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Abstract

Gene classification and pattern extraction from gene sequence data is essential in
understanding different gene sequence features. The field of gene expression data
analysis has grown in the past few years from being purely data-centric to integra-
tive, aiming at complementing microarray analysis with data and knowledge from
diverse available sources. Since then, it has been used for various science fields,
including the discovery of new drugs, identification of protein coded genes by ana-
lyzing and separating exons from the main sequence, phenotype prediction based on
gene expression. The paper presents an application of gene classification from gene
sequence data using data mining and machine learning techniques. Our research’s
main goal is to compare different machine learning approaches based on time of
execution, and overall efficiency by testing them on different microarray data sets
of gene sequence and determining the best approach for gene classification. Eight
different machine learning techniques have been tested on eleven different gene ex-
pression datasets, and the results are compared and improved using the feature
selection method. Moreover, we perform pattern analysis on some gene expression
datasets using a J48 decision tree outcome, after applying feature selection.

Keywords: Classification; Feature Selection; Accuracy; Pattern Extraction; Gene
Classification; Application of Machine Learning
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Chapter 1

Introduction

Research on gene sequence data has received a great deal of attention in recent years.
The principal motivation behind that attention is to recover helpful patterns and
perform analysis on gene sequence data. The patterns are of utmost significance
when it comes to treating ailments and anticipating illnesses. Machine learning has
played a significant role in determining such patterns over the years. Gene sequence
data is usually very high dimensional data requiring high computation to determine
gene sequence patterns. The approach with machine learning is to train the machine
so that when it is tested with similar data, it can efficiently give accurate results.
Such learning can be supervised, semi-supervised, unsupervised, or reinforcement
learning depending on the dataset available and the type of work that we want the
machine to learn [25].

In unsupervised learning, the machine is given an unlabeled dataset, and it tries to
extract some feature based on the type of pattern given. In supervised learning,
labeled dataset is given and the machine is trained using that, and upon testing on
similar datasets, the accuracy of the algorithm is measured for classification.

In semi-supervised learning, the algorithm is given a few labeled data and large
amount of unlabeled data to first try to extract feature and then check accuracy of
the same algorithm. With reinforcement learning, the artificial intelligence agent is
provided feedback in every step of the way on the basis of how it works and ways
to improve in order to choose the optimal path to the target.

In order to carry out machine learning algorithms smoothly, data mining is essential.
Data mining has various categories. Clustering data and anomaly detection are a
few, but one of the most important data mining techniques is data pre-processing.
With the data pre-processing step, the dataset is reconstructed in such a way that
only the features that are relevant in determining the outcome are kept, while the
rest are discarded, in such a way that the computation time is reduced and the
algorithm is made more accurate by discarding the noise, or redundant data [17].
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1.1 Research Problem

Extracting patterns from gene sequence has a number of benefits in the field of
medical science. As mentioned earlier, the different patterns generated from gene
sequence can be used to treat illnesses by the creation of different drugs. It can
also be used to separate healthy genes from unhealthy ones. In recent times, given
the current global pandemic situation created due to Covid-19, the entire world has
been drawn to a standstill. In such a crisis, people are only looking for a ray of
hope in the production of a fully functional vaccine. In order to create this vaccine,
pharmacists should be able to distinguish between healthy genes and covid-affected
genes. The chemical and biological properties of such genes need to be properly
studied and understood if a useful drug is to be created. According to Collins et
al. [3], genomic medicine holds the ultimate promise of revolutionizing the diagnosis
and treatment of many illnesses. Furthermore, Mattick et al. [15] stated that
currently, genome sequencing is having the greatest impact in stratifying cancer,
characterising genetic disease, and providing information about an individual’s likely
response to treatment. Here, it is discussed that advances in both computational and
sequencing technologies enable an ever-increasing capacity for accurate diagnosis of
existing disease, and development of effective and targeted treatment strategies and
also offer opportunities to assess predisposition to disease, potentially prompting
more focused clinical monitoring and lifestyle changes. Not only for virus-infected
patients, but also to categorise different abnormalities in people and to detect various
diseases in human beings, the study of gene sequence to classify patterns is extremely
useful. To combat these problems, our paper compares different machine learning
techniques using data mining based on accuracy and time to classify various gene
sequence datasets and extract patterns from them.

1.2 Research Objectives

The main goal of our research is to compare 8 different machine learning algorithms
before and after applying data pre-processing based on time of execution and overall
accuracy by testing them on 11 different microarray datasets of gene sequence and
also extract patterns from 3 datasets using the decision trees extracted after pre-
processing. This research is supposed to be a helping tool to get the most time-
efficient and accurate technique of gene classification from such critical gene sequence
and to analyse patterns that are extracted from the datasets which can help in the
creation of different drugs and vaccines, to predict if a person is healthy or unhealthy
given the gene sequence, to determine abnormalities in human beings and many
other applications in the field of medical science.
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Chapter 2

Literature Review

The classification of gene sequences has previously been studied in many different
ways. The approach with machine learning is versatile to learn valuable portrayals
of hereditary ideas when given just occurrences, as opposed to express definitions,
of those ideas from quality grouping information [2]. The paper mainly looked into
the empirical learning approach (supervised learning) using a training set. In any
case, it is hard for such a way to deal with be both exceptionally delicate (foreseeing
not many bogus negatives) and profoundly explicit (anticipating not many bogus
positives) via preparing. But due to the large volume of data available in open repos-
itories, predictions can be made more reliable. Ca et al. [20] used Support Vector
Machine (SVM) classifier for gene classification. Here, mutual information (MI) be-
tween the genes and the class label has been utilized for distinguishing informative
genes, and the testing capacity is assessed utilizing Leave-one-Out Cross-Validation
(LOOCV) technique. This process is quite time-consuming, but classification accu-
racy is high. As indicated by this, the fundamental issue with this quality grouping
is include determination, and since measurable statistical approaches are utilized to
foster the model of the classifier, these are typically incapable to characterize an
example if the outflows of qualities are marginally not the same as the predefined
profile and accordingly bring about an unyielding characterization framework. Gene
selection improves training time, as well as classification accuracy, by reducing the
dimension of gene expression data and removing a large number of irrelevant genes
[20].

