
SQL Injection Prevention using Hyperledger Fabric

by

MD. Minhazul Billah
17101389

Adnan-Bin-Zahir
17101421

Syeda Lamia Tabassum
17101271

Tanvinur Rahman Siam
17101427

MD. Nefaur Rahman Labib
17301147

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
January 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

MD. Minhazul Billah
17101389

Adnan-Bin-Zahir
17101421

Syeda Lamia Tabassum
17101271

Tanvinur Rahman Siam
17101427

MD. Nefaur Rahman Labib
17301147

i

Approval

The thesis/project titled “SQL Injection Prevention using Hyperledger Fabric” sub-
mitted by

1. MD. Minhazul Billah (17101389)

2. Adnan-Bin-Zahir (17101421)

3. Syeda Lamia Tabassum (17101271)

4. Tanvinur Rahman Siam (17101427)

5. MD. Nefaur Rahman Labib (17301147)

Of Fall, 2020 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 11, 2021.

ii

Examining Committee:

Supervisor:
(Member)

Dr. Muhammad Iqbal Hossain
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Co Supervisor:
(Member)

Faisal Bin Ashraf
Lecturer

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Prof. Mahbub Majumdar
Professor and Chairperson

Department of Computer Science and Engineering
BRAC University

iii

통신왕
Stamp

Ethics Statement (Optional)

We have studied different papers, different journals, visited different websites, fo-
rums. We have collected some our data from Hyperledger Fabric documentation.
We have collected the SQL Injection test-bed from Audi1 and related videos from
YouTube.

iv

Abstract

Web applications used nowadays are heavily dependent on huge amounts of data.
SQL databases contain these data. However, these applications face major secu-
rity breaches due to the vulnerability present in the databases. Owing to that,
the web server applications become vulnerable to SQL and NoSQL Injection at-
tacks. To secure its privacy, Hyperledger fabric can be used. Our proposed model
will use a distributed ledger mechanism which is permissioned as well as an open
source enterprise-class platform called Hyperledger Fabric. It is designed for using
in different settings, which convey some key differentiating proficiencies over other
blockchain platfrom. It provides a decentralized structure to the database and the
data it saves cannot be easily changed. It provides privacy to the data, as it works
with distributed databases and secure channels where transactions can be kept con-
fidential from the broad network. In this research, we propose a framework, which
works on safeguarding web applications by utilizing hyperledger fabric against coded
injection technique types such as SQL and NoSQL injection attacks.

Keywords: Web Applications; SQL; Blockchain; Hyperledger fabric; Database

v

Dedication (Optional)

Every challenging work requires self-effort as well as encouragement from the elders,
particularly those who were very close to our hearts. We devote our humble efforts to
our caring parents, whose affection, devotion, motivation and prayer day and night
make us worthy of such achievement and honor, along with all the hard-working
and respected Teachers.

vi

Acknowledgement

On the beginning, we thank Allah because of His blessings, which has enabled
us to continue our research without facing any major difficulties. In addition, we
wanted to thank all the supportive faculty members and our supervisor in particular
for tolerating our mistakes and providing continuous input to enhance our research.
Moreover, we thank our parents as well as teammates who have given us tremendous
support during the semester.

vii

Index

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Dedication vi

Acknowledgment vii

Table of Contents viii

List of Figures x

List of Tables xii

Nomenclature xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Objective and Contribution . 3
1.4 Thesis Structure . 3

2 Background 5
2.1 Hyperledger Fabric . 5

2.1.1 Endorsement . 6
2.1.2 Ledger . 6
2.1.3 Peers . 7
2.1.4 Organization . 7
2.1.5 Orderers . 7
2.1.6 Smart Contract . 8
2.1.7 Channel . 8
2.1.8 Membership Service Provider 9
2.1.9 Certificate authority . 9
2.1.10 Applications . 9
2.1.11 REST API . 10
2.1.12 Transaction Flow . 13

viii

2.1.13 Network Configuration . 13
2.1.14 Policy . 14

2.2 Literature review . 14

3 SQLi Prevention Model 18
3.1 Model Description: . 19
3.2 Double Spending . 22
3.3 Selection of SDK . 23
3.4 Making API Call from Client . 24
3.5 Building a set of CA . 26
3.6 Building config.yaml . 29
3.7 Running the Network . 30
3.8 Invoking Chaincode . 30
3.9 Curl Request . 31
3.10 Transaction Flow . 32

4 Implementation 38
4.1 SQL Injection Attack Types . 38
4.2 Building the Hyperledger Fabric Network 49
4.3 Hyperledger Fabric Proof of Concept 53

5 Analysis and Discussion 59

6 Conclusion and Future Work 61
6.1 Conclusion . 61
6.2 Future Work . 62

Bibliography 64

Appendix A Appendix 65
A.1 SQL Queries: . 65
A.2 Comments from the panel members: 66

ix

List of Figures

2.1 REST API . 11

3.1 SQL Injection Prevention Model . 18
3.2 Sequence Diagram of Proposed Model 20
3.3 Steps of Implementing the Model . 23
3.4 Built a set of CA to interact with the API to route requests 26
3.5 ClientA sends request for transaction 32
3.6 Endorsing peers verify signatures and the transaction proposal 33
3.7 Proposals are inspected . 33
3.8 Endorsements are assembled into transactions 34
3.9 Transaction is validated and committed 34
3.10 Ledger is updated . 35
3.11 Transaction flow . 36
3.12 Connection of API and HLF . 37

4.1 Error Based String (1) . 39
4.2 Error Based String (2) . 39
4.3 Error Based String (3) . 40
4.4 Error Based String (4) . 40
4.5 Error Based String (5) . 40
4.6 Error Based String (6) . 41
4.7 Error Based String (7) . 41
4.8 Error Based String (8) . 42
4.9 Error Based String (9) . 42
4.10 Error Based String (10) . 43
4.11 Error Based String (11) . 43
4.12 Blind Injection . 44
4.13 Double Query (Checking escape character) 45
4.14 Dumping Database . 46
4.15 How SQL Injection works . 47
4.16 Stopping all networks initially . 49
4.17 Creating the initial network . 49
4.18 Creating peer . 50
4.19 Creating a new channel . 50
4.20 The channel has been created . 51
4.21 Deploying a chaincode on the channel 51
4.22 Chaincode successfully deployed . 52
4.23 Turning off the network . 52
4.24 Starting the network . 53

x

4.25 Creating Organization identities . 53
4.26 Generating orderer genesis block . 53
4.27 Creating a peer for the organization 54
4.28 Creating a transaction . 54
4.29 Anchor peer updated . 54
4.30 Channel in localhost . 54
4.31 Channel created . 55
4.32 Having a network . 55
4.33 Deploying the chaincode . 55
4.34 Query installation . 56
4.35 Approval of peer . 56
4.36 Chaincode definition . 57
4.37 Invoking transaction . 57
4.38 Exporting credentials . 57
4.39 Querying the network . 58

6.1 MCMC algorithm . 62

xi

List of Tables

4.1 SQL query for dumping database . 46
4.2 SQL queries to store values . 46

xii

Nomenclature

The following list describes several symbols & abbreviations that will later be used
within the document body.

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASP Active Server Pages

CA Certificate Authority

CLI Command Line

CNN Convolutional Neural Network

CRI Credential Revocation Information

CSR Certificate Signing Request

DBMS Database Management System

HLF Hyperledger Fabric

HTTP Hypertext Transfer Protocol

ID Identification

Idemix Identity mix

IP Internet Protocol

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

MCMC Markov chain Monte Carlo

MSP Membership Service Provider

MVCC Multi-version Concurrency Control

npm Node Package Manager

OAuth Open Authorization

OS Operating System

xiii

OU organizational unit

PHP Hypertext Preprocessor

PKI Public Key Infrastructure

RAML RESTful API Modeling Language

REST Representational State Transfer

SDK Software Development Kit

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SQL Structured Query Language

SQLi SQL Injection

SQLIA SQL Injection Attack

SSL Secure Sockets Layer

TLS Transport Layer Security

UNIX UNiplexed Information Computing System

URI Uniform Resource Identifier

URL Uniform Resource Locator

WADL Web Application Description Language

WSDP Web Services Description Language

XML Extensible Markup Language

XPath XML Path Language

xiv

Chapter 1

Introduction

1.1 Motivation

In modern times, many web-based applications have been developed for various
purposes. Each application encompasses a database containing valuable information
about its users. Users communicate with the back-end database via various queries
to retrieve or change existing information. These databases are thus the primary
focus of any kind of attack. As a result, the security of the database has become
a major concern. Insecure databases can be accessed by unauthorized staff via
the insertion of malicious queries, resulting in the compromise of confidential data
inside the database. This helps us understand the principle of SQL injection attacks.
Instead of presenting a true name, the accused purposefully formulates a reputation
that is perceived as an order, leading to an unintentional action in this case, an
unintended release [2]. Standard Query Language injection (SQLi) can be a from of
intrusion attack which could be a type of injection attack that performs malicious
queries. By bypassing confirmation and sanction of a web application as well as
retrieving the stored content of the Standard Query Language database. SQLi
vulnerabilities can be a threat to any web app which running on MySQL, Oracle,
SQL server or others which uses SQL databases. SQLi vulnerability can affect any
website or web application that uses SQL databases such as MySQL, Oracle, SQL
Server or others. SQLi can be used by attackers to check users’ credentials. They’ll
impersonate these users. Database admin may also be the victim of root access. SQL
query URL implementation gives the privilege of output sensitive data to attackers
[1]. An attacker can exploit a SQLi bug. For instance in a bank web application,
an intruder can use SQLi for changing the amount of money, nullify some kind of
transaction, or exploit money transfer to add it to their account. the database admin
creates a DB backup, the removal of information may cause the application a few
difficulties on availability as long as the DB gets restored. Moreover, backups may
not be able to cover the foremost current data. However, in some of the DB serves,
attackers may get access the software and execute an SQLi query as the starting
vector and then intrude the program and run inside network hiding behind a firewall
[1].

1

1.2 Problem Statement

A variety of studies have been undertaken to protect web apps and deter cyber
attacks. Web-based attack detection is categorized as inconsistency based on signa-
ture detection and network attack detection. The identification by signature, known
types of attacks, are described as signatures and only the types of attacks as the
signature. HTTP requests that do not follow the specification of the web application
request are observed in the event of anomaly-based identification. Since ML models
are used for identification of anomalies. They function slower than signature-based
detection, but are successful against zero-day attacks. Furthermore, Standard Query
Injection indicates that the intruder can only execute this kind of attack if some fea-
tures are turned on the server of database used on the application of web [6]. This
method of attack is mainly used as a replacement for in-band and inferential SQLi
techniques. Out of the band SQLi is performed when the server is either too slow
or unreliable to execute these activities, or when the attacker cannot use the same
channel to initiate the attack and gather information. This is how these functions
measure the DB server to make HTTP/DNS requests to send data to an intruder.
Traditional methods of preventing such injections come with shortcomings that are
filtering commonly used characters that are found in malicious codes, which can be
used for injection attacks. Having some limitations, the characters which are being
prohibited sometimes are used for storing datum in the database. Another method
is authorizing queries, which determines the validity of the query used by the user.
This can also create problems, as the validity which is checked by the permissions
stored in the backend database can be compromised if the root server is attacked.
The principle of the least privileged can also be used for protecting the database.
This system provides the least amount of privilege on a system, so that its users get
a minimal amount of access to the database. Character escaping function can sani-
tize user input. This is used to differentiate between an actual SQL query used by
the people who created the database and a SQL injection attack sent by an attacker.
Last but not the least, Web application firewall or WAF is effective for detecting
injection attacks. It can be customized according to the needs of the specific appli-
cation. Although the WAF looks like a security wall that cannot be broken, it has
its vulnerabilities. It can be bypassed, thus breaking the illusion that it cannot be
penetrated. All the other methods mentioned above can be breached in many ways.
This is why a more secure method to protect the database is extremely needed.
Hyperledger fabric can be used to achieve a more private and secure database.

Hyperledger Fabric is kind of a private as well as a permissioned blockchain. It has
components that meet the basic blockchain technology quotas, but it also allows
users the ability to customize the device they like. The key features of a hyperledger
fabric are - assets,ledger, chaincode, privacy , consensus , security and membership
services. Assets are a collection of key-value pairs. It can range from hardwares
to contracts. It is also modifiable. Chaincode are transaction instructions for asset
modification. It holds the methods of altering the state database. It can be initiated
through a proposal. When it’s executed, it is submitted to the fabric network so
that all the peers hosting a ledger can apply on themselves. Ledgers hold the record
of all the transactions taking place in the fabric network. It cannot be interfered
and it strictly sequences the transactions.

2

Participating peers submit the transaction to the ledger. One ledger is assigned
to one channel and each peer under a channel has a copy of it. Channels provide
privacy in hyperledger fabric networks. In the blockchain network, it had an open
system where the changes in the distributed ledger could be seen by everyone in the
network. Through channels, transaction data can be kept confidential in a separate
database which can be accessed by the participants of the channel. Membership
services provide secure digitally signed certificates which work as identities to the
participants under a network. This way, data access can be monitored from the
perspective of the broad network, thus ensuring ultimate security. Consensus is the
cycle of verification of a transaction in a block. When the transaction has met the
criteria of the pre-established policy, the consensus is considered complete. The
process begins in the life-cycle of a transaction. Endorsements by different members
in a channel are checked for the transaction, which cross checks with the policies to
ensure that the transaction is valid. Also, the current state of the database in the
ledger is also checked before updating it and adding the new transaction to it.

