
SCAMM: Detection and Prevention of SQL Injection Attacks
Using a Machine Learning Approach

by

Auninda Alam - 19241021
Marjan Tahreen - 19241020
Md Moin Alam - 17101060

Shahnewaz Ali Mohammad - 19241014
Shohag Rana - 20141033

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
BRAC University

January 2021

© 2020. BRAC University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis which is submitted contains our original research while pursuing a
degree at BRAC University.

2. The thesis paper does not include any materials that has been previously
published by a third party, with an exception where it has been clearly and
appropriately cited with complete and accurate citation.

3. All the key sources of support have been acknowledged by us.

Student’s Full Name & Signature:

Auninda Alam
19241021

Md Moin Alam
17101060

Marjan Tahreen
19241020

Shahnewaz Ali Mohammad
19241014

Shohag Rana
20141033

i

Approval

The thesis/project titled “SCAMM: Detection and Prevention of SQL Injection
Attacks Using a Machine Learning Approach” submitted by

1. Auninda Alam - 19241021

2. Marjan Tahreen - 19241020

3. Md Moin Alam - 17101060

4. Shahnewaz Ali Mohammad - 19241014

5. Shohag Rana - 20141033

In Fall, 2020 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 11, 2021.

Examining Committee:

Supervisor:
(Member)

Dr. Muhammad Iqbal Hossain
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam
Assistant Professor

Department of Computer Science and Engineering
BRAC University

ii

통신왕
Stamp

Head of Department:
(Chair)

Dr. Mahbubul Alam Majumdar
Professor and Dean

Department of Computer Science and Engineering
BRAC University

iii

Abstract

Importance of cyber-security in protecting our valuable data and infor-
mation is huge in this era of technology. Since numerous amounts of
cyber-attacks take place every day, the development of a more secured
system so that it can predict and stop cyber-attacks from happening, has
been our concern for years. This research paper is focused on develop-
ing such a means that will be able to detect and prevent SQL Injection
Attack successfully. SQL Injection attack is a type of cyber-attack that
uses malicious SQL queries for internal data manipulation and retrieving
hidden information from the back-end database that were not intended to
be displayed. SQL Injection Attack even makes a database vulnerable to
other kinds of attacks. Since most of the organizations use a SQL based
back end database to store data, all of their data is exposed to a simple
form of attack if they are not properly defended. The aim of this research
is to develop a model by finding out the best machine learning algorithm
to predict and prevent SQL Injection Attack. A brief explanation of our
workplan, our experimentation and the results of our experiments are
discussed in this paper.

Keywords: Machine Learning; SQL Injection; SCAMM; Naive Bayes; KNN;
Neural Network Classifier; Random Forest; Logistic Regression;

iv

Dedication

First of all, this research work is devoted to our parents, without whom we would
not have been able to do this. It is due to their meaningful life lessons and sacrifices
which they made for us, helped us to work hard and achieve our goals.

It is also dedicated to our honorable supervisor without whom this research would
not have been possible. Our honorable supervisor believed in us, motivated and
encouraged us to get the work done. Without his valuable guidelines and teachings,
this research would not have been achievable.

Finally, we dedicate our research to BRAC University. BRAC University is a
renowned University in our country. The university is always inspiring the stu-
dents to become global citizens. The university gave us the platform we needed in
order to share our knowledge and research.

v

Acknowledgement

The very first person to be stated is our honorable thesis supervisor, Dr. Muhammad
Iqbal Hossain. He is the most significant person in our research. He has guided,
supported and motivated us until the end. As a result of his continued support,
we were able to perform this research. Next, we would like to thank other faculty
members and all senior brothers and sisters for leading us down the right direction
and providing us with unwavering guidance and constant motivation through the
process of studying and writing this article. Without them, this fruitful journey
would not have been feasible.

vi

Table of Contents

Declaration i

Approval ii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures 1

1 Introduction 2
1.1 Motivation . 3
1.2 Problem Statement . 3
1.3 Objective and contributions . 4
1.4 Thesis Structure . 4

2 Background 6
2.1 Literature Review . 6
2.2 Algorithms . 10

2.2.1 Random Forest . 10
2.2.2 KNN . 10
2.2.3 Näıve Bayes Algorithm . 11
2.2.4 Logistic Regression . 11
2.2.5 Neural Network Classifier . 12

3 Proposed model 13
3.1 Dataset description . 13

3.1.1 Data preprocessing . 13
3.2 Model description (Workflow) . 14

4 Experimentation and Result Analysis 16
4.1 Experimentation . 16
4.2 Result Analysis . 18

5 Conclusion 20

vii

References 22

viii

List of Figures

2.1 Random Forest Algorithm . 10
2.2 KNN Algorithm . 11
2.3 A logistic function . 12
2.4 A simple Neural Network . 12

3.1 Workflow of our proposed model. 14

4.1 Result of Logistic Regression . 16
4.2 Result of Neural Network Classifier 17
4.3 Result of Random Forest Classifier 17
4.4 Result of KNN . 17
4.5 Result of Näıve Bayes Algorithm . 18