Singh et al. [19] gives an overview of different feature selection techniques of gene ex-
pression data for cancer classification. As per this, information mining calculations
assume a significant part in quality characterization as it is the most broadly uti-
lized way to deal with accomplish significant quality gene expression data features.
Model-based methodology has been proposed to assess the entropy on the model,
rather than on the actual information. They also used marker panel rank based
scheme information gain to analyze, but this information gain was not accurate with
large groups. Also, among the two types of feature selection techniques that have
been discussed here, filter methods and wrapper methods, the latter requires exten-
sive computation to search for the best features and takes more time [19]. Another
feature selection technique has been proposed by Liu et al. [26]. This paper talks
about the importance of feature selection to identify and separate disease-related in-
formation from a large amount of data and noise. Double RBF-kernels are used here
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for gene expression data classification for cancer. The modified method has been
tested on either multi-class phenotypes or two-class phenotypes. This method has
a reduced run time, as well as a higher accuracy than single RBF-kernels. This has
higher exactness contrasted with some generally utilized filter-based feature rank-
ing methods, to be specific X2-Measurement, Maximum Relevance and Minimum
Redundancy (MRMR), Relief-F, Information Gain and Fisher Score. But this ap-
proach is more suited to datasets with a small sample size.

Another paper proposed a cost-sensitive rotation forest algorithm for gene expression
data classification [24]. Mainly miss-classification cost, test cost, and rejection cost
are embedded into the rotation forest algorithm to make this method cost-sensitive.
By reducing these classification costs, the classification of genes can be made more
reliable. This approach gives a lower cost than support vector machine (SVM) and
extreme learning machines (ELMs). The conventional rotation forest algorithm is
improved using this to deal with linearly inseparable data. Although this might
be a cost-effective approach, classification accuracy is significantly hampered as the
miss-classification risk increases without considering the rejection cost and the re-
jection strategies. Also, the C-RoF method mentioned here alters the original way
of splitting the dataset and reduces accuracy, as it prefers splitting with attributes
in low-cost direction. Li et al. [10] explored the intrinsic structure of the features
so as to classify the microarray data more accurately through manifold learning
method by mapping the gene expression data to a low dimensional space. This can
project the gene expression data into a subspace with high intra-class compactness
and inter-class separability. One can map the observed high dimensional data to
a low dimensional essential feature manifold space with manifold learning meth-
ods. A supervised version of an LLE, namely locally linear discriminant embedding
(LLDE), is proposed here for tumor characterization. A vector interpretation and
distance rescaling model is built to improve the acknowledgment exactness of the
first LLE, which makes the samples with various class marks very much isolated and
makes the samples having a place with a similar class nearer. This LLDE procedure
altogether weakens the little sample size issue and the detached component issue
contrasted with other broadly utilized feature extraction algorithms. It has been
extremely powerful in extricating the discriminant highlights from the gene expres-
sion information of the tumor dataset. Yet, it depends on a suspicion that the gene
expression data can likewise be tested from a manifold influenced by complicated
environmental impact and internal gene factors which probably won’t be altogether
evident truly. Additionally the highlights with various class names will be arranged
effectively, however the key qualities can’t be chosen with the proposed calculation
since LLDE centers around protecting the locality of manifold and improving the
grouping capacity

In another paper, a Group K-Singular Value Decomposition (Group K-SVD) has
been proposed which is a new sparse learning model for the classification of gene
expression data [28]. This technique learns the ideal dictionary and inadequate
portrayal from the preparation information, and after that appoints the out-of-test
data to the class with the closest centroid. By utilizing a gathering update method-
ology during the dictionary update stage, it decreases the excess of over-complete
word reference. To solve the optimization problem, He et al. [28] also developed a
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Multivariate Orthogonal Matching Pursuit (MOMP) algorithm which updates the
sparse coefficient in an adaptive group manner instead of one-by-one. This strategy
has been tried on certifiable gene expression datasets, just as on a high dimensional
dataset. This method is very powerful and has end up being successful and profi-
cient contrasted and some cutting edge characterization calculations. However, this
strategy isn’t versatile to bidirectional sparse learning issues. Garćıa-Dı́az et al. [30]
proposed a Gathering Hereditary Calculation (GGA) to take care of a maximally as-
sorted gathering issue, which has been applied for the grouping of a skewed database
of 801 samples of gene expression RNA arrangement information in 5 sorts of cancer.
The precision was discovered to be marginally higher in balanced databases than in
unbalanced ones. The normal precision of the order is improved when a few of these
classifiers are joined in a democratic framework. Yet, there is a constraint to this
proposed calculation, which is the chance of inadequate investigation of the solution
space. Since the pursuit space is gigantic, legitimate investigation of the hunt space
isn’t ensured in this.