1.3 Objective and Contribution

In this research paper we want to show how can our proposed model prevent a coded
injection called SQL injection which is a deadly web attack ruling the cyber world for
a long time. To achieve this prevention technique first a blockchain framework needs
to be chosen and the Hyperledger Fabric is a better choice because it can work with
private data. We also want to propose which can save sensitive data and a faster way
to execute every operation. If we can build a system like our proposed framework
it will be able prevent any kind of coded injection techniques, most importantly
the SQL injection. This framework proposes a faster way to protect the sensitive
information from being hacked by hackers. It opens a new door to prevent other
web attacks also if other researchers take interest in it.

1.4 Thesis Structure

This research report gives a solution model and that prevents the SQL injection
which is the coded injection and this solution model shows no vulnerability that can
be exploited by any intruder.

Firstly, the Introduction Section (Chapter 1) sets out the inspiration behind the
study that motivated the authors to answer this particular problem statement. The
aim of our study and the description of work are briefly discussed here.

In the Background section (Chapter 2), there are some addressed papers from the
computer science background that dealt with similar issues. In addition, some sta-
tistical and psychological papers relate to the available secondary data. The object
of the context analysis was to find out the short comings of previous studies. In ad-
dition, in this section there is mentioned about contribution and the reasons behind

3

the primary data collection.

In the Model section (Chapter 3), there is explained the procedures to prepare
a model that will prevent SQL injection by using Blockchain methodology. This
section also provided a summary of the model. It is also described about the works
which will be left after this research phase. Moreover, there is the explanation about
the model will be able to process the malicious query and sensitive data.

In addition, section Implementation (Chapter 4), there have been used a test-bed
for studying the SQL Injection and how the attack works and the behind scene
what causes the SQL Injection vulnerabilities. A HLF network has been created
to understand how the hyperledger fabric works, and finally we have built a partial
proof of concept.

Furthermore, in the Analysis and Discussion section (Chapter 5), there is made some
analysis of our work and compared it with other research which have similarities with
our research and discussed briefly about it.

4

Chapter 2

Background

2.1 Hyperledger Fabric

Hyperledger project was founded under Linux Foundation in 2015 [18]. It was made
to take a better approach to blockchain technology by encouraging open development
and adapting new standards over time. Hyperledger fabric, a blockchain project un-
der Hyperledger, has the similar attributes of blockchain technology. It consists of
smart contract followed by the ledger and a structure by the parties involved. What
sets hyperledger fabric apart from the blockchain technology is that it provides pri-
vacy and permission to specific parties. In blockchain technology, anyone under the
blockchain network had access to the records of the transaction in order to give
validation to it. On the contrary, hyperledger fabric provides privacy to the partic-
ipants through MSP or Membership Service Provider. It has the ability to ensure
confidentiality for private transactions with the help of the channel architecture. It
is one of its own kind of distributed ledger mechanism which supports chaincode
dictated in general-purpose coding languages. It also supports pluggable protocols
(consensus) that makes the platform enable to more customized to apt distinct use
cased as well as trust models.

HLF is precisely designed as a modular architecture. The platform at its core is ar-
ranged to meet the diversity of the user’s requirements. Fabric has several modular
components. First, there is pluggable ordering service converge the multiplicity of
transactions through ordering service which is pluggable and it initiates the order
of transactions through consensus, after that it broadcast the blocks to the peers
After that comes a pluggable membership service provider which is responsible for
assigning cryptographic identity to the members in the network. Next is smart
contracts or chaincode running in the container environment. A pluggable endorse-
ment and validation policy compliance follows after that, which can be configured
according to the application’s needs. Fabric follows its own model, which is execute-
ordervalidate. This model replaces the usual approach of order-execute and brings
more flexibility and agility to the process. This model divides the transaction flow
in three parts: execute, order, validate . In execute, transactions are endorsed by
executing and checking. This step filters out valid clients and data. In the next step,
transactions are ordered with the help of a pluggable consensus. In the last step,
the validity of the transaction is checked according to application specific policies
and it is stored in the ledger. Consensus protocol is a modular component, which

5

can be modified depending on the problem provided. For single enterprise, crash
fault tolerant protocol is applied. Whereas multiple parties deploy Byzantine fault
tolerant consensus protocol.

2.1.1 Endorsement

Endorsement is a mechanism where a chaincode transaction is executed by indi-
vidual peer nodes in a channel and a proposal response is returned to the client
application simultaneously. Endorsement policies are used to decide which transac-
tions will be executed by peer nodes on a channel and the appropriate combination
of addresses or endorsements for that transaction. There are many smart contracts
in a chain code package and endorsement policy is a content of every smart contract.
A transaction will be marked valid upon submission if it satisfies the endorsement
policy. Policies can be changed according to the needs of the application. If no
change is specified, then the default Endorsement policy is used in its state. Many
peers belonging to separate channel members or entities need to conduct and verify
a transaction according to the chaincode in the default endorsing policy or ’Major-
ity Endorsement’ in order to validate the transaction. Organizations entering the
channel must be immediately added to the chaincode policy only after this default
policy requires it.

2.1.2 Ledger

Distributed ledger in hyperledger fabric holds the shared information under a spe-
cific network. The ledger is functionally located on a peer, but on the channel, it
is technically hosted. It can be split into two parts: the world state database and
the history of transaction logs. The state of the ledger represents the world state
database. It stores the current values of the ledger in a database. A ledger state,
a combination of key values and a version number are included in this database,
which increases the version number if the state changes. This assures that the
ledger’s global status is still up to date. Transactions are submitted via applica-
tions, which captures the changes to the world state of the database. Applications
are not aware of the details of this mechanism. They are allowed to invoke a smart
contract. They also get the notification of whether the transaction will be included
in the ledger despite being valid or invalid. It can be guaranteed by this design that
transactions signed by the appropriate group of endorsing organizations can update
the world state. Otherwise, an improvement in the state of the environment would
not result. The transaction log contains how the current state came this far and
holds all the records of the older versions. It sequences and makes sure that the
records cannot be changed easily once the world state is updated. Many interlinked
and sequenced blocks make up the blockchain. Each block holds a transaction se-
quence where updates and queries are made in the database. Each block holds in the
header a hash of the current block’s transactions and a hash of its previous block.
The only exception is the genesis block, which, as the first block of the chain, has
no hash for the transactions, and the previous block. There is a copy of the ledger
for every peer in the network. Hence, it becomes a decentralized ledger. The trans-

6

action recorded in the ledgers are kept under privacy between specific participants.
Which means that the whole network under hyperledger fabric will not be privy to
the transactions between participating peers.

2.1.3 Peers

In the fabric network, peers are an essential factor. With hosting ledgers and smart
contracts, they are allocated. To get approach the ledger, programs must connect
with peers. You can create it, change it, reconfigure it and even delete it. A peer may
be individually or at once an endorsing peer, a committing peer, leader peer, anchor
peer. The endorsement of peers provides transaction ideas. It must have a smart
contract that the customer uses to produce a settlement that is signed digitally.
Every peer in channel considered committing peer, which accepts proposals from
applications. Leader peer gives order to other peers. Anchor peers act like a bridge
between different organizations, which helps with communication. For a transac-
tion/, a leader peer, a committing peer and an endorsing peer is a must. Peers act
as a gatekeeper to the channels in the network. Peer uses the characteristics of a
channel via channel configuration to monitor the actions of the application clients
under an organization. Peers validate transactions by verifying the transaction sig-
natures against endorsement policies and enforce the policies. Every committing
peer records a distributed transaction, whether valid or invalid, in his or her local
copy of the ledger. A peer’s physical location is not that important. The peer-
related digital credential acts as the identifier marking that it is held by a specific
entity.

2.1.4 Organization

Organizations are owners of their own peers. It holds the control of assigning smart
contracts to specific peers according to the demand. Each organization has their
own client application. The chaincode will be used by a new entity that has been
added to a channel as soon as it approves the chaincode criteria already agreed to
by other channel members. The chaincode concept can be accepted once and sev-
eral peers can be added to the channel with the chaincode package mounted. Both
members of a channel will have to approve a new definition for their company if it
wishes to change the definition of the chain code, and then one of the organizations
would have to contribute the standard to the channel. MSP is defined for every
organization, which will be joining in a channel.

2.1.5 Orderers

For the fabric network, orderers act as a Network Administration Point. Using the
Policy in Channel Setup to assess peer permissions on the requested channel using
peer identification when orderers receive a join request from peers. The Orderer is
initially designed and initiated by a Network Setup administrator of an entity. The
ordering service node is the channel-generating actor. Orderers, as per Network

7

Setup, must be hosted by one or more organisations on a network. Application net-
works are also provided for the ordering of transactions into chains for delivery. For
one or more application platforms, it may order transactions. The delivery point
for transactions is the Ordering service node. The Orderer gathers endorsed trans-
actions and orders them into transaction blocks, which are allocated to each peer
node residing in the channel one after another.
At the channel level, the orderer is to receive transactions and disperse blocks within
a channel according to the policies specified in the configuration of the channel; at
the network level, the orderer is to have a network resource management point ac-
cording to the policies defined in the configuration of the network. The Orderer
also moves the basic access control for the channel, limiting r/w access and setup
access to them. Ordering Database Nodes receive transactions simultaneously from
several separate device clients. The orderer-generated blocks are then stored in the
orderer’s ledger and distributed to all peers that have a channel. Peers will use some
strict orders, which are given to transactions by Orderer to validate and commute
transactions. After completing the validation process, the transactions are ordered
before packaging them into blocks. After all of these the blocks are distributed.

2.1.6 Smart Contract

A Smart Contract is an organization’s collection of rules and regulations in imple-
mentation codes that are used to negotiate transactions between parties. It is used
to encapsulate and create transactions in a network of mutual processes. Multiple
smart contract numbers are bundled into a chaincode. Any smart contract has an
endorsement policy within a chaincode kit. The Chaincode Package must have been
installed on Peers by the respective peers association administrator. The product of
the chaincode invocation of state transactions that are registered as transactions. If
that program has to communicate with the ledger, smart contracts may be invoked
by an external application. An external application can invoke the smart contract
provided that the application needs to communicate with the ledger. Many smart
contracts run concurrently in the network.

2.1.7 Channel

Channel provides a path to private communication between organizations. Only
network administrators of organizations are able to create new channels. Channels
are tasked to protect the privacy of transactions from the broader network. More
than one application can be served by Channels, one Orderer is a must to order
transaction. Joining participants on a network of hyperledger fabric establishes a
sub-network where a set of transactions is visible to every member. Participating
peers inside the channel can get access to the chaincode and the data in the transac-
tion. Data gets isolated completely from the remaining of the networks and it also
includes other channels. Each channel has its own ledger. There could be several
channels in the network that can be linked to multiple organizations. Channels can
also contain Membership Service Provider instances.

8

2.1.8 Membership Service Provider

Membership Service Provider or MSP is a system that establishes verifiable iden-
tities while preserving privacy. It establishes the laws governing the Legitimate
Identities for each entity. MSP provides verifiable identities to Hyperledger’s net-
work users. The default MSP implementation in Hyperledger Fabric Network uses
X.509 certificates as identities, which have a hierarchical Public Key Infrastructure
(PKI) model. PKI certificate authorities provide a list of identities. Root CA’s
intermediate CAs get granted to define members of a trust domain which is done by
listing the members which are identified by the MSP. Administrator of the Node,
Entity, Node must have the very same root of confidence as specified by the MSP.
MSPs exist in two domains: local MSP and local MSP. Local MSP determines who
holds administrator or participation powers at the local level. It also specifies per-
missions for clients, peers and clients. Every organization has a Single MSP which
makes a list of trusted nodes. Node local MSP provides permission for a node to
be a peer admin. Physically and theoretically, there’s only one local MSP per node.
The peer admins will not be the Channel admins. Similarly, the channel admins will
not be the Peer Admins. Local client MSPs enable the user to authenticate himself
in his transactions as a channel participant or as the owner of a particular position
in the system. The Local MSP Orderer specifies the file structure that will be dele-
gated to the Node Orderer. Channel MSPs decide which peers will have disciplinary
privileges and which will have participatory rights at channel level. Under the pro-
gram channel, peers and ordering nodes have permission to view channel MSPs.
The management of the MSP channel is assigned to the channel or network. The
channel would have a chain of confidence that involves the MSP for the members of
the association in order to add an organization to the channel. MSPs of the organi-
zations that partake in ordering services are all included in the System channel MSP.

2.1.9 Certificate authority

Multiple CAs can be used to describe the members that are present in the organi-
zation. It is also used for signing transactions. It has a built in CA named Fabric
CA. CA gives digital certificates to requesting users of respective organizations by
signing the certificate with CAs‘ Private Key. It ensures that the certificate has not
been tampered by verifying with the Public Key of CA. It is possible to use one or
more CAs to describe an organization’s participants from a technological perspec-
tive.

2.1.10 Applications

Applications can connect to both peers and orderers by using the channel with the
help of SDK‘s. One organization’s single application may link to multiple channels
in a network as per the respective channel configuration. User programs would have
an identity that links them to an organisation. The ability to invoke smart contracts
is required for client applications. It will submit transaction recommendations to
peers owned by an entity specified by the endorsement policy of the smart contract.
The proposal submitted to the peer produces and returns to the client application

9

an endorsed transaction response.

