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Abstract

Nationwide lockdowns implemented in consequence of the devastating COVID-19
pandemic, caused noticeable improvements in air quality throughout the world.
This paper implements a multivariate long-short term memory network to forecast
changes in the Air Quality Index and Particulate Matter 2.5 (PM2.5) concentration
for 26 cities in India, and 50 cities in Europe, had their lockdown not occurred
or been extended. A linear regression model was used to correlate confounder-
adjusted PM2.5 values with COVID-19 mortality rate in the U.S.A. Heat maps were
visualized with K-Means Clustering that signified the correlation between increased
air pollution with higher COVID-19 cases and mortality rates. Our results indicate
that 76% of the European cities in our dataset underwent at least a 40% improvement
in air quality as a result of their lockdowns, whereas 17 out of the 26 Indian cities
observed 20%. Adjusted PM2.5 was seen to be a statistically significant contributor
to increasing mortality rate, with a single unit increase contributing to 3% more
deaths due to COVID-19, at a 95% confidence level.

Keywords: COVID-19; LSTM; Air Pollution; K-Means Clustering; COVID-19
Mortality; Regression; COVID-19 Lockdowns

iii



Acknowledgement

This thesis is an embodiment of a group’s relentless hard work. We thank our hon-
orable supervisor, Dr. Md. Golam Rabiul Alam, and our respected co-supervisor,
Dr. Muhammad Iqbal Hossain for the invaluable guidance and support they have
provided us throughout our journey.

iv



Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 The Pollution Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 COVID-19 and The Correlation with Air . . . . . . . . . . . . . . . . 2
1.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4
2.1 Studies Conducted Upon India . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Studies Conducted Upon USA . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Studies Conducted Upon Italy . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Studies Conducted Upon Other Countries . . . . . . . . . . . . . . . 7

3 Analysis of Datasets 10
3.1 Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Methods and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Predictive Analysis Using Multivariate RNN and LSTM 16
4.1 Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Method and Implementation . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



5 Correlating COVID-19 and Air Quality with Linear Models 28
5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Factor Visualization With K-Means Clustering 32
6.1 Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Implementation and Analysis . . . . . . . . . . . . . . . . . . . . . . 35

7 Future Work 40

8 Conclusion 41

Bibliography 42

Appendix A. Tables of Lockdown Dates Around the World 46

Appendix B. Percentage Tables from Forecasting Model 48

vi



List of Figures

3.1 Seasonal variation of pollutant concentration for Indian cities . . . . . 11
3.2 Percentage decrease in AQI and PM2.5 from 2018 and 2019 to 2020 . 12
3.3 Percentage decrease in PM10 and SO2 from 2018 and 2019 to 2020 . 13
3.4 Percentage decrease in CO and NO2 from 2018 to 2020 and 2019 to

2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 General architecture of a Recurrent Neural Network model . . . . . . 17
4.2 General architecture of a Long Short-Term Memory RNN . . . . . . . 18
4.3 Flowchart depicting LSTM process . . . . . . . . . . . . . . . . . . . 19
4.4 Air quality in Ahmedabad with and without the COVID-19 lockdown 20
4.5 National Air Quality Index of India . . . . . . . . . . . . . . . . . . . 21
4.6 Air quality in Visakhapatnam with and without the COVID-19 lock-

down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7 PM2.5 levels in Bengaluru with and without the COVID-19 lockdown 22
4.8 Percentage increase in PM2.5 values if no lockdown in India . . . . . 22
4.9 Air quality in Lucknow if the COVID-19 lockdown been extended . . 23
4.10 Forecasted PM2.5 for Barcelona if lockdown had not occurred . . . . 24
4.11 Forecasted PM2.5 in Lisbon had the lockdown been extended . . . . . 25
4.12 Forecasted PM2.5 in London had the lockdown been extended . . . . 25
4.13 Block diagram of a Linear Forecasting Model . . . . . . . . . . . . . . 26

5.1 Linear Model Summary for co-variates and Mortality Rate Analysis . 29
5.2 Correlation of PM2.5 concentration with COVID-19 mortality rates . 30
5.3 Scaled plot of adjusted PM2.5 and COVID-19 Mortality with Linear

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Flowchart of the K-Means Clustering Model . . . . . . . . . . . . . . 33
6.2 Algorithm of the K-Means Clustering Process . . . . . . . . . . . . . 34
6.3 Clusters of PM2.5, COVID-19 Cases, and Mortality in USA for 2020 35
6.4 County-wise PM2.5 and COVID-19 mortality cases in the U.S.A. . . 36
6.5 Percentage difference of averaged historical PM2.5 with PM2.5 in 2020 37
6.6 Map of Italy depicting NO2 concentration in 2019 and 2020 . . . . . 38
6.7 Map of Italy depicting COVID-19 mortality data . . . . . . . . . . . 38
6.8 Map of Italy depicting COVID-19 cases . . . . . . . . . . . . . . . . 39

vii



List of Tables

4.1 Mean Percentage Decrease in PM2.5 due to COVID-19 lockdown in
Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AQI Air Quality Index

CO Carbon Monoxide

CO2 Carbon Dioxide

COV ID − 19 Coronavirus 2019

LSTM Long-Short Term Memory

NO Nitrogen Monoxide

NO2 Nitrogen Dioxide

NOx Mix of oxides of nitrogen

O3 Ozone

PM10 Particulate Matter 10

PM2.5 Particulate Matter 2.5

RNN Recurrent Neural Network

SO2 Sulfur Dioxide

USA United States of America

WHO World Health Organization

ix



Chapter 1

Introduction

1.1 The Pollution Problem

One of the most concerning health and environmental issues in the world right
now is air pollution. Every year seven million deaths are recorded worldwide due
to air pollution [1]. According to the Global Burden of Disease Study, a significant
contributor to cardiovascular disease mortality is air pollution; it was considered the
main reason for nearly 5 million untimely deaths throughout the world in the year
2017 [2]. Judging from this, we can clearly understand the severity of air pollutants
on our health. All types of pollution affect our health slowly but surely; among all
the problems, air pollution is considered the most fatal.

All over the world, the severity of air pollution is measured through values of AQI.
The AQI of a region is a measure of how healthy the overall air quality is; it is
calculated by taking into account the concentrations of primary air pollutants such
as Nitrogen Dioxide, Particulate Matter 2.5, Sulfur Dioxide and more. Countries
around the world have different standards for the measurement of air quality. How-
ever, for all of the variations a higher value of AQI always indicates poorer air quality
(for e.g., 125 units indicates worse air than 80 units of AQI).

The causes of air pollution can be parted into two sections: the first is indoor air
pollution, which is mostly caused by burning brushwood, fuel, crop waste, coal for
preparing food, and heating purposes. The second is outdoor air pollution caused
primarily by engines of all automobile vehicles and industrial fuel burning. Other
outside air pollution origins include windblown dust, smoke from forest fire, and
biogenic discharge from vegetation.

According to the World Health Organization (WHO) 90% of people Breathe air
that is worse than the WHO guideline limitations, with the most affected people
being from low and middle-income countries [1]. The main pollutants in the air are
Particulate Matter (2.5 and 10), Sulphur Dioxide, Carbon Monoxide, Ozone, and
the different Oxides of Nitrogen, all of which we will be investigating in this paper.
Air pollution affects our health in many ways that we do not directly notice. In
a recent study, it was found that the percentage of deaths and disease from lung
cancer is 29% due to air pollution. Similarly, from acute lower respiratory infection
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the statistic is 17%, from stroke it is 24%, from ischemic heart disease 25%, and
chronic obstructive pulmonary disease 43% [3].

1.2 COVID-19 and The Correlation with Air

The Coronavirus disease 2019 (COVID-19) is a highly contagious disease, originating
from the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). The
contagious disease was first detected in Wuhan, Hubei, China in December 2019
and has since evolved into a global pandemic. More than 31.4 million cases have
been registered over 188 countries with more than 966,000 deaths till 22nd September
2020 [4]. Governments of many countries all over the world have declared lockdown
periodically at different times in order to control the outbreak of COVID-19 as much
as possible. Despite the repercussions of this, we have observed one constructive
change due to the lockdown: drastic improvements in air quality.

In recent years, the whole world suffered immensely from acute air pollution prob-
lems which even led to life-threatening diseases. Just in China, some statistics sug-
gest that 25 million healthy life years were lost because of air pollution (Kassebaum
et al., 2014). However, due to the COVID-19 lockdown, air quality has improved
in many countries. Recent researches also suggest that the correlation between air
and COVID-19 is not limited to just the lockdown periods. Work conducted in the
United States and in Northern Italy focused on the effect of historical air quality on
deaths related to COVID-19.

India held one of the biggest nation-wide lockdowns in history by implementing stay-
at-home orders and closing down almost all kinds of outdoor activities for almost
1.38 billion people, for over 60 days. This caused the lowest ever recorded air
quality index in history for many different Indian cities. Similarly, the majority
of cities throughout Europe implemented stay-at-home orders, in an effort to keep
their citizens safe. When a lockdown was imposed on 23rd January 2020 in Wuhan,
China till 8th April 2020 (total 76 days), along with helping China in reducing the
number of infections to almost zero, it also drastically decreased the global carbon
emission and level of nitrogen dioxide (NO2) in the atmosphere.

