
 

 

 

 

 

 

  

Autonomous Fault Diagnosis of Commercially Available PV 

Modules Using High-End Deep Learning Frameworks  

By 

 

Ihtyaz Kader Tasawar 

17321038 

Abyaz Kader Tanzeem 

17321039 

Tahmid Ahmed 

17121095 

Shah Faiza Zarin 

17121037 

A thesis submitted to the Department of Electrical and Electronic Engineering in partial 

fulfillment of the requirements for the degree of  

B.Sc. in EEE 

Department of Electrical and Electronic Engineering 

Brac University 

June 2021 

© 2021. Brac University 

All rights reserved. 



ii 
  

Declaration 

It is hereby declared that  

1. The thesis submitted is my/our own original work while completing degree at Brac 

University. 

2. The thesis does not contain material previously published or written by a third party, except 

where this is appropriately cited through full and accurate referencing. 

3. The thesis does not contain material which has been accepted, or submitted, for any other 

degree or diploma at a university or other institution. 

4. I/We have acknowledged all main sources of help. 

  

Student’s Full Name & Signature: 

 

 

Ihtyaz Kader Tasawar 

17321038 

 

 

 

Abyaz Kader Tanzeem 

17321039 

 

 

 

Tahmid Ahmed 

17121095 

 

 

 

Shah Faiza Zarin 

17121037 

 



iii 
  

Approval 

The thesis/project titled “Autonomous Fault Diagnosis of Commercially Available PV 

Modules Using High-End Deep Learning Frameworks” submitted by  

1. Ihtyaz Kader Tasawar (17321038) 

2. Abyaz Kader Tanzeem (17321039) 

3. Tahmid Ahmed (17121095)  

4. Shah Faiza Zarin (17121037) 

of Spring, 2021 has been accepted as satisfactory in partial fulfillment of the requirement 

for the degree of B.Sc. on June 9. 2021.  

 

 

Examining Committee: 

Supervisor: 

(Member) 

 

 

 

_______________________________ 

Md. Mosaddequr Rahman, PhD 

Professor and Chairperson, Department of Electrical and 

Electronic Engineering 

Brac University 

Program Coordinator: 

(Member) 

 

 

 

_______________________________ 

Abu S.M. Mohsin, PhD 

Assistant Professor, Department of Electrical and Electronic 

Engineering 

Brac University 

Departmental Head: 

(Chair) 

 

 

 

_______________________________ 

Md. Mosaddequr Rahman, PhD 

Professor and Chairperson, Department of Electrical and 

Electronic Engineering 

Brac University 

  



iv 
  

Ethics Statement 

 

  



v 
  

Abstract/ Executive Summary 

Conventional methods of fault diagnosis for PV Systems are quite challenging and inefficient, 

particularly with regards to large-scale PV arrays. Early and effective diagnosis of system faults 

is also imperative in order to minimize cost and sustainable damage. Hence, over the recent 

years, numerous effective and efficient monitoring and diagnostic techniques to detect faults 

in PV systems have been studied and propositioned. As such, autonomous fault diagnosis and 

classification of PV systems has taken the PV domain by storm and has spectacularly 

developed in eminence; attaining substantial significance in the domain of deep learning. Over 

the last few years, various deep learning frameworks have been studied and proposed in the 

detection & classification of faults in PV modules with the aid of thermal images. Some of the 

most prominent deep learning frameworks constitutes of ANN & CNN. This study involves 

utilization of Convolutional Neural Networks (CNN), namely, VGG-16/VGG-19 and 

EfficientNet, in order to assess their performance and reliability in diagnosing module defects 

through significant hotpots within PV modules by employing pre-processed thermal images. 

Keywords: Deep Neural Network; Convolutional Neural Network; Infrared Image 

Processing; Photovoltaic Cell; Fault Diagnosis; Hotspot Detection  
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Chapter 1 

Introduction 

1.1 Work Significance – Autonomous Fault Diagnosis 

Over the course of a few decades, there has been a substantial surge in concern with regards to 

the large-scale consumption and reliability of prevalent energy sources such as fossil fuels and 

coal which prominently contribute to different types of pollution and global warming. With the 

rising demand for electrical energy due to the surge in population and economic growth, it has 

become imperative to address and confront this demand through exploitation of climate-

friendly energy sources. On account of that, electrical energy production has been tailored and 

revolutionized to adhere to renewable and climate-friendly energy sources such as solar, water 

and wind [1]. Among which, exploitation of solar energy through utilization of Photovoltaic 

Systems has become increasingly prominent in recent years as demonstrated in [2]. Bangladesh 

is one of many countries who have inclined towards PV systems [3] for a more reliable,  

economic and ecological solution for electricity generation. This surge in prominence has been 

primarily due to the many merits of photovoltaic (PV) systems, such as generation of clean and 

non-polluting energy, abundant source, convenient installation & system maintenance, noise-

free, and cost-effective.  