2.1.11 REST API

In general, the Associate Degree API (or Application Programming Interface) pro-
vides the interface between two systems with an associate degree. It’s kind of a cog,
which allows two structures to switch with each other. In this case, the computers
of the two device area units that programmatically pass through the API [5]. REST
is Representational State Transfer. Its resource is primarily based. There are a
unit six constraints 1. Uniform interface 2. Stateless 3. Client-server 4. Cacheable
5. Stratified system 6. Code on demand. Uniform search: The uniform constraint
of the interface defines the interface between buyers and servers. This simplifies
and decouples the form that allows every half to gradually evolve. The less guid-
ing principles of the uniform interface are, Stateless: Statelessness is essential as
REST is an associate degree form for Representational State Transfer. Primarily,
what this indicates is that within the request itself, whether or not as part of the
URI, query-string parameters, body, or headers, is the required state to handle the
request. The URI identifies the resource unambiguously and therefore the body
contains the change of state or state of that resource. Then the acceptable state,
or the parts of state that matter, area unit communicated back to the customer via
headers, standing and response body when the server is going to be processed. For
a moment, most North American individuals and the United Nations agency are
within the company area unit familiar with programming within an instrumenta-
tion that gives us the idea of a ”session” that maintains state over multiple HTTP
requests. In REST, to fulfill the request, the consumer should embrace all data for
the server, re-sending state as needed if that state should cover multiple requests.
Since the server does not need to maintain, update or communicate that session
state, statelessness allows greater quantifiability. Furthermore, for unsettled sys-
tems, load balancers have not been stressed about session affinity. So, what is the
distinction between a resource and a state? State, or application state, is that the
server cares about getting ready to fulfill a request-the information needed for this
session or request. A resource or resource state is the information that defines the
representation of the resource, such as the information held within the information.
Contemplate the state of the application as data that could vary by consumer and
per request. On the other hand, resource status is constant throughout every re-
quest made by the United Nations consumer agency. Ever had back-button issues
with an internet application wherever a particular and precise purpose was bound
by AWOL as a result of which one expected to try things during a certain order?
That is as a result of the principle of statelessness being profaned. There are ar-
eas of unit cases that do not comply with the principle of statelessness, such as
legged OAuth, limitation of API decision rate, etc. Construct each effort, however,
to ensure that multiple requests for our services do not cover the application state.
Consumer server: Purchasers are separated from servers by a uniform interface.
For example, this separation of considerations implies that buyers are not involved
with data storage that remains internal to each server, so the mobility of consumer
code is improved. The computer program or user state does not involve servers, so
servers will be less complicated and further upgradable. As long as the interface

10

is not altered, servers and buyers can also be replaced and developed separately.
Cacheable: Buyers will cache responses, as on the Globe Wide Internet. Responses
should therefore be outlined as cacheable, implicitly or expressly, or not, to prevent
buyers from reusing stale or inappropriate information in response to more requests.
Well-managed caching portion or completely eliminates some interactions between
client and server, increasing quantifiability and performance. Layered system: A
customer can not usually tell whether or not it is connected to the tip server or how
to associate the degree negotiator. By optional load-balancing and by providing
shared caches, negotiating servers could enhance system quantification. Layers can
also enforce policies for security. Code on demand: Area unit of servers capable of
briefly extending or customizing a consumer’s practicality by transferring logic to
that which it will execute. Samples of this might embrace compiled parts like Java
applets and client-side scripts like JavaScript.

Figure 2.1: REST API

11

Complying with these limitations, and thus complying with the remaining type of
architecture, any very distributed object-oriented database management system can
be modified to have fascinating nascent properties, such as performance, quantifi-
ability, simplicity, modificability, visibility, mobility, and reliability. How REST is
followed by the internet: The nomenclature of ”GET requests” and ”message re-
sponses” transported via ”HTTP protocol” may sound unfamiliar, but this may
simply be the official REST nomenclature to explain what is going on [19]. As a
result of using the internet, we are already at home, but with REST APIs operat-
ing, the internet itself mainly follows a quiet trend. After opening a browser and
moving to https://google.com, the HTTP protocol (https://) is highly exploited to
submit a GET request to an online server resource on the market. The response
from the server sends the content at this resource back to the exploitation HTTP.
Our browser is simply a consumer who looks beautiful in producing the message
response. There can be seen this response in curl by opening a terminal prompt and
kind curl https://google.com. This assumes there is curl put in. Because the online
itself is associate degree example of quiet vogue design, the manner REST API work
can possible become habit to us. REST API area unit unsettled and cacheable REST
API also are unsettled and cacheable. Unsettled means whenever there is an access,
a resource through associate degree end, the API provides constant response. It does
not bear in mind our last request and take that into consideration once providing
the new response. In alternative words, there are not any antecedently remembered
states that the API takes into consideration with every request. To extend the per-
formance, the responses may be cached. If the cache of the browser already contains
the requested data within the request, the browser simply returns the cache data
rather than once again obtaining the resource from the server. REST API caching
is analogous to site caching [14]. The browser uses the last-modified-time value
inside the HTTP headers to find out how it needs to get the resource again. The
cached copy would be used instead if the content was not updated because it was
fully recovered last time. Caching would enhance the speed of the response. REST
APIs do not use WSDL files, but an essential feature of REST APIs is that certain
specs do not use a WSDL file to describe the weather and parameters allowed in
requests and responses, particularly in the case of documentation. While the WADL
(Web Application Description Language) file is open and does not define the REST
API, the area unit of the WADL files is scarcely used because all the remaining
API services, settings, message types and alternative attributes are not properly
defined. After realizing that an architecture associate degree type is the remaining
API, not a standard protocol. Once the framework describe our API exploitation
the OpenAPI or RAML specification, tools which can browse those specifications
such as Swagger UI or the RAML API Console will generate associate degree inter-
active documentation output [7]. The OpenAPI Specification Document will take
the place of the additional generic SOAP WSDL file. Tools such as Swagger UI that
browse specification documents usually generate dynamic documentation with API
Consoles or API Explorers and allow REST calls to be made and responses to be
accessed directly inside the browser. But do not expect the documentation outputs
of the Swagger UI or RAML API Console to provide any of the key user points along
with our API. These outputs, for example, would not contain information about au-
thorization keys, workflow specifics and inter-dependencies between endpoints, and
so on. Usually, the Swagger or RAML output includes reference documentation

12

only, which, depending on the API, normally accounts for less than a third or half
of the entire required documentation.

2.1.12 Transaction Flow

To begin, a participant needs to have an identity provided by a CA trusted by the
network to transact on a Fabric Network. After that, it has to become a part of
an organisation so that the members of the network accept it and approve it. The
MSP relates the identification to the membership of an association. Membership
is accomplished by appending the public key of the individual to the MSP of the
association. The MSP must be included in the description of the policy within the
network. In order to update the ledger, the transaction flow consists of three steps:
submitting proposals to participating peers; ordering and packaging transactions
into blocks; validating the transaction and committing to the ledger. Applications
create a transaction request at the first level and submit it for endorsement to peers.
Each of the peers involved in the endorsement independently executes a chaincode
using the proposal to produce a response to the transaction proposal. By insert-
ing a Digital Signature, it is approved. The first phase of the transaction flow is
completed after receiving a sufficient number of signed recommendation responses
from the peers [3]. In the next step, Orderer receives transactions with endorsed
transaction proposal responses from applications, and sequences the transactions
and packages them into blocks. By this, the block gets ready to be distributed
to the peers. In the final step, the blocks are distributed from the orderer to the
peers, where they can be committed to the ledger. All of the peers connected to
the orderer will receive a copy of the new block. Upon receiving the block, a peer
will process the sequenced transactions in the block. For every transaction, each
peer will cross check whether the transaction followed the endorsement policy to
be endorsed, according to endorsement policy. But, updating the ledger may not
be possible even after successfully endorsing the transaction. If a transaction has
been endorsed successfully, then the peer will try to update the ledger about the
new transaction. Failed transactions, after fully endorsed, are not entered into the
ledger, but they are kept for auditing. Successful transactions are also kept for au-
diting. Invalidated transactions are still kept in the block. They will be marked
as invalid by the peer. These transactions cannot change the ledger’s state. The
successful transactions update the ledgers of the peer.

2.1.13 Network Configuration

For network configuration, a network administrator should submit a configuration,
which will be responsible for configuring the network. It should be signed by the
organizations known within the modification policy. Through the transaction re-
lated tp network configuration is distributed by the ordering service nodes. These
transaction’s area units are accustomed cooperatively to maintain an even copy of
the Network Configuration at every ordering service node. To vary a channel con-
figuration, a channel administrator should submit a configuration dealing to vary
the channel configuration. The configuration has to signed by organization that has
validity within the modification policy. Channel configuration transactions are a

13

unit processed by the orderer, because they must understand present set of policies
to process basic access management. Each change in modification generates a new
configuration block.

2.1.14 Policy

Policy can be defined as a set of rule that work as a guideline for choices being
created and results being reached. Policy usually describe the access or rights that
a personal has over assets. Policy controls the aspects that can make changes in the
network. Policies are unanimously accepted by the members of the network once a
network is originally designed, however they’ll even be changed because the network
evolves. Hyperledger material provides some policies from the initial state which
are helpful in starting stage of developing and testing blockchain. However, these
policies are often made-to-order in step with what one would like.

2.2 Literature review

A model that can analyze the actions of web applications when any user purposely
or unintentionally gives invalid inputs [1] has been proposed by researchers. They
believe that invalid input would be easily discovered. Here, if an invalid input
is processed by the website or backend database, then it is deemed a successful
attack. Researchers have suggested a list of tags in the belief of this assumption,
the test inputs are processed which may be invalid. With their established method,
researchers checked many vulnerable websites and found many SQLi vulnerabilities
according to their proposed model, and they found many false positive rates. In
their initial model creation, they have used dictionary-based extraction that crawls
web pages to extract input web components may start with a dictionary of all types
of web components that accepts user inputs. However, they have also implemented
a rule based extraction tool. First, they have created a dynamic model for each
website then they have created test cases based on their general model after that
they have executed test cases for tested input components in all tested website
pages and finally they have verified the outcome of the execution process based on
the predefined error messages related to SQL injection vulnerabilities [15].

Furthermore, Researchers also have proposed a penetration-testing model to detect
SQL injection vulnerability [13] . Penetration testing is an automated detection
system. This model finds SQL injection vulnerability in three steps: information
collection, generation of test cases and response analysis. This model is based on
the transmission channel. They used an attack-tree to define the behavior/type of
SQL injection. The root node is considered as SQL injection. This has 3 children
which means three types of attacks: in-band, inference and out-of-band channels.
They used five layers in this model classified as channel layer (1), injection layer (2)
and case layer (3, 4, 5). The attacks start from the use case layer and the end goal is
the channel layer. So, this model can easily detect the type of SQL injection based
on the path it follows and can check a website’s vulnerability for a specific category
of injection.

14

In another research paper [10], authors have gone against the odds by not select-
ing trivial methods like Rule-Matching-Based SQL detection solutions and opted
for a CNN or Convolutional Neural Network based defense system to fight against
high-dimensional features of SQL injection attacks. TThe author clarified that in
CNN-based models, they checked the system along with ModSecurity, which is close
to the Rule-Matching-Based process, got greater precision, accuracy, and recall rate.
The author emphasized on quite a few points like data collection, sanitization, nor-
malization and finally building the CNN model to prepare the entire system. They
collected SQLIA malicious traffic along with normal traffic. In the field of infor-
mation security, data sets have been collected at a widely accepted pace, such as
UNSW-NB15, KDD99, HTTP CSIC 2010 datasets, etc. CNN model is designed
with a maximum of 16 features to determine the size of the input data. Finally,
side by side testing with the ModSecurity model, the accuracy the authors achieved
was 0.9950 along with precision 0.9898, leaving ModSecurity behind at 0.9689 and
0.9486, accuracy and precision respectively. In this way the author put validation
on their statement as CNN being more feasible and efficient than traditional Rule-
Matching-Based models.

In another paper, the author discussed various ways how the hackers try to hack into
databases using SQL Injection and unethically steal personal information [23]. SQL
injection is still a threat to databases years after it is being used for the first time.
Though technology nowadays is far more advanced than before, new techniques are
being applied to prevent SQL Injections. The author mentioned several techniques
where he focuses on the Blockchain concept to prevent SQL Injection. He mentions
how this concept detects verified nodes that may access a web server on allowed
IP access. Unallowable nodes are only allowed to do legal transactions without
manipulating any data. He says, ”The node requested is checked by the node who
approved the request by following the Blockchain principle to avoid the SQL injection
attack where each node requested access to another node’s database. If it is not
approved, the application would be refused for security purposes. To all nodes, the
principle will be extended. A node could be a networking server, computer etc on
the computer system.” In a Blockchain if there is a want to change the any value of
a certain node this should be approved by all other nodes as they are all connected.
So if an unauthorized user from an unauthorized IP tries to manipulate any data in
that system it gets detected pretty easily. This is why Bitcoin uses this approach.

Furthermore, a recent study proposes a system where the raw feature vector and
average of previous outputs are concatenated by an adaptive deep forest-based ap-
proach to detect complex SQLi attacks with an optimized deep forest structure and
the input of each layer [9]. The results show that their methodology effectively
solves the problem of weakening the original characteristics of deep forests with a
growing number of layers. Next, researchers have implemented an Ada-Boost deep
forest system based algorithm that optimizes the error rate to change the weights
of features on each sheet, and different measures are allocated to different weights
based on their effect on the outcome during the training phase. Researchers believe
that their model can change the tree model’s structure automatically and deal with

15

multi-dimensional fine-graded features to effectively avoid over-fitting issues. Their
findings show that the proposed model has better performance for detecting SQL
injection attacks than classical machine learning and deep learning approaches. The
proposed technique has the benefits of higher detection accuracy on fewer samples,
low computational costs, high versatility and high robustness compared to the deep
neural network model.