He et al. [29] discussed how stereotypical gene expression information normally
present a high dimensional imbalanced trademark, which represents an extreme test
for conventional AI strategies to develop a hearty classifier performing admirably on
both the minority and larger part classes. Relief is considered especially suit to deal
with high-dimensional issues as it is perhaps the most successful feature weighting
methods. Here, another technique, named imRelief, is proposed for productively
taking care of high-dimensional imbalanced gene expression data that can fix the
inclination towards the majority classes and consider the dissipated distributional
trait of minority class tests in the process of estimating feature weights. [12]. This
strategy beats other common Relief-based algorithms as far as different assessment
metrics according to the test result. Yet, this strategy is just successful for micro-
array gene expression data with class imbalance distribution. Priyam et al. [14]
compared the classification of several decision tree algorithms on low dimensional
datasets. Much research has been carried out to figure out the best possible ap-
proach to pattern extraction from the gene sequence. Most of such research lack
efficiency and accuracy [26][24][30].

Compared to the previous works, our research’s main objective is to try different
machine learning algorithms to test on different micro-array datasets for gene ex-
pression analysis and get the most time-efficient and accurate method for this. Also,
by applying feature selection techniques, the results are compared to determine the
best possible machine learning technique for such meaningful and critical data. To
save time, we have used a filtering method (Information Gain) for feature selection.
Our proposed method compares decision trees, along with other classification mod-
els on high dimensional gene expression data. The extracted patterns from decision
trees can then be used for various medical science applications. The contributions
of the paper is as follows:

• Performance evaluation of various classification techniques on high dimensional
gene expression datasets,

• Performance improvement of classification techniques on high dimensional
gene expression data using feature selection method,
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• Pattern analysis on gene expression datasets.
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Chapter 3

Proposed Method

This section presents a framework to discover an efficient machine learning classi-
fication algorithm in terms of accuracy, F1 score, and execution time from eight
different classifiers using eleven gene expression datasets. A flow chart of the pro-
posed method can be seen in Figure 3.1. The procedure is carried out in five basic
steps.

• Data Collection

• Data Pre-processing

• Classification

• Evaluation and Comparison

• Pattern Analysis Based on Decision Trees

In the beginning, we have discussed the process for our data collection, then we
have discussed the feature selection technique that we used for data pre-processing.
Next, we apply classification algorithms to the dataset and then perform evaluation
and comparison of the results. Finally, we performed pattern analysis on different
gene expression datasets.

3.1 Data Collection

In this research, eleven gene expression datasets have been used as shown in Table
3.1. The datasets BC, LK, BR, TR, GT, PC, and LV, are collected from the paper
of Feltes et al. [27]. These datasets come from the Curated Microarray Database
(CuMiDa), a repository containing 78 handpicked cancer microarray datasets, ex-
tensively curated from several studies from the gene expression omnibus (GEO),
solely for machine learning. The LP dataset was collected from the paper of Cheng
et al. [11]. The DB dataset was collected from the paper of Hoshida et al. [7]. The
NV and LC datasets were collected from the paper of Monti et al. [4]. Compared
to the DB, NV, and LC datasets, the rest are extremely high dimensional datasets
containing thousands of gene expression attributes. The BC dataset contains gene
expression data for 6 types of breast cancer (including normal cell); similarly, the
LK dataset contains data for 5 types of leukemia; the LP dataset contains data for 2
types of cancer; the BR dataset contains data for 5 types of brain cancer (including
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Figure 3.1: The flowchart of the proposed method

normal tissues); the DB dataset contains data for 3 types of diffuse large B-cell lym-
phoma; the NV dataset contains data for 4 types of organ tissues; the LC dataset
contains data for 4 types of lung cancer; the TR dataset contains data for 2 types
of throat tissues; the GT dataset contains data for 2 gastric type tissues; the PC
dataset contains data for 2 types of pancreas tissues, and the LV dataset contains
data for 2 types of liver tissues.

3.2 Data Pre-processing

To evaluate and compare each classifier on the datasets, the effect of data mining
is to be considered. Each classifier is applied to the datasets before applying any
pre-processing on the datasets. Then, again each classifier is applied to the datasets
after pre-processing. To pre-process the high dimensional datasets, one of the most
important method is used, which is feature selection. Singh et al. [19] already men-
tioned that wrapper methods require excessive computation, which requires more
time, we used a filter method for feature selection. This feature selection is made
using the highest 50 attributes ranked based on information gain. To calculate the
information gain of each attribute, firstly, the entropy is to be calculated. The en-
tropy is simply the amount of variance in the data. The formula to calculate entropy
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Table 3.1: A brief description on gene expression datasets

Datasets Attributes Records Classes

Breast Cancer
GSE45827(BC)

54676 151 6

Leukemia
GSE9476(LK)

22284 64 5

Lung And
Prostate Can-
cer(LP)

12534 32 2

Brain
GSE50161(BR)

54676 130 5

DLBCL(DB) 661 141 3

Novartis BPLC
Multi(NV)

1000 103 4

Lung Cancer
Types(LC)

1000 197 4

Throat
GSE42743(TR)

54676 103 2

Gastric
GSE79973(GT)

54676 20 2

Pancreatic
GSE16515(PC)

54676 51 2

Liver
GSE62232(LV)

54676 91 2

is given by:

E = −
c∑

i=1

Pi log2 Pi (3.1)