1

Chapter 1

Introduction

Our internet use in volume and also dealing with secretive data has grown signif-
icantly in the last few decades. We are spending time and resources to make this
medium more and more secure. But every day there is an ever-growing threat to
our privacy. We do not have the option to avoid the internet as it has become the
backbone of modern infrastructure. So, the only option we have is to make this
internet a safe place for the users to be in and share their valuable data on. If we
do not ensure the safety of one’s data the whole infrastructure will be at risk and
the credibility of information will be questioned. In this era of technology, most of
the institutions and organizations use a centralized back end database for storing
and retrieving data. If the system is not secured enough then it becomes vulnerable
to cyber-attacks, especially SQL Injection attack which retrieves and manipulates
internal data through malicious SQL queries and statements. And we all know that
“prevention is better than cure.” So, it’s better to be safe than to be sorry.

There are many sorts of common and critical attacks such as Trojan, SQL injection.
SQL is a query language that was designed to access data, modify data, delete data
from SQL databases like MySQL, Oracle, SQL Server. Many web applications and
websites store all their data in the SQL database. We can also run OS commands
through SQL commands. Successful injection can have very serious results like at-
tackers can find the credentials of other users in the database as well as get the
trade secrets through this. The attacker may alter the data of the existing database
through this injection. This sort of attack may harm the intellectual property of
many internet users. To prevent this, we must prevent attackers from this sort of
attack to keep the users safe. This is the goal of our research.

In this paper, we will use several renowned machine learning algorithms to design
several models which will be able to tell an SQL injection command apart from a
regular harmless user input. We will then compare the results and identify the best
suited algorithm for our job. Later on, we will be developing such a model that
will detect, and take necessary steps to prevent SQL Injection attacks. For this, we
will retrieve a dataset containing sufficient amounts of SQL injection attack samples
along with regular user data and train our model with it. After that, we will feed
test data sets for testing the accuracy of our model. We will use the algorithm which
yielded the best accuracy on detecting SQL injection attacks for this task. Finally,
we will incorporate our most successful model with a website we created. We will

2

connect our model to every input field so that it can provide complete security
to SQL injection attempts throughout the entire website. This test will prove the
effectiveness of our developed model in practical scenarios.

1.1 Motivation

Data is the heart and soul of any organization. To use this data to make deci-
sions and predict any outcome would sometimes mean a life and death situation. In
February of 2016 Bangladesh had a massive blow to its economy due to the fact that
the Bangladesh Bank has been attacked by hackers and we lost more than 81 million
USD [4]. According to Statistica, for mid-sized companies, the average cyber loss
in the 2019 year amounted to 1.56 million U.S. dollars. In a survey of global compa-
nies carried out on May 2019, the average loss was calculated to be 4.7 million U.S.
dollars over all sizes of companies [3]. Another important statistic regarding the
SQL Injection attack shows that SQL injection attack is used by hackers in 51% of
cases [9]. So, the importance of protecting a system from the SQL Injection attack
is beyond description.

Therefore, we wanted to develop a model that will be able to detect SQL injection
attempts and help us take necessary steps to prevent the attack.

1.2 Problem Statement

There are many ways to perform SQL injection attacks currently. There are tautology-
based SQL injection attacks which bypass user authentication and extraction data
by inserting a tautology in the WHERE clause of the SQL query. After that, there
are Logically Incorrect queries where the attacker gathers some data and sends an
incorrect query so that the server responds in form of error messages along with
some important information regarding the database like table name, column name
etc. Again, an attacker can add a wrong query with a correct one using the UNION
keyword. Apart from these there are several other approaches such as the stored
procedure method, piggy-backed queries, inference etc.

Certainly, the best way to prevent SQL injection attacks is coding in the most secure
manner but in most cases that is not possible. Not every programmer has the best
kind of coding experience and also it is not always possible to think about ways to
prevent all kinds of vulnerabilities without getting distracted from the main purpose
of a program. And even the best-case scenario new ways of getting past the defenses
will always emerge as the attackers will not be idle either.

Since there are so many ways to get a harmful SQL query in, it has become ex-
tremely difficult to identify a potential attack and prevent it. There are a lot of
models available which is supposed to prevent SQL injection attempts but these
models either compare every input with a set amount of example data. The prob-
lem that arises with this approach is that in order to provide the most security, the
flexibility and freedom of taking user inputs is affected. Again, if freedom is to be

3

maintained, the system becomes too vulnerable to SQL injection attempts. So, the
limitations of the techniques to prevent SQL injection attacks is evident and as a
result our precious systems are more vulnerable than ever.

1.3 Objective and contributions

Since there is no fixed format of SQL injection queries it is not possible to detect
any kind of injection attempt by matching them to a static database of examples.
So, we have decided to use machine learning algorithms in order to train our model
so that it may detect any known kind of SQL injection attempts and even identify
new approaches of attacks from its previous training. We are looking to train our
model using a huge dataset containing all types of SQL injection queries as well as
regular input. We will use the algorithm best suited for this task so that the model
can identify SQL injection approaches with high accuracy and also reduce the rate
of false positive alarms. Our model will serve as the barrier to any kind of harmful
query from entering the database. It will block potential SQL injection attacks and
notify the respective authority of the server.