A decentralized data management framework was suggested by the author in the re-
search paper [21]. Without relying on a third party, the device guarantees consumer
control of sensitive data. To create the structure, the author used a block-chain.
It defends against privacy issues like data ownership, data transparency, etc. The
transactions can save permissions or data for the services. Thus we all know how
block-chain works. In a specific network a new block is only created when more than
50% of the nodes in the network are voting for it. In addition, since all the blocks
in a network are connected to each other, there is less chance of mismanagement
or mishap if anyone tries to sabotage the data. As a result, there is no scope of
fraudulent in terms of authentication. Thus, this system is designed to ensure safe
transaction of credit online. Based on that, the author proposed a defense mech-
anism against the fraudulent intentions of the attacker, so nobody can manipulate
the data of the server before or after the transaction.

In another paper[13], researchers worked with the possibility of attacks from inside
of a database and discussed how there can be use blockchain to prevent it. They
introduced a new system named Verity to tackle this situation. Verity is an agent
that acts as a framework facilitating the use of a blockchain network with an SQL
DBMS. Verity is an entity that serves as a structure that enables the use of a
blockchain network with an SQL DBMS. Without migrating whole DBMS data to a
blockchain, the formalism deals with a rich collection of dynamic SQL queries. This
protects the confidentiality of the system by the use of tamper-resistance properties
of a blockchain to detect an insider attack. This was done by intercepting SQL
queries and their subsequent tuples, by treating both the blockchain and DBMS as
black boxes. Verity itself does no tuning of SQL statements or data caching and
indexing [17]. Via parallelizing the blockchain look-ups and researching SQL query
structures, they also addressed the performance enhancements for the said system.

Defending against SQL attacks, according to research paper [11] the attack tar-
gets databases, which are accessible through the front-end. The author attempted,
through a defensive mechanism called Instruction-Set-Randomization, to fight the
attacks. This framework was defined by the author as though it could produce
instances of language which are unpredictable to the intruder. The process con-
sumes less power and can be easily implemented in the existing systems, described
the author. The framework is designed on the basis of a proxy proof-of-concept
server, which is located between the two servers, the client server and the SQL
server. Their task is to de-randomize and send requests obtained from the client
to the SQL server. If someone attempted to inflict a SQL attack, the parser of
the proxy would fail to recognize and reject the randomized query, the author ex-
plained. Finally, unlike some others, they demonstrated efficiency with latency not

16

reaching 6.5 milliseconds on each request. One of the research papers [4] proposed
the use of tamper-resistant property of Blockchain to prevent attacks that can oc-
cur inside the database. The authors implemented their proposed model on a web
based online academic grading application to avert attacks from users with privilege
in administration. Blockchain is being used to preserve the state of the database.
Every user has a unique identifier, which can be used to retrieve a public key of the
user existing in a public key infrastructure (PKI) [12]. A digital signature made by
users checks of transaction made in the database. In a pre-existing PKI, the digital
signature is verified by the public key and runs it against a unique identifier. If the
signature does not fit, the database may be determined to have been accessed in an
unauthorized manner.

17

Chapter 3

SQLi Prevention Model

Figure 3.1: SQL Injection Prevention Model

18

3.1 Model Description:

In the model shown in Figure 3.1, our proposed framework will be using two Hy-
perledger Fabric networks, one network for filtering the malicious queries and the
other one for checking if the data is sensitive or not. In ‘Step one’ we can see, a user
is making a request and the query gets sent to the server, the sever what it does
is to query the database for the requested data by the user but instead of querying
the database here the server will send the query to our first network through the
REST API which moves through the SDK. In the fabric network the queries will be
matched with our pre-populated blocks with malicious queries ‘Step two’. Now the
question comes, how will it do the checking? The answer is simple, blockchain uses
double spending prevention mechanism, in Hyperledger Fabric the MVCC is used
for preventing double spending, we know for same identical data, the hashes are
same for each of them. In our chaincode will want to define two functions that will
query the hashes of current blocks and match the hashes with the newly occurred
query from the user, if both hashes match then the request will be terminated ‘Step
three’ otherwise the query will be sent to the database for the requested data ‘Step
four’. However, even if a single space is different in the malicious queries can cause
problem here and it can request sensitive data as it passed through our first network
which is used for filtering malicious queries. Even a simple space or a character can
change the hash and if the hashes do not match then the malicious query will not
be detected and as a result our proposed solution will fail. However, we have done
our homework for that case also, we have proposed to create another network for
checking the sensitive data.

19

Figure 3.2: Sequence Diagram of Proposed Model

The query will request the data from the database after having a green signal from
the first network and it will fetch the data to the ‘Step five’ server. Once again,
the server will send the data through the REST API to the second network and the
data will pass through the SDK to the ‘Step six’ network. In the second network,
the framework needs to pre-populate the blocks with sensitive data and the hash of
the arrived data will be checked against the hash of the current blocks ‘Step seven’.
If the hash matches then it will terminate the request if not then it will fetch the
data to the server ‘Step eight’ and finally the requested data will be sent to the
user. Another issue arises which is the numerous numbers of block creation during
this process. It can cause too much storage space. To prevent this we have come
to a solution by using MCMC algorithm to remove redundant blocks. However,
Hyperledger Fabric is capable of making 21000 transactions in a single second but
with increasing number of blocks it will be difficult for transactions. By removing
the unnecessary blocks by using MCMC algorithm the framework can overcome this

20

obstacle also shown in figure 3.2.

Many procedures here mentioned are ambiguous. To clearly understand every pro-
cedure we have described them in next sections.

21

3.2 Double Spending

While working on this research we got to understand the pros and cons of the
Hyperledger Fabric. Well, this is kind of interesting as well as it is depressing
because we could not find enough study resources for that anywhere. To be honest
it was really hard to get hands on some really good materials and the topic double
spending prevention mechanism of Hyperledger Fabric is one of them. Hyperledger
Fabric uses Multi-version concurrency control, in short MVCC to prevent double
spending problem. We first need to get familiar with the term of key collisions. It is
really easy to understand, when more than two queries will arrive at the same time
and try to update the same key or value. Before that we need to understand the life
cycle of the query transaction. First, the peers get more than one proposal sent from
the SDK. The simulation of the query as transaction by peer using the chaincode,
provided parameters from the request and current state of the ledger. The SDK gets
the result of the simulation returned by the peers. The keys gets updated during
the simulation which is result. Signature are validated by the ordering service and it
sets and put them in queue. When the queue becomes full else predefined time pass
after that order take the sets also pack them in a block, lastly it sign the block and
send the block to the peers. When the simulation was executed the signatures are
validated by the peers and it checks whether the ledger’s state is exactly identical.
The ledger gets updated if the validation pass the transaction, if not then the ledger
will not be updated. Because the collision of hashes and keys will take place and the
framework is depending on this procedure. If the framework does not use same key
or hashes then the collisions will never take place. This is very easy to implement on
chanced and we propose to modify it a little, we want the hashes to collide with each
other and the framework will do it instead of keys and the framework will save the
hashes locally instead of the state database. In MVCC instead of using one key for
the account we will have enormous amount of keys and to get the idea of the actual
account the chaincode should all the keys, it will go one by one and define what will
be the current value. Using MVCC the maximum throughput will be achieved in
terms of preventing double spending.

22

Figure 3.3: Steps of Implementing the Model

As shown in the figure 3.3, the working step from ‘step one’ to ‘step eight’ are
explained in details in the later sub sections.

3.3 Selection of SDK

The SDK is used for not only executing query blocks and transactions on the channel
but also user chaincodes. It also monitors events on the channel. It allows the Java
applications to manage the life cycle of hyperledger channels. It provides a layer
of abstraction over client application’s communication protocol to interact with a
Hyperledger Fabric blockchain network. The SDK also provides CA or certificate
authority to the client. But, it is not dependent on the implementation of the CA.
Although the SDK acts on behalf of the specific client, it does not give a way of

23

persistence for the application outlined channels and user artifacts on the client.
This is done by the embedding application.

3.4 Making API Call from Client

The Hyperledger fabric client SDK works as a bridge between API and Hyperledger
fabric Blockchain. Some npm packages are needed to make the connection pos-
sible. The packages are: fabric-ca, fabric-common, fabric-network, fabric-protos.
The fabric-ca gives permission to the application for creating valid Identities in the
network for the peers and application users. It also works with transaction certifi-
cate. The optional element in this package is fabric-ca-client. The fabric-common
encapsules common code used by fabric-sdk-node packages. It interacts with fab-
ric network and invokes transaction invitation with the network. Another pack-
age, fabric-network, encapsules API to connect with the network. It also submits
transactions and execute queries. Lastly, fabric-protos encapsules protocol buffers.
Integration tests that run on master branch need the latest stable fabric images
that are hosted by Artifactory. Docker images are retrieved via utility script. After
that, integration test are ready to be executed. Tests for different scenarios require
different commands.

A client API is used to interact with a network of peers in the network. The frame-
work will be using an application SDK to interact with the user interface of multiple
networks. The framework will be connecting to each of them separately through a
different client. The framework is using a stateful design for the Client class. Un-
til it appears to be used to connect with the fabric backend, a case must be built
with a userContext. A userContext is a user class case that epitomizes the ability
to sign requests. If a multi-user environment is used by the system, we need to
use two suggested techniques to handle the authenticated users. Using a dedicated
instance client for each authenticated user. New user development. Each authen-
ticated user can be enrolled differently by the System to get a unique identity for
each user. Among the validated clients, the framework can use shared client in-
stance and common signing. It is deemed bad practice to swap userContexts with
the same client case. It results in a stateful layout. BaseClient is expanded by
the new Client() class. In essence, it is the client who uses CryptoSuite to sing
and hash. (static)loadFormConfig(loadConfig) method describes the establishment
of connection laoding a JSON file and retuning a Client object. It is a client type
method which returns an instance of the class initialized with the network end points.
(async) setUserFromConfig is a procedure for a utility. Based on the password and
username given, it sends the user context. The addConnectionOptions(options)
command sets client connections. When a new set of peers and orders is created or
when a channel uses discovery to automatically generate new peers and orders on the
channel, these will be available to be added to the options of the application. This
will be a better place for storing GRPC settings that affect all client connections.
When the client object constructs new peers and instances, these settings will be
used. Methods such as Client#newPeer, Client#getPeer, Client#newOrderer, and
Client#getOrderer are accessible. When loading a common link profile, options are
added. Nevertheless, the link section along with a ’options’ attribute would have

24

the client section. Default connections are loaded from the ’connection-operation’
settings of the device configuration beforehand. addTlsClientCertAndKey(opts) is
the utility method that is applied to the shared tls client to a particular collection of
options. Throws: If the generating material fails, it will throw out an error. Build-
ConnectionOptions(options) when the utility method is used to combine connection
options into a set of options, a new option object is returned. The settings will
not be overridden by the default link options. They can only be introduced as new
configurations that are transferred to the application options. It returns objects con-
taining options for applications as well as options for clients. createChannel(request)
builds the new channels containing more than one participating organizations. An
organization calls this method to submit creation request to the ordered service to
create a new channel. When the channel is successfully created, each organization
of the peer nodes join the channel. The process is maintained by sending channel
configuration to the peer nodes. The method called for this is joinChannel(). It
returns a status of acceptance of the request by the orderer. This is not exactly
confirmation. The client application checks whether the channels are entirely cre-
ated or not. The type is a Promise. (async)createUser(opts) returns a user object.
It works on the basis of private key and corresponds to x508 certificate. Crypto
materials that were previously accessible can therefore be used, such as private keys
and certificates. The user objects with signing capabilities are build. It is just an
alternative to dynamic user registration. The client instance is set to current when
a user object is successfully created. Returns the User Object Promise. A promise
is the form. extractChammelConfig(config envelope) it extracts the protobuf from
‘configUpdate’ objecet. The source from where is extracts is the ‘ConfigEnvelope’
object which is produced by configtxgen tool. The returned object is usually signed
by the signChannelConfig() method of the class. When the signatures are collected,
the ‘ConfigUpdate’ signatures are used. Those are based upon the createChan-
nel() or updateChannel() calls. It responds with encoded bytes of ConfigUpdate
protobuf. Those are ready to be signed. The type is array(byte). getCertificateAu-
thority(name) It returns a certificateAuthority sort of implementation. It works on
the rules fixed by the settings that are initially loaded common connection profile
and the client configuration. A profile with common connection is loaded to for this
method to return a Certificate Authority. User instances are allocated to Crypto
Suites. The ’initCredentialStores’ method is used to construct the stores and create
a crypto suite that is specified in the common link profile as a result. In terms of
form, it is the Certificate Authority. GetChannel(name,throwError) from a client
instance is a sort of channel instance. It is a kind of memory-only scan. A new
channel is generated by providing a loaded common link profile with an identity
such as ’name’ and it is filled with both orderer and peer objects. In the com-
mon connection profile, these are predefined as well. This provides an example of a
channel. A type is a type of channel. GetClientCertHash(create) getting the client
certificate hash is the primary idea. It returns the hash of the client certificate. The
type is an Array(byte). GetClientConfig() This returns the ‘client’ of the common
connection profile. Returns the client section from the configuration. The type is
an object type. FetCryptoSuite() It returns the CryptoSuite object used by the
client instance. Inherits from BaseClientGetCryptoSuite and Overrides BaseClient-
GetCryptoSuite. It has a type called module:api:CryptoSuite. getMspid() it returns
the Mspid of the client This is also used in organizations as references. It returns the

25

mspid of the organization defined in client section of the loaded common connection
profile. The type is a string type.