Here, c is the number of classes, Pi is the probability of randomly picking an element
of class i (i.e., the proportion of the dataset made up of class i). The information
gain tells the importance of an attribute. This gain is calculated by deducting
the weighted entropies of each branch from the original entropy. The formula for
information gain is given by :

G(T,A) = E(T )−
∑
v∈A

|Tv|
T

.E(Tv) (3.2)

Here, T is the target class column, A is the attribute to be tested, and v is each value
in the column of A. The feature selection method is carried out in Weka (Waikato En-
vironment for Knowledge Analysis) software using the AttributeEvaluator method
InfoGainAttributeEval and the Ranker method. Based on the highest ranks of in-
formation gain, only the first 50 attributes were selected after pre-processing, which
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greatly reduced the datasets’ dimension. The WEKA software is open source soft-
ware for data mining and the system is written using object oriented language,
java [13]. Association, filtering, classification, clustering, visualization, regression,
etc. can be performed by implementing state-of-the-art data mining and machine
learning algorithms using WEKA.

3.3 Classification

Using the WEKA software, eight classifiers were applied on each of the datasets,
where 75% of the dataset was used for training, and the remaining 25% were used for
testing in a supervised learning manner. These eight classifiers are Support Vector
Machine (SVM), J48 (C4.5 Decision Trees), Random Forest (RF), Logistic Regres-
sion (LR), Deep Learning (DL), Naive Bayes (NB), K-nearest Neighbours (KNN),
and Logistic Model Trees (LMT).

• SVM: The SVM classifier has been chosen as it is one of the most widely used
classifiers for gene expression analysis, with very good accuracy [12]. While
training an SVM classifier, the process is to identify a reproducible hyperplane
that maximizes the distance between the support vectors of the classes. So,
the optimal hyperplane is that which maximizes the distance between class la-
bels. The SVM classifier uses kernel function to help with classification. These
kernel functions allow the SVM classifiers to handle nonlinearly separable data
sets and to incorporate prior knowledge, the kernels can be defined on inputs
that are not vector, and kernels provide a mathematical formalism for combin-
ing different types of data, which allow SVM to be used in critical biological
applications, such as classifying DNA and protein sequences [6]. The SVM
classifier is mostly suitable for handling binary classes, but we plan to see how
accurately it classifies the datasets of multi-class, as well as, binary classes.

• J48: Among the classifiers used, J48 and RF use decision trees for classification
[14]. Decision trees use the value of independent attributes to find the values
of the dependent attributes. The possible after-effect, including chance event
results, resource costs, and utility of a tree-like graph is used to make decisions
using decision trees [13]. The J48 algorithm is used to see how effectively a
single decision tree can do such classification. This type of decision tree (C4.5)
is quite commonly used for classification purposes and is a univariate decision
tree, where splitting is done by using one attribute at internal nodes [13].

• RF: The random forest classifier is used to give more accurate results than
single decision trees and can be used on large datasets. This approach combines
multiple decision trees for classification. This classifier takes a random subset
from the features, builds a decision tree based on that subset, and repeats this
process for many decision trees for several other subsets. This reduces the bias
of a single subset, and this approach is also effective for missing values in data
and categorical data. This algorithm overcomes the problem of over-fitting
by combining or averaging the results of different decision trees [22]. This
approach is aimed to give high accuracy even without pre-processing the data,
but requiring high computational time than J48.

10



• LMT: LMT also uses tree, but these type of trees are generated based on
logistic regression, and the results are mostly similar to logistic regression
models but takes more time to build the trees [5]. Logistic regression models
are used at the nodes to make decisions of such trees [23].

• NB: The NB and KNN classifiers do not use any model for classification;
instead, it depends on memory [8]. The NB classifier is one of the most
widely used Bayesian learning methods, and it tries to simplify the learning by
assuming that attributes are independent given class. It is a simple algorithm
which is easy to build and particularly useful for large datasets. In order to
see how this simplification impacts the classification of gene expression data,
this classifier is chosen.

• KNN: The KNN classifier classifies the result of a new instance query based
on the majority of the k-nearest neighbor category. It is easy to interpret
classification results using KNN, and it has low calcultaion time [1]. We have
used KNN with the value of k=1.

• DL: The DL classifier uses neural networks to classify the data [21] and is used
to determine how neural networks behave in gene expression classification.
Deep learning is just very big neural networks requiring a lot of data, and
depicts the way a human brain works. This calculation permits computational
models that are made out of various preparing layers to learn portrayals of
information with numerous degrees of reflection and finds many-sided structure
in huge informational indexes by utilizing the backpropagation calculation
to demonstrate how a machine should change its inner boundaries that are
utilized to register the portrayal in each layer from the portrayal in the past
layer[18].

• LR: Finally, the LR model has not been used much previously for gene sequence
classification, so we plan to use this on our datasets. LR models mainly work
with binary class and uses the logistic function for classification [9]. But we
intend to use this to see how effectively this model classifies both multi-class
and binary class datasets of gene expression.

3.4 Evaluation and Comparison

In order to compare the classifiers to determine the most time-efficient and accu-
rate classifier, these classifiers were evaluated in terms of accuracy, F1-score, and
execution time. The definition of accuracy, F1-score, and execution time is given
below.

3.4.1 Accuracy

This determines how correctly the labels have been classified from the total dataset
[31].

Accuracy =
CorrectlyClassifiedSamples

TotalSamples
(3.3)
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3.4.2 F1-measure

This score is based on two other measuring techniques, namely, recall and precision.
The recall estimates the extent of real positives that were distinguished accurately
dependent on the confusion matrix of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) [16].