1.3 Research Methodology

The negative effects of air pollution ranging from mild distress to death is a case
that has been frequently discussed in all forms of media. However, the correlation
between COVID-19 induced lockdowns and improvements in air quality is one that
is just beginning to be explored.

The first segment of our paper focuses on performing statistical analysis on a dataset
containing 5 years of daily air pollutant data (2015-2020) on 26 Indian cities and on
another dataset containing the same for 50 European cities. Next, using a multivari-
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ate LSTM RNN model, we decided to forecast what the Air Quality Index (AQI)
and PM2.5 values in our chosen regions would have looked like if the COVID-19
lockdowns had not occurred and what they would have been like if the lockdowns
had been extended. We added meteorological data like daily wind speed and tem-
perature values to further improve the accuracy of our analysis.

Our next objective was to analyze possible correlations between COVID-19 mortal-
ity rates and air quality. Primarily, we wanted to understand whether increasing
concentrations of historical air pollutant values contributed to higher mortality rates.
In order to this, we collected PM2.5 concentration data for over 3000 counties in the
U.S.A as well as COVID-19 county wise death data, population data, and data of
43 other confounding factors that could have affected mortality rates. We adjusted
the PM2.5 values by regressing out the effect of the identified confounders and then
implemented a linear regression upon the adjusted values (independent variable)
with the COVID-19 mortality rate (dependent variable).

Finally, in an effort to understand the impact of air quality and other confound-
ing factors we decided to spatially visualize their effects on a global scale. We
added pollutant and mortality data from the country of Italy to our pool of datasets
and created cluster diagrams correlating, for instance, adjusted PM2.5 values with
COVID-19 cases using the K-Means clustering algorithm. The results of the per-
formance of our analyses have been illustrated in the subsequent chapters of our
paper.

1.4 Research Objectives

Our objectives for the paper can be summarized into 5 main sections. They are as
follows:

1. Analyzing the air quality data of all of our chosen regions during their specific
lockdown period, and the air quality data for the same duration in 2018 and
2019 to visualize and statistically compare how the air quality has changed
due to the lockdown.

2. Forecasting AQI and PM2.5 values of our chosen cities with an RNN LSTM
model for 100 days, considering the COVID-19 pandemic and the subsequent
lockdown had not occurred and comparing them with actual values.

3. Forecasting AQI and PM2.5 values of our chosen cities with an RNN LSTM
model for 30-60 days after the lockdown period, considering the lockdown was
not lifted and comparing the values with the actual data to see whether it
would have been better in an extended lockdown.

4. Correlating adjusted PM2.5 values with COVID-19 mortality rates and inves-
tigating the existence of a relationship between the two.

5. Clustering pollutant values, COVID-19 mortality indices, COVID-19 case and
factor data to identify correlations among them.

3



Chapter 2

Related Work

2.1 Studies Conducted Upon India

Before starting our work, we looked at some similar papers that dealt with similar
problems. In a research article, Mahato, Pal, Gosh (2020), worked on the air qual-
ity before and during lockdown phases by collecting the data of the main pollutants
(PM10, PM2.5, SO2, NO2, CO, O3 and NH3) for 34 monitoring stations encompass-
ing over the city of Delhi, India [5]. During the early lockdown (24th March - 14th

April) in Delhi, they used the data of the seven pollutant parameters and used the
National Air Quality Index (NAQI) to visualize spatial patterns of air quality.

Firstly, they worked on differences in the levels of the primary pollutants before
and during lockdown phases by analyzing 24-hour median values of PM2.5, PM10,
SO2, NH3, NO2, and NAQI and 8-hour median daily maxima of CO and O3 from
3rd March to 14th April in NCT Delhi; in doing so, they found variations between
pre-lockdown and lockdown phase.

Secondly, they performed analysis on the spatial pattern of National Air Quality
Index (NAQI) before and during India’s COVID-19 lockdown and found a reduction
in NAQI during the stay-at-home period. From the analysis of collected data of
pollutants, six NAQI categories (CPCB, 2015) were used to evaluate the impact on
our health by the seven pollutants according to their standards.

Thirdly, from the spatial concentration pattern they showed that major pollutants
like PM2.5, PM10, NO2 and CO changed excessively because of the lockdown and
the quality of air improved much. Then they also separately analyzed PM10 and
PM2.5 pollutant data from 2017 to 2019 and compared it with 2020 data for the
same time period. Their results found that for the past three years it was higher
compared to 2020. Furthermore, they also tried to find correlations between the
ambient air pollutants, for example, whether the median value of PM2.5 is related
with the median value of NO2, CO and SO2. Their results concluded that throughout
the lockdown phase different sectors were shut down which resulted in improving
the air quality in the city Delhi, India.
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In a paper, Bera, Bhattacharjee, Shit, Sengupta, Saha (2020) analyzed the air quality
of Kolkata throughout and before the COVID-19 lockdown of India by studying the
concentration of six parameters, namely, SO2, CO, NO2, O3, PM10 and PM2.5 [6].
They collected hourly emission levels of these pollutants from the State Pollution
Control Board under the Govt. of West Bengal during the lockdown period from
March 25th to May 15th, 2020 and similarly the same time period for the years
2017, 2018 and 2019 from different data stations. After the collection they analyzed
the data, and calculated the monthly average and spatio-temporal variation of the
pollutants to understand the changes in air quality.

Next, they performed statistical analysis like hierarchical cluster (HCA) and prin-
cipal component analysis (PCA) to examine the similarity or dissimilarity between
the pollutants and also identified the land surface temperature variation. From their
analysis they found that during the lockdown phase (March 25th to May 15th) the
average levels of CO, NO2 and SO2 remarkably reduced and the consistent drop-
ping of PM10 and PM2.5 was recorded in comparison for the same period from
2017 to 2019. On the other hand, the strength of the O3 layer increased in Kolkata
throughout the lockdown; the researchers also found a significant reduction of sur-
face temperature during the lockdown compared with the previous years (2017 to
2019). Moreover, they showed using HCA and PCA that before the lockdown, pe-
riod the pollutants O3, SO3 and NO3 had more or less similar values although PM10,
PM2.5 and CO were correlated. On the contrary, during the lockdown period SO2

had a remote correlation with other pollutants, while the other parameters behaved
similarly. Lastly, on the basis of their analysis they suggested some environmental
management plans which should be long-term sustainable.

Looking at relatable papers we came across an interesting paper where Srivastava,
Kumar, Bauddh, Gautam, Kumar (2020) scientifically analyzed elements connected
to air quality of two of the biggest cities in India [7]. New Delhi and Lucknow were
their primary focus as the impact of lockdown on these busy cities would be the most
significant. They collected the PM2.5, NO2, SO2 and CO data from four locations in
Lucknow and ten locations in the mega city Delhi. They wanted to be precise about
their research so they collected data of 21 days before (01/02/2020 to 21/02/2020)
the first phase of the India’s lockdown and 21 days after the first phase of lockdown
was lifted (25/03/2020 to 14/04/2020).They computed the average and mean values
of all 14 points of their observation and also calculated the AQI mathematically by
assuming PM2.5, NO2 and SO2 as the primary pollutants. To further recognise the
impact of the long-range movements of atmospheric pollutants on both of the cities
they also analyzed the air mass back trajectory. Their initial hypothesis was found
correct according to their findings as in almost all the sites the AQI significantly
declined after the lockdown, compared to what it was 21 days before the lockdown.
The major impacts were noticed in the differences of PM2.5, NO2 and CO levels.
SO2 showed fewer compelling results. In order to counter the drastic air pollution
upsurge, they concluded by suggesting the adoption of short periodical lockdowns.

In one of the papers, Madaan, Dua, Mukherjee, Lall (2019), introduced an online
real-time air pollution prediction system at five locations in Delhi designed by using
the past historic air quality data and meteorological data [8]. They used a real-time
air quality monitoring dataset from the Central Pollution Control Board which con-
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tains various parameters such as air pollutant variables (SO2, NO2, PM2.5, PM10,
CO and O3) and meteorological parameters (temperature, humidity, wind speed and
barometric pressure). All these variables were collected on an hourly basis (every 4
hours) from the past 24 hours and these collected data sets were used to predict the
concentration of PM2.5, PM10 and NO2. In this paper, they proposed a BiLSTM
model consisting of a BiLSTM layer, with the attention mechanism layer having four
modules (Input Feature Module, BiLSTM module, Attention module and Output
module). They trained this model to be able to forecast the pollutant values for
the next 24 hours on the test set which was then used for the evaluation of different
models. They developed an algorithm that proposed an adaptive method which
minimizes the errors of the algorithm by using hourly data for each location.