With increasing prominence in utilization of PV systems, enhanced power efficiency and 

performance of the systems has been emphasized and sought after extensively over the years 

[4]. The performance and efficiency of a PV system may be subjected to constraints and 

degradation by elements such as aging, different system faults or defects, and environmental 

conditions. Some of the most common faults include shading conditions, cracks & dents, open-

circuit faults, and faults due to wear and tear from the environment. The development of such 

defects induces an expansive dissipation of power in the defective area of the module and thus 
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creating a region of hotspot. Consequently, the output power of the module shrinks and reduces 

the efficiency of the module. As such, ensuring optimum performance and efficiency through 

effective detection and diagnosis of prominent PV system faults, that can potentially degrade 

the system’s output power and lifespan, has become the primary focal point over the recent 

years [5]. Generally, faults are diagnosed through manual inspection and rectified through 

maintenance accordingly. However, employment of such labor is very much time consuming, 

challenging, inefficient and unsafe with regards to extensive PV arrays. Needless to say, proper 

and prompt diagnosis of these faults is also imperative to minimize cost and sustainable 

damage. 

1.2 Efficient Fault Detection in PV Systems  

In the recent years, numerous effective and efficient monitoring and diagnostic techniques to 

detect faults in PV systems have been studied and propositioned [6, 7, 8, 9, and 10]. Essentially, 

the basis of many fault detection techniques involves inspecting the heat signatures or hotspots 

of the PV modules caused by defects that could potentially hamper the normal operation of the 

modules. Gradually, autonomous fault detection and classification of PV systems has taken the 

PV domain by storm and has spectacularly developed in eminence; attaining substantial 

significance in the domain of deep learning networks. Typically, image-processing based 

techniques such as Infrared Thermography (IRT) [12] and Electroluminescence (ELI) Imaging 

[11] are employed concurrently with deep learning networks for automatic fault detection and 

classification of PV modules. While EL Imaging can be an effective aspect in autonomous fault 

detection, it can be inefficient in detection and diagnosis of faults such as discoloration and 

delamination. Hence, IRT takes precedence over ELI due to its ability to manifest hotspots 

accurately. Other autonomous diagnostic techniques include utilization of machine learning 

models such as Fuzzy Logic, Decision Tree and SVM models. In such prominent techniques, 

the potency heavily relies on the amount of data you can dispense for the model’s training 
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phase. The greater the size of the dataset, better the chances of developing an efficient and 

accurate model.  

1.3 Objective - Deep Learning in Autonomous Fault Diagnosis 

Deep Learning Frameworks such as Artificial Neural Networks (ANN) & Convolutional 

Neural Networks (CNN) through utilization of Infrared Imaging have significantly grown in 

prominence in recent years. In this study, we have employed Infrared Imaging to investigate 

and assess the use of Convolutional Neural Networks frameworks, VGG-16, VGG-19 and 

EfficientNet in order to distinguish infrared images of faulty PV modules with prominent 

hotspots from that of normal modules. Additionally, our study also employs different image 

processing techniques in order to pre-process the infrared images and label them accordingly 

to train the neural networks and assess their performance. 

1.4 Literature Review  

As the faults of PV systems are being better understood over time, many different techniques 

have been developed and tested for the detection of PV system faults. Fault detection 

techniques on the DC side of PV systems are mainly based on electrical characterization, visual 

inspection, ultrasonic inspection, electroluminescence (EL) imaging, infrared (IR) imaging and 

lock in thermography (LIT) as outlined in [13]. Over the last couple of years, direct monitoring 

methods such as electroluminescence imaging and infrared thermography have garnered great 

interest due to the fact that they can both detect and locate PV module defects with high 

accuracy and shorter detection time in comparison to other methods [14]. More recently, the 

rapid advancement in the field of artificial intelligence and computer vision has opened up wide 

range of opportunities to develop a highly robust, fast and automatic fault detection technique. 

The integration of machine learning techniques and image processing methods with IR imaging 
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for automatic PV fault detection and diagnosis has occupied much of the space within the 

literature. 

By standards, PV modules are first visually inspected for visible faults before any further 

techniques of fault detection are carried out on them. The practical guidelines and instructions 

for effectively carrying out the process of visual inspection of mono-polar grid-connected and 

grounded PV systems have been outlined in [15, p. 13]. While on the subject of PV fault 

detection techniques, Electroluminescence (EL) imaging is a non-destructive testing method 

that involves the introduction of a DC current into the PV module, so that areas of the cell or 

module with defects appear darker than rest of the areas on electroluminescence images [13], 

[16]. Spataru et.al [17] investigated cell crack defects by analyzing EL intensity distribution of 

PV systems, both on module and cell level, operated under high and low current bias. They 

were able to evaluate module-level percentage of cell cracks in terms of partial and complete 

defects that will cause the most power loss. Furthermore, an automatic method for the detection 

of solar cell defects has been studied in [18] using electroluminescence imaging, VGG-16 

convolutional neural network architecture and image preprocessing techniques such as 

distortion correction, segmentation and perspective correction. However, due to limited dataset 

and overfitting, the CNN architecture failed to correctly detect defects with a balanced error 

rate of 25.40% with oversampling and 19.57% with data augmentation. The balanced error rate 

improved down to 7.73% when both oversampling and data augmentation were used 

simultaneously. 

Even though EL imaging can produce high quality images for analysis and can detect and locate 

module defects with high accuracy, it is only effective for small-scale indoor measurements. 

This is because EL image diagnosis can be time consuming and costly due to the fact that it 

needs a very large power supply for the inspection of large-scale PV plants. EL imaging also 

needs to be carried out in a dark environment where the modules do not operate at maximum 
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power-point (MPP