3.4.3 Time

This time is the summation of the time taken to build a model and the time taken
to test the model on test split generated in WEKA.

Based on these three measures, the classifier with the best score for gene sequence
classification is determined both before and after feature selection.

3.5 Pattern Analysis Using Decision Tree Out-

come

In this section, we perform some pattern analysis. The decision trees produced
by the J48 classifier (C4.5 Decision Trees) on three datasets after applying feature
selection are used to generate patterns.
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Chapter 4

Experimental Result and
Discussion

This section discusses the experimental results of the classification techniques on
the gene expression datasets in terms of accuracy, F1-score, and execution time.
We also perform pattern analysis using the J48 decision tree on three datasets. We
discuss the results before feature selection and after feature selection.

4.1 Evaluation Before Feature Selection

Table 4.1 gives each classifier’s classification accuracy results on each dataset before
feature selection. Before using information gain on the features, for the BC dataset,
LR and LMT classifiers gave highest accuracy of 94.74%, but LR took less time
than LMT. The confusion matrix generated by LR that among the 25% test set,
the model correctly classified 11 out of 11 basal types, 4 out of 5 of HER type, 1
out of 1 of cell line type, 3 out of 4 of the normal type, 9 out of 9 of luminal A
type and 8 out of 8 of luminal B type. For the LK dataset, the highest accuracy
of 100% was generated by the RF classifier. The confusion matrix revealed no data
of type Bone Marrow CD34 in the test set, the 5 data for Bone Marrow and AML
type each were classified correctly, so were the 4 PB types and 2 PBSC CD34 types
in the test set. SVM, LR, DL, NB, and LMT produced 100% accuracy, and SVM
produced the least time for the LP dataset. The model correctly classified 5 lung
cancer type data and 3 prostate cancer type data in the test set.

For the BR dataset, SVM produced the highest accuracy of 100%. This classifier
correctly classified 11 ependymoma types, 10 glioblastoma types, 4 medulloblastoma
types, 3 normal types, and 4 pilocytic astrocytoma type of brain cancer data in the
test set. For the DB dataset, RF produced the highest accuracy of 100%. The model
correctly classified 14 OxPhos types, 12 BCR types, and 9 HR type of DLBCL in the
test data. For the NV dataset, SVM, LR, DL, KNN, and LMT produced the high-
est accuracy of 100%, with KNN taking the lowest time. These classifiers correctly
classified 8 breast types, 7 prostate types, 10 lung types, and 1 colon type tissue in
the test data. For the LC dataset, LR, DL, NB, and LMT produced the highest
accuracy of 93.88%, with NB taking the lowest time. The confusion matrix revealed
that the model correctly classified 30 out of 32 AD type, 4 out of 5 NL type, 7 out
of 7 SQ type, and 5 out of 5 COID type of lung cancer data. For the TR dataset,
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SVM, RF, LR, and LMT gave the highest accuracy of 100%, with SVM taking the
least time among them. These models correctly classified 24 oral cavity cancer type
and 2 normal type data in the test set. For the GT dataset, RF, LR, KNN, and
LMT gave the highest accuracy of 80%, with KNN taking the least time. According
to the confusion matrix, the model correctly classified 2 out of 3 adenocarcinoma
types and 2 out of 2 normal type data in the test set. For the PC dataset, LR
and DL gave the highest accuracy of 92.31%, with DL taking less time. The model
correctly classified 9 out of 10 tumoral types and 3 out of 3 normal type tissue for
the test data as per the confusion matrix. SVM, LR, KNN, and LMT gave 100%
accuracy, with SVM taking the lowest time for the LV dataset. The model correctly
classified 4 normal types and 19 HCC type data in the test set.

The average accuracies of the classifiers before pre-processing is given in Figure 4.1.
Before the datasets were pre-processed, the classifier which generated the highest
average accuracy was LR, with an average accuracy of 94.51%, with LMT and SVM
being second and third highest (93.81% and 91.79%). The classifier which performed
the worst was NB, with an average accuracy score of 74.72%, with J48 and DL being
the second and third lowest (76.85% and 85.73%). The average accuracy of RF was
91.14%, and the average accuracy of KNN was 86.27%.

Table 4.1: Accuracy of the Techniques Before Feature Selection

Dataset SVM
(%)

J48
(%)

RF
(%)

LR
(%)

DL
(%)

NB
(%)

KNN
(%)

LMT
(%)

BC 92.11 78.95 89.47 94.74 81.58 63.16 84.21 94.74

LK 93.75 68.75 100.00 87.50 87.50 62.50 87.50 87.50

LP 100.00 62.50 87.50 100.00 100.00 100.00 75.00 100.00

BR 100.00 78.13 93.75 96.88 87.50 90.63 81.25 96.88

DB 97.14 80.00 100.00 94.29 94.29 88.57 91.43 94.29

NV 100.00 88.46 96.15 100.00 100.00 96.15 100.00 100.00

LC 89.80 83.67 91.84 93.88 93.88 93.88 91.84 93.88

TR 100.00 92.31 100.00 100.00 80.77 65.38 88.46 100.00

GT 60.00 40.00 80.00 80.00 60.00 60.00 80.00 80.00

PC 76.92 76.92 76.92 92.31 92.31 53.85 69.23 84.62

LV 100.00 95.65 86.96 100.00 65.22 47.83 100.00 100.00

Table 4.2 gives the weighted F1-measure results of each classifier on each dataset
before feature selection. Figure 4.2 gives the average F1-score of the classifiers before
pre-processing. Before the datasets were pre-processed using information gain, the
classifier which generated the highest average F1-measure was LR, with an average
weighted F1-measure of 0.944, with LMT and RF being second and third highest
(0.937 and 0.919). The classifier which performed the worst was J48, with an average
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Table 4.2: F1 Score of the Techniques Before Feature Selection