Furthermore, real-time air quality data was collected from external sources by scrap-
ing the web pages of the Central Pollution Control Board each hour. Google Cloud
storage was used to store this massive collection of data, on which there is also
Google virtual machine and Google Machine Learning Engine support. Moreover,
after this updated data was fetched from Google cloud storage, it was used as train-
ing data for the machine learning model on Google Machine Learning Engine every
week for all the stations. The online trained model minimized the mistakes made
by the predictive model by replacing the model that was stored in the Google cloud
storage. This predictive model was used to predict air quality and classify the threat
levels for the next 24 hours.

2.2 Studies Conducted Upon USA

One of the most prominent works we found was done by Wu, Nethery, Sabath,
Braun, and Dominici (2020). Five Harvard students collected data of more than
3000 counties of The United States and analyzed their collected data using multiple
methods to bolster their claims [9]. Their initial hypothesis was that the long-term
slight increase in PM2.5 is a primary reason for increased mortality rate due to
COVID-19. The results they got from their research showed that a surge of just 1
µg/m3 in PM2.5 can result in a rise of 8% COVID-19 mortality rate in those counties
with 95% confidence. In their research, they did make some assumptions for the
lack of proper data availability. The corona deaths for each county separately were
not available so they divided the deaths according to the population proportions of
each county. They calculated the PM2.5 data of each county by using regression on
the satellite data of the entire continental United States and averaging the values
of each zip code of the counties. Apart from their initial analysis they made some
secondary analysis to further support their claims. Since New York was the most
heavily affected state, they did their analysis once without considering New York.
They analyzed the data without considering counties with less than 10 confirmed
COVID-19 deaths; they obtained consistent results.
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2.3 Studies Conducted Upon Italy

While researching we came across a study that was done by Coker, Cavalli, Fab-
rizi, Guastella, Lippo, Parisi, Pontarollo, Rizzati, Varacca, Vergalli (2020) upon the
northern regions of Italy [10]. They primarily used street level long term PM2.5
for measuring the correlation between PM2.5 and COVID-19 mortality rate. They
calculated the increasing deaths in the first quarter of 2020 using the death data
of the previous 5 years (2015 to 2019) at the municipality level of the same time
frame and used it to scale the official COVID-19 deaths registries to get a better
granular representation. They believed that 6 years was the perfect period of time
to consider in this case and considered some confounding factors in their study like
the urbanization and population density of different regions. They used negative
binomial regression to find that for every unit increase of.PM2.5 the COVID-19
mortality rate increases at 9% at a 95% confidence interval.

2.4 Studies Conducted Upon Other Countries

In a research paper, He, Pan, Tanaka (2020), used timely and extensive data col-
lected throughout all the prefectural cities in China from 1,600 monitoring stations
to investigate how much the air quality has refined due to the government steps
taken for COVID-19 [11]. They merged the station level data to calculate the city
level and then added the temperature, weather variables etc. from the Ministry
of Ecology and Environment and National Oceanic and Atmospheric Administra-
tion. They analyzed weekly city-wise data of 324 cities between January 1st and
March 1st and noticed that after the lockdown (January 23rd to February 11th)
AQI reduced roughly 34%. Firstly, they used two types of DID models and with
the help of baseline regression they determined the relative change in air pollution
metrics between the treated and control cities. Moreover, in all the regressions they
clustered the standard errors at the city level. After that, they performed a com-
parison on the air pollution data of the same period between 2019 and 2020 within
the control group to see if there were any dissimilarities between the trends. Then
they showed their results using figures where different panels showed before and
after the Chinese Spring Festival, where the differences in AQI decreased more in
cities that were locked down. In another panel they revealed that the air pollution
levels were little low in 2020 after the festival compared to the 2019 post festival
period. After the combined analysis they found that the AQI reduced by 19.4 points
(18%) and PM2.5 by 13.9 µg/m3 (17%). They also worked on the heterogeneous
impacts of city lockdown for example, the impacts were more remarkable in colder
cities and AQI was reduced around 20 to 30 points on other hand 0 to 10 points for
warmer and southern cities. They also worked on the consequences of air pollution
on death rate and used seasonal agricultural straw burnings as the main variable for
PM2.5, and estimated how.PM2.5 influences mortality and showed that the total
averted untimely deaths would be around 24,000 to 36,000 which were higher than
the casualty caused by COVID-19 in China.

In another research paper, Wang, Su (2020), worked on data from China by analyz-
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ing the dynamic impact of COVID-19 on the environment [12]. Firstly, they focused
on a part where the government took all necessary steps so that the outbreak could
be suppressed for example, several travel and movement restrictions and tried to
compare railway and traffic lots condition by the Satellite images from Planet Labs
of NASA captured scenes of traffic and parking lots near Wuhan Railway Station
pre-lockdown and post-lockdown (January 12 and January 28, 2020). Secondly, they
analyzed that not only China’s coal, crude oil, energy consumption decreased drasti-
cally but also GDP decreased by 5.3% over the same period last year due to a lesser
number of vehicles on road and industrial activities during the quarantine period.
Additionally, it was shown that the level of NO2 in the air had decreased drastically
through the data received from NASA and ESA satellites. Furthermore, through
the TROPOMI sensor on the Sentinel-5 Precursor platform that keeps track of the
global atmosphere daily compared 2005-2019 NO2 concentration of China with 2020
data which revealed that in eastern and central China the NO2 emissions were lower
than the normal level during the same period in previous years. Thirdly, they eval-
uated that six types of air pollutants (NO2, CO, PM2.5, PM10, SO2, O3) declined
during this epidemic through the data of the Ministry of Ecology and Environment
of China. Moreover, they explored that the above impacts were short-term and it
was because of the factors related with the quarantine due to COVID-19.

We also came across a paper, where Cole, Elliott and Liu (2020), briefly researched
the effects of lockdown on the air pollution in Wuhan city, The origin of the Coro-
navirus [13]. They did the research in mainly two steps. First, they used machine
learning to clean their dataset and clear out redundant information from their data
to get a more accurate result. Secondly, they used an Augmented Synthetic Con-
trol approach to estimate the impact of the lockdown on the 12-day post lockdown
period since February 3rd. They analyzed the 4 main concentrations of air quality
(PM10, NO2, CO, SO2). Most cities in China did not lockdown for 2 weeks like
Wuhan and other cities have different air quality natural behaviors than Wuhan due
to other factors impacting air quality. So, the first step they took was they used
machine learning to do a forest-based weather normalization technique of 30 cities
in China to get their desired hourly weather normalized air quality data. Then
they aggregated those hourly data into daily values. After that they used a (ridge)
augmented synthetic control method on this dataset to estimate how the concentra-
tions in Wuhan have changed relative to the synthetic control. By doing this they
created a synthetic Wuhan city air quality dataset that did not get impacted by
the lockdown since they used data from 18th January 2013 to 29th February 2020.
So, after using a SCM approach to creating a synthetic weather normalized Wuhan
city dataset, they compared what the air quality values would be from January 21st
2020 by contrasting values for the Wuhan actual weather normalized dataset and
the synthetic Wuhan dataset. They found that NO2 levels and PM10 levels have
dropped significantly to a reduction of almost 63% of NO2 and 35% of PM10 levels
at the end of the 12-day period they did their investigation on. The SO2 and CO
differences they found were quite insignificant though. Lastly, they did two Placebo
tests to justify their findings and show that their estimations of the synthetic Wuhan
were accurate. To do that they used a different time in December assuming a fake
lockdown and they made different cities into synthetic cities and ran their ASCM
model those cities assuming a fake lockdown happened there too. In both of their
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placebo tests they showed similar outcomes.

In a research paper by Korunoski, Stojkoska, Trivodaliev (2019), presented a pollu-
tion model using spatial interpolation which identifies the pollution field evolution
and position of potential sources by adding pollution measurements and meteorolog-
ical parameters [14]. The system architecture of this model is made up of four sub-
systems and each subsystem is responsible for different system operations. Firstly,
the central subsystem, Spatial interpolation is used to calculate the pollutant field
based on the used dataset. Secondly, the Sources Determination subsystem that
depends on short-term variations in the air pollution and considers the weather by
which this system identifies the pollutant sources. Thirdly, to solve the forecasting
problem another subsystem used two stacked layers of Recurrent Neural Network
(RNNs) and Long Short-Term Memory (LSTM) cells. Lastly, another subsystem
Time-to-Event Prediction is used to predict the future pollution level and hours un-
til it exceeds the thresholds. By integrating the four subsystems the pollution model
measures the concentration of different pollutants such as carbon monoxide (CO),
nitrogen dioxide (NO2), or ozone (O3), particulate matter (PM 10 and PM2.5) and
sulfur dioxide (SO2) for the city Skopje. This whole system architecture can be
observed by a user through a web service.
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Chapter 3

Analysis of Datasets

3.1 Collection

We collected data from an extensive list of sources in order to accurately carry out
our analysis. In order to make the methods followed in our paper replicable, we
included links to all of the websites that we obtained data from in the reference
section.