Our model can be used to supplement the protective measures of any kind of website.
It can be used to protect the database of various web applications. It is expected
to serve as an added layer of protection to database servers of any kind of system.
It should serve as a cheap but effective alternative to much expensive and complex
protections against SQL injection attacks.

1.4 Thesis Structure

This report describes a model that has been designed to detect and prevent SQL
injection attacks on websites.

Firstly, the Introduction Chapter (Chapter 1) describes the inspiration and motiva-
tion behind our work. The objective of our research and the description of our work
is briefly discussed in this chapter.
After that, in the Background Chapter (Chapter 2), we have referred to some previ-
ous works which had a similar objective. The papers were analyzed in order to learn
about multiple approaches towards the solution of the problem and their shortcom-
ings. Furthermore, the algorithms that were considered and tested for the model
are briefly discussed here.

In the Proposed Model Chapter (Chapter 3), we mentioned the source of our dataset
and the procedure of data pre-processing. The workflow of our proposed model is
briefly discussed in this section.

Then, the Experimentation and Result Analysis Chapter (Chapter 4) describes the
procedure of our implementation. It shows our process of experimenting with dif-
ferent algorithms and finding out the most suitable algorithm for our model. Also,

4

the analysis of the results of our experimentation and the competency of our model
is analyzed in this chapter.

Finally, in the conclusion section (Chapter 5), we have discussed about the signifi-
cance that our model may hold in modern cyber-security. We have also mentioned
the possible ways of improving our current model so that it can detect SQL injection
attacks more accurately.

5

Chapter 2

Background

2.1 Literature Review

In paper [8], a method to detect complicated SQL injection attacks has been pro-
posed which was based on adaptive deep forest algorithm. Here, an average of the
earlier outputs was taken and used along with raw feature vector in order to con-
catenate input of each layer. This makes the deep forest structure more optimized
in this paper. Later on, for utilizing the error rates in order to update the weights in
every layer, they introduced an algorithm called AdaBoost based deep forest model.
In this paper, it was found that, compared to the classical machine learning meth-
ods, the proposed model had a superior performance. The experimental results have
showed this. There were two stages in the proposed model for detecting the SQL
injection. These were off-line training phase and online testing phase. 10000 SQL
injection samples were collected. Here, the features that were extracted from differ-
ent datasets included UNION query, executer SQL commands, error-based injection
and blind injection.

In paper [7], they proposed an algorithm which is based on a machine learning
heuristic approach in order to prevent SQL injection attack. The advantages of dy-
namic and static analysis have been combinedly used in this paper through machine
learning algorithm. A well-researched dataset was taken into account that covered
all possible SQL statements. The paper used MATLAB in order to develop the
model. They used 23 different machine learning classifiers in order to train and test
the dataset. Then they choose the best 5 classifiers out of 25 on the basis of perfor-
mance regarding true positive and true negative rates. After the end of training of
the classification learners, they studied the accuracy of each classifier. They selected
the most effective and accurate 5 classifiers in order to achieve an accuracy of 93.8%.

In another paper [12], ResNet has been used which acquires knowledge of SQLI
attacks by itself. They proposed a ResNet model that was combined of 28 layers
such as convolution layer, Dense layer, input layer, max pooling, and other such
layers. To build this ResNet model they collected datasets from log documents of
standard SQL Injection devices which consisted of all the different types of SQL
Injection Attacks. Basically, the dataset was split into two sections. One section
was training data and 85% of the information was regarded for training. Here the
training data is again parted as validation data which is 20% and training data

6

which is 80%. Another one was testing data which consisted of 15% data. They em-
ployed Label Encoder to make numeric text from non-numeric text. They retained
the lexicon of training and testing information and transformed these to matrix
and also, they used tokenizer by providing expression number and vectorizing the
lexicons by transforming each lexicon into a number which represented SQLI char-
acteristics. After converting each token into a sequence of integers they executed
RESNETSQL () with all layers and trained the design for some iterations so that
the model can return accuracy, loss and also predict the output. Furthermore, they
also implemented an LSTM method for comparing the outcomes of ResNet and an
LSTM model with the dataset they collected. The outcome of Resnet model is 99%
accuracy and that of the LSTM is 98% accuracy. Moreover, this ResNet model was
implemented and programmed efficiently which can spontaneously detect all sorts
of SQLI Attacks.