Dataset SVM J48 RF LR DL NB KNN LMT

BC 0.92 0.77 0.89 0.95 0.82 U 0.84 0.95

LK 0.94 0.70 1.00 0.87 0.87 0.76 0.88 0.87

LP 1.00 0.63 0.88 1.00 1.00 1.00 0.75 1.00

BR 1.00 0.77 0.93 0.97 0.87 0.88 0.81 0.97

DB 0.97 0.80 1.00 0.94 0.94 0.88 0.92 0.94

NV 1.00 0.89 0.96 1.00 1.00 0.96 1.00 1.00

LC 0.90 0.83 0.92 0.94 0.94 0.94 0.92 0.94

TR 1.00 0.93 1.00 1.00 0.85 0.94 0.91 1.00

GT 0.60 0.40 0.78 0.80 0.60 U 0.80 0.80

PC 0.75 0.75 U 0.93 0.93 U 0.63 0.85

LV 1.00 0.95 0.84 1.00 0.69 0.91 1.00 1.00

Figure 4.1: Average Accuracies of the Classifiers Before Pre-processing

weighted F1-measure of 0.766, with KNN and DL being the second and third lowest
(0.859 and 0.864). The average weighted F1-measure of SVM was 0.916, and the
average weighted F1-measure of NB was 0.911. The highest result is similar to that
of accuracy. The main reason for the difference in lowest value results between ac-
curacy and F1-measure was that WEKA could not determine weighted F1-measure
for BC, GT, and PC datasets using NB classifier due to the inconsistent distribution
of classes in train and test set. Similarly, the F1-measure for PC dataset was also
undetermined (U) using RF classifier.

As for computational time, LMT took the most time with an average computation
time of 39.75s, and KNN took the least time with an average computation time
of 0.49s. the average computational time for SVM was 0.77s, J48 was 1.34s, RF
was 2.72s, LR was 16.17s, DL was 8.44s, and NB was 1.01s. Table 4.3 gives the
computational time taken by each classifier before pre-processing for each dataset.
Figure 4.3 gives the average time taken by the classifiers before pre-processing.
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Figure 4.2: Average F1-score of the Classifiers Before Pre-processing

Table 4.3: Computational Time of the Techniques Before Feature Selection

Dataset SVM
(s)

J48
(s)

RF
(s)

LR
(s)

DL
(s)

NB
(s)

KNN
(s)

LMT
(s)

BC 3.62 7.68 9.56 75.47 16.64 4.30 2.79 182.27

LK 1.00 0.92 3.28 12.48 27.93 0.81 0.31 22.11

LP 0.09 0.05 1.04 0.87 0.92 0.24 0.05 1.58

BR 2.12 3.8 8.09 74.69 15.87 3.59 1.09 203.00

DB 0.22 0.12 0.44 0.70 2.12 0.23 0.24 1.21

NV 0.08 0.05 0.15 0.32 1.31 0.06 0.02 1.12

LC 0.09 0.15 0.24 0.79 2.38 0.10 0.07 2.25

TR 0.71 1.24 2.26 5.49 19.91 0.81 0.38 11.69

GT 0.07 0.06 1.68 1.18 0.78 0.12 0.04 1.70

PC 0.21 0.31 1.69 2.25 1.68 0.31 0.08 3.84

LV 0.21 0.33 1.52 3.64 3.25 0.57 0.29 6.48

4.2 Evaluation After Feature Selection

Table 4.4 gives the classification accuracy results of each classifier on each dataset
after feature selection. After using information gain on the features, for the BC
dataset, the SVM classifier gave the highest accuracy of 97.37%. The confusion ma-
trix generated by LR that among the 25% test set, the model correctly classified 11
out of 11 basal types, 4 out of 5 of HER type, 1 out of 1 of cell line type, 4 out of 4 of
the normal type, 9 out of 9 of luminal A type and 8 out of 8 of luminal B type. For
the LK dataset, except DL, all the other classifiers produced 100% accuracy, and
among them, J48 took the least time. This classifier successfully classified the test
data as per the type of leukemia. For the LP dataset, all the classifiers produced
100% accuracy, and J48 and KNN took the least time. All the classes of the test
set were classified correctly.

For the BR dataset, LR and LMT produced the highest accuracy of 100%, with LR
taking the lower time. All the classes of the test set were classified correctly for this
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Figure 4.3: Average Computational Time (in seconds) of the Classifiers Before Pre-
processing

dataset, as well. For the DB dataset, LR and LMT gave the highest accuracy of
94.29%, with LR taking the lower time. This classifier correctly classified 14 out of
14 OxPhos types, 10 out of 12 BCR types, and 9 out of 9 HR type data. The high-
est accuracy slightly decreased before pre-processing due to this dataset’s smaller
dimension (also LC dataset). For the NV dataset, RF, LR, DL, and LMT gave the
highest accuracy of 100%, with LR taking the least time among them. These models
correctly classified all the types of tissues in the test set. For the LC dataset, LR,
NB, and LMT models gave the highest accuracy of 89.80%, with NB taking the
lowest time. The models correctly classified 29 out of 32 AD type, 4 out of 5 NL
type, 6 out of 7 SQ type, and 5 out of 5 COID type of lung cancer data. For the
TR dataset, SVM, J48, RF, LR, and LMT gave 100% accuracy, with SVM and J48
taking the lowest time to classify all the test data correctly.