To begin, an open-source dataset containing hourly and daily values (in micrograms
per meter cube for all and milligrams per meter cube for carbon monoxide) for 10
different air pollutants including PM2.5, PM10, NO, NO2, CO, SO2, and O3 was
collected for a duration of 5 years (from the 1st of January 2015 till the 31 st of June
2020) for 26 cities in India.

The city data was calculated by aggregating values from various air quality moni-
toring stations situated throughout India. The data was obtained from the Central
Pollution Control Board under the Government of India [15] and used in our mul-
tivariate RNN LSTM model to forecast air pollution. Temperature data obtained
from Reliable Prognosis Weather Archive [16] was also added to the extracted sub-
sets of city data, to increase the number of input factors in our analysis.

Next, individual pollutant data was collected from the United States Environmental
Protection Agency website [17], which we used to perform univariate LSTM fore-
casting and visualize what the air quality would have been like had the COVID-19
lockdown not been implemented in the United States or if it had been extended.
Moreover, in order to conduct our analysis between historical air pollution and
COVID-19 mortality rates, we obtained a dataset of county-wise PM2.5 concentra-
tion values from the year 2001 to 2016 published by the Centers of Disease Control
and Prevention [18] in the United States. For the calculation of COVID-19 county
wise mortality rates, we gathered county-wise COVID-19 cases and death data (up
until the writing of this paper on the 22nd of December) for over 3000 American
counties [19-21] as well as estimated mask usage data (a confounder in our analysis)
which was divided into five categories from ‘never’ to ‘always’.
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We also gathered data for a number of other confounding factors including county-
wise population demographics (percentage of working-age people from 15 to 64 years
old, percentage of children who are less than 14 years old, percentage of seniors who
are over 65 years old, percentage of Black, White, Hispanic, and Asian people as
well as percentage of males and females in each of these groups) in each county. All
of this was collected from the official United States Census Bureau website [22-23].

We performed forecasting using RNN LSTM upon five years of air pollutant data
(PM2.5, PM10, O3, NO2 and SO2) in micrograms per meter cube for European
cities as well. A dataset containing these values for 50 European cities was gathered
from the Copernicus Atmosphere Monitoring Service (CAMS) [24] and used in our
models. Finally, we collected COVID-19 cases and death data as well as population
and air quality [25-27] for the country of Italy to use in the K-Means clustering
model implemented in Chapter 6 of this paper. Again, all of the links to the sources
of this data have been included in our paper for fellow researchers to continue work
in this domain through our methods.

Before implementing our chosen deep learning models, we performed a wide range
of statistical analyses to visualize the pollution data for the regions of our choice.
To begin, in order to account for major changes in government policy (such as the
quadrupling of parking fees in India during the year 2017 to discourage people from
taking out their cars [28] and hence reduce air pollution), we decided to consider
pollution figures from the year 2018 to 2020.

Figure 3.1: Seasonal variation of pollutant concentration for Indian cities

Furthermore, since the quantity of pollutants was seen to vary seasonally (as il-
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lustrated in the graphs above), statistical comparisons were made only during the
respective lockdown periods of each region which we outlined in Appendix A of this
paper.

3.2 Methods and Results

In order to compare pollutant concentrations during the lockdown period in all three
years, at first, we calculated the mean of each pollutant in the respective year. Next,
the values obtained in 2020 were subtracted from the values in 2018, resulting in a
difference table; the process was repeated for 2019 and the data visualized in the
manner presented below.

It was overwhelmingly clear that the quality of the air in India during the lockdown
period was far healthier than the past two years. The AQI values of 18 cities
improved in 2020 compared to 2019, with Ahmedabad witnessing the biggest drop
of 33.5% (426 ppm) within the years.

Figure 3.2: Percentage decrease in AQI and PM2.5 from 2018 and 2019 to 2020

12



Additionally, for the same city the AQI also shows improvement dropping from 486
units to 128 units (30.3%) from the year 2018 to 2020. For the city Talcher we see
an improvement of AQI by 11.1% from 2019 and an improvement by 20.4% for the
city Delhi from 2018 in the year 2020. From our results it is evidently clear that
the AQI values have improved considerably during the lockdown for almost all the
cities.

The PM2.5 charts of India also showed an improvement for most of the cities in-
cluding Ahmedabad, Gurugram, Lucknow, Talcher, Delhi whose pollutant valued
dropped by 11.4%, 11.1%, 9.84%, 9.29%, 9.06% respectively from 2019 to 2020.
Ahmedabad again had the highest improvement in air quality with its PM2.5 pol-
lutant concentration dropping from 76.48 ppm in 2019 to 28.8 ppm in 2020. The
changes are even bigger from 2018 to 2020 since there is a huge drop of almost 20%
in PM2.5 concentration in the city in that duration. Therefore, in correspondence
with the AQI values, out of 25 cities, 18 witnessed a drop in the concentration of
PM2.5, which is almost 80% of the entire dataset.

Figure 3.3: Percentage decrease in PM10 and SO2 from 2018 and 2019 to 2020

For the country of India we constructed charts for the changes represented by all of
major air pollutants in our dataset. From the above charts of PM10 for the cities
such as Talcher, Gurugram, and Delhi we discovered a decrease in concentration by
19.6%, 15.4%, 15% compared to 2019 in 2020. Correspondingly, we see a decrease in
concentration of PM10 for the city Delhi, Talcher, Jaipur, Gurugram respectively by
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35.2%, 18.5%, 14%, 14% from 2018 in 2020. Furthermore, if we look at the diference
of the mean values compared to 2018, in 2020 we notice an improvement for cities
like Delhi, Talcher by 248.5 units and 131 units, and for 2019 by 120.3 units and
157.5 units. This result shows a remarkable improvement in PM10 values during
the period of lockdown 2020.

The SO2 charts for India also showed an improvement, the highest of which was
for the city of Ahmedabad by 41.7% from 2019. Additionally, we see a decrease in
concentrations for other cities such as Patna, Talcher accordingly by 20.8% and 17%
from 2019 and for the cities Jorapokhar, Ahmedabad, Talcher, Patna respectively
by 26.7%, 26.5%, 17.8% from 2018 which represents a considerable reduction of SO2

concentrations in 2020.

Figure 3.4: Percentage decrease in CO and NO2 from 2018 to 2020 and 2019 to 2020
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Finally, we present the charts for carbon monoxide and nitrogen dioxide emissions
in the Indian cities and observe a reduction in the mean value of 22.88 units (76.7%)
from 2019 and by 18.19 units (63.8%) from 2018 compared to 2020 for the city of
Ahmedabad. In a similar way, we see improvements in the form of reduced NO2

concentrations for cities like Ahmedabad, Delhi, Lucknow by 53.49 units (23.4%),
27.68 units (12.1%) and 20.71 units (9.06%) from 2019 and by 32.05 units (12.9%),
49.29 units (19.9%) and 35.64 units (14.4%) from 2018 accordingly.

Using the same methods as implemented for the Indian pollutant datasets, we ob-
served the changes in pollutant concentrations for several counties in the United
States and cities in Europe. We present our results in Chapter 6 in the form of heat
maps using K-Means Clustering.

Statistical analysis of our accumulated datasets proves that the implementation of a
nationwide lockdown did in fact improve air quality throughout many regions in the
world. In the following chapter of our paper, we will analyze how extension of the
lockdown could have further improved the air quality in these regions and forecast
what the air quality would have been like had the lockdown not been implemented
at all.
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Chapter 4

Predictive Analysis Using
Multivariate RNN and LSTM

A multivariate Recurrent Neural Network with Long Short Distance Memory cells
was selected as the primary deep learning model to forecast our time series data.
In this chapter we provide background about the model, detailed insight into our
reasoning for its selection, and finally a thorough analysis of the results obtained.

4.1 Model Summary

Recurrent neural networks (commonly known as RNNs) are a popular class of neural
network that allow the previous outputs of the model to be used as inputs using
a set of hidden states. The feedback of information into the inner-layers enables
RNNs to keep track of the information it has processed in the past and thus use
it to influence the decisions it needs to make in the future. That is to say, RNNs
have a memory which remembers all information about what has been calculated.
It uses the same parameters for each input as it performs the same task on all the
inputs or hidden layers to produce the output; this in turn reduces the complexity
of parameters, unlike other neural networks.

Some advantages of using RNNs include the possibility of processing inputs of any
length where the model size is not increasing with the size of the input, compu-
tation taking into account historical information, weights being shared across time
etc. However, there are considerable problems to this model too. First of all, gen-
eral RNNs suffer greatly when it comes to processing data from far back into the
past. A phenomenon known as ‘the vanishing gradient problem’ occurs in which
the values used to update the neural network’s weights slowly declines with time.
As a result, when the gradient becomes too small, the network stops learning; this
usually occurs during the earlier layers of training, this making RNNs unsuitable for
training historically lengthy data. Moreover, RNNs are extremely tasking to train
and generally take up considerable amounts of time.
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Figure 4.1: General architecture of a Recurrent Neural Network model

We decided to incorporate a specific kind of RNN called Long Short-Term Memory
networks, (commonly known as “LSTMs”) into our work due to the advantage of the
network learning long-term dependencies. LSTMs are explicitly designed to avoid
the short-term memory problem which is generally faced by ordinary RNNs. They
help preserve the error that can be backpropagated through time and layers. By
maintaining a more constant error, they allow recurrent nets to continue to learn
over many time steps (over 1000), thereby opening a channel to link causes and
effects remotely.