In this paper [15], they have done research on some ML strategies which uses a
payload as input and decides if the input contains a malicious code or not to detect
SQLI attacks. Firstly, they collected datasets from different public repositories and
then did cleaning and preprocessing by using feature engineering. After that, they
shuffled the dataset that contained 7576 harmful SQL statements and 100496 correct
inputs so that biases can be removed. Then to implement the classifier at first, they
created a set of decision trees from a randomly selected subset of the training set by
using Random Forest classifier. They also used AdaBoost Classifier that combines
multiple classifiers by setting weights and trains the data in each loop for increasing
accuracy of unusual predictions. All features were merged for providing the inputs to
the classifiers and chi-squared scoring method was employed for the custom feature
space. Additionally, they implemented functions of python for feature extraction.
To determine features of SQL they calculated the amount of keywords in SQL by
finding the strings inputted by users with the probable list of keywords. After cre-
ating the space of features, to systematize harmful SQL statements from normal
statements they used ML models. Finally, they fitted training data into the model
and evaluated the best model and also tested unknown data in the models. When
they implemented and evaluated the classifier, the feature vectors were generated
from the collected input data where with five features and achieved high accuracy.
On the other hand, the final optimized models had ten features that gave better
accuracy and can detect SQLi attacks and also can successfully predict and classify
the legal and illegal queries by ensuring higher than 97% accuracy.

The paper [14] proposes a model that will be able to identify SQL injection vulner-
abilities. The authors of this paper have also focused more on deep learning-based
ML algorithms. The authors trained the proposed classifier using several machine
learning algorithms in order to determine the best suited algorithm for their work.
Random Forest, Logistic Regression and SVM were used as generic algorithms and
LSTM, RNN, CNN and MLP were the deep learning algorithms that were used. Ten
folds cross validation was used for training and testing the data. 18 different IVS
attributes were taken from the PHP code files for training and testing the classifier
models. The authors used precision, recall, accuracy and F-measure to compare the
performances of the chosen algorithms. They also used BOW to exclude comments,
variable names, keywords. Thirdly, Word2vec was used to know the condition of the

7

traits. It was seen that the proposed classifier was performing better while using the
deep learning-based algorithms. Finally, the authors found that implementing CNN
algorithm with the help of BOW technique yielded the highest precision which was
95.4% but a multilayer perceptron that was trained using BOW had a recall that
was highest, which was 63.7% as well as the highest f-measure which was 0.746. The
authors also mentioned that they would improve their research further by expanding
their dataset.

The paper [6] has represented different forms and classification of SQL injection
attack. They also proposed a model which is like a pattern lock and it works in
three parts where the first one checks the ASCII characters, then the tokens are
being checked and finally the threshold values are examined. In this way, the model
ensures that only the correct queries are handed to the database server. This paper
has mentioned some types of attacks under different categories for example client-
side attacks, attacks based on disclosure of information, attacks made with the help
of command execution and authentication-based attacks. According to the paper,
SQL injection attacks are grouped into six kinds i.e., tautologies, union queries,
stored procedure, logically incorrect queries, inference, piggy-backed queries, etc.
In the proposed model, the user interface would take input from the user. After
that it would compare query length and pattern values of all the inputs. If both of
the values are same then calculation of the anomaly value will be done. The given
query will be rejected by the model if the score for anomaly exceeds the thresh-
old set beforehand. If the threshold was not exceeded then the query will not be
rejected. Also, some ways of preventing SQLI are studied like SQL Cheat Sheet
which is available in OWASP, avoiding detailed error message, using queries that
are parameterized, outlining of automatic and dynamic access control list, usage of
function that would block quote, giving only the necessary permissions to users the
etc. In the end the authors acknowledged that the security of their proposed sys-
tem has some loop holes and their application was not running fast enough. They
mentioned that the model could be improved by adding cross site script prevention
mechanism to make the model faster and more secure.

In paper [10], the authors have proposed a short-term memory-based detection
system for SQL injection attack. The proposed method in the paper is capable of
learning the effective way of representing the data automatically. It is also claimed
to hold a significant advantage while facing massive and complex high dimensional
data. Furthermore, the authors have proposed an injection sample generation model
which is capable of generating valid SQL injection attack samples. The authors
mentioned that recent proposed methods such as static analysis, dynamic analysis,
instruction randomization etc. can detect only a small set of SQL injection attacks.
The system proposed by the authors contains two main phases, i.e. the off-line
training phase and on-line testing phase. In the proposed system LSTM is used to
control three gates which in turn control the contents in the unit state. After that,
in order to determine the percentage of the state of the cell in the earlier moment is
maintained in the current state. The authors collected 6052 SQL injection samples
for training and testing. Finally, the authors have shared the results of using various
feature vector transformation methods. Word2vec method yielded an accuracy of
93.47% while BoW method yielded an accuracy of 91.93%.

8

In paper [11], the authors have claimed that with the inception of B/S mode ap-
plication development, the developers are nowadays more inclined towards using
it but due to lack of proper experience the authenticity of user input is not being
verified properly, leading to SQL injection attacks. The authors have pointed out
the basis of SQL injection, types of SQL injection attacks and discussed about ways
to prevent SQL injection attacks in this paper. It has been mentioned in the paper
that SQL injection lets the attacker evade the authentication mechanism entirely
and manipulate the database located on the remote server. As database commands
are allowed to be mixed with user data in the SQL syntax, the system may interpret
some user data as database commands. According to the authors there are two
major processes of SQL injection attacks i.e. inserting code straight into the user
input variables which is concatenated with SQL command, or the second method
being to store harmful code in tables in the form of strings and later connecting it
to dynamic SQL commands. The paper also mentions several types of SQL Injec-
tion attacks such as not filtering the escape character, incorrect type handling, blind
SQL injection, conditional response, time delay etc. Finally, the authors have shared
some ways to prevent SQL injection attacks, e.g. filtering out the keywords in SQL
statements, naming database tables and fields in a way that is hard to guess, setting
register globals to off in PHP configuration file, not showing errors in browser, not
omitting small quotation marks and single quotation marks, encapsulating common
methods in order to prevent direct leaking of SQL statements etc.

On paper [2] Professor Sonewar and professor Thosar, aims to detect the SQL at-
tacks on three-tier Web Applications. Two web applications were implemented by
them, SWA with the option of uploading and downloading files and DWA in which
a web application for blogs is created where users can upload an article, comment
on an article, create an account, and browse articles. The authors stated that the
request rate and reply rate satisfied their expectations. They further mentioned that
this approach causes a problem of overhead in the webserver. But unlike the system
that uses lightweight virtualization to contain each user, their system decreases the
overhead. The authors with the help of httperf were able to check their system for
up to 250 requests per second to the webserver. They mentioned that Vanilla had
better performance than their system as container overhead is absent.

On paper [1], Kamtuo, Soomlek from the department of computer science at Khon
Kaen University is working on preventing SQL injection server-side using machine
learning. The authors stated that the most commonly found web application sus-
ceptibility in the National Security Agency from the USA is SQL injection. The
framework is designed for SQL commands datasets extraction to mark as input at-
tributes. The input attribute will be sent to the machine learning models and SQL
injection will be predicted. The framework is created to complement the ability of
validating SQL syntax, detection and prediction of SQL injection in development of
web application. The methods used for detection and prediction of SQL injection,
e.g., machine learning models, research techniques, and plans are mentioned in the
paper. The authors stated that, a variable that receives value from user input is a
dependent variable and so there is a vulnerability to SQL injection when someone
inserts hostile SQL commands mixing with the basic tasks as user input. The au-

9

thors were successful at preventing such vulnerabilities by training the model with
1100 examples and finally figured out which commands to avoid.

2.2 Algorithms

The Algorithms that were used to design some models to test their performances
are shortly described below.

2.2.1 Random Forest

Random forest algorithm uses supervised learning which can be applied in both
classification and regression-based models. It is one of the more popular algorithms
due to its flexibility. The algorithm basically creates a number of decision-trees and
combines them to predict more accurately. The more trees there are the higher will
be the accuracy and the probability of overfitting will also go down.

The algorithm first selects random data from a given dataset. After that, for every
sample of data it will create one decision tree. The algorithm gets a result from each
of the decision trees. Then, every result is subjected to voting and the result that
wins is selected as the final result.

Figure 2.1: Random Forest Algorithm

2.2.2 KNN

KNN or K-nearest neighbors algorithm is also a kind of supervised Machine Learn-
ing algorithm and is used for both classification and regression problems. KNN
algorithm does not have a separate training phase. The algorithm works in a kind

10

of a straight forward assumption that the similar samples exist close to each other.

Firstly, the training and testing data is loaded. ‘K’ is initialized as the chosen
number of neighbors. Then, for each point of training data the following steps are
followed. The distance between the K neighbors are calculated. The K nearest
neighbors are taken based on the calculated distance. After that, the number of K
neighbors are counted from every category. Finally, new data points are assigned to
the category with the maximum number of neighbors. [5]

Although the algorithm is easy to implement, the algorithm gets progressively slower
as the amount of data increases.

Figure 2.2: KNN Algorithm

2.2.3 Näıve Bayes Algorithm

Näıve Bayes algorithm is based on Bayes’ Theorem. Its unique approach is to assume
that something in a class has no relation to other features in the class. Basically,
every feature that is to be classified is independent of each other. After that, every
feature is considered to have the same importance.

Bayes’ Theorem finds out the probability of an event A occurring given that event
B has already occurred.

P (A|B) =
P (B|A)P (A)

P (B)

2.2.4 Logistic Regression

Logistic regression is a kind of classification algorithm that is used to classify a
discrete set of classes. A Logistic function is used in this case to model a binary

11

dependent variable. There are several types of logistic regression. They are, Binary
Logistic Regression, Multinomial Logistic Regression and Ordinal Logistic Regres-
sion. We have used the Binary Logistic Regression for our experiments [4].

Figure 2.3: A logistic function

2.2.5 Neural Network Classifier

Neural Networks is an artificial structure of electronic network of neurons crudely
mimicking the neural structure of animal brain. The records are processed one at a
time by the neurons. The neurons in a neural network are arranged into three layers,
input layer, hidden layer and output layer. The network works in a feed-forward
process i.e. every neuron receives an input, applies a function to the input and then
feeds the modified input forward to the neurons in the next layer. So, the output
of a neuron works as the input of a neuron from next layer. This process contin-
ues until the final output is generated. Each function consists of a weight which
is multiplied with the input to produce an output. The difficulty of constructing
a proper neural network lies in finding the perfect weight and an additional bias value

Figure 2.4: A simple Neural Network

12

Chapter 3

Proposed model

3.1 Dataset description

The sample dataset that we have used regarding SQL Injection Attack was taken
from Kaggle’s website. Our sample dataset contains 34,048 unique values. The sam-
ple dataset contains two Columns of data. The first column represents a Sentence
which needs to be detected as normal or SQL Injection Attack and second Column
represents a numeric value to determine whether it is a normal statement or SQL
Injection query. Here, the value 1 has been used to represent the sentence as a
SQL Injection query and 0 has been used for representing the sentence as a normal
statement. There were 22,305 positive samples and 11,781 negative samples in the
sample dataset.

3.1.1 Data preprocessing

In our sample dataset, we found that, there were some null values. So, at first, we
identified the null values in our dataset and removed them before training phase.
Since our dataset contains sentence which is actually a text value, so it is needed
to be converted to int value before starting the training. So, in order to do this, we
used count Vectorizer class to convert the text value into its corresponding numeric
value. It should be noted that, we have chosen words which have been present in
at least two text documents and up to 70% of documents and converted them to
tokens for training our dataset. Here, we have selected 1500 most occurring words
as features for training our dataset.

However, the dataset we selected contained SQL queries which were marked as 1 or
true and regular texts which were marked as 0 or false. Initially the datasets did not
contain any regular texts that contained keywords from SQL queries. For example,
“INSERT SELECT OR” is not an SQL query as the syntax does not follow the
rules of SQL although multiple common keywords that are used in SQL queries are
present in the string. So, it is just a regular text. But, in our dataset such kind of
regular texts was absent. As a result, if our model was trained using this unaltered
dataset, it would identify regular texts that contained SQL query keywords as a
potential SQL injection attack.

13

Our model was meant to be incorporated to the input fields of a website, where in-
puts like “SELECT1234INSERT” may be valid in input fields like a password field.
Even if it was not valid for the field alarming the website owner over such a harmless
input would be nonsensical. Harmless inputs like these which contained common
keywords from SQL would be blocked as a potential threat and the owner of the
website would be notified with a false positive alarm.

Therefore, we added many samples of such kind of strings in the dataset that might
look harmful for containing SQL keywords but is actually harmless as syntactically
they do not form any SQL query. Strings like “for select into”, “hello insert ok”,
“or and into” etc. were entered into the dataset as a ‘0’ or false which meant they
were regular strings.

3.2 Model description (Workflow)

Figure 3.1: Workflow of our proposed model.

14

At first, after researching about SQL injection attacks and going through many rel-
evant papers and articles we gathered sufficient knowledge regarding SQL injection.
A dataset was chosen containing many SQL queries as well as some harmless strings.
They were classified into two groups, 1 and 0. 1 standing for SQL injection attack
string and 0 standing for regular strings. After the dataset has been collected, the
dataset was processed.

After that, we implemented several machine learning algorithms and created several
models. Our goal was to find out which algorithm yielded the best accuracy while
identifying the SQLi queries. Then, we compared the results and identified the al-
gorithm that had the highest accuracy. Finally, we used this algorithm to design
our final model which is able to detect SQLi attacks and provide relevant warning.
The workflow of our proposed model is as follows:

The dataset was taken from [13]. As the gathered data contained few irrelevant
data, data pre-processing was required. Following the 80/20 rule for machine learn-
ing we spent most of the time of our study in this step. Data pre-processing means
cleaning raw data into clean data, i.e. keeping the data that is most relevant for
training. Basically, we removed noisy data and removed data duplication. We re-
moved the null values found in the dataset. After that, we trained and tested our
model using the dataset simultaneously. After that, we evaluated the results again
and again and continued to improve our model. We finally developed a model that
performed properly with our chosen dataset.

Our dataset was categorized into three categories: training data for training our al-
gorithm, testing data for checking if the algorithm is providing the expected results
and validation set was used to predict the ability of the model to function on unseen
data.
A website was developed in order to test the competency of the model in practical
situations. Finally, the model was connected to the website and tested.

15

Chapter 4

Experimentation and Result
Analysis

4.1 Experimentation

For this paper, we have implemented 5 different algorithms to train our sample
dataset to observer their accuracy. The algorithms that we have used are Logistic
Regression, Neural Network Classifier, Random Forest, KNN and Näıve Bayes. Here
we have used 80% of sample dataset for training and the rest 20% of data for testing.

In Logistic regression, we first imported necessary libraries and stored all the tokens
generated in preprocessing into an array. The ‘sentence’ column was used as the
independent variable and the ‘label’ column was used as the dependent variable.
The data was divided into training set and testing set. After that, we trained our
model. Here the value of random state was put as 0. After training, we put our
model to test by feeding the testing dataset. The accuracy of this model was found
to be approximately 95.7%. The classification report is given below.

Figure 4.1: Result of Logistic Regression

In Neural Network classifier, we used sigmoid function in order to evaluate the model.
We added around 1024 dense layers. The value for the dropout layer was put as
0.5. It was done in order to prevent over-fitting of our model. Here, the output of
the sigmoid function if anything was above 0.5 it was considered as a SQL Injeciton
Query, and anything below 0.5 was considered as a normal statement. Batch size
for traning phase was 15. In addition to that, we used 10 epochs for training. After
testing phase, the accuracy score was found to be approximately 95.8%. Below is
the classification report for Neural Network classifier.

16

Figure 4.2: Result of Neural Network Classifier

In Random Forest classification, we used the value for random state as 0. In ad-
dition to that, we used number of estimator’s value to be 1000. It is the number
which determines the number of tress to be built before taking maximum voting or
averages of prediction. We have used a higher value here, because a higher value will
make our model stable and more accurate. The accuracy of this model was found
to be 95.7%. Below we have given the complete classification report for this model.

Figure 4.3: Result of Random Forest Classifier

In KNN, the value for nearest neighbor used for training our dataset was 1, since
we have only two values for the ‘label’ column (1 or 0). After that, we trained our
model using the training set. We then tested our model by feeding the test dataset.
Following this, the accuracy of the model was found to be 95.5%. We have also
generated the classification report for this algorithm.

Figure 4.4: Result of KNN

17

In Näıve Bayes algorithm, we first imported Multinomial NB, Pipeline and Count
Vectorizer. Here, we put the value of random state as 42. We generated our model
using Pipeline and trained our training set data with the model. After that, we have
fed test sample dataset in order to evaluate the algorithm. It was found that, this
algorithm provided with 97.8% accuracy. The classification report for this algorithm
has been given below.

Figure 4.5: Result of Näıve Bayes Algorithm

4.2 Result Analysis

Here we have compared the accuracy of all the algorithms implemented

Algorithm Logistic
Regressione

Neural
Network
Classifier

Random Forest
Classification

KNN Näıve
Bayes
Algorithm

Accuracy 0.957 0.958 0.957 0.955 0.978
Percentage 95.7% 95.8% 95.7% 95.5% 97.8%

Table 4.1: Comparison between different implemented algorithms.

In this table, we have compared accuracies of all the algorithms which we have im-
plemented in this paper. This table shows that, of all the algorithms, Näıve Bayes
algorithm has an astounding accuracy of 97.8% whereas Logistic Regression, Neural
Network Classifier and Random Forest have an accuracy of almost 96%. Finally,
KNN has the lowest accuracy among all algorithms, which is 95.5%.

We also developed a website in order to use an algorithm for giving protection
and safety against SQL Injection Attack. The name of our website is BharaChai
Ltd. It is a website where people can see different places which are available for
rent. People can create account, login and search for places to rent. The web-
site also allows for search by specific locations to see various places up for renting.
People can also put up their own places for renting. We did not use any kind
of framework for building this website. We used general CSS, PHP and HTML
for building the website. As a result, the website had no additional security to

18

SQL Injection Attacks. For this, we tried to use SQL statements to get informa-
tion from the database of our website. Here, we found a flaw in the search op-
tion of our website. It was found that whenever we wrote “name%’) Union select
1,”asdm@gmail.com”,email,pass,”dn”,3,2,”nd.com” from user where (’a’ like’%a” in
the search option and hit enter, all the databases login id and password were re-
vealed to us. So the website was vulnerable to SQL injection attacks.

Since Näıve Bayes Algorithm had the most accuracy, we used the model that used
Näıve Bayes and wrote a python script to add it to our website. We designed it in
such a way that, whenever anyone tries to put SQL query in the input fields within
the website, it immediately detects it and notifies the admin through email. We
used a python module called pickle in order to integrate the model to our website.
Afterwards, when testing the system after the incorporation it was found that the
model was able to identify every SQL query that was inserted into the input fields
as a threat i.e., false negatives were mostly absent. However, the accuracy of the
model dropped drastically due to false positive alarms. The model kept identifying
non-SQL strings as a threat when one or more SQL keywords were present in the
string. We were able to reduce the rate of false positive alarms by adding regular
strings that contained SQL keywords to the training set of the model. The model
was then able to identify harmless SQL keyword containing strings as regular input
much more accurately. But, the rate of false positive alarms was still much more
than that of false negatives.

19

Chapter 5

Conclusion

At present we have become so much dependent on the internet that it will not be a
mistake to call it an essential element of our lives just as food, clothing and shelter.
In fact, we are also dependent on internet for acquiring and managing all the other
essentials in our life. We rely on websites and web applications for banking, shop-
ping, businesses, jobs and so on. The smooth operation of these media is absolutely
necessary for the smooth operation of not just our personal lives but at organization
level, state level, national level and in some cases even globally.

Furthermore, all the websites and web applications that we are affiliated with both
directly and indirectly, contains so many sensitive information about us that it may
almost seem impossible. Should this information fall in the hands of the wrong
individual or group, our organizations or even our personal lives could be destroyed.
But it is an alarming truth that we are getting more and more vulnerable as tech-
nology develops. We are getting exposed to increasing number of kinds of attacks.
SQL injection attack is a very special kind, since it may serve as the medium for
several other kind of severe attacks.

SQL injection attack is currently one of the most popular method of attacking the
database of a system. Many kinds of attacks come and go with time, but SQL injec-
tion is a technique that lingers. It continues to haunt the securities of our websites
from multiple fronts. It has so many faces that it is hard to keep up with it using
traditional defenses. It can only be dealt with consistently using an evolving defense
system. Our defenses need to evolve along with the evolution of the threats. The
model we proposed in this paper uses such a machine learning algorithm so that
it can keep learning about new kinds of SQLi attack attempts and identify them
in the future. It will be able to protect any website from SQL injection attacks
as demonstrated in the website we used to test it. We have plans to improve our
current model by adding more datasets which contains SQL statements that will not
compromise the security of the website. Adding these types of dataset will help us
to train our model more effectively and decrease the false positive rate of our model.
This will help to improve the efficiency of our model. We hope that the model we
developed will work as an added layer of defense against such attempts and keep
our databases more protected.

20

Bibliography

[1] K. Kamtuo and C. Soomlek, “Machine learning for sql injection prevention on
server-side scripting,” in 2016 International Computer Science and Engineer-
ing Conference (ICSEC), IEEE, 2016, pp. 1–6.

[2] P. A. Sonewar and S. D. Thosar, “Detection of sql injection and xss attacks in
three tier web applications,” in 2016 International Conference on Computing
Communication Control and automation (ICCUBEA), IEEE, 2016, pp. 1–4.

[3] Stasista, “Average cyber losses to global companies in the last fiscal year as
of may 2019, by company size.” [online],” Wired, 2016.

[4] K. Zetter, “That insane, $81m bangladesh bank heist? here’s what we know,”
Wired, 2016.

[5] S. Jaiswal, “K-nearest neighbor(knn) algorithm for machine learning,” in 2016
International Conference on Computing Communication Control and automa-
tion (ICCUBEA), java point, 2018, javatpoint.com/k-nearest-neighbor-algorithm-
for-machine–learning.

[6] P. N. Joshi, N. Ravishankar, M. Raju, and N. C. Ravi, “Encountering sql injec-
tion in web applications,” in 2018 Second International Conference on Com-
puting Methodologies and Communication (ICCMC), IEEE, 2018, pp. 257–
261.

[7] M. Hasan, Z. Balbahaith, and M. Tarique, “Detection of sql injection attacks:
A machine learning approach,” in 2019 International Conference on Electrical
and Computing Technologies and Applications (ICECTA), IEEE, 2019, pp. 1–
6.

[8] Q. Li, W. Li, J. Wang, and M. Cheng, “A sql injection detection method based
on adaptive deep forest,” IEEE Access, vol. 7, pp. 145 385–145 394, 2019.

[9] ——, “Sql injections: Used in 51% of cases by hackers,” IEEE Access, vol. 7,
pp. 145 385–145 394, 2019.

[10] Q. Li, F. Wang, J. Wang, and W. Li, “Lstm-based sql injection detection
method for intelligent transportation system,” IEEE Transactions on Vehic-
ular Technology, vol. 68, no. 5, pp. 4182–4191, 2019.

[11] L. Ma, D. Zhao, Y. Gao, and C. Zhao, “Research on sql injection attack
and prevention technology based on web,” in 2019 International Conference
on Computer Network, Electronic and Automation (ICCNEA), IEEE, 2019,
pp. 176–179.

[12] S. Nagasundari, P. B. Honnavali, et al., “Sql injection attack detection using
resnet,” in 2019 10th International Conference on Computing, Communication
and Networking Technologies (ICCCNT), IEEE, 2019, pp. 1–7.

21

[13] S. S. H. Shah, “Sql injection dataset.,” Kaggle.com, 2019, kaggle.com/syedsaqlainhussain/sql-
injection–dataset?select=sqliv2.csv.

[14] K. Zhang, “A machine learning based approach to identify sql injection vulner-
abilities,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, 2019, pp. 1286–1288.

[15] D. Tripathy, R. Gohil, and T. Halabi, “Detecting sql injection attacks in cloud
saas using machine learning,” in 2020 IEEE 6th Intl Conference on Big Data
Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Perfor-
mance and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS), IEEE, 2020, pp. 145–150.

22

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Objective and contributions
	Thesis Structure

	Background
	Literature Review
	Algorithms
	Random Forest
	KNN
	Naïve Bayes Algorithm
	Logistic Regression
	Neural Network Classifier

	Proposed model
	Dataset description
	Data preprocessing

	Model description (Workflow)

	Experimentation and Result Analysis
	Experimentation
	Result Analysis

	Conclusion
	References

		2021-01-20T19:41:13+0600
	Dr. Md. Golam Rabiul Alam