For the GT dataset, except NB, all the classifiers gave 100% accuracy, with J48 and
KNN taking the lowest time to classify the entire test set correctly. For the PC
dataset, J48, RF, and NB gave 100% accuracy, with J48 and NB taking the lowest
time to correctly classify all the test data. For the LV dataset, all except DL gave
100% accuracy, with J48 taking the least time to classify the entire test set correctly.

Figure 4.4 gives the average accuracies of the classifiers after pre-processing. After
the datasets were pre-processed, the classifier which generated the highest average
accuracy was similar to that of before feature selection, which is LR, as well as LMT,
with an average accuracy of 97.38%, with RF and SVM being close to second and
third highest (96.92% and 96.54%). The classifier which performed the worst after
feature selection was DL, with an average accuracy score of 91.14%, with J48 and
NB being the second and third lowest (91.19% and 92.68%). The average accuracy
of KNN was 95.12%. Overall, the average accuracies for each classifier improved
after feature selection.

Table 4.5 gives the weighted F1-measure results of each classifier on each dataset
after feature selection. Figure 4.5 gives the average F1-score of the classifiers after
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Figure 4.4: Average Accuracies of the Classifiers After Pre-processing

pre-processing. After the datasets were pre-processed using information gain, the
classifier which generated the highest average F1-measure was similar to that of
before feature selection, which is LR, as well as LMT, with an average weighted F1-
measure of 0.974, with RF and SVM being close second and third highest (0.968 and
0.966). The classifier that performed the worst was J48, with an average weighted
F1-measure of 0.913, with DL and NB being the second and third lowest (0.915 and
0.925). The average weighted F1-measure of KNN was 0.953. The highest result
is similar to that of accuracy.The lowest score is similar to that of before feature
selection.

Figure 4.5: Average F1-score of the Classifiers After Pre-processing

As for computational time, DL took the most time with an average computation time
of 2.39s, and KNN and J48 took the least time with an average computation time of
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Table 4.4: Accuracy of the Techniques After Feature Selection

Dataset SVM
(%)

J48
(%)

RF
(%)

LR
(%)

DL
(%)

NB
(%)

KNN
(%)

LMT
(%)

BC 97.37 78.95 92.11 94.74 84.21 78.95 89.47 94.74

LK 100.00 100.00 100.00 100.00 81.25 100.00 100.00 100.00

LP 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

BR 96.88 90.63 96.88 100.00 90.63 93.75 96.88 100.00

DB 91.43 82.86 91.43 94.29 91.43 88.57 91.43 94.29

NV 96.15 73.08 100.00 100.00 100.00 92.31 96.15 100.00

LC 87.76 77.55 85.71 89.80 87.76 89.80 87.76 89.80

TR 100.00 100.00 100.00 100.00 92.31 96.15 92.31 100.00

GT 100.00 100.00 100.00 100.00 100.00 80.00 100.00 100.00

PC 92.31 100.00 100.00 92.31 92.31 100.00 92.31 92.31

LV 100.00 100.00 100.00 100.00 82.61 100.00 100.00 100.00

Table 4.5: F1 Score of the Techniques After Feature Selection

Dataset SVM J48 RF LR DL NB KNN LMT

BC 0.97 0.79 0.92 0.95 0.84 0.79 0.90 0.95

LK 1.00 1.00 1.00 1.00 0.83 1.00 1.00 1.00

LP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BR 0.97 0.91 0.97 1.00 0.91 0.93 0.97 1.00

DB 0.91 0.83 0.91 0.94 0.91 0.89 0.92 0.94

NV 0.97 0.74 1.00 1.00 1.00 0.93 0.96 1.00

LC 0.88 0.78 0.85 0.90 0.88 0.90 0.88 0.90

TR 1.00 1.00 1.00 1.00 0.93 0.97 0.93 1.00

GT 1.00 1.00 1.00 1.00 1.00 0.78 1.00 1.00

PC 0.93 1.00 1.00 0.93 0.93 1.00 0.93 0.93

LV 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00

0.01s. The average computational time for SVM was 0.20s, RF was 0.11s, LR was
0.12s, NB was 0.02s, and LMT was 0.16s. Table 4.6 gives the computational time
taken by the classifiers after pre-processing for each dataset. After feature selection,
the weighted F1-measure and computation time for each classifier improved on an
average. Figure 4.6 gives the average computational time taken by the classifiers
after pre-processing. As we had predicted that RF gives better results than J48,
our results show a similar pattern. In RF, multiple decision trees are used, which
gives a better result than a single decision tree. Also, LR and LMT have similar
accuracy and F1-measure results, but LMT has a much higher computation time.
DL, NB, and J48 are among the worst-performing classifiers compared to the rest
on an average in the majority of cases. KNN has not too great nor too poor results.
LR, SVM, and RF are among the best performing classifiers. LR gave the highest
average accuracy and weighted F1-measure in all cases and improved time after pre-
processing, which can be considered the best performing method for gene expression
classification based on the results.
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Table 4.6: Computational Time of the Techniques After Feature Selection

Dataset SVM
(s)

J48
(s)

RF
(s)

LR
(s)

DL
(s)

NB
(s)

KNN
(s)