LSTMs contain information outside the normal flow of the recurrent network in a
gated cell. Information can be stored in, written to, or read from a cell, much like
data in a computer’s memory. The cell makes decisions about what to store, and
when to allow reads, writes and erasures, via gates that open and close. Unlike the
digital storage on computers, however, these gates are analog, implemented with
element-wise multiplication by sigmoid. Those gates act on the signals they receive,
and similar to the neural network’s nodes, they block or pass on information based
on its strength and import, which they filter with their own sets of weights. Those
weights, like the weights that modulate input and hidden states, are adjusted via
the recurrent networks learning process.
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Figure 4.2: General architecture of a Long Short-Term Memory RNN

That is, the cells learn when to allow data to enter, leave or be deleted through the
iterative process of making guesses, backpropagating error, and adjusting weights
via gradient descent.

4.2 Method and Implementation

The aim of our model involving RNNs and LSTMs was twofold: first, to be able
to forecast what the air quality in the regions of our choice would have looked like
had the lockdown not occurred and second to forecast data in the event that the
lockdown had been extended. We separated our analysis among two regions, that
is, India and Europe. For the country of India, we already possessed data of 11
air pollutants as well as overall AQI over a 5-year period (2015 to 2020) and their
subsequent meteorological data (temperature and wind). We researched the impact
of these pollutants in the air, and chose chose to keep the five primary pollutants
(PM2.5, PM10, NO2, CO, SO2) as training data in our analysis. From them, we
performed multivariate RNN LSTM in order to forecast AQI values as well as the
concentration of the primary pollutant in air, PM2.5.

Our model consisted of 2 stacked LSTM layers with the first being an input layer.
In order to forecast what the air quality in the cities would have been like if there
was no lockdown, we chose to forecast 100 days (just over 3 months) into the future
with a lookback value of 30 days into the past. That is, the AQI of the 31st day was
forecasted using the values of the past 30 days as an input. The reason for choosing
a duration of 30 days was to account for seasonal variations, which looking back
further than a point would undoubtedly factor into consideration. It should also be
noted that the values in our dataset were all assembled in a daily basis to do this.

Our first LSTM layer had 64 neurons whereas the second had 10; this one used the
tanh activation function since it can overcome the vanishing gradient problem, is
suitable for both positive and negative values, and can converge quicker. A dropout
of 0.25 was added to account for overfitting and then finally, there was the output
layer of the sequential model. It had only one neuron (since we have a single output
AQI or PM2.5) and had been given a linear activation function so that the outputs
resemble the inputs as is suitable for a prediction problem. For compilation, the
Adam optimizer was seen to produce the best fit with a learning rate of 0.01 and a
loss calculation of mean squared error.
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In this manner, we conducted training for each selected city/county, being careful
to train each model according to the specific lockdown date of a region. For ex-
ample, in the United States, the state of Colorado maintained stay-at-home orders
from the 26th of March 2020 until the 26th of April of the same year; in contrast,
New Hampshire observed stay-at-home orders from the 27th of March until the 11th

of June. Therefore, when conducting analysis of an American county situated in
Colorado, the model will train up to and begin forecasting from the 26th of March,
whereas a county in New Hampshire will train up to and begin forecasting from the
11th of June.

Finally, once the forecasted values were obtained, for every city we calculated the
percentage difference in real and forecasted value for each day. We then calculated
the mean of the percentage differences, and tabulated the results for every region in
our analysis.

Below is a flowchart depicting the entire process:

Figure 4.3: Flowchart depicting LSTM process

4.3 Results

We began by visualizing the Air Quality Index (AQI) values of the 26 cities in India
had their COVID-19 lockdowns not been implemented. The graph below illustrates
our results for the city of Ahmedabad:
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Figure 4.4: Air quality in Ahmedabad with and without the COVID-19 lockdown

Four lines have been plotted and clearly marked on the graph. As listed in the key,
the blue line represents the AQI values in Ahmedabad from the beginning of 2020
until the onset of the lockdown. Our model trained on these values and the yellow
line represents the values it predicted from the training set. The dotted green line
indicates that the 25th of March represents the beginning of the lockdown period;
the green line after is the true AQI of Ahmedabad that was recorded during the
lockdown. Finally, we have the red line: this represents the forecasted values printed
by our model assuming that all other factors remained constant (and accounting for
seasonal variation) if the COVID-19 lockdown had not been implemented by India.
Gaps in the graph indicate a region where there were gaps in the test data.

It can be deduced from our results that the air quality in Ahmedabad was much
better during the lockdown period than it should have been in that frame of time.
Even the smallest difference between the forecasted and actual values is approxi-
mately 100 ppm and occurs on the 12th of May. On the India AQI chart, this is a
drastic improvement from the ‘Poor’ air quality zone (forecasted) to the ‘Moderate’
air quality zone (real).
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Figure 4.5: National Air Quality Index of India

We repeated this process for every city in India that was present in our dataset, and
obtained similar results. Below is another graph depicting the changes forecasted
for the city of Visakhapatnam:

Figure 4.6: Air quality in Visakhapatnam with and without the COVID-19 lockdown

Similar to the graph obtained for Ahmedabad, we again see that the air quality would
have been much worse during the India COVID-19 lockdown period in ordinary
circumstances. To get a numerical measure for this, we calculated the mean of
the percentage difference between daily forecasted AQI and daily real AQI during
the lockdown period. For Visakhapatnam this value was 48.3%; for Ahmedabad, it
was a shocking 75% improvement in air quality as a result of the lockdown. The
mean percentage change in AQI value for every Indian city has been tabulated and
included in Appendix B.
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Next, we forecasted PM2.5 concentrations in the event that the COVID-19 lockdown
in India had not occurred; the reasoning behind choosing this pollutant is that it’s
the biggest contributor to overall air quality in a region. Excess concentrations of
PM2.5 can cause a myriad of health issues including by corroding the alveolar wall
of lungs and impairing lung function [31].

Figure 4.7: PM2.5 levels in Bengaluru with and without the COVID-19 lockdown

The line graph above depicts our results for the city of Bengaluru; all of the color
codes have been kept the same. Similar to our graphs forecasting AQI, we observed
that PM2.5 values would have also been higher had the COVID-19 lockdown in India
not been implemented. The mean forecasted value of PM2.5 with no lockdown was
calculated to be 49% lower than the actual value. Below is a map depicting the
percentage increase in PM2.5 values if the COVID-19 lockdown had not occurred
for every Indian city (aggregated state-wise):

Figure 4.8: Percentage increase in PM2.5 values if no lockdown in India
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The second part of our analysis focused on another pressing question in the study
between air quality and lockdowns: what if the COVID-19 lockdown had been
extended? In that case would the air quality have been even better? Below is our
result in forecasting AQI for the city of Lucknow:

Figure 4.9: Air quality in Lucknow if the COVID-19 lockdown been extended

We switched the color codes in this graph, so that the red line depicts the actual
AQI in Lucknow after their lockdown period ended on the 31st of May, and the green
line depicts the forecasted values of our model. In terms of the National Indian Air
Quality chart, if the lockdown had not occurred, Lucknow’s overall air quality would
have been in the ‘Moderated Polluted’ zone; the reality was far worse since instead
the air was in the ‘Poor’ zone. The cause of the unexpected fluctuation can again
be hypothesized with the end of the 2-month lockdown; as stores and jobs open, the
number of vehicles on the roads increase and the citizens again venture outside, the
quality of the air worsens.

The results of forecasting air quality if the lockdown had persisted beyond the month
of May, indicate that the air quality would have continued in a similar trend and
would have been healthier for the citizens of India. However, due to the restrictions
being lifted, this was no longer the case; instead, the real air quality was approxi-
mately 30-50 units higher than it would have been. By the beginning of July, we
can see a drastic spike in the readings where the actual AQI value is 375 units which
is 273 units higher than the forecasted pollution value at the same date.

Our results for the country of India clearly depicted an improvement in the city’s
air quality if the lockdown had not occurred; out of the 26 cities we tested, 20 of
them showed improvement air quality (both AQI and PM2.5) due to the lockdown.
However, the results were not as extensive when we forecasted values assuming
that the lockdown was extended. Therefore, before drawing conclusions from our
analysis, we repeated our process on a dataset containing air quality data of 50
European cities.
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City Estimated increase in forecasted
PM2.5 with no lockdown (%)

Paris 45.295328
Milan 55.551869
Naples 34.436787
Rome 41.556863
Turin 62.464479
Nicosia 29.045986

Table 4.1: Mean Percentage Decrease in PM2.5 due to COVID-19 lockdown in
Europe

Above, we display a portion of the table summarizing the mean percentage increase
in forecasted PM2.5 concentration assuming that the COVID-19 lockdown had not
occurred, and have included the entire table in Appendix B.