Figure 3.4: Built a set of CA to interact with the API to route requests

3.5 Building a set of CA

Hyperledger Fabric CA(Certificate Authority) consists of a server and a client. CA
servers can be interacted through client or Fabric SDKs. Servers are communicated
via REST API. Client or SDK can be connected to an intermediate server. In
figure 3.4, all of the servers present in the cluster of Fabric CA have access to the
same database. It holds record of certificates and identities in use. A server can
have multiple CA’s, where one can be a root or an intermediate.To begin with the
installation, environment variable has to be set correctly. After that, libtool and
libtdhl-dev packages have to be installed. Then, fabric-ca-server and fabric-ca-client
has to be installed. Through fabric-ca-server, the server starts with default setting.
A default configuration file, which is customizable, fabric-ca-server-config.yaml is
created. Afterwards, there is a need to access the docker hub to find the specific
version of fabric-ca, there is a want to use by matching tags. Then, a server can be

26

built and started with the help of Docker compose. The docker image of the fabric-ca
contains both the server and the client. For configuring Fabric CA server and client,
there are 3 ways - 1) CLI flags, 2) Environment variables and 3) Configuration files.
The changes in the configuration files can be overridden by environment variables
or CLI flags.

At first, the CA server must be initialized via fabric-ca-server init -b admin:admin
pw. The -b or bootstrap identity is necessary for initial state, as it works as server
administrator. In the server configuration file, a customizable section of CSR or
Certificate Signing Request. CSR can be customized depending on requirements for
custom values. A self signed CA certificate is generated by the command fabric-ca-
server init. For the parent fabric CA server authentication, the URL should be,
<scheme>://<enrollment<:<secret>@<host>:<part>

Additionally, fabric-ca-server init command generates a default configuration file
named fabric-ca-server-config.yaml within the server’s directory. To start the server,
there is a must to execute the following command,
Fabric-ca-server start -b <admin>:<adminpw>

If the server has not been initialized yet, it will begin to initialize itself. Throughout
the initialization process, the server can generate ca-cert.pem and ca-key.pem files
if they are not existent. A default configuration file can also be generated. Unless
the server is designed to use LDAP, it should be designed with a minimum of one
pre-registered bootstrap identity to enable registration and enrolling new identities.

The server has to be connected to MySQL databases. First, SSL has to be configured
on MySQL server. To do that,a my.cnf file has to be created for the server. After
that, a user has to be created who has privileged access to MySQL server over SSL.
MySQL server also requires client certificates for secure connections.There are three
options for secure connections - 1) ssl-ca, for the CA certificate ; 2) ssl-cert, for
MySQL server’s certificate; 3) ssl-key, for MySQL server’s private key. The server
can also be designed to be read from an LDAP server.

Fabric CA server can be connected with LDAP server for: 1) authenticating an
identity before enrollment, 2) retrieving identity attribute values that are used for
authorization. After the LDAP configuration enrollment takes place, the fabric CA
client or client SDK sends a request for enrollment. The fabric CA server receives
it and decodes the identity name and password. Then, it matches the identity
with a distinguished name with the help of “userfilter” and tries an LDAP bind
with the identities password. If the bind is successful, the enrollment is authorized
and the process can go forward. Multiple CA’s can be added to a single server
by using cafiles or cacount option. The cacount gives an undetermined number of
default CA’s a head start. Each of them will get a default configuration file which
holds a unique CA name. For cafiles, CA configuration files have to be generated
and configured for each CA from the initial state. Each file must have a unique
name and common name. An intermediate CA must be enrolled with a parent

27

CA within the same method that a fabric-ca-client enrolls with a CA.it is done by
the -u option to specify the URL of the parent CA, with the enrollment ID and
secret. The identity related to this enrollment ID should have an attribute in the
name of “hf.intermediateCA” with the value “true”. The fabric CA server should
be upgraded before upgrading the fabric CA client. To upgrade an instance of the
server, the fabric-ca-server has to be stopped at first. Second, previous fabric-ca-
server binary has to be replaced by the latest version. Then, it has to be launched.
The fabric-ca-server method is finally checked and available. The CA server hosts
an HTTP server as well. It includes a REST API. Operators are supposed to use
this API. Two specific pieces are required for configuring operation services - 1)
the address and port to be listened on; 2) TLS certificates and keys to be used for
authentication and encryption, where the certificates are unique to each CA.

For fabric CA client, the home directory has to contain the command line -home or
fabric ca client home or fabric ca home otherwise ca cfg path. If necessary, the CSR
(Certificate Signing Request) section, which is available in the client configuration
file, can be customized. After that, the command fabric-ca-client enroll must be
processed for enrolling identity. The newly enrolled identity sends a request for
registration. The identity must have proper authority for registration.

An authorization check in three steps is conducted by fabric CA server during the
registration process. To begin with, the registrar (i.e. the one sending the request)
should have the “hf.Registrar.Roles” attribute with a comma-separated list of values
wherever one in every of the values equals the kind of identity being registered. Then,
the association between the registrar and the identity being registered is checked.
The association between these must be equivalent or at least contain the same
prefix. If root association is needed for an identity, then the association request
ought to be a dot (”.”) and also the registrar should have root association. If no
association is laid out in the registration request, the identity being registered is
given the same association of the registrar. Finally, the identity can be registered
with attributes after some conditions are fulfilled. Firstly, reserved attributes with
‘hf.’ prefix of fabric CA can be registered by the registrar if it can possess the
attribute. The attributes also have to be part of the value ‘hf.Registrar.Attributes’.
Furthermore, registering custom attributes that do not start with ‘hf.’ requires
some different formatting. In this case, attributes and the registrar must have
‘hf.Registrar.Attributes’ with same value or pattern which is a string with “*” at
the end. Additionally, another checking is performed to find similarity between the
requested value of the attribute and the registrars value of ‘hf.Registrar.Attributes’
attributes. The requested value must be the same or a subset of the value of the
registrars.

After registering a peer with a new identity, it is time to enroll it with an ID and
a secret or password. It has a similar process of bootstrapping identity. The only
difference is that a new option, which is ‘-M’, is used to occupy the Hyperledger
Fabric MSP(Membership service Provider) directory structure. Orderer can also be
enrolled in the same process with the exception in the path directory. The path is set
to ‘LocalMSPDir’ setting in the orderer’s orderer.yaml file. Enrollment certificates

28

are issued by the fabric-ca-server which have organizational units or OUs.

For pursuing privacy in authorization and transferring certified attribute, a cryp-
tographic protocol suite named Idemix or Identity Mixer is used. It allows client
authorization without any interference from the CA and gives control over which
attributes the client wants to show. CA server can issue for Idemix credentials. It
can be requested to the API endpoint. It is issued in two steps. At first, a request
with an empty body is sent to API endpoint to get a nonce and a public key. After
that, a credential request is created using the nonce and public key, which is sent
to the API endpoint with another request to get an Idemix credential, Credential
Revocation Information (or CRI) and attribute names with values. CRI can revoke
something that was previously used. For Idemix, end user’s certificate is revoked
by the CA and recorded in CRI. Then it is sent to end user, so that they can show
evidence that their credential has not been revoked, contrary to CRI.This evidence
is passed to verifier which gives verification of the proof. For the verification to be
successful, the CRI version of the end user and verifier has to be the same. The
version of CRI increases after enroll request is received by the fabric-ca-server. As
a result, the revocation handle pool becomes empty. The fabric-ca-server has to
generate new revocation handle to fill up the pool which increments the version of
the CRI.

Identities can be updated dynamically by using fabric-ca-client. Information regard-
ing an identity can also be retrieved as long as the authorization requirements are
fulfilled. Adding new identity is almost the same as registering a new identity. The
first method is via the -json flag where the identity is described in JSON string. The
later method uses direct flags for adding new identity. Usually, removal of identities
is disabled in the fabric-ca-server. But it can be enabled by starting the server with
-cfg.identities.allowremove.

3.6 Building config.yaml

Config.yaml is kind of file which is very critical for our framework to operate per-
fectly. It is an optional file for the hyperledger fabric network but for our framework
it is very important. This config file specifies the OU (Organizational Unit) identi-
fiers. For configuring OU list, Membership Service Provider adds its valid members
to X.509 certificate. For our framework there are two OU identifiers, administrator
and commercial. The Membership Service Provider identity gets valid even if it
bears any of these OU identifiers. Specific certificate points to the intermediate CA
certificate path as a leaf identities which have particular OU, should be justified.
The Membership Service Provider root folder must not be free or abandoned and
the path is parallel to the folder. To classify identities into orderers, peers, admins,
and clients by organizations is allowed by the default Membership Service Provider
creation depends on the OUs of their X509 certificates. If any identity makes trans-
actions on the network then it should be called Clients. If any identity controls
organizational jobs like, peer joining into a channel then it should be called Admin.
If any identity commits any transaction then it should be called Peer. If any iden-
tity is contained by any ordering node then it must be called Orderer. To define

29

orderers, peers, clients and admins of a Membership Service Provider, the config file
should be put correctly.

3.7 Running the Network

The system framework that ensures the availability of services of the ledger to ap-
plication users, admins is called a Fabric permissioned blockchain network. A set of
policies are agreed upon by the consortium, which is created with the combination
of multiple organization, to form a network and its permissions. However, policies
of a network can be changed after a specific amount of time. A network has several
parts, such as, Ledgers, Chaincode, Peer, Ordering Services, Fabric CAs etc. There
is brought up a networking running which is shown in the implementation part.

3.8 Invoking Chaincode

Chaincode is a program that runs (In a Docker container which is secured) sep-
arately from the endorsing peer process. It initializes and manages the state of
the ledger. The logical functionalities of the network is handled by the chaincode.
That means the rules which every transaction should maintain are managed by the
chaincode. So the chaincode in a hyperledger based blockchain network is similar
to a “smart contract” in the ethereum based blockchain network. A chaincode is
invoked in order to send query to the ledger or update the ledger. It is possible for
a chaincode to invoke another chaincode in the same or in a different channel if it
has the proper permission. But if that invoked chaincode is on a different channel
then only read query is allowed. Chaincodes are deployed to channels using Fab-
ric chaincode lifecycle. Before a chaincode can be used to create transactions, the
fabric chaincode lifecycle allows different organizations to agree on how it will be
used. Such as if an endorsement policy mentions which organizations need to run a
chaincode before validating a transaction, it is necessary for the channel members
to use the fabric chaincode lifecycle to agree on the chaincode endorsement policy.
Before a chaincode can be used to create transactions, the fabric chaincode lifecycle
gives permission to various organizations on the method of running it. It is nec-
essary for the channel members to agree on the chaincode endorsement policy via
using the fabric chaincode lifecycle. There are two functionalities of a chaincode.
One is invoking and another one is querying. By invoking chaincode function there
is a creation of a new block and to update the ledger and by querying chaincode
function the framework retrieve information from the ledger without updating the
ledger. During chaincode development and testing, Command Line Interface(CLI)
is one of the most used tools. Inside the CLI by issuing various peer commands the
framework can perform various tasks on a fabric network and chaincode. But in
actual real deployment, there are client applications which are the frontend of the
fabric networks that are used instead of CLI. In the case of our fabric network are two
peers inside the organization. There is the use of the network.sh script to perform
various operations in the network. In order to write the chaincode for our network,
first we create the chaincode file inside the specific directory that is mentioned in
the network.sh script. We can use Linux’s mkdir touch command for this. The

30

chaincode implements the fabric-contract-api interface as like all other chaincodes.
Then in order to initially populate the ledger using keys first there is a need to
mention the structure of the key inside the chaincode. There is a need to implement
the InitLedger feature, which will initialize the ledger with some specified keys. [We
may add the... keys initially]. Next to write a function createAsset that generates
a non-existent asset or, as in our case, a key on the ledger. Then there is to create
a readAsset function that will return the key from the world state according to the
given id. After that to create an updateAsset function that will help us to update
the data inside a key with the provided parameters. In order to delete a key, need to
write a deleteAsset function inside the chaincode. It is a good idea to keep a function
assetExists that will check whether the given asset is already in the ledger or not.
There is also to keep a getAllAssets function to retrieve all keys from a ledger. After
creating the chaincode and network with the peers and channels, in order to deploy
the chaincode there is the use of ./network.sh deployCC command. This command
installs the chaincode to all the peers so each of them can perform chaincode en-
dorsement and query. To invoke the chaincode, use the peer chaincode command
to invoke and use the different functions inside the chaincode according to our needs.