LMT
(s)

BC 0.08 0.02 0.06 0.12 1.96 0.01 0.00 0.19

LK 1.64 0.00 0.2 0.36 14.3 0.07 0.04 0.27

LP 0.03 0.01 0.09 0.07 0.88 0.02 0.01 0.10

BR 0.09 0.04 0.18 0.23 1.81 0.03 0.02 0.34

DB 0.04 0.02 0.15 0.16 1.57 0.02 0.01 0.26

NV 0.08 0.01 0.12 0.07 1.00 0.01 0.00 0.16

LC 0.10 0.04 0.18 0.16 1.88 0.03 0.02 0.27

TR 0.01 0.01 0.08 0.05 0.96 0.04 0.00 0.10

GT 0.03 0.00 0.04 0.01 0.22 0.00 0.00 0.03

PC 0.01 0.00 0.02 0.03 0.64 0.00 0.00 0.04

LV 0.08 0.01 0.05 0.04 1.05 0.03 0.05 0.05

Figure 4.6: Average Computational Time (in seconds) of the Classifiers After Pre-
processing

4.3 Pattern Analysis on Gene Expression Dataset

In this section, we carry out some pattern analysis with the J48 decision tree’s
outcome on TR, BC, and BR datasets. Note that, the number of records for TR,
BC and BR is 103, 151, and 130, respectively. The number of attributes for each
dataset is 54676. For pattern analysis, we considered 50 attributes for each dataset
based on information gain that we discussed previously. The decision tree is built
for each dataset using 10-fold cross-validation.
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4.3.1 Pattern Analysis on TR dataset

From the decision tree on the TR dataset, we can see that when the value of attribute
205596 s at is greater than 8.673253 and the value of attribute 204915 s at is greater
than 5.971706, then 65 records satisfy this pattern, and all of the 65 records have
class value ”oral cavity cancer”. However, when the value of attribute 205596 s at
is less or equal to 8.673253 and the value of attribute 204915 s at is less than or
equal to 6.164087, then 27 records satisfy this pattern and 26 out of 27 records have
class value ”normal”. But when the value of attribute 205596 s at is less or equal
to 8.673253, and the value of attribute 204915 s at is greater than 6.164087, then 7
records satisfy this pattern, and 6 of them have the class value ”oral cavity cancer”.

4.3.2 Pattern Analysis on BC dataset

From the decision tree on BC dataset, we can see that when the value of attribute
221811 at is greater than 8.103477 and the value of attribute AFFX-CreX-3 at is
greater than 13.57468, then 26 records satisfy this pattern, and all of them have
class value ”luminal B”. However, when the value of attribute 221811 at is greater
than 8.103477, and the value of attribute AFFX-CreX-3 at is less than or equal
to 13.57468, then 29 records satisfy this pattern, and all of them have class value
”HER”. But when the value of attribute 221811 at is less than or equal to 8.103477
and the value of attribute 209642 at is less than or equal to 6.941912 and the value
of attribute 228241 at is less than or equal to 9.186783, then 8 records satisfy this
pattern, and seven of them have class value ”normal”. When the value of attribute
221811 at is less than or equal to 8.103477 and the value of attribute 209642 at is
less than or equal to 6.941912 and the value of attribute 228241 at is greater than
9.186783 and the value of attribute 236641 at is less than or equal to 4.176825, then
28 records satisfy this pattern and all of them have class value ”luminal A”. When
the value of attribute 221811 at is less than or equal to 8.103477 and the value of
attribute 209642 at is greater than 6.941912, and the value of attribute 200795 at is
less than or equal to 4.258904, then 14 records satisfy this pattern and all of them
have class value ”cell line”. But when the value of attribute 221811 at is less than
or equal to 8.103477 and the value of attribute 209642 at is greater than 6.941912
and the value of attribute 200795 at is greater than 4.258904, then 41 records satisfy
this pattern, and all of them have class value ”basal”.

4.3.3 Pattern Analysis on BR dataset

From the decision tree on the BR dataset, we can see that when the value of attribute
226872 at is greater than 9.468941 then 41 records satisfy this pattern, and all of the
41 records have class value ”ependymoma”. However, when the value of attribute
226872 at is less or equal to 9.468941 and the value of attribute 209109 s at is less
than or equal to 8.538174, then 13 records satisfy this pattern and all of 13 records
have class value ”normal”. But when the value of attribute 226872 at is less or
equal to 9.468941 and the value of attribute 209109 s at is greater than 8.538174
and 217762 s at is less than or equal to 10.512088 then 21 records fall in this pattern
and all of 21 records have class value ”medulloblastoma”.
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Chapter 5

Conclusion

In this paper, we have compared the performance of classification techniques in
terms of accuracy, F1-score, and computation time on eleven different gene expres-
sion datasets. These results show that the logistic regression model has better results
than the rest in maximum cases and is better suited for gene expression classifica-
tion, despite not being used much for this purpose. We also performed pattern
analysis using J48 decision tree on three datasets after applying feature selection.
The patterns from the decision trees explain why a particular outcome (i.e. class
value) has occurred which may help health professionals to understand the reasons
for a particular situation. Note that, for pattern analysis purposes for the J48 deci-
sion tree, we used only 50 selected attributes, but only a few of them appeared in
the tree. In the future, we would like to investigate why other attributes were not
used for model building. In the future, we would like to further improve the results
for classification by incorporating various feature selection methods, including PCA
and tSNE. We also aim to understand the genes which dominate the classification
results.
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