Among the 50 cities we analyzed, 38 displayed characteristics in concurrence with the
trend we obtained for the Indian cities. The lockdowns implemented in these cities
reduced their PM2.5 values by an estimated 40% than what they usually would have
been. For example, in the graph of Barcelona we see that the forecasted lockdown
PM2.5 concentration is higher than the real one on several occasions, especially after
the last week of May when the forecasted values lie almost continuously above the
predicted ones. For both regions, we noted a unique characteristic in the analysis,
in the fact that the results coincided more with the hypothesis of the air pollution
being worse if the COVID-19 lockdowns had not been implemented.

Figure 4.10: Forecasted PM2.5 for Barcelona if lockdown had not occurred

Our second investigation regarding whether the air quality would have remained
healthier if the lockdown had been extended, yielded fewer results. For example,
the graph we obtained for an extended lockdown in the city of Lisbon in Portugal
shows that the forecasted PM2.5 (in green) would have been less than the real, no-
lockdown values from the 16th May to the 3rd of June, with few exceptions. On the
rest of the points however, the real lockdown values are lower than the forecasted
ones.
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Figure 4.11: Forecasted PM2.5 in Lisbon had the lockdown been extended

The same can be said for the air quality graph of an extended lockdown in London
that’s shown below. Even though there are places where an extended lockdown
appears to have lowered forecasted PM2.5 values, in the majority of places, the real
values appear to still host healthier air. After analyzing our findings, we correlate
this trend to the possibility that even though the lockdowns were officially announced
to be ended at specific dates such as the 31st of May, even after that period, residents
in cities continued to obey stay-at-home and quarantining measures, which continued
to contribute to the further improved air quality depicted in our results.

Figure 4.12: Forecasted PM2.5 in London had the lockdown been extended

4.4 Evaluation

According to a research paper published by Armstrong (2001) [32], there are several
ways to evaluate the quality of a forecasting model. First of all, there’s replication:
repeating the procedure on different datasets with the exact same conditions and
then drawing up a comparison of the results obtained. This is why we chose to
conduct our LSTM forecasting on so many cities (total of 76) located throughout the
country of India and continental Europe. The results obtained from both forecasts
are uniform, with air quality forecasted to be better if the lockdown had not occurred
for the majority of cities, and the air quality forecasted to be better if the lockdown
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were extended for some cities. The latter forecast was not observed as widely,
which we correlated to the possibility of people still maintaining stay-at-home orders
even after their period of lockdown ended (thus real air quality values continued to
improve and the model’s forecasted values tended to be higher in some cases instead
of lower).

Next, we evaluate potential biases in our study. Before conducting our research, we
had initially thought that the forecasting would yield worse pollutant values without
a lockdown and better ones if the lockdown were extended; for the majority of the
cities, this turned out to be true. However, in order to eliminate potential researcher
bias, we decided to showcase the entirety of our results in Appendix B., even the
cities which did not follow the overwhelming trend.

Another method of evaluation is to compare the performance of our chosen model
with other popular forecasting algorithms to check whether the performance is bet-
ter. We did this with the simple linear forecasting model in which the output of each
time step is independent of the other ones; although this produced some accurate
values, it was not feasible for the 5-year long time-series data that we worked with.
Single step models cannot learn the shape and characteristics of the data, which was
an essential requirement in our study.

Figure 4.13: Block diagram of a Linear Forecasting Model

One of the main assumptions in our study is that the model, upon training of
so many years of data, will learn to accommodate seasonal changes in air quality
and forecast accordingly. LSTM RNN’s were the right way to do this due to their
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ability to store essential information regarding the dataset. Using the multivariate
procedure, we could train the model for several contributing factors like pollutant
concentrations and temperature in order to get our final output.

There were several conditions in our problem statement which we maintained rigidly.
For example, individual lockdown dates were gathered for every city in our dataset
and each time, the model was trained up to the onset of each specific city’s lock-
down. We excluded cities in our model that had over 10% missing values, and
replaced missing values with the arithmetic mean for the remaining dataset. We
included weather data such as temperature and wind speed in our analysis as well
to compensate for meteorological factors.

Finally, we have included all of the sources of our data in the bibliography section of
this paper; this is to simplify the replication of our procedures for future researchers.
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Chapter 5

Correlating COVID-19 and Air
Quality with Linear Models

Studies have been conducted in various regions around the world, dedicated to
analyzing the correlations (if any) between air quality and COVID-19 mortality
rates. After gathering data upon over 40 potential confounding factors as well as
cumulative COVID-19 related death counts for 3000 counties in the United States,
we also decided to implement correlating the variables. Our methods and results
are outlined in the sections below.

5.1 Methods

To begin, we gathered historical county-wise PM2.5 data extending from the year
2001 to the year 2016 for 3000 counties in the United States. This was then averaged
city-wise to find a mean historical value of the air quality in the specific region.
Current populations were also obtained for these regions, as well as cumulative
death counts. Our mortality rate calculation is:

M =
d ∗ 1000

p

Where,

M = County-wise Mortality Rate (per thousands of people)

d = Cumulative COVID-19 deaths

p = Population

Directly plotting the PM2.5 concentrations against the Mortality Rates was not a
feasible option since there are many confounding factors which could be skewing our
analysis. For example, research has show that seniors are more likely to be hurt by
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the COVID-19 pandemic [33]; therefore, if a county has an increased percentage of
the senior demographic, a graph plotting PM2.5 against mortality rate may show a
skewed value for the county’s data and report higher mortality rates as a result of
the age confounder.

In order to account for this, we began by at first conducting sensitivity analyses
to identify potential confounders in our dataset; we already had values for approx-
imately 43 confounders, whose data we provide in the bibliography section of this
paper. In line with ideal statistical convention, our procedure to identify a potential
confounder in the dataset involved performing linear regression of each potential
confounder and then observing the change in the regression coefficient of PM2.5
brought about by the confounder. If the change was greater than or equal to 10% in
either direction, we identified the factor as a confounder in our model. In this way, we
identified and adjusted for significant confounding factors in our model, including,
the percentage of young people in a county (aged 14 or younger), the percentage
of seniors in a county (65 years old or older), the ratio of cumulative COVID-19
cases (cumulative counts divided by population), the percentage of working aged
male people (between 14 to 65 years old) who were racially black, the percentage of
male seniors who were racially black, the percentage of people in each county that
always wore masks, the percentage of people that never wore masks, and more. The
tabulated figure below represents the 95% confidence interval values as well as the
p-values for all of the variables involved in our analysis:

Figure 5.1: Linear Model Summary for co-variates and Mortality Rate Analysis

Our model deemed concentration of PM2.5 as a statistically significant factor in our
analysis with an RMSE of 0.33.
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5.2 Results

Below is a graph depicting the correlation with unadjusted historical PM2.5 values
with mortality rate for pollutant concentrations less than 7.5 micrograms in value:

Figure 5.2: Correlation of PM2.5 concentration with COVID-19 mortality rates

We adjusted the raw values by regressing them out; we multiplied a matrix of
confounding variable values with a corresponding matrix of regression coefficients.

X(adjusted) = X − Cβ

Where,

C = Matrix of confounders

β= Matrix of regression coefficients

Keeping mortality rate as the dependent variable, we then used our remaining vari-
ables as inputs into a linear model, to observe its correlation with increasing mor-
tality rates. Our plot indicates a uniquely positive linear relationship between the
two factors. From the model summary information, we deduced that a single unit
increase in PM2.5 concentration can cause a 3% increase in the number of people
likely to perish from COVID-19 at a 95% upper bound confidence interval.
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Figure 5.3: Scaled plot of adjusted PM2.5 and COVID-19 Mortality with Linear
Models

The limitations of a model should always be addressed and in this case, it is no
different. Our results displayed a direct correlation between adjusted PM2.5 values
and mortality rates for the 43 confounding variables we tested for and took into
account. However, since data limitations regarding, for example, the number of
ventilators at the hospitals of each county existed, we envision that the model could
be further improved when confounder-testing is repeated at a time where more data
is available. Another point to note is that although we used historical county wise
pollution data, the model could be even further refined if city-wise data in the
USA was collected and the model repeated with city-wise mortality rated instead.
We believe that soon, when the statistics regarding COVID-19 have solidified even
further, our model can be directly replicated to both confirm and build upon our
results.
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Chapter 6

Factor Visualization With
K-Means Clustering

6.1 Model Summary

Our main objective in forming clusters was to find the similar trends of air pollution
in correlation with COVID-19 cases and mortality based on pollutants concentration.
Since the pollutants were not dependent on each other and had raw concentration
levels, we used an unsupervised clustering algorithm to form clusters of data. Out
of all the unsupervised algorithms we used the K-means Clustering algorithm [34]
to determine the clusters based on the parameters we selected.

