter is higher than
ResNet50 and which is 27.5 million.

2.2.3 Inception

The authors in [16] have proposed the deep convolutional neural network architec-
ture named Inception which can significantly improve the utilization of computing
resources. The proper utilization of valuable computing resources has been achieved
by crafting the design carefully and also allows increasing depth and width of the
network while maintaining the computational budget constant. The primary intu-
ition behind developing the Inception modes is to determine an optimal local sparse
architecture. Moreover, the authors have restricted the filter sizes to 11, 33 and 55
to avoid the disadvantages of patch alignment. The layers consist of some occasional
layers which have the ability to perform the max pooling operation having a stride
value of 2 to halve the resolution. Moreover, the other main advantage of this model
is the capability to allow an increasing number of units at each stage significantly
without increasing the computational complexity significantly. The significant ad-
vantage of this method to achieve a desirable increase of computational capacities
compared to shallower architectures. Although the similar type of performance can
be achieved by utilizing a more expensive computational network of similar depth
and width. Moreover, the proposed methodology demonstrates a stable evidence
that starts moving to sparser architectures is possible to develop. Inception V3

13

Block Architecture has been illustrated in Figure 2.7.

Figure 2.7: Inception V3 Block Architecture

Inception architecture attains effeciency by reducing the input image while getting
important spatial data simultaneously. As the network has the capability of reducing
the input image, it can also decrease the computational load. However, inception
v4 has higher complexity than ResNet50.

2.3 Challenges with Training

2.3.1 Data Dependency

Deep learning achieves optimum performance whenever it gets enough quality data
on its training set and this performance will increase as the data availability grows.
However, if enough quality data isn’t fed into a deep learning it cannot perform
well. Therefore, if the dataset is not big enough, the trained model will be biased on
training set and it will not be able to achieve desired classification or segmentation
result in the test set. So, the model will be biased and overfitting will happen.

2.3.2 Overfitting

In a model when the performance is very high it learns all the patterns and noise
of the training set but doesn’t perform to that extent on unseen data because of
the models biasness on the training set. The problem of overfitting occurs when
the dataset is too small with respect to the depth of the model or the number of
iterations. To handle the issue different techniques like data augmentation, early
stopping and regularization of parameters can be used.

14

2.3.3 Gradient Vanishing

The problem occurs when many layers implementing certain activation functions
have been added to the architecture of the neural networks and furthermore the
gradients of the loss function approaches zero value. For example, while using the
sigmoid function, it transforms the values into a small input space between 0 and
1. As a result, the chaanges in input becomes relatively small change in the output
which results in the small change in the derivative.

2.4 Transfer Learning

2.4.1 Fine Tuning

This method involves the process of training of a pretrained network on a smaller
dataset. Typically, the fully connected layers in the ending of the neural network
architecture can be perceived as the classification layers and also a reduced learning
rate has been adapted to the previously pretrained layers. In this way, the features
have been adapted to the new dataset. It has been used to speed up the training
and to overcome small dataset size.

2.4.2 Features Extraction

Extracting features is usually achieved from the network by forwarding examples
and transforming the derived values into a non-redundant form of data. Moreover,
transformations have been done to the images following some processes such as
horizontal or vertical flip. After that the associated features of the example are
aggregated by averaging or by stacking them. At last, a classifier (Supervised or
Unsupervised) has been trained and tested on the features. Usually, the latter is a
Support Vector Machine with a linear kernel or a deep neural network.

2.5 Optimization Algorithms

As the loss function of a CNN model is thoroughly non convex and is also fully
derivable, gradient based optimization algorithms have been applied. But, the CNN
models have been made using millions of parameters. As a result, only the first
order derivatives have been used to compute because the second order derivatives
are expensive in terms of memory and computational constraints.

2.5.1 Stochastic Gradient Descent (SGD)

In Equation 2.12, this optimization algorithm has been considered as one of the
main optimization algorithms. It consists a few examples to compute the gradient
of the parameters with respect to the loss function [27].

θt+1 = θt − λ· ∇θtL(fθt(xi), yi) (2.12)

Though, this algorithm reaches good local minima, the parameters are randomly
initialized. It has been said that the stochastic property of the algorithm, allowing

15

the latter to optimize different loss functions and helps to reduce bad minima. Also,
a lot of local minima are almost as accurate as the global minima.

2.5.2 Adam

Adam is a popular optimization algorithm because it achieves better results quickly.
It has been used to update the weights of the network in an iterative based way in
training data [28]. Implementing Adam has some advantages such as it is straight-
forward, computationally efficient and it requires less memory. The Adam optimizer
has the following mathematical form as of Equation 2.13,2.14.

mt = β1mt−1 + (1− β1)gt (2.13)

vt = β2vt−1 + (1− β2)g2t (2.14)

This algorithm uses the benefits of both AdaGrad and RMSProp to converge faster.

2.5.3 AdaDelta

This algorithm [29] is the extension of Adagrad which has the ability to reduce the
aggressive, monotonically decreasing learning rate and also restricts the window of
accumulated past gradients to some fixed size w . This operation can be understood
by the following Equation 2.15

E[g2]t = γE[g2]t−1 + (1− γ)g2t (2.15)

The variable w stores the sum of gradients recursively as a decaying average of all
past squared gradients. By using the AdaDelta, the default learning rate needs not
to be defined. The result E[g2]t represents that it only depends on the previous and
current gradient to calculate the gradient at time t and γ represents the momentum
term.

2.5.4 RAdam

This optimization technique eliminates the problem of variance issue of the adap-
tive learning rate means the variance is quite large in the early stage of the model
training. It has introduced a term to explicitly rectify the variance of the adaptive
learning rate based on derivation [30]. Equation 2.16-2.21 shows how the optimiza-
tion has been conducted.

gt = ∇θftθt−1 (2.16)

vt =
1

β2vt−1
+ (1− β2)g2t (2.17)

pt = β1pt−1 + (1− β1)gt (2.18)

p′t =
mt

1− βt1
(2.19)

ρt = ρ∞ −
2tβt2

1− βt2
(2.20)

16

ρ∞ =
2

1− β2
− 1 (2.21)

Here, the learning rate is small in the first few epochs of training which justifies the
warmup heuristic. This method helps RAdam to rectify the variance problem.

2.6 Loss Functions

2.6.1 Mean Square Error Loss

MSE is defined as a multi class loss while train neural networks [31].