3.9 Curl Request

If a client makes a call through API then it allows the client to get high-cost and
compound data from the hyperledger fabric network. Using the Node.js SDK fron-
tend communicates with backend and the hyperledger fabric network works as the
backend. Hyperledger Fabric community offers many SDKs of various languages,
Node.js, Go, Python, Java. Both secure and non-secure communication is sup-
ported by hyperledger fabric. SDK’s APIs are the main element for making a call
from frontend. There is a difference between secured using TLS and when the net-
work is non-secured when the API makes call to the hyperledger fabric network. To
make sure the call takes place perfectly to get the network details then The Frame-
work needs to enroll the admin, later, the framework has to register and enroll the
users, after that, chaincode must be invoked and lastly it need to query the chain-
code. With a CA an admin was registered when the hyperledger fabric network
was created. Now to retrieve the eCert (enrollment certificate) the client needs to
make an enroll call to the CA server. To form a user object for the admin, the
client application needs this certificate. The system would need to use the admin
object to register and enroll a new user. The pem certificate, name and the CA URL
is needed to create an instance of org.hyperledger.fabric ca.sdk.HFCAClient. The
Framework can utilize the contents of the pem certificate as a string directly. We
need to use the default crypto suite. We need to set the UserContext which holds all
the user details. We need to set the enrollment in the UserContext object after we
call the enroll API. The user context of the admin along with the set of enrollment
is needed to subsequent user registration and enrollment. The user contexts will be
kept to a local file system to use admin user context by the subsequent calls. Now
we need to register and enroll the users. We should not user the admin because
it has all permissions to perform operations on the network. To perform different
operations, new users should be enrolled and registered. Once a user is registered
then again it cannot be registered. After these, we need to invoke the chaincode and

31

to do that first, the framework needs to read the saved user context, create orderer
references, peer and eventhub, we need to initialize the channel and also prepare the
transaction proposal and send it to the endorsers. After everything it will send the
transaction to the orderer. To make the client call happen at last we need to query
the chaincode. We know blockchain transaction be queried.

3.10 Transaction Flow

We know in the ledger we have keys as assets. When we enroll an identity with a
network are the support of hyperledger fabric’s permissioned blockchain, the keys
generated. These keys need to be stored and we stored them locally in our system
for our web application to access them for signing the query and data transactions.

Figure 3.5: ClientA sends request for transaction

In our case what is happening is firstly ClientA is sending a request to get access to
a key. This request then targets peer0 and peer1. Here, peer0 is the representative
of ClientA and peer1 is the representative of clientB. Our endorsement policy states
that in order for a transaction to happen both peers must endorse any transaction.
Note that here, we are referring to getting access to a key as a transaction. So, since
all peers need to be supported, the request goes to peer0 and peer1. After that, a
proposal for a transaction is created. Here, the Node SDK uses the REST API to
create a transaction proposal. In fact, the proposal is a request that invokes the
readAsset function of the chaincode for a specific key. Here, the Node SDK acts
as a chunk that packages the transaction proposal in the format specified by the
chain code while at the same time capturing the user’s cryptogenic credential and
generating a distinctive look for that particular transaction proposal.

32

Figure 3.6: Endorsing peers verify signatures and the transaction proposal

Then the two endorsing peers (peer0 & peer1) verify the transaction proposal. In
order to verify the proposal, the peers check whether transaction proposal have been
properly formatted. It also checks if the submission is new and never before was
submitted in the past. The validity of the signature (using MSP) is checked.

Figure 3.7: Proposals are inspected

Finally, whether the user who submitted the request (ClientA) holds proper author-
ity to perform a read operation on that channel is checked. The endorsing peers
take the transaction proposal as parameters of the invoked chaincode’s function.

The chaincode is then executed and the transaction result is created. At this point
the ledger is not updated. The transaction result and the endorsing peer’s signature

33

is returned to the SDK as “endorsement response”.

The application processes the verification of endorsing peer signatures by compar-
ing the proposal responses. The client application checks whether the specific en-
dorsement policy has been fulfilled. After that,the transaction will be submitted to
ordering services which will make an update in the ledger. Unendorsed transactions
can be forwarded or responses might not be checked in the application. Despite
that, the endorsement policy will always ensure the validation process.

Figure 3.8: Endorsements are assembled into transactions

After that, the application broadcasts the transaction proposal in the network. It
also sends a response to the ordering service with a transaction message.

Figure 3.9: Transaction is validated and committed

It contains read or write sets, endorsing peers signatures and channel ID. The or-
dering services do not inspect the contents within a transaction. It only receives
transactions in the network and organizes them sequentially according to channel.

34

The blocks of the transactions are forwarded to the peers on the channel. The trans-
actions is approved and thus the endorsement policy is completed. This confirms
that there has been no change in the ledger. It is checked for the read set variables
because it is generated by the transaction execution. The blocks are tagged as valid
or invalid during transaction.

Figure 3.10: Ledger is updated

Finally, every single peer appends the block the channel’s chain. For every valid
transaction, the write sets are committed to the current state database. An event is
transmitted by each peer to declare the client application that the transaction has
been permanently added to the chain. A recognition is also sent for the validation
or invalidation of the transaction.

35

Figure 3.11: Transaction flow

After that we need to use the Hyperledger fabric NodeJS APIs to work with and
manage our network [8]. We will be using those in order to create and initialize
the channel, install and instantiate the chaincode, register and enroll the users,
perform invoke and query to test the network. When the network is up then the
certificates and keys for the peer organization are created using the network.sh shell
script. By default the script uses the cryptogen tool for this. The config files
are located in the organization-cryptogen folder. We can bring up the network
using Certificate Authorities using -ca flag. After that for each identity the script
generates an MSP folder which contains the certificate and private keys for each
of them. This establishes the identity’s role and membership in the organization.
ChainCode: Fabric chaincode life cycle is used to deploy a chaincode on a channel.
First, we need to start the network we created before but we need to kill any docker
containers and remove artifacts which were generated before by using ./network.sh
down CLI command on the network directory. Then we can up the network by using
./network.sh up command. Now we must create a channel using ./network.sh up
createChannel. Then we need to package the chaincode before it can be installed on

36

our peers. Some dependencies of chaincode should be installed before packing it.

Figure 3.12: Connection of API and HLF

After we package the asset-transfer chaincode then it can be installed on every peer
to endorse a transaction where endorsement policy is required. Now we need to
approve a chaincode for the organization. Now it is time to commit the chaincode
definition to the channel. One organization can commit chaincode definition to
the channel after organizations have approved a chaincode definition. Now we can
invoke the chaincode from a client application. Now, end users can interact with
the assets on the blockchain ledger.

37

Chapter 4

Implementation

4.1 SQL Injection Attack Types

There are a handful of verities of SQL Injection attacks. To attack a server by
SQL Injection, the first goal of the attacker is to check whether the server is built
based on SQL database or not. Because if the server is not built with SQL queries,
none of the SQL Injection attacks will be successful resulting in a complete waste
of time for the attacker. It takes only a few commands to check if a server is built
on SQL database or not. After figuring this out the attacker can proceed to apply
different types of attacks from retrieving data, damaging the server up to deleting
the entirety of the database, which is horrendous to visualize. There are multiple
types of attacks viable in the sector of SQL injection. There is no hard and fast
sequence for this and it every attack type comes with incalculable variations. The
various sorts of attacks are commonly not acted in separation. Rather than that,
a significant number of attacks are coordinated together or successively, depending
on the particular objectives of the attacker. Now we will discuss the classification of
some SQL Injection attacks. The overall objective of this type of attack is to inject
conditional query statements such that they are always evaluated true. This is most
widely used to bypass authentication as well as getting access to valuable data. The
WHERE clause is explicitly exploited to retrieve data via conditional statements.

SELECT * FROM users WHERE u id = ’12’ and password = 1’ or 1=1’ - -

Is a tautology statement where (1=1) has been used to evaluate the aftermath of
the conditional statement to be considered true. Illegal Queries/ Logically Incorrect
Queries: Basically, it takes place when a query is rejected. An error message is
fetched back from the server. That is supposed to help in debugging the problem.
But vulnerable information is passed in the returning error message. If it goes to the
wrong hands the privacy can be compromised and there can also be severe security
breach. The attacker sometimes also injects random illogical syntax to get an invalid
output so the server is down or hampered. The server remains vulnerable at the
down time and thus one or more different attacks can be used on the server to
extract data. Error Based – String: Suppose we have a SQLI vulnerable website,
now we can test it through altering its parameter id value with numeric values 1, 2,
3, etc. If we get lucky then we can retrieve the username and password from tables.
Let us see what is happening in the backend. A pseudo code can be like:

38

SELECT login name, password FROM table WHERE id = provided-input

Therefore, if we put different values in parameter ‘id’ then we can get different results
from table data shown in Figure: 4.1. Our objective is to exploit the vulnerabilities.

Figure 4.1: Error Based String (1)

In case of Error Based attack we depend on our guessing power. For example: if
we put strings, alphanumeric values, long integers or anything else in the parameter
value we might not get any result but if we get lucky we can retrieve data from
tables by using a single character only shown in Figure: 4.1.

127.0.0.1:8888/Pre-Thesis-2/1.ErrorBasedSingleString/?id =1’

Figure 4.2: Error Based String (2)

A single quote is given after id value 1. For that, we get an error,

We are able to break the query successfully. This process of sending weird queries
to the application with focus and mindset is called “Fuzzing”. It is very trivial for
successful exploitation. The complete string for our input is like

Let us use an escape character

39

Figure 4.3: Error Based String (3)

No error in above figure 4.3.

This is to test how the developer has encapsulated its variables. Therefore, whatever
we input it will be inside the quotes. Now to fix the query we have two ways, one
is to comment out the rest of the query and the other one is to add some extra
characters to balance the query. To comment out the rest of the query we can use

We have to remember that whatever we use after “ – +” works as code not data.
Now we have to evaluate what we have thought really works or not,
We can observe that it works shown in Figure: 4.4.

Figure 4.4: Error Based String (4)

To make the attack more specific “order by”, “union select” and many more queries
can be used. Shown in Figure: 4.5.

Figure 4.5: Error Based String (5)

40

If this query doesn’t work then we can put a “–“ before and check if it works or not

If it works then to figure out database name, current use, datadir we can use,

To get the name of two tables we can use this query Or use the function “database()”

Figure 4.6: Error Based String (6)

Which gives us the same output. Moreover to iterate more we can use limit functions
such as “limit 1,1”

Figure 4.7: Error Based String (7)

41

Figure 4.8: Error Based String (8)

We can try all these to check how many tables are in the database shown in above
figure. There is another way to concat all the groups together to see how many
tables are in the database and what their names are to see the output as a string.

Similarly, we can get the columns in the table as a string output too.

Figure 4.9: Error Based String (9)

In this way after finding out the names of the tables, we can get the columns in the
tables by using this method shown in Figure: 4.9. Now it is time to fetch out data
from the columns of the tables.

42

Figure 4.10: Error Based String (10)

This is a much simpler query and this should give us all the names of the users from
the column ‘Username’. Not only that we can fetch the corresponding password of
the users as a string by the following command.

Figure 4.11: Error Based String (11)

These are one of the most trivial commands of extracting information from the
database shown above. These are more popularly known as “Error Based SQL
Injection for String”. Inference: The characteristics or behavior of the database
can be changed by this sort of assault. Timing Attacks and Blind Injection are
the most prominent attacks based on inference. Timing Attacks: By identifying
the timing delay of a server and how long it takes a server to respond to a certain
question, this attack is deployed. “if-then” statement is more prominently used
to get desired outcome or at least try to reach the goals, which the attacker had
planned beforehand. This sort of attack is more or less relevant to its mirror, which
is termed as blind injection. The attacker has to calculate the time it takes for the
server to load and respond if the statement submitted is true or not. For injecting
questions, the if-then statement is used in this strategy. WAITFOR is known as the
keyword used for the reason and it caused the database to delay the answer to a
certain time period defined by the intruder himself.

Declare @s varchar(5000) SELECT @s = dbName() if
(ASCII(substring(@s,1,1)) &
(power (2,0)))> 0
waitFor delay ’0:0:5’

43

For the case of Time Based Blind Injections we can add values like ‘sleep(5) - - +’
and see if it gives us a response after the given allotted time.

127.0.0.1:8888/Pre-Thesis-2/5.BlindInjectionTimeBased/?id=1’ and
sleep(5) - - +

This makes the server give us the output after 5 seconds to be precise. Similarly, we
can add The database pauses for 5 seconds according to the command of the attacker.

127.0.0.1:8888/Pre-Thesis-2/5.BlindInjectionTimeBased/?id=1’and
if(select database())=”security”, sleep(5) - - +

If the first bit of the first byte name is matched by the current database, it will take
5 seconds of delay and then respond afterwards. And when the condition if proved
true a specific amount of delay can be injected to the server so it responds after that
specific period of time. By using vulnerable parameters the attacker can extract
data from the database in the above mentioned method. Blind Injection: This is
concept of injecting random stuff into the database until a significant error message
is responded which can be exploited to further compromise the server and the data.
Most of the times, the developers hide the details in the returning error message that
could help the attacker get access to the database but sometimes through continuous
blind attempts the attacker becomes successful. The odds of success are pretty low
from the attackers end but definitely something to be concerned about because they
might get access to the entire database and exploit it very dangerously.

Figure 4.12: Blind Injection

Provided the developer is conscious about these attacks he will setup a backup
against these type of destructive attempts. To stay aware of these sort of attacks,
the developer can set up a validation of input and if the queries are invalid there will
be no significant output shown on the screen which could further help the attacker
exploit the vulnerabilities. In this scenario, if there is no validation of input than the
attacker might be successful. The idea is to submit the first query which is wrong
and replies with an error message because certainly “1=0” is not correct. After that
the attacker sends the second query which is always true. So in this way the attacker
gets access to the database or can retrieve vulnerable data from the database. Union
Query: This is a technique by which attackers join injected query to the save query

44

and get access to the data by merging the two tables in the database. The keyword
used here is ‘UNION’. The attackers can get the data from different tables of the
application by adding the unknown tables to the known tables and extracting the
data afterwards.

By injecting the above-mentioned query, the attacker can get access to whichever
data he wants if he is able to merge the table of his desired outcome. Now the
attacker will try to inject the value of the id in here

So the entire query becomes something like this:

In addition, after this, the credit card details of the users will be merged with another
table and they will be reported back to the attacker because that was the part of the
original query [16]. Stored Procedure: A database programmer sets a specific set
of boundaries to prevent any unauthorized access from invaders. For that reason,
developers add an extra layer to the line of defense termed as abstraction layer.
It is a part of an injectable web application prepared by a programmer. There
are different ways to attack based in the archive procedure of the database. For
authorized or unauthorized use the procedure returns a binary output. It is either
true or false depending in the circumstances and the input given. “ ’; is most viably
used by an attacker in this sort of SQL attacks. Double Query: After Error based
comes the double query injection. In the first phase, we try to understand what the
developer has put in by adding the escape character.

127.0.0.1:8888/Pre-Thesis-2/6.DoubleQueryBased/?id=1\

Figure 4.13: Double Query (Checking escape character)

Dumping Database: As we try to type the queries the database dumps a bulk
amount of data. We can get a lot of data from this type of exploit. We have to
give a destination where we want all the data to be stored in the local drive. It is
actually a more professional guess at this point shown in figure 4.14.

45

Query 127.0.0.1:8888/Pre-Thesis-2/7.DumpingDatabase/?id=2’))
}textbfOutput You have and error in your SQL syntax

Table 4.1: SQL query for dumping database

Figure 4.14: Dumping Database

Post Parameter Injections: Post Parameter Injections are the type of SQL
queries we pass which fits in the blank of a true statement at first. There are
several types of Post Parameter Injections. Such as Errors Based Double Query,
Blind Boolean and Update Query. In a login interface, we try to break the query
by using,

When the query works, even if we are not able to log in to the server we can pass
out the values for which the statement is true i.e.

We can extract the outputs of the respective tables that hold the values. For double
query based injection, we put select, count and concat database in between “ #.”

Query Output
“ AND (select 1 from (select count(*),(concat(“˜,(select
version()),”˜,floor(rand(0)*2)))c from
informationschema.tablesgroupbyc)a)#

Version

“ AND (select 1 from (select count(*),(concat(“˜,(select
database()),”˜,floor(rand(0)*2)))c from
informationschema.tablesgroupbyc)a)#

Database

“ AND (select 1 from (select count(*),(concat(“˜,(select
@@datadir),”˜,floor(rand(0)*2)))c from
informationschema.tablesgroupbyc)a)#

Directory

“ AND (select 1 from (select count(*),(concat(“˜,(select
user()),”˜,floor(rand(0)*2)))c from
informationschema.tablesgroupbyc)a)#

User Columns

Table 4.2: SQL queries to store values

46

Here we get the values stored in the version, database, directory and the user columns
in the tables.

Alternate Encoding: This attack is pretty self-explanatory as the name suggests,
the attackers try to modify the query by altering the encoding. Most commonly
used aspects are ASCII, Unicode and different hexadecimal values. In this way the
attackers can bypass the barriers set up by the developers by special methods known
as “bad character”. Imagine an attacker deploys a code like char(89) instead of a
single quote. Then, that will be considered as a bad character. If this attacked is
lined up with other techniques to sabotage a server then the consequences can be
very dreadful for the developer as well the server. The reason for this attack to be
so strong is because it can target a specific layer of security and try to breach it.
It can attack multiple layers at the same time so if the developer is not cautious
beforehand things could get pretty bad for him and his server. Thus to stay away
from these sort of attacks developers need to prepare multiple defensive encoding
to prevent alternate encoding attacks. If all these are implemented altogether then
attacks like alternate encoding can be prevented and defended successfully. Piggy-
Backed Queries: These type of attacks are used to hamper the database by different
query delimiters, such as “:” and these are added at the end of an original query to
add more statement at the end of it to extract more information from the database.

Figure 4.15: How SQL Injection works

If the first query sent to the database is true , then it is executed but more data
can be extracted if multiple queries sent to the database requesting unauthorized
data but the server does not understand the difference as a result it fetches back
the requested data by the attacker. With successful attempts a database executes
multiple queries at a time and responds with the desired outcome. Usually the first
query is true and the query following the first one is not legitimate as a results causes
error in the database. So, after a true statement an attacker has the option to use

47

any Standard Query Language command in the database. However, the command
mentioned above the intruder injects 1 into the password table instead of a logical
value. But the statement is followed by a “;” sign. This makes the database to accept
both of the queries to be true and runs both of them. This is very dangerous for the
database and the developer because, when the other query runs the table of users
is dropped. In other words, the table named users gets deleted and there is no way
to trace that back or retrieve that data. In order to detect attacks like this, special
character search is required but this tactic is not always viable as special character
separation in different distinct queries is not necessary in all kinds of databases.

48

4.2 Building the Hyperledger Fabric Network

Figure 4.16: Stopping all networks initially

There is a sample test network provided in Hyperledger Fabric Samples [18]. We
can use that to create our own network. First, we need to stop any network that is
running in the system and to do so we need to run a CLI command on the specific
directory ./network.sh down. As we can see in the Figure 4.16 that it is removing
any running network in the system and as there was no network running it had no
containers available for deletion and no images were available for deletion as well.

Figure 4.17: Creating the initial network

First, we edited the config files that were provided by the Hyperledger Fabric samples
and as shown in Figure 4.17 we used the ./network.sh up command to build the
initial network. Here is the Hyperledger Fabric network that we created which
contains two organizations, org1.pre thesis 2.com and org2.pre thesis 2.com. Here,
the organization identities and the identity of Orderer organization have been created
using the cryptogen tool. An entity, which has access to the ledgers and can issue
identities to members source of every transaction is clear and verifiable is called an
organization.

49

Figure 4.18: Creating peer

In Figure 4.18, we can see the system is generating the CCP files for organization
1 and organization 2. Then the system starts generating Orderer Genesis Block.
After that we are done creating the organizations and peers. We can describe peers
as devices which assist to run and maintain the generated network. They can also
identify and endorse transactions. Peers also show a way to communicate with the
generated network and we can also create APIs. APIs can be used to r/w data from
and to the generated network.

Figure 4.19: Creating a new channel

In Figure 4.19, we have started creating a channel named cyberpunk0 using the com-
mand ./network.sh, createChannel -c cyberpunk0. This command starts creating
a channel for our network.Sub networks means private networks are created using
channels. This network contains a number of peers. We generated this channel to
keep the network private and perform secured transactions. Each transaction of
our network will be executed on Channel cyberpunk0. Channel cyberpunk0 has its
separate ledger, which are stored in each peer on channel. Channel cyberpunk0 is
an independent chain that adds privacy. However, on one peer, Hyperledger fabric
can have multiple channels. Within the chaincode, we can call separate chaincodes.
Actually, it is possible to call chaincodes from other channels if the peer is part of
the channel and the chaincode is installed on the peer. Moreover, on different chan-
nels, ledger can not have any transactions, as a result in the other chaincode, we can
only make queries. Channel cyberpunk0 is like partition. Developers can generate a
channel and call peers to join a specific channel and as such developers define, who
has access to the channel. Channels can help in privacy as clients connecting to one
channel do not even know that there are other channels in the same network.

50

Figure 4.20: The channel has been created

In Figure 4.20, it shows the channel has been created that we requested on Figure
4.19 and the Anchor peers for the 2 organizations have been updated. An anchor peer
is a specific peer node for a specific participant on cyberpunk0 channel that other
participating peers can find and contact with all peers residing in different channels.
Participating peers to find all working peers on cyberpunk0 can appoint various
Anchor peers. After the anchor peers have been updated for cyberpunk0 the channel
finally joins the network. So far, with two organizations, we have built the original
network and added a channel to our network. After that, we checked whether or not
our network was functioning correctly. We can test it on our network by running a
chain code. We checked it using another chaincode given by the Hyperledger Fabric
Sample, as we have not yet produced a chaincode for our network. For another test
app called fabcar, the chaincode is.

Figure 4.21: Deploying a chaincode on the channel

In Figure 4.21, Fabric chaincode life cycle is used to install a chaincode on a channel.
Before installing the chaincode, first it has to be packaged. Some dependencies of
chaincode should be installed before packing it. Only then, after packaging the
asset-transfer chaincode, can it be installed on all peers to validate an endorsement
transaction. Then an organization’s approval of the chaincode is required. It has

51

to be dedicated to the channel after the organizations’ acceptance of the chaincode
concept. It is possible for a chaincode to be invoked from a client side application
which will help the consumers to connect with the data inside the blockchain ledger.

Figure 4.22: Chaincode successfully deployed

Finally, in Figure 4.22, it shows that the chaincode has been successfully deployed
on the channel. This shows that our network is up and running and we can deploy
our own chaincode here.

Figure 4.23: Turning off the network

Finally, to turn off the network as shown in Figure 4.23, we used the ./network.sh
down command. This time as shown in Figure 4.23, there were components present
for the program to delete. This command stops the Orderers and the Peers first,
and deletes certain components after stopping them. We have done so much so far.

52

4.3 Hyperledger Fabric Proof of Concept

Now if we can create a network with some organizations and peers and after de-
ploying chaincode if we can store private data in that network and get the hash of
that data we can prove the concept of our proposed framework. The procedures are
described below:

We ran the network and created a channel using the following command:

Figure 4.24: Starting the network

In the figure 4.24 , we can see that our network is up and running and it is generating
certificates using the cryptogen tool. After that it will create the organizations:

Figure 4.25: Creating Organization identities

In figure 4.25, we can see that an organization MainOrg’s identities are being created
in the network.

Figure 4.26: Generating orderer genesis block

53

Here (Figure 4.26), we have shown a genesis block for the Orderer is being created
and it is loading the configuration for genesis block.

Figure 4.27: Creating a peer for the organization

Above in Figure 4.27, it is presented that a peer “peer0” for the MainOrg has been
created and the peer node has started.

Figure 4.28: Creating a transaction

Now (Figure 4.28) the network is creating a transaction ‘mychannel.tx’

Figure 4.29: Anchor peer updated

After that in figure 4.29, we see that an anchor peer is being updated in the net-
work for the MainOrgMSP. The details about anchor peers has been described in
[SECTION/SUBSECTION]

Figure 4.30: Channel in localhost

In figure 4.30, the network is creating the channel ‘mychannel’ in the localhost:7050.

54

Figure 4.31: Channel created

In figure 4.31, we can see that ‘mychannel’ has finally created and MinOrg is joining
in ‘mychannel’

Figure 4.32: Having a network

Figure 4.32 is showing, the anchor peers for MainOrg have been created and it has
successfully joined the channel. So, we have a network.

Figure 4.33: Deploying the chaincode

Now we are deploying the chaincode using the command shown in figure 4.33 and
the chaincode is installed on peer0.1.

55

Figure 4.34: Query installation

Here in figure 4.34, it is shown the query installation on peer0.1.

Figure 4.35: Approval of peer

The chaincode makes sure that all the MSP of all organizations must approve a
peer or any transaction inside the network. In the figure 4.35, we can see that the
MainOrgMSP has approved peer0.1 on ‘mychannel’.

56

Figure 4.36: Chaincode definition

In figure 4.36, it is presented that the chaincode definition has been successfully
queried on peer0.1 inside the channel.

Figure 4.37: Invoking transaction

In figure 4.37, it can be seen that the Invoke transaction was successful on all
the peers in the channel ‘mychannel’. This means the chaincode was successfully
installed on all peers in every organization. Now need to create a certificate with
some data and check if they are stored or not and if we can get the hash of the data
from the private blockchain network.

Figure 4.38: Exporting credentials

57

In Figure 4.38, it have exported the credentials of MainOrg (Organization name,
MSP name, address etc.) in the current path and after that exported a certificate
with some data. And as there is a need to invoke the chaincode for checking the
validity of the certificate it is invoked the chaincode on the peers and the output
shows it was successful. That means the data is now inside the network and now
we can check it.

Figure 4.39: Querying the network

In figure 4.39, it is queried the network for the data (with the ID) and it can seen
that in output we got our data back. So, the data is inside the network and we were
able to read it. After that it is queried to get the hash of our data and was able to
get the hash also.

So, there is the possibility to store some data inside the private blockchain and was
able to get the hash of that data from the network. There can be use of that to
store malicious queries and sensitive data of users inside the network and match the
hashes. With this there is benefit of checking if a user is attempting to use any
malicious queries or not and if any query is trying to get any sensitive data from
the database or not. And with that information we can decline those queries. So,
this proves our concept.