Clustering is defined as the process of classifying an assortment of objects into
different groups. Put simply, it involves dividing a dataset into smaller subsets
known as clusters, in such a way that data in a single subset shares some common
traits. The division is usually done based on a pre-defined distance measure [35].

6.2 Method

We formed clusters based on some key factors. Using these factors we prepared the
dataset of key pollutants for some major areas in order to identify which cluster
they belonged to. Using mathematical methods, we identified the key points of the
intended result for the algorithm.

The whole pipeline for our cluster analysis is given below:
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Figure 6.1: Flowchart of the K-Means Clustering Model

Our first step for identification was the number of clusters to be used. The iden-
tification was done with respect to the concentrations of a pollutant for a given
number of areas. Then by applying K-means clustering we identified which data
point belonged to which cluster and then grouped them accordingly. For a more
significant cluster, we applied the algorithm after taking confounding variables into
consideration (identified through sensitivity analyses) and adjusting for them.
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Figure 6.2: Algorithm of the K-Means Clustering Process

After preparing the dataset we then applied the K-means algorithm. Using the K-
means function in scikit-learn [36] library we clustered out the data points. The two
main steps of the algorithm were:

1. Initialization: We began with the decision on the number of clusters k. By
the help of the Elbow Method, we identified the required number of clusters,
the algorithm selects k centroids at random for identifying the next clusters.
These centroids were then used for the calculation of the distance measure and
each datapoint was assigned to a cluster.

Next, the centroids were used to calculate the distance from each data point
as discussed below.

2. Quantization: For the distance calculation we use the Euclidean distance
between the centroids and the subsets

d(i, j) =

√

√

√

√

m
∑

i=0

(xi − yi)2

To minimize the Sum of Squares Error (SSE) the objective function becomes,

J(α) =
k

∑

i=0

∑

nǫSj

|xn − µj|
2

Where,

k = number of disjoint subsets

xn = vector representing the nth data point
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µj = centroid of the data points in subsets Sj

After determining closeness to a centroid by Euclidean distance (SSE), the data
points were then grouped based on the minimum distances from the centroids and
then again after updating the centroids. Thus, we repeated until convergence is
achieved. The result depicted a list of data points identified by the clusters through
which we understood similar trends within the data points and correlated different
attributes to it.

6.3 Implementation and Analysis

In the case of USA, we aimed to gain a fresh perspective on the COVID-19 issue
by correlating historical pollutant data (PM2.5) with that of Covid-19 cases and
deaths through clustering. After preparing the dataset by doing sensitivity analyses,
we applied the algorithm for k=4 number of clusters. At first, we tried to find the
clusters of mortality rate and their relation with historical long-term exposure to
PM2.5.

Figure 6.3: Clusters of PM2.5, COVID-19 Cases, and Mortality in USA for 2020
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In the figure, the four groups of clusters are identified by their separate color. The
same color indicates similar trends in COVID-19 cases. The clusters are defined
as follows: those in purple represent that these counties had the highest long-term
exposure to PM2.5 which resulted in a considerably large mortality rate; the most
frequent ones in blue represent the second highest values, also resulting in high
mortality rate. The clusters in yellow are third in the order, whereas the ones in
orange represent that these areas had comparatively less exposure to PM2.5 with
lesser amount of mortality rate.

Figure 6.4: County-wise PM2.5 and COVID-19 mortality cases in the U.S.A.

In this figure, we displayed the spread of COVID-19 cases in correlation to long-term
PM2.5 exposure over 10 years. Compared with our clustered points of county-wise
mortality we see that the counties with the most exposure to PM2.5 had more
Covid-19 cases and also this exposure had more impact in the mortality of people
in those counties.

In another cluster diagram, we calculated the percentage decrease in PM2.5 in 2020,
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compared to 10 years of historical PM2.5 exposure. First, we calculated the median
value of 10 years of PM2.5 exposure, and then found the percentage change of
concentrations in 2020.

Pij =
(Ci − Cj)

Ci

∗ 100

Where,

Pij = Percentage change of a pollutant for a given area

Ci = 10 years averaged concentration of pollutant

Cj = Concentration of pollutant in 2020.

Thus, for each city the dataset has columns consisting of the percentage change
values for the given pollutant. Now by plotting the difference in the map we see
that some states have higher decrease in pollutant concentration than others which
indicate that people in those states were conscious of the outbreak and maintained a
sort of self-isolation, avoided crowded places and reduced transportation pollution.
In accordance to mortality clusters found we can see that states with the least
amount of change had more mortality rates than the rest.

Figure 6.5: Percentage difference of averaged historical PM2.5 with PM2.5 in 2020
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The next region we focused on was the country of Italy. In the figure below [38] we
see that in the year 2019, the concentration of the pollutant Nitrogen Dioxide was
far beyond the amount in 2020; it is yet another indicator of how the COVID-19
lockdown improved the air quality of another region. Moreover, it can be deduced
from the map that in the years before the lockdown, Italy had a substantially high
amount of pollution, concentrated near the city of Milan.

Figure 6.6: Map of Italy depicting NO2 concentration in 2019 and 2020

In order to compare the spread of pollution with the spread of COVID-19, we clus-
tered region-wise mortality rates in Italy as well as COVID-19 case data. From the
figure given below, it is apparent that Italy had suffered a huge loss of life mostly
in the city of Milan in the region of Lombardia.

Figure 6.7: Map of Italy depicting COVID-19 mortality data
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Therefore, in comparison with our Italy pollutant map, we can say that the long-
term exposure of pollutants caused a larger amount of deaths in that region, since
it coincides with the exposed area of NO2 pollutant. Following the same trend with
the rate of active cases in Italy as shown below, we conclude that the first COVID-19
clusters were found in the highest pollutant exposed regions of Italy.

Figure 6.8: Map of Italy depicting COVID-19 cases

Our results help us to identify the trend of air pollution as clusters and we conclude
our remarks on identifying which counties and areas had more cases and mortality
rates by long-term pollution exposure.

We evaluated each of the results using null hypothesis testing. By taking normally
distributed samples from the population and performing both z-tests and t-tests at
95% confidence level we fail to accept the null hypothesis of the pollutant mean
concentration not being changed and accept the alternate hypothesis of pollutant
mean concentration being less than the previous. Similarly, we did a hypothesis
testing on correlation of COVID-19 cases and deaths with pollution and found that
the alternate not to be true.
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Chapter 7

Future Work

At the time of our analysis, the COVID-19 pandemic is still internationally at large.
New research warns of a mutated strain of the virus and an ominous second wave
to wash over the world. Understandably, data regarding the virus’s spread as well
as the multitude of factors that correlate with it is still unavailable for many of the
world’s regions. This leaves adequate room for potential future work in our thesis.

For example, our paper focused on county-wide correlation of adjusted PM2.5 values
with COVID-19 mortality rates; if instead, a dataset of city-wise air quality values
was curated and a corresponding city-wise death count data was created for U.S.A.,
an analysis of even larger proportions can be carried out. To continue the point
regarding data availability, it can also be feasible to carry out our analysis on even
more regions, thus covering more ground in terms of the virus’s spread, if their air
quality datasets were maintained and kept up to date.

Another potential expansion of our work is to conduct it for different air pollutants.
Our motivation behind choosing Particulate Matter 2.5 was its pronounced effect
in debilitating lung function when present in a region in hazardous concentrations.
However, the other primary components of polluted air such as the oxides of nitro-
gen and sulfur dioxide can have equally devastating consequences if they rise too
far. Studies analyzing the impact of COVID-19 lockdowns on the other pollutant
concentrations, as well as observing the spread of COVID-19 (cases and deaths)
with pollutant spread therefore, carries potential for further research.

Finally, there is the matter of confounding factors. Though we completed our anal-
ysis by taking into account sensitivity analyses of 43 such potential confounders,
conducting research by taking even more into account is also a reasonable avenue.
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Chapter 8

Conclusion

The aim of our research was threefold: first, to analyze the effect of lockdowns upon
air quality by quantifying the amount that a region’s air may have improved (or
deteriorated), second, to identify correlations between a widespread air pollutant
and COVID-19 mortality, and third, to spatially visualize pollution and the spread
of COVID-19 in order to identify trends. Our results concluded that the majority of
cities underwent at least a 40% improvement in air quality due to the lockdown. We
also, found a linear correlation between adjusted PM2.5 and mortality rate values,
where 1 unit increase in the former increased the chance of the latter by 3%. Finally,
the results of our clustering model clearly visualized the relationship between regions
of high air pollution and increased deaths and cases of COVID-19 mortality rates.
Our results concur with those obtained by other researchers [9-10] in the fact that
we found positive linear correlations between air pollution and COVID-19 deaths
and improvement in air quality due to lockdowns.