Loss(q, r) =
1

m

∑
i

|qi − ri|2 (2.22)

Here in 2.22, q is a vector of m prediction and moreover r is a binary vector full of
0 besides a 1 in terms of class dimension.

2.6.2 Cross Entropy Loss

It is also a multi class loss and it outperforms the MSE [32].

Loss(m,n) = −
∑
i

ni ∗ log(
exp(mi)∑
j exp(mj)

) (2.23)

In the Equation 2.23 m is defined as a vector of n predictions and n is a binary
vector full of 0 besides a 1 in the corresponding class dimension. The Cross Entropy
is better in the sense that MSE loss will eventually slow down learning on the other
hand the Cross Entropy will not reduce the learning rate.

2.6.3 Loss Multi Label

The loss function in the Equation 2.24 has been created by adapting the Cross
Entropy loss for multi-label classification [33].

Loss(m,n) = −
∑
i

ni ∗ log(
exp(mi)

1 + exp(mi)
) + (1− ni) ∗ log(

1

1 + exp(mi)
) (2.24)

2.7 Advanced Visualization Techniques

2.7.1 Gradient Based

In this approach, the output gradient with respect to the input has been imple-
mented for completing the saliency maps [34]. To render the gradient as an image
is a popular approach and it also conveys which image regions the current imple-
mented classification mostly depends as shown in Figure 2.8. In this process, a
network learns through manipulating the input using gradient descent to enhance
the activations of certain nodes which have been selected from the hidden layers.

∂Sc
∂I
|I0 (2.25)

17

(a) Sad (b) Angry (c) Happy

(d) Surprised (e) Fear (f) Disgust

Figure 2.8: Grad-CAM Visualization (CAMnet weights)

Here in the Equation 2.25, I0 is the image, class is defined by c, and the class score
function is denoted by Sc(I). With respect to I at I0, the heatmap can be calculated
as absolute of the gradient of Sc.

2.8 Facial Expression with Deep Learning

The facial expressions have been considered as a salient feature of human language
and interaction. Moreover, emotion recognition performs a significant role in various
fields namely in human-computer association, automation, and human-robot com-
munication. With the advancement of technology, the facial expression recognition
(FER) has achieved immense popularity among the people. Since several works have
been conducted based on this topic for detecting the seven basic emotions precisely.

A recent work [17] on facial expression recognition has described a fuzzy - CNN
architecture which has the capability of improving the detection accuracy on FER
and moreover decreasing processing time significantly. The authors have initially
recognised the face and also the facial landmark points by implementing a classifier
similar to haar. After that various preprocessing mechanisms such as resizing and
normalization have been applied to achieve the dimension of a 48 × 48 pixel sized
image which has contained mainly the details of the facial points. Furthermore, the
kernel has been created by using the image and the kernel has been necessary for
the convolution mechanism by implementing the formulas of the subtraction and
the mean. As a result of this procedure, an output image has been generated which
contains mainly the edges and points of the face and the whole procedure has been
manifested as the K-means clustering mechanism. After that, the newly constructed
image has been utilized as the beginning kernel for the CNN architecture. Addition-
ally, the convolutional mechanism implements a multiplication operation for matrix
and as a result the facial edges and landmark points have been extracted more pre-
cisely. Furthermore, the whole training process has been completed by implementing

18

a CNN model to successfully extract facial landmark details and also to label the
extracted data properly. But, the SVM classifier has been utilized in the place of
a softmax function. Also, to reduce the difficulties of implementing the random
kernel procedure, the authors have followed this process. At last, the SVM shows
the decision by further processing the data which has been given by the fuzzy-CNN
architecture.

The authors [18] of this paper have shown a deep neural network which has been
created by establishing two different architectures. Initially, the first deep archi-
tecture has been named as the deep temporal appearance network (DTAN) which
has the strength to focus only on the temporal appearance features from the given
image sequence and furthermore the deep temporal geometry network (DTGN) has
been utilized to get the temporal geometry features. Lastly, the described two deep
networks have been concatenated to create a deep temporal appearance-geometry
network (DTAGN) to increase the performance of facial expression recognition pro-
cess significantly. Moreover, to increase the accuracy of the recognition process,
the authors have introduced a joint fine-tuning approach by concatenating the two
previously described architectures which have no similarities in their architectures.

In [35] authors have used a combination of CNN and LSTM to extract the emotion
feature. Here, they have conducted the work to make a human robot interaction
system. In the first place, they processed the image by using a CNN model to
reduce the dimension of the data and extract features at the same time. As training
would take higher order of time with the raw image data. Therefore, the processed
feature output of CNN has been given as input to the LSTM model. Furthermore,
the current performance has been further improved using a deeper neural network.
However, using a deeper layer in CNN might create vanishing and exploding gradient
problems. For this reason, a residual block has been used to make up the training
error.

The authors [36] have described that though Facial Expression Recognition (FER)
is an important process, the current FER methods fail to provide higher accuracy in
real-time scenarios. The authors have developed a Hybrid Convolutional-Recurrent
Neural Network model for detecting facial expressions in images. Their proposed
model consists of Convolution layers which followed by Recurrent Neural Network.
Moreover, this merged model can determine the association within facial images and
the temporal dependencies in the images can be obtained by implementing recurrent
networks. The authors have evaluated the proposed hybrid model based on the two
general dataset.

In [37] an ensemble of multiple networks is used by initializing different CNN so
that the network can learn the ensemble weights. However, ensemble of multiple
randomly initialized networks can lead to diverse network classification. Therefore,
two loss functions named optimal ensemble log likelihood loss and optimal ensemble
hinge loss were defined to optimise the learning rate. Moreover, in their model
architecture five convolutional layers and three stochastic pooling has been used
instead of max pooling. However, in [38] shows that stochastic pooling shows poor
response than max pooling while training and for large dataset it overfits. In that

19

regard, the stochastic pooling might have been combined with any form of regulation
such as weight decay, drop out, data augmentation, etc to make up overfitting while
training deep neural networks.

The authors [39] have discussed that extracting emotional features is referred to
as a crucial action for recognizing facial expression. Moreover, the existing methods
have not fully examined the features of facial elements and movements of face mus-
cles. The authors have proposed a model which can detect ‘salient’ distance features
from face and the features have been obtained using patch-based 3D Gabor features.
In addition, the model has shown notable improvement in correct recognition rate
(CRR) because of taking the consideration of facial elements and also the motions
of the muscles in the face. Here, the authors stated that facial movement features
refer to the feature position and the changes in face due to the movements of facial
elements and muscles. In this study, the authors suggested a model which has the
capability of increasing the performance of FER by acquiring the facial movements
in static images on distance features systematically. The previously mentioned dis-
tance features prevailed by taking ‘salient’ patch-based Gabor features and operating
patch matching operations. Furthermore, it is shown in the paper, the patch-based
Gabor features have performed very well in recognizing position, scale, orientation
changes in a given data set. On the contrary, the recognition rate of the appearance
based features is not significant as the appearance based features generate similar
results even changes occur in facial movements and these features do not interpret
the differences. The authors have gained desired results by merging patch-based
Gabor features in the restricted matching area.

In [40] the authors have proposed a novel approach of detecting facial expression
by utilizing the discrete separable shearlet transform (DSST) and normalized mutual
information feature selection where the whole model is splitted into five operations.
At first, the training and testing data sets have been trained. After that, DSST
has been applied to the preprocessed images and the gathered information acts as
the transformation coefficients. Then, the improved normalized mutual informa-
tion feature selection has been applied to measure the optimal feature subset from
the previous feature set. After implementing the linear discriminant analysis the
selection of the feature space has been reduced. Finally, the expression has been
recognized after using SVM. The author has suggested using DSST which is a multi-
scale geometric framework instead of using Gabor wavelet transform because Gabor
wavelet transform is not capable to represent high-dimensional features.

20

Chapter 3

Dataset

3.1 Facial Expression Recognition (FER2013)

This dataset [41] consists of 35,685 grayscale images of faces of facial expressions
and the dimension is 48x48 pixels. The dataset has been organised using the search
results of Google based on each individual emotion and synonyms of the emotion.
Moreover, the images of this dataset are labeled based on the seven basic emotions
such as happy, neutral, sad, angry, surprise, disgust, fear which is shown have been
shown in table 3.1. Also, It has three different files of images namely public training,
public test and private test. To illustrate, there are 28,709 labeled images in the
training set, 3,589 labeled images in the public test set, and 3,589 images in the
private test set. The following Figure 3.1 illustrates some sample of the FER2013
dataset.

(a) Sad (b) Angry (c) Happy

(d) Surprised (e) Fear (f) Disgust

Figure 3.1: Sample images of FER2013 Dateset

Happy Angry Disgust Sad Fear Surprised Neutral

Number of Images 8989 4953 547 6077 5121 4002 6198
Label in Dataset 3 0 1 4 2 5 6

Table 3.1: Dataset Table of sample classes of FER2013

21

Chapter 4

Implementation of Existing Model
Architectures

4.1 Baseline Model

Here, we have used the FER dataset to train the model and we set the input di-
mension of the baseline model to 48 × 48 × 1. At first, we created a sequential
model and added a convolution layer having a dimension of 5 × 5 × 64. After
that, relu activation function has been used in each layer. We added a second
convolutional layer having the same dimension and same value for both activation
function and padding. Moreover, we have applied batch normalization function to
reduce the amount of shifting values of the hidden units. Then we have applied
max pooling and have added another 2 convolutional layers with the dimension of
5 × 5 × 128. Then we have applied batch normalization and max pooling function
having pool size of 2 in both dimensions. After adding the first four layers; two
more convolutional layers with dimensions of 3 × 3 × 256 have been added, also
batch normalization. Moreover, a flattening layer has been added. We will use a
dropout value of 0.2 and also add a dense layer having 7 nodes. Lastly, we have
used the softmax activation function. After constructing the model, while compiling
we have used categorical crossentropy loss function value and adam optimizer. Our
baseline model has gained 71.21% accuracy in training set and 64.47% accuracy in
the validation set which has been shown in Figure 4.1.

22

(a) Baseline accuracy (b) Baseline loss

Figure 4.1: Accuracy and Loss Graph for Baseline Model Architecture

4.2 VGG 16

While implementing the VGG-16, we have used two various types of architecture.
In the first implementation, we have not used any learned weight hyperparameters.
The VGG-16 model has 16 weight layers and the input dimension is 224×224 RGB
image. We have also implemented another variant of VGG-16 model using the
learned weights. Also, we have replaced the output layer of VGG-16 with 3 fully
connected layers having sizes of 512, 256, 128 respectively and a softmax output
layer having 7 basic emotion classes. The batch size has been set to 64. Moreover,
we have used the adam optimizer having a learning rate of 0.00001, beta 1 is 0.9
and also 0.999 as beta 2 value in both of the models’ architecture.
To begin with, we have used these two types of models on the FER dataset. From
the graphical representations of the Figure 4.2, the model of Figure 4.2 (a) has
shown lower validation accuracy than the training accuracy indicating overfitting
problem and the loss and accuracy become steady after completing 10 epochs. We
have achieved 69.6% accuracy while using transfer learning.

(a) Vgg 16 accuracy with Transfer Learning (b) Vgg 16 loss with Transfer Learning

Figure 4.2: Accuracy and Loss Graph for Vgg 16 Transfer Learning

23

4.3 VGG 19

We have applied VGG-19 network architecture on the FER dataset. In the VGG-19
model, there are 19 weight layers. The input image size is 224×224 and the color
channel is 3 indicating RGB images. In model 6, we have implemented VGG-19
architecture with ImageNet weight for transfer learning and we have maintained all
pre trained layers frozen. Moreover, we have replaced the output layer of VGG-
19 with 2 fully connected layers having sizes of 512 and 256 respectively and a
softmax output layer having 7 basic emotion classes. Here, we have used FER

(a) Vgg 19 accuracy with Transfer Learning (b) Vgg 19 loss with Transfer Learning

Figure 4.3: Accuracy and Loss Graph for Vgg 19

dataset to train the VGG-19 architecture and have applied the transfer learning
methodologies in both models. It can be visualized from Figure 4.3 that both of
the models have indicating overfitting problems. Doing hyperparameter tuning and
transfer learning the model has achieved 94.04% accuracy on the training dataset
and 70.03% validation accuracy.

4.4 SeNet-50

To begin with, Using a variant of residual network, SeNet which consists of 50 layers
and we have applied SGD as the learning optimizer having a learning rate of 0.01
and batch size has been fixed to 128. Furthermore, the input image dimension is
197×197×3. We have trained this network using the FER dataset for 100 epochs
which has been shown in Figure 4.4 and have achieved 71.48% validation accuracy.

24

(a) SeNet50 accuracy (b) SeNet50 loss

Figure 4.4: Accuracy and Loss Graph for SeNet50

4.5 Resnet50

The state-of-the-art paper which we have been focusing on has achieved 71.06%
accuracy on validation set and 86.15% training accuracy on the FER dataset. How-
ever, by tuning hyperparameters we have achieved 72.11% accuracy on validation
set and 82.44% training accuracy as represented on Figure 4.5. We have success-
fully increased the accuracy of both training and validation and most importantly
we have reduced the overfitting problem which has been present in the existing
state-of-the-art paper of ResNet50.

(a) Resnet50 accuracy (b) Resnet50 loss

Figure 4.5: Accuracy and Loss Graph for Resnet50

25

4.6 SeResNext101

In Figure 4.6 displays the training and validation accuracy of the SeResNext101
model. The model has achieved an accuracy over 86.45% for the training set and
over 70.85% accuracy for the validation set. It can be observed that the validation
accuracy has become stable after completing 35 epochs. The graph has demon-
strated the loss curve for the SeResNext101 architecture. From the graph, it can be
seen that the loss curve for validation data set has been stable from 15 epochs to 30
epochs. After that, it has slightly increased.

(a) Seresnext 101 accuracy (b) Seresnext 101 loss

Figure 4.6: Accuracy and Loss Graph for Seresnext 101

4.7 SeResNet34

The graphical representation Figure 4.7 shows the training and validation accuracy
of the SeResNet34 architecture. The overfitting problem is present as the training
accuracy is 93.4% but the validation data set has gained 71.1% accuracy. Also,
the graph shows the loss curve for both training and validation sets. However, the
validation score is promisingly high compared to other models.

(a) Seresnet 34 accuracy (b) Seresnet 34 loss

Figure 4.7: Accuracy and Loss Graph for Seresnet 34

26

4.8 Densenet121

This diagram of Figure 4.8 has shown the training and validation accuracy of the
DenseNet. Here, the overfitting problem is small in extent.The training accuracy
has been achieved over 90% and for the validation accuracy it has been about 70%.
The validation accuracy has increased significantly from 10 epochs to 35 epochs.
Moreover, the validation accuracy has become stable after passing 35 epochs. This
graph has illustrated the loss curve for the both training and validation set of the
DenseNet. Here, it can be seen that the loss curve of the validation set has become
stable after completing 15 epochs and finally loss has been lower than 0.9.

(a) Densenet121 accuracy (b) Densenet121 loss

Figure 4.8: Accuracy and Loss Graph for Densenet121

4.9 BAM & CBAM

The BAM net has achieved training accuracy over 91.28% and validation accuracy
about 73.42%. It can be seen from the graphical representation that, after 25 epochs
the model has started showing overfitting. From 30 epochs to 50 epoch, the valida-
tion accuracy does not increase significantly; it mostly remains stable.

(a) BAM accuracy (b) CBAM accuracy

Figure 4.9: Accuracy Graph for BAM & CBAM

27

Moreover, The graph has displayed the training and validation accuracy of CBAM
net. From the graph, it can be seen that the training accuracy has been 89.75%
and it has crossed over 73% for the validation accuracy which has been visualized in
Figure 4.9. For the validation accuracy, the curve has become stable after completing
25 epochs.

28

Chapter 5

Proposed Method

In the existing residual network paper, the authors have proposed two variants of
residual blocks while constructing the ResNet architecture. From the illustration
of the basic block in Figure 5.1, we can see that there are two consecutive 3 × 3
Convolutional layers in each residual block. However, in our proposed architecture,
we have used split-attentional block which has been named as CAU block instead of
using the traditional 3× 3 convolutional layers inside each basic block of ResNet34.

Figure 5.1: Resnet34 Block

After that, we have applied masking on the output of each layer’s residual operation.
Then, an element wise multiplication has been applied between the input and the
output of the masking layer as shown in Figure 5.2. In Figure 5.3, we have illustrated
our model’s architecture and in the following section each block has been explained
in detail.

Figure 5.2: CAMnet Block

Attention mechanism has been used in our proposed architecture because it has the
capability to focus on the important regions of the input. The rest of the parts of
the input will not be considered while learning the features by the network. Also,

29

the attention mechanism has the capability to differentiate the background and
foreground of the input image by doing the operation shown in Equation 5.1 and
as a result this mechanism reduces the computational complexities and can increase
the performance significantly.

Hi,c(x) = (1 +Mi,c(x)) ∗ Fi,c(x) (5.1)

The value of M(x) can be between 0 and 1, and when M(x) is 0, H(x) will estimate
the original features F (x). This is the procedure of attention residual learning.
In the following sections, the architecture of our proposed model Convolutional
Attentional Masking Network and its building blocks which are CAU block and
Masking block have been stated sequentially.

5.1 Convolutional Attentional Masking Network

In the existing original paper, the authors have proposed two variants of residual
blocks while constructing the ResNet architecture. From the illustration of the basic
block and bottleneck block in chapter 2, in our proposed architecture, we have used
split-attentional CAU block instead of using the traditional 3× 3 conv layer inside
each basicblock of ResNet34. After that, we have applied masking on the output of
each layer. Then, element wise multiplication has been applied between the input
and the output of the masking layer. In Figure 5.3, we have illustrated our models
architecture and in the following section each block will be explained in detail.

Figure 5.3: Convolutional Attentional Masking Network (CAMnet)

30

5.1.1 Convolutional Attention Unit (CAU)

The Split-Attention block has been considered as a computational unit which con-
sists of a feature map group and split attention operations. This method enables
feature-map attention across different feature-map groups.
The features can be divided into multiple groups and the number of feature map
groups is specified by cardinality hyperparameter K. The resulting feature-map
groups are considered as cardinal groups.

Figure 5.4: CAU Block

At first, as stated in Figure 5.4, the Convolution operation has been applied on
the input features having the input channel value of 64, value of radix at 2, kernel
size 3, padding and stride both having value of 1 and lastly the value of groups
which consisting the number of cardinalities; 3,4,6 and 3 sequentially (ResNet34).
After that, batch normalization and relu activation function have been applied.
Subsequently, split operation has been applied on the result from the relu activation
function consisting of two other parameters; number of filters divided by radix and
dimension. All the splitted values have been summed up together and stored in
a variable. Then, adaptive average pooling has been applied and the value has
been passed through a fully connected layer. The features have been learned during
this process. After that batch normalization and relu activation function have been
applied.

31

Furthermore, the variable which has stored the summation of the splitted values,
have been passed through another fully connected layer. Again the features have
been learned in this step. After that, rsoftmax has been applied. Then, the split
module has been applied again consisting of two parameters; number of filters have
been divided by radix and dimension having value of 1.
In the end, element wise multiplication has been applied on the two previously
calculated splitted values and summed together to store the value in a variable.

5.1.2 Masking Block

Masking Block is motivated by the attention mechanism from bottom up - top
down (or the encoding - decoding) mechanism which has achieved many successes
in estimating human posture and segmentation problems.
To begin with according to Figure 5.5, the Masking Block consists of two basic
components: Encoder and Decoder. The Encoder, with the input feature block,
learns the features at multiple levels and also pooling layers will be added to reduce
the spatial dimension of the block features. Subsequently, the convolution blocks
will quickly increase the depth of the feature to increase the ability of latent rep-
resentation. After reaching the lowest resolution, the global feature block will be
extended by the decoder block symmetrical to the Encoder block. The spatial size
will be gradually increased through the convolutional layer to ensure the output size
is equivalent to the input. Then a normalization function will be responsible for the
normalization of output.
Block Masking Block has skip connection, inspired by U-net network, to combine
the features in the Encoder block and Decoder block to increase localisation, here
to increase the weighting of features.

Figure 5.5: Masking depth 2

There are 4 different types of masking block based on the depth size and the depth
of masking decreases as the model goes deeper. Firstly, for first layer the masking
depth is set to 4 where the input filter size is 64 and the the generated output
filter will be also 64. However, there will be some down-sampling and up-sampling
operation to extract lower level and group specific image details. After that, for
layer 2 we will have a masking block of depth 3 as shown in Figure 5.6 where the
2 down pooling operation will be done. In the first 28 × 28 × 128 input tensor as
residual operation will be done to do down sampling twice and their output on each
level has been passed to each corresponding up pooling level as skip connection to

32

pass the higher level image feature. In Figure 5.5, a masking block of depth 2 has
been illustrated. To illustrate, we can see that the input tensors size is 14×14×256
and after doing one residual operation a downpooling has been done. After that,
before doing a up sampling another residual block has been added.

Figure 5.6: Masking depth 3

From the above illustration of the Figure 5.5 & 5.6 we can see that after doing down
sampling and up sampling each block has been passed to a softmax function before
passing it to the output. Softmax is mostly used and performs better for multi
classification problem. Hence, we have used it here. Also, as softmax scales all the
values between 0,1 it either scales close to 0 or close to 1. Therefore, the output
tensor of the softmax results in a segmented image which focused on the important
region that the block has learned. As a result, we can omit the unnecessary part
while training and only focus on the important region while training our model with
lower complexity.

To sum up, the inputs have been passed through the conv layer and then batch
normalization has been applied. After that, relu activation function and max pooling
have been applied. The output then feeds to the CAU block. After applying a
masking operation on the output, element wise multiplication has been applied
between the input and the output of the masking layer. Moreover, this split-merge-
multiplication method has been executed for the next three layers. Finally, our
proposed architecture ends with an average pooling layer and a flatten layer and the
output has been passed through a 7 way fully connected layer.

33

Chapter 6

Experimental Analysis and
Discussion

6.1 Experimental Setup

6.1.1 Data Pre-processing

For the FER2013 dataset, we have converted the csv dataset to png. Also, as the
dataset is of 48×48 grayscale image. Hence, for the purpose of transfer learning and
deep neural network training we have converted the images to RGB by cloning the
grayscale pixel values in 3 color channel space. However, as the input samples are
48×48 it can be only trained with a shallow network if we want to avoid overfitting
problems. With the current size of the images when the images will be fed to a
deeper layer, the image details will be lost, vanishing gradient problem will arise
and noises will be added to the cost function. Therefore, we tried to convert our
dataset into a minimum size in which we will have maximum possible image details
and will be able to train our dataset for transfer learning.
There are multiple algorithms to resize an image using interpolation techniques like
bilinear, nearest, bicubic, area, lanczos, gaussian, mitchell cubic. For interpolating
the pixels into a larger space, bilinear and lanczos performs better than other algo-
rithms. However, bilinear gives some blurry effect and we lose image details on the
edge. Hence, we have used lanczos and in Figure 6.1 both results are shown.

(a) Lanczos (b) Bilinear (c) Lanczos (d) Bilinear

Figure 6.1: Result image from resizing algorithm

6.1.2 Data Augmentation

In this work we are using different deep learning architectures like VGGNet, ResNet,
Inception. For all the architectures the data augmentation in the training set has

34

rescale = 1/255
featurewise center = False

featurewise std normalization = False
rotation range = -30,30

width shifting range = 0.5
height shifting range = 0.5

horizontal flip = True

Table 6.1: Augmentation Parameter

been kept the same as shown in table 6.1. Also, using image data loader we have
resized our dataset into 224×224×3.

6.1.3 Regularization Techniques

Deep neural networks contain the capability of memorizing any sort of data. During
training, the models accuracy on the training set usually converges upward while its
learning performance does not improves on the test set. This phenomenon has been
known as overfitting.

Regularization L2

Overfitting problem is one the most common issue for small datset like FER2013.
Therefore, the primary step to tune the model could be adding weight decay. It
includes some bias to the cost function of each dimension which penalizes the pa-
rameters. Furthermore helps to generalize the test data which is the new data
properly as stated in Equation 6.1.

Err(m,n) = Loss(m,n) +
∑
i

θ2i (6.1)

Here, in the equation the θ is a vector containing all the network parameters.

6.1.4 Dropout

As the deep learning architectures need to be trained over millions of parameters
where each layer is connected. So, it is quite common that the huge amount of
parameters can easily overfit to the training set. Therefore, one of the most used
regularization techniques that has been used is Dropout [42]. It means randomly
setting a portion of each of the layers activation to 0. When training, neurons
need to learn better representations to keep the gradient stable. During testing, to
compute the prediction and Dropout the neurons have been used.
Dropping out neurons means omitting neurons from the network as well as their
weights. In dropout, the choice of units that needs to be dropped is random.

6.1.5 Normalization

To train a model and keep the models gradient in a stable condition all the data need
to be scaled in a specific manner which is known as normalization. Normalization

35

techniques are used to reduce exploding gradient problems. Moreover, a normal-
ization is used mostly after performing each layers convolution operation. There
are several normalization techniques like Batch Norm, Group Norm, Layer Norm,
Instance Norm. However, in this thesis we only focused on Batch Norm and Group
Norm to implement our work.

6.1.6 Early Stopping

This method mainly observes if a models performance if degrading such as the
accuracy is not improving or the loss is increasing. So that it can stop the training
after a certain number of epoch. Therefore, it helps to stop a models training if it
start either overfitting or underfitting.

6.1.7 Training Set

By doing data augmentation we can create multiple views of a batch of images rather
than having a single view that (i.e rotating, shifting, flipping images) has proven to
have a positive effect in overfitting and the dataset can be easily enlarged. Here a
snippet of our training augmentation has been added.

6.1.8 Validation Set

For the validation set we are keeping our sample as they are except normalizing the
images with rescale = 1

255
.

6.1.9 Evaluation Criterion

In this thesis, we have evaluated our model’s performance using the confusion matrix
and the accuracy. The accuracy can derived from the sum of true predictions divided
by the total classifications prediction as shown in the Equation 6.2.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.2)

Here, TP is considered as true positive, TN is considered as true negative, FP is
false positve and lastly FN is false negative.

In the confusion matrix, as we have a 7 class facial emotion recognition problem
consisting of classes TC1, TC2,, TC7, which has created a 7×7 confusion matrix.
Here, the rows have represented the actual classes and the columns have represented
the predicted classes. Moreover, the values which have situated at the diagonal
positions of the matrix are the true positive TP values for the corresponding classes.
These values represent the right decisions on the other hand the values which have
situated at the off-diagonal position in the matrix represent the misclassified errors.
From the table 6.2, it can be seen that PC12 in the following matrix shows that the
actual emotion class TC1 has been predicted as class TC2.

36

TC1 TC2 TCn
TC1 TP1 PC12 PC1n
TC1 PC21 TP2 PC2n

Actual
Label

...

...
TCn PCn1 PCn2 TPn

Predicted Label
*TC = true class, PC = predicted class, TP = true positive

Table 6.2: Confusion Matrix for FER2013 classes

6.2 Result and Evaluation

6.2.1 Implementation of CAMnet

We have implemented many optimizers and feature tuning approaches for hyper-
parameter tuning. However, 4 types of optimizers shown in Table 6.3, having batch
size 32, value of weight decay is 0.0001, num workers is 4, momentum is set to 0.9
show well balanced result and we trained our model for 50 epochs in all the scenarios.
Firstly, the AdaDelta optimizer has achieved 61.71% accuracy while setting the
learning rate at 1.0. After that, we have achieved a slightly higher accuracy of 65.18
by using SGD and setting the learning rate value at 0.01. The Adam Optimizer
has attained 67.35% accuracy and the learning rate has been set to 0.001. Finally,
we have accomplished the highest accuracy which is 70.65% without using any pre-
trained weights of ImageNet and by implementing the RAdam optimizer and also
the learning rate value has been set to 0.0001.

Optimizer Batch Size Learning Rate Accuracy

AdaDelta 32 1.0 61.71%
SGD 32 0.01 65.18%
Adam 32 0.001 67.35%

RAdam 32 0.0001 70.65%

Table 6.3: CAMnet feature tuning results

Our proposed CAMnet models performance is visualized by Figure 6.2 which has
been trained from scratch without using any pretrained weight. Our model has
acquired over 86.41% accuracy on the training set and over 70% accuracy on the
validation set. We have used a dropout layer of 50% before final fully connected
layer. Moreover, for dropout fine-tuning, 2 fully connected layer one before (512,128)
and one after (128,7) of a dropout layer has also been tested. sequentially has also
been tested. However, using only on 50% droput shows better result on validation
set. Furthermore, the validation accuracy has increased significantly in the range
of 15 epochs to 30 epochs. After 30 epochs the validation accuracy has become
stable. The graph has shown the training and validation loss based on the epochs

37

(a) CAMnet accuracy (b) CAMnet loss

Figure 6.2: Learning curve for CAMnet with NPW

for the CAMNet. The loss curve for validation sets has become stable after passing
20 epochs and it has slightly increased after completing 40 epochs. From 20 epochs
to 35 epochs the loss curver for validation has been stable. The following Figure 6.3
shows the performance evaluation based on the actual label and the predicted label
of our CAMnet model.

Figure 6.3: Confusion Matrix of CAMnet 34 (ours)

The Table 6.4 has exhibited the accuracy’s of various architectures achieved without
implementing the pretrained weight of the ImageNet and also our proposed model
has outperformed the other existing models. The state-of-the-art Residual Mask-
ing Net architecture has achieved 68.18% accuracy not utilizing the weights of the
ImageNet. Also, the ResNet34 has obtained an accuracy of 66.70%. Finally, our
proposed CAMNet has acquired the highest accuracy of 70.65% which demonstrates
better result than all the described models.

38

Architecture Accuracy(NPW)

Residual Masking 68.18%
ResNet34 66.70%

CAMnet(ours) 70.65%
*NPW = No Pretrainrd Weight

Table 6.4: Comparision with existing resnet34 based architecture

6.2.2 Implementation of Ensemble Model

The authors of the state-of-the-art architectures have achieved an accuracy of 76.82%
by ensembling a total number of 7 architectures with pre-trained ImageNet weights.
However, we have acquired 76.12% accuracy by ensembling our proposed CAMnet
architecture along with 5 other architectures which has been shown in Table 6.5.
Our ensemble model has implemented only 6 models and because of the memory
constraint, our proposed CAMnet model has not been pre trained with the weights
of ImageNet.

SeResNet34 Transfer Learning

We have utilized the SeResNet34 as our pre-trained model. The architecture of
SeResNet34 uses bottleneck block and consists of 34 layers. We have replaced the
softmax layer which has been set to output the 7 emotions. Also, we have used
Radam Optimizer and have executed for 50 epochs having the learning rate of
0.0001 and the batch size has been set to 48. Finally, we have acquired 94.3%
training accuracy and 71.1% accuracy on the FER2013 test set. Figure 6.4 illustrates
confusion matrix of Seresnet 34 architecture.

Figure 6.4: Confusion Matrix of Seresnet 34

39

DenseNet121 Transfer Learning

We have also used DenseNet121 as another pre-trained model. We have replaced the
softmax layer which has been set to output the 7 emotions and have used Radam
Optimizer. This architecture has been executed for 50 epochs having the learning
rate of 0.0001 and we have achieved a training accuracy of 91.9% and also 73.59%
accuracy on the validation sets. The confusion matrix of Densenet 121 yhas been
shown in Figure 6.5.

Figure 6.5: Confusion Matrix of Densenet 121

SeResNext101 Transfer Learning

Moreover we have implemented SeResNext101 as another pre-trained model. After
that, we have replaced the actual output layer with a fully connected layer having a
size of 1024 and lastly the softmax layer which has been set to output the 7 emotions.
We have also used the ImageNet weights to train the model and have used Radam
Optimizer and have executed for 43 epochs having the learning rate of 0.0001 and
the batch size has been set to 48.Finally, we have acquired 92.92% training accuracy
and 70.85% validation accuracy on the FER2013 data set. We can see the evaluation
matrix of Seresnext 101 from Figure 6.6.

BAM and CBAM Transfer Learning

Finally, we have loaded BAM and CBAM architectures as our pre-trained models.
For both of the architectures, we have replaced the actual output layer with a fully
connected layer having a size of 2048 and a softmax layer which outputs to the 7
emotion classes. These both models have been executed for 50 epochs having the
learning rate of 0.0001 and the CBAM model has achieved 89.75% training accuracy
and the BAM model has achieved 91.28% training accuracy. Most importantly, we
have achieved an accuracy of 73.42% for both of the models on the FER2013 test
sets. Figure 6.7 and 6.8 respectively visualizes the confusion matrix of BAM and
CBAM.

40

Figure 6.6: Confusion Matrix of Seresnext 101

Figure 6.7: Confusion Matrix of CBAM Resnet 50

Test-Time Augmentation (TTA)

We have performed test data augmentation while validating each individual model’s
performance and our ensemble models’ performance. The method is the same as
the training time data augmentation but here the model predicts the result for
each augmented image and takes the mean of the prediction probability as the
result. Moreover, with TTA voting of our ensemble model, we have achieved 76.12%
accuracy on our ensemble model which increases the result significantly from 74.93%
to 76.12%. From Table 6.6, we can see that our ensemble model outperforms all
the previous proposed models except Pham et al. [43] which achieved an accuracy

41

Figure 6.8: Confusion Matrix of BAM Resnet50

Model Name Training
Accuracy

Validation
Accuracy

Epoch Hyper-
tuning

Dataset

SeResNet34 94.3% 71.1% 50 WPW FER2013
CBAM Resnet50 89.75% 73.42% 50 WPW FER2013
SeResNextt101 92.92% 70.85% 43 WPW FER2013
BAM Resnet50 91.28% 73.42% 50 WPW FER2013
Densenet121 91.9% 73.59% 50 WPW FER2013
CAMnet 88.77% 70.65% 50 NPW FER2013
Ensemble - 76.12% - - FER2013

*WPW = with pretrained weight; NPW = no pretrained weight

Table 6.5: Performance table of the trained architectures on FER2013

of 76.82% on validation set. However, we CAMnet model is far deeper than their
proposed ResmaskingNet and yet it has shown lower overfitting problem.

42

Architecture Accuracy

Vgg16 70.2%
VGG19 71.41%

BAM(ResNet50) 73.21%
CBAM(ResNet50) 73.37%

ResNet50 72.11%
SeResNet34 71.1%
SeResNet50 71.48%
DenseNet121 73.58%

Pramerdorfer et al. [44] 75.2%
Khanzada et al. [45] 75.8%

Pham et al. [43] 76.82%
CAMnet + Ensemble (ours) 76.12%

Table 6.6: Comparision with existing architecture

From Table 6.6, we can see that our ensemble model outperforms all the previous
proposed models expect Pham et al. [43] which achieved an accuracy of 76.82%
on validation set. However, we CAMnet model is far deeper than their proposed
ResmaskingNet and yet it has shown lower overfitting problem.

43

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Facial expressions represent a person’s emotions nonverbally. In this thesis, we
have introduced a new variant of residual network named Convolutional Attentional
Masking Network (CAMnet), our proposed architecture CAMnet shows improved
performance without pretrained weight unlike current state-of-the-art models archi-
tecture. Moreover, our proposed architecture have successfully reduced overfitting
issue on this dataset compared to other existing architecture. Most importantly, we
have used only 6 architecture to make an ensemble model by which we have achieved
76.12% accuracy on test set.

7.2 Future Work

Putting aside what we have successfully achieved, there are some limitations that
need to be addressed. The main barrier of this research is the constraint of the
computational resources such as the limitations of the GPU and the cloud services.
Therefore, in this research, we didn’t use any pretrained weight of ImageNet dataset
on our proposed model. Moreover, there are some matters which need some further
improvements. In future studies, we would like to train our proposed CAMnet model
on the ImageNet dataset. Also, we will use grid search like algorithms to find the
best fitted set of hyperparameters in future which can be done using multiprocessor.
After that, we would like to load the weight of the ImageNet dataset on our model
to acquire a better performance. Also, we want to utilize auxiliary image data sets
to improve the accuracy. Furthermore, different fine-tuning can be done and we will
retrain our proposed model on data sets containing occluded images such as human
faces wearing glasses.

44

Bibliography

[1] N. Hussain, H. Ujir, I. Hipiny, and J.-L. Minoi, “3d facial action units recogni-
tion for emotional expression,” 12 2017.

[2] A. Ko lakowska, A. Landowska, M. Szwoch, W. Szwoch, and M. Wróbel, “Emo-
tion recognition and its applications,” Advances in Intelligent Systems and
Computing, vol. 300, pp. 51–62, 07 2014.

[3] B. C. Ko, “A brief review of facial emotion recognition based on visual infor-
mation,” sensors, vol. 18, no. 2, p. 401, 2018.

[4] T. Fang, x. Zhao, O. Ocegueda, S. Shah, and I. Kakadiaris, “3d facial expression
recognition: A perspective on promises and challenges,” pp. 603–610, 03 2011.

[5] C. Lisetti, “Affective computing -,” Pattern Anal. Appl., vol. 1, pp. 71–73, 03
1998.

[6] A. Kapoor and R. Picard, “Multimodal affect recognition in learning environ-
ments,” pp. 677–682, 01 2005.

[7] T. Jabid, M. H. Kabir, and O. Chae, “Local directional pattern (ldp) for face
recognition,” in 2010 Digest of Technical Papers International Conference on
Consumer Electronics (ICCE), pp. 329–330, 2010.

[8] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[9] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in 2005 IEEE computer society conference on computer vision and pat-
tern recognition (CVPR’05), vol. 1, pp. 886–893, IEEE, 2005.

[10] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local binary
patterns: Application to face recognition,” IEEE transactions on pattern anal-
ysis and machine intelligence, vol. 28, no. 12, pp. 2037–2041, 2006.

[11] S. Ebrahimi Kahou, V. Michalski, K. Konda, R. Memisevic, and C. Pal, “Re-
current neural networks for emotion recognition in video,” in Proceedings of the
2015 ACM on International Conference on Multimodal Interaction, pp. 467–
474, 2015.

[12] R. Walecki, O. Rudovic, V. Pavlovic, B. Schuller, and M. Pantic, “Deep struc-
tured learning for facial expression intensity estimation,” Image Vis. Comput,
vol. 259, pp. 143–154, 2017.

45

[13] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL: http://yann.
lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” 2015.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1–9, 2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[18] “cs231n convolutional neural networks for visual recognition.”

[19] S. Sharma, “Activation functions in neural networks,” Feb 2019.

[20] W. Research, “Tanh.” https://reference.wolfram.com/language/ref/Tanh.html,
1996.

[21] J. Brownlee, “A gentle introduction to the rectified linear unit (relu),” Aug
2020.

[22] H. S, “Activation functions : Sigmoid, relu, leaky relu and softmax basics for
neural networks and deep...,” Feb 2019.

[23] L. Trottier, P. Gigu, B. Chaib-draa, et al., “Parametric exponential linear unit
for deep convolutional neural networks,” in 2017 16th IEEE International Con-
ference on Machine Learning and Applications (ICMLA), pp. 207–214, IEEE,
2017.

[24] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 7132–
7141, 2018.

[25] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transfor-
mations for deep neural networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1492–1500, 2017.

[26] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He,
J. Mueller, R. Manmatha, et al., “Resnest: Split-attention networks,” arXiv
preprint arXiv:2004.08955, 2020.

[27] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of
the trade, pp. 421–436, Springer, 2012.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

46

https://reference.wolfram.com/language/ref/Tanh.html

[29] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[30] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance
of the adaptive learning rate and beyond,” arXiv preprint arXiv:1908.03265,
2019.

[31] C. R. Rao, “Some comments on the minimum mean square error as a criterion
of estimation.,” tech. rep., PITTSBURGH UNIV PA INST FOR STATISTICS
AND APPLICATIONS, 1980.

[32] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Annals of operations research, vol. 134, no. 1,
pp. 19–67, 2005.

[33] K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, “On label de-
pendence and loss minimization in multi-label classification,” Machine Learn-
ing, vol. 88, no. 1-2, pp. 5–45, 2012.

[34] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-
tra, “Grad-cam: Visual explanations from deep networks via gradient-based
localization,” in Proceedings of the IEEE international conference on computer
vision, pp. 618–626, 2017.

[35] T. S. Li, P. Kuo, T. Tsai, and P. Luan, “Cnn and lstm based facial expression
analysis model for a humanoid robot,” IEEE Access, vol. 7, pp. 93998–94011,
2019.

[36] N. Jain, D. S. Kumar, A. Kumar, P. Shamsolmoali, and M. Zareapoor, “Hybrid
deep neural networks for face emotion recognition,” Pattern Recognition Letters,
04 2018.

[37] Z. Yu and C. Zhang, “Image based static facial expression recognition with
multiple deep network learning,” pp. 435–442, 11 2015.

[38] M. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep convo-
lutional neural networks,” In: ICLR, 01 2013.

[39] L. Zhang and D. Tjondronegoro, “Facial expression recognition using facial
movement features,” IEEE Transactions on Affective Computing, vol. 2, no. 4,
pp. 219–229, 2011.

[40] Y. Lu, S. Wang, and W. Zhao, “Facial expression recognition based on discrete
separable shearlet transform and feature selection,” Algorithms, vol. 12, p. 11,
12 2018.

[41] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza, B. Ham-
ner, W. Cukierski, Y. Tang, D. Thaler, D.-H. Lee, Y. Zhou, C. Ramaiah,
F. Feng, R. Li, X. Wang, D. Athanasakis, J. Shawe-Taylor, M. Milakov, J. Park,
R. Ionescu, M. Popescu, C. Grozea, J. Bergstra, J. Xie, L. Romaszko, B. Xu,
Z. Chuang, and Y. Bengio, “Challenges in representation learning: A report on
three machine learning contests,” 2013.

47

[42] A. Budhiraja, “Learning less to learn better-dropout in (deep) machine learn-
ing,” Mar 2018.

[43] L. P. . T. A. Tran, “Facial expression recognition using residual masking net-
work,” 2020.

[44] C. Pramerdorfer and M. Kampel, “Facial expression recognition using convo-
lutional neural networks: State of the art,” 2016.

[45] A. Khanzada, C. Bai, and F. T. Celepcikay, “Facial expression recognition with
deep learning,” arXiv preprint arXiv:2004.11823, 2020.

48

	Declaration
	Approval
	Ethics Statement
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Problem Statement
	Motivation
	Research Objective

	Literature Review and Related Work
	Convolution Neural Network
	Layers
	Activation Functions

	Existing Deep Learning Models
	VGGNet
	ResNet
	Inception

	Challenges with Training
	Data Dependency
	Overfitting
	Gradient Vanishing

	Transfer Learning
	Fine Tuning
	Features Extraction

	Optimization Algorithms
	Stochastic Gradient Descent (SGD)
	Adam
	AdaDelta
	RAdam

	Loss Functions
	Mean Square Error Loss
	Cross Entropy Loss
	Loss Multi Label

	Advanced Visualization Techniques
	Gradient Based

	Facial Expression with Deep Learning

	Dataset
	Facial Expression Recognition (FER2013)

	Implementation of Existing Model Architectures
	Baseline Model
	VGG 16
	VGG 19
	SeNet-50
	Resnet50
	SeResNext101
	SeResNet34
	Densenet121
	BAM & CBAM

	Proposed Method
	Convolutional Attentional Masking Network
	Convolutional Attention Unit (CAU)
	Masking Block

	Experimental Analysis and Discussion
	Experimental Setup
	Data Pre-processing
	Data Augmentation
	Regularization Techniques
	Dropout
	Normalization
	Early Stopping
	Training Set
	Validation Set
	Evaluation Criterion

	Result and Evaluation
	Implementation of CAMnet
	Implementation of Ensemble Model

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

		2021-01-20T19:09:35+0600
	Dr. Md. Golam Rabiul Alam