58

Chapter 5

Analysis and Discussion

Our proposed framework shows tremendous opportunities of solving SQL injection
attacks. Hyperledger Fabric can process 21000 requests in a second and when it
comes to work with private data and blockchain, then it gives the best solution
available in current circumstances. We can see in this research paper that HLF is a
platform where every network is permissioned because all members have known iden-
tities. The architecture of HLF is modular which separates processes of transactions
in three phases which are chaincode, ordering of transactions and the validation and
commitment of transactions. Because of the channels in HLF, it allows the data
to go to the users that need to know about the data which can be achieved by
partitioning of data on the blockchain. Hyperledger fabric also has the property
of blockchain which is immutability. The modular architecture helps the designers
to plug in different components as they like. All these features are enough to keep
the data secured and to provide protection to the website from hackers. In order to
make sure we have a working model, we will need a private blockchain network. The
network should be capable of storing data privately and we should be able to get the
hash of the data from the blockchain network. If this is done properly then it will
be possible to create a blockchain network where we can store malicious queries and
sensitive data and get the hash of those data. We can use those hashes to match
and check if a user is trying any SQLi code or trying to access any sensitive data or
not. Then we can block access for them thus protecting the website. In the imple-
mentation part we have established a private blockchain network using hyperledger
fabric. We created organizations, channels and peers in that network. We were able
to invoke a chaincode in the network and were successful in uploading blocks of data
and getting the hash of the data from the network. This means we can modify the
chaincode and match it with user queries to check if that is an SQLi command or
not. If the query is an SQLi command then the system can block the user and if it
is not then it can run the query in the server and check if it is trying to access any
sensitive data like account names, passwords, credit card information etc. or not.
If yes then the system will again block the user and if not, only then it will let that
query pass and post the data out of the server. Establishing the private blockchain
network and being able to upload data and getting hash from it proves the concept
of our model. This means it is possible to defend a website from SQL Injection
attacks using a private blockchain. Many researchers have been working to provide
solutions to coded injection attacks and if we compare our framework with their pro-
posed solution then these following results arise, some researchers have proposed a

59

penetration testing model [20] where they have used layers to prevent attacks which
is kind of slow in terms of our proposed framework. In another research paper [22]
they have shown dictionary base extraction and rule based extraction tools. First,
they have created a dynamic model for each website then they have created test
cases based on their general model. After creating the test cases, they have exe-
cuted those for approved input segments in all previously checked web pages. Finally
they have varied the result of their implemented process from predetermined error
messages linked to SQL injection vulnerability. It is a complex solution which does
not guarantee a full proof protection but our model gives a two layered verification
system where even if the hacker breaks through the first barrier, the second barrier
will not fail in any case. However, researchers have tried to go against the odds by
not selecting trivial methods like Rule-Matching-Based SQL detection solutions and
opted for a CNN based defense system to fight against high-dimensional features of
SQL injection attacks. But our model does not use any kind of machine learning or
deep learning, it is simple and compact. We have studied many papers on different
platforms but could not and any research that matches ours. Our research is one
and only of its kind. We faced many difficulties on this research because there were
not enough study materials available to study.

60

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have introduced the stuff we have done so far in this article. Firstly, we created
a model of the framework that we will use to prevent SQLi attacks that is explained
in chapter 3. Then we manipulated various SQLi vulnerabilities on a testbed shown
in chapter 4.1. We created the testbed to test various malicious SQL queries and
checked the outputs. After that we implemented some features of our model. In
chapter 4.2, we created the blockchain network using hyperledger fabric samples and
for that we had to edit the config files that were provided by the samples. Then
using those config files we initially created a test network similar to the network
we proposed. We created channels, organizations, peers, orderers and many other
components according to our needs. Moreover, we tested if our network is working
or not using a dummy chaincode. These are the things we have done so far and the
things that we will have to do in future are creating our own chaincode that will
block malicious SQL queries. After deploying that chaincode we will finally have a
network that can defend a webapp from SQLi attack. After that we have to test if
this network properly defends a website or not and in order to do that we have to
integrate our network with our testbed using REST API. If done properly, we will be
able to check if this blockchain network can defend our testbed from malicious SQL
queries or not. We already saw many SQL queries that make our testbed vulnerable
to SQLi attacks. After the integration, we will be able to check if the testbed is still
vulnerable to those attacks or not.

61

6.2 Future Work

Our proposed framework is using blockchains to keep track of the SQL queries
and also the sensitive data from the database the blockchain will start increasing
exponentially with the increase of users on a website. Specially, the size of the
blockchain that our proposed framework is using to keep track of the malicious
queries will increase a lot due to increased usage of the blockchain. In order to
tackle that issue our proposed framework have to get rid of irrelevant blocks from
the chain. But the proposed framework cannot just straight forward delete a block
from a blockchain, it needs to follow a specific algorithm to that work.

Figure 6.1: MCMC algorithm

So for our purpose we are proposing to use the MCMC algorithm for getting rid of
irrelevant blocks from the blockchain shown in Figure: 6.1 [24]. MCMC is the short
form of Markov Chain Monte Carlo that is a method used for sampling by creating
a suited Markov Chain after that using Monte Carlo approach for integration cal-
culation. In the paper the authors mentioned in detail how this MCMC algorithm
can be used to shorten a blockchain. In our framework, Semi-Full node approach
mentioned in the paper can be used to reduce the size of our blockchain. By using
that Semi-Full node approach as for us we can get rid of new irrelevant queries from
the blockchain. This will greatly reduce the size of the blockchain thus making it is
faster and efficient.

62

Bibliography

[1] I. Alsmadi and F. Mira, “Website security analysis: Variation of detection
methods and decisions,” in 2018 21st Saudi Computer Society National Com-
puter Conference (NCC), IEEE, 2018, pp. 1–5.

[2] T. B. Awojana, “Threat modelling and analysis of web application attacks,”
2018.

[3] F. Ayaz, Z. Sheng, D. Tian, G. Y. Liang, and V. Leung, “A voting blockchain
based message dissemination in vehicular ad-hoc networks (vanets),” in ICC
2020-2020 IEEE International Conference on Communications (ICC), IEEE,
2020, pp. 1–6.

[4] S. W. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql injection attacks,”
in International Conference on Applied Cryptography and Network Security,
Springer, 2004, pp. 292–302.

[5] H. Cao, J.-R. Falleri, and X. Blanc, “Automated generation of rest api spec-
ification from plain html documentation,” in International Conference on
Service-Oriented Computing, Springer, 2017, pp. 453–461.

[6] Y. Fang, J. Peng, L. Liu, and C. Huang, “Wovsqli: Detection of sql injection
behaviors using word vector and lstm,” in Proceedings of the 2nd International
Conference on Cryptography, Security and Privacy, 2018, pp. 170–174.

[7] H. Garg and M. Dave, “Securing iot devices and securelyconnecting the dots
using rest api and middleware,” in 2019 4th International Conference on In-
ternet of Things: Smart Innovation and Usages (IoT-SIU), IEEE, 2019, pp. 1–
6.

[8] Hyperledger Fabric Documentation blockchain platform, https://hyperledger-
fabric.readthedocs.io/en/release-2.2/, Accessed: 2020-03-13.

[9] Q. Li, W. Li, J. Wang, and M. Cheng, “A sql injection detection method based
on adaptive deep forest,” IEEE Access, vol. 7, pp. 145 385–145 394, 2019.

[10] A. Luo, W. Huang, and W. Fan, “A cnn-based approach to the detection of
sql injection attacks,” in 2019 IEEE/ACIS 18th International Conference on
Computer and Information Science (ICIS), IEEE Computer Society, 2019,
pp. 320–324.

[11] C. Noyes, “Bitav: Fast anti-malware by distributed blockchain consensus and
feedforward scanning,” arXiv preprint arXiv:1601.01405, 2016.

[12] A. Papageorgiou, A. Mygiakis, K. Loupos, and T. Krousarlis, “Dpki: A blockchain-
based decentralized public key infrastructure system,” in 2020 Global Internet
of Things Summit (GIoTS), IEEE, 2020, pp. 1–5.

63

https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/

[13] S. Sahai, M. Atre, S. Sharma, R. Gupta, and S. K. Shukla, “Verity: Blockchain
based framework to detect insider attacks in dbms,” in 2020 IEEE Interna-
tional Conference on Blockchain (Blockchain), IEEE, 2020, pp. 26–35.

[14] R. Sellami, S. Bhiri, and B. Defude, “Odbapi: A unified rest api for relational
and nosql data stores,” in 2014 IEEE International Congress on Big Data,
IEEE, 2014, pp. 653–660.

[15] N. Singh and A. K. Singh, “Sql-injection vulnerabilities resolving using valid
security tool in cloud.,” Pertanika Journal of Science & Technology, vol. 27,
no. 1, 2019.

[16] SQLi Testbed sql injection, https://github.com/Audi-1/sqli- labs, Accessed:
2020-02-21.

[17] M. Szeredi, S. Hajnoczi, V. Goyal, and D. A. Gilbert, Shared filesystem meta-
data caching, US Patent App. 16/265,551, Aug. 2020.

[18] X. Wang, X. Xu, L. Feagan, S. Huang, L. Jiao, and W. Zhao, “Inter-bank
payment system on enterprise blockchain platform,” in 2018 IEEE 11th In-
ternational Conference on Cloud Computing (CLOUD), IEEE, 2018, pp. 614–
621.

[19] R. Watson, M. Stamnes, J. Jeannot-Schroeder, and J. H. Spyridakis, “Api
documentation and software community values: A survey of open-source api
documentation,” in Proceedings of the 31st ACM international conference on
Design of communication, 2013, pp. 165–174.

[20] K. Wei, M. Muthuprasanna, and S. Kothari, “Preventing sql injection at-
tacks in stored procedures,” in Australian Software Engineering Conference
(ASWEC’06), IEEE, 2006, 8–pp.

[21] C. Wirth and M. Kolain, “Privacy by blockchain design: A blockchain-enabled
gdpr-compliant approach for handling personal data,” in Proceedings of 1st
ERCIM Blockchain Workshop 2018, European Society for Socially Embedded
Technologies (EUSSET), 2018.

[22] Y. Xu, K. Hong, J. Tsujii, and E. I.-C. Chang, “Feature engineering combined
with machine learning and rule-based methods for structured information ex-
traction from narrative clinical discharge summaries,” Journal of the American
Medical Informatics Association, vol. 19, no. 5, pp. 824–832, 2012.

[23] M. A. M. Yunus, M. Z. Brohan, N. M. Nawi, E. S. M. Surin, N. A. M. Najib,
and C. W. Liang, “Review of sql injection: Problems and prevention,” JOIV:
International Journal on Informatics Visualization, vol. 2, no. 3-2, pp. 215–
219, 2018.

[24] P. Zhao, H. Cheng, Y. Fang, and X. Wang, “A secure storage strategy for
blockchain based on mcmc algorithm,” IEEE Access, vol. 8, pp. 160 815–
160 824, 2020.

64

https://github.com/Audi-1/sqli-labs

Appendix A

Appendix

A.1 SQL Queries:

1. SELECT time, date, region, book, supply, order, customer, address where
part key = 1 partkey & supplyKey = 1 supplyKey

2. SELECT * from books

3. SELECT * from customer

4. SELECT * from order

5. UPDATE order set O order = ” asd” o address = ” dasd”

6. UPDATE order set sRegionKey = 3255478 (select sRegionKey from region
from customer where id = 3255478)

7. SELECT s name, p partkey, s address, nation,region where p partkey = ps partkey
and s address = ps address

8. SELCT n name from customers, demands, supply and region where n customerkey
= o customerkey and i supplykey = s supplykey.

9. SELECT s nation, c region, c shipingdate from supplier, orders and customers
where s suppkey = o custkey and m orderkey = l orderkey.

10. SELECT (sum (1 extend price* l shippingdate) as revenue) from customers
where 1 shippingdate ≥ “ 2004-01-12”

11. SELECT * from partssupplied;

12. SELECT * from ordersgiven;

13. SELECT region from r name as region,

14. SELECT l returningorder, l status from l item where l amount ≤ 30

15. SELECT c customerorders , c customerkey from (select c customerkey, o orderkey
from customer, orders where c customerkey = o customerkey);

16. SELECT * from customers;

65

17. INSERT into region (r regionkey, r name, r comment) value (91143, “Egypt”,
34638, “Greece detect slyly agai”);

18. INSERT into nation (nation key, n name) values (346732, “eline”)

19. DELETE from region where r regionkey = 2441139;

20. DELETE from order where o order = 1344906;

21. UPDATE orderer set o orderkey (select c orderkey from customer where c customerkey
= 934598)

22. DELETE from orderer where s orderkey = 94752114;

23. SELECT * from part;

24. DELETE from orderer where s order > 2000

25. SELECT * from item;

A.2 Comments from the panel members:

Dr. Muhammad Iqbal Hossain:

• Rephrasing, You should try to implement the whole project. It seems very
promising if you can implement the whole framework.

Faisal Bin Ashraf:

• Rephrasing, Good presentation, As Iqbal sir said, it is a promising project, try
to finish the implementation.

Ms. Afrina Khatun:

• Rephrasing, I think your implementation is on initial phase, try to finish the
implementation, overall good job.

66

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Problem Statement
	Objective and Contribution
	Thesis Structure

	Background
	Hyperledger Fabric
	Endorsement
	Ledger
	Peers
	Organization
	Orderers
	Smart Contract
	Channel
	Membership Service Provider
	Certificate authority
	Applications
	REST API
	Transaction Flow
	Network Configuration
	Policy

	Literature review

	SQLi Prevention Model
	Model Description:
	Double Spending
	Selection of SDK
	Making API Call from Client
	Building a set of CA
	Building config.yaml
	Running the Network
	Invoking Chaincode
	Curl Request
	Transaction Flow

	Implementation
	SQL Injection Attack Types
	Building the Hyperledger Fabric Network
	Hyperledger Fabric Proof of Concept

	Analysis and Discussion
	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix Appendix
	SQL Queries:
	Comments from the panel members:

		2021-01-20T19:45:36+0600
	Dr. Md. Golam Rabiul Alam