Air pollution has been considered an international hazard for years. It has resulted
in the death of countless people. However, despite increasing awareness measures,
it still took a worldwide pandemic’s lockdown for air quality to drastically improve
in regions and reach safer levels. We hope that our results augment the awareness
campaign regarding short and long-term dangers of poor air quality, now that find-
ings have been made connecting it to increased death due to a viral disease. We also
illustrated the effectiveness of lockdowns in mitigating poor air quality, and expect
that regions will take this evidence into account when they are planning policies to
improve the health of the environment. Our research is a timely one since much
about the characteristics of the COVID-19 viral strain are still yet to be discovered.
We conclude therefore by achieving our goal to bolster the fight against the virus
by lending meaningful findings to the cause.
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Appendix A

Tables of Lockdown Dates Around the World

We manually collected official lockdown dates of the regions involved in our analysis.
The government of India declared the nation under lockdown from the 25th of March
2020 until the 31st of May 2020. The lockdown was split into four distinct phases
as outlined below:

Phase Number Start Date End Date Duration
1 25th March 2020 14th April 2020 21 days
2 15th April 2020 3rd May 2020 19 days
3 4th May 2020 17th May 2020 14 days
4 18th May 2020 31st May 2020 14 days

In Europe the lockdown periods were distinct in different countries. Countries like
Turkey and Macedonia followed stay at home only for four to five days.

Table of lockdown dates for countries involved in our European city LSTM Analysis:

Country Lockdown Start Lockdown End
Turkey 23 April, 2020 27 April, 2020
Greece 23 March, 2020 4 May, 2020
Greece 7 November, 2020 7 January, 2021
Switzerland 17 March, 2020 27 April, 2020
Slovakia 16 March, 2020 14 June, 2020
Denmark 13 March, 2020 14 April, 2020
Finland 16 March, 2020 13 May, 2020
Serbia 21 April, 2020 4 May, 2020
Albania 13 March, 2020 1 June, 2020
Bulgaria 13 March, 2020 15 June, 2020
Monaco 17 March, 2020 15 April, 2020
Bosnia 17 March, 2020 26 April, 2020
Herzegovina 17 March, 2020 26 April, 2020
Macedonia 17 April, 2020 21 April, 2020

Below are the lockdown start and end dates of all 50 states in the U.S.A:
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States Lockdown Start Lockdown End
Alabama 4 April, 2020 30 April, 2020
Alaska 28 March, 2020 20 May, 2020
Arizona 31 March, 2020 30 April, 2020
Arkansas None None
California 19 March, 2020 5 May, 2020
Colorado 26 March, 2020 26 April, 2020
Connecticut 23 March, 2020 20 May, 2020
Delaware 24 March, 2020 15 May, 2020
Florida 3 April, 2020 4 May, 2020
Georgia 3 April, 2020 30 April, 2020
Hawaii 25 March, 2020 31 May, 2020
Idaho 25 March, 2020 30 April, 2020
Illinois 21 March, 2020 30 May, 2020
Indiana 25 March, 2020 1 May, 2020
Iowa None None
Kansas 30 March, 2020 4 May, 2020
Kentucky 16 March, 2020 10 April, 2020
Louisiana 30 March, 2020 15 May, 2020
Maine 2 April, 2020 30 April, 2020
Mayland 30 March, 2020 315 May, 2020
Massachusetts 24 March, 2020 18 May, 2020
Michigan 24 March, 2020 2 June, 2020
Minnesota 27 March, 2020 3 May, 2020
Mississippi 3 April, 2020 27 April, 2020
Missouri 6 April, 2020 3 May, 2020
Montana 28 March, 2020 26 April, 2020
New Hampshire 27 March, 2020 11 June, 2020

Nevada 17 March, 2020 7 May, 2020
New Jersey 21 March, 2020 9 June, 2020
New Mexico 24 March, 2020 15 May, 2020
New York 22 March, 2020 15 May, 2020
North Carolina 30 March, 2020 8 May, 2020
North Dakota None None
Ohio 23 March, 2020 1 May, 2020
Oklahoma 28 March, 2020 16 April, 2020
Oregon 23 March, 2020 15 May, 2020
Pennsylvania 1 April, 2020 8 May, 2020
Rhode Island 28 March, 2020 8 May, 2020
South Dakota None None
South Carolina 7 April, 2020 4 May, 2020
Tennessee 31 March, 2020 30 April, 2020
Texas 2 April, 2020 30 April, 2020
Vermont 25 March, 2020 15 May, 2020
Virginia 30 March, 2020 10 June, 2020
Washington 23 March, 2020 4 May, 2020
West Virginia 23 March, 2020 4 May, 2020
Wisconsin 25 March, 2020 13 March, 2020
Wyoming 25 March, 2020 26 May, 202047



Appendix B

Tables of Mean Percentage Improvement from Fore-

casting Model

This section has the tables of mean percentage difference we calculated during the
RNN LSTM forecasting implementation of our paper. Below is the mean percentage
improvement in AQI values for the cities of India due to the COVID-19 lockdown:

State Mean Percentage Improvement in
AQI because of COVID-19 Lock-
down

Ahmedabad 75.028532
Amaravati 49.884083
Amritsar 43.78713
Bengaluru 40.950826
Brajrajnagar 36.741188
Chennai 32.820339
Delhi 57.757272
Gurugram 46.824925
Guwahati 71.310643
Hyderabad 39.210099
Jaipur 38.566265
Jorapokhar 21.731452
Kolkata 64.462707
Lucknow 74.207516
Mumbai 8.882186
Patna 43.140466
Talcher 13.279866
Thiruvananthapuram 21.022388
Visakhapatnam 48.335516
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Mean percentage improvement in PM2.5 values for the cities of India due to the
COVID-19 lockdown:

State Percentage Improvement In
PM2.5 due to Lockdown

Ahmedabad 62.924785
Amaravati 57.431952
Amritsar 69.274141
Bengaluru 48.991553
Brajrajnagar 20.881379
Chennai 55.401948
Delhi 63.600911
Gurugram 58.114694
Guwahati 77.076724
Hyderabad 31.027116
Jaipur 67.88777
Jorapokhar 37.244206
Kolkata 72.070542
Lucknow 61.759285
Mumbai 4.833274
Patna 61.354718
Talcher 2.832942
Thiruvananthapuram 27.01976
Visakhapatnam 63.098269

Since we obtained overall improvements in air quality for few Indian cities for an
extended lockdown, the table of percentages for an extended Indian lockdown was
not created; all of the reasoning behind the process (as well as the result) has been
included in Chapter 4.
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Mean percentage improvement in PM2.5 values for the European cities due to the
COVID-19 lockdown:

City Improvement in PM2.5 due to
lockdown (%)

Amsterdam 45.838172
Athens 35.673675
Barcelona 9.520128
Madrid 46.950791
Berlin 53.039617
Cologne 46.369243
Hamburg 55.437038
Munich 47.608461
Birmingham 43.290077
London 41.836291
Brussels 51.187231
Bucharest 39.468686
Budapest 47.773294
Lisbon 39.081402
Ljubljana 65.091463
Luxembourg 44.615846
Lyon 37.523217
Marseille 49.233453
Paris 45.295328
Milan 55.551869

Naples 34.436787
Rome 41.556863
Turin 62.464479
Nicosia 29.045986
Riga 45.825108
Tallinn 49.190903
Vienna 50.932159
Vilnius 61.027943
Warsaw 56.448789
Zagreb 62.564697
Bern 43.523
Bratislava 58.071843
Copenhagen 48.440104
Helsinki 49.033187
Monaco 56.881842
Sarajevo 44.730476
Sofia 44.849794
Tirana 34.417691
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Mean percentage improvement in PM2.5 values for the European cities due to an
extended lockdown:

City PM2.5 No Lockdown
Amsterdam -72.452596
Athens 17.863904
Barcelona -48.320401
Madrid 43.489455
Valencia -22.30111312
Berlin -69.992623
Cologne 28.826007
Hamburg -437.156817
Munich 19.267423
Birmingham -38.896023
London -125.66302
Brussels 35.088441
Bucharest 53.608198
Budapest 31.819212
Dublin 11.515408
Lisbon -45.934126
Ljubljana 39.870731
Luxembourg 41.260799
Lyon 40.074675
Marseille 39.7319
Paris 36.259917
Milan 35.072519
Naples 42.05974
Rome 30.77186
Turin 38.367731
Nicosia 25.371726
Riga 56.584688
Tallinn 30.705175
Vienna 40.011368
Vilnius 34.609372
Warsaw 38.765959
Zagreb 49.865327
Bern 26.409144
Bratislava -32.855947
Copenhagen 37.928175
Helsinki 24.302639
Monaco 28.483403
Sarajevo 35.21004
Sofia 48.029244
Tirana -42.918734

The negative values in this table represent locations where the forecasted air quality
was better than the real one; as with India, for most of the European cities we
also noted that the real AQI values were in fact healthier than our forecasted ones,
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possibly due to the continued limitations in public transport and venturing outside
after the lockdown period was over.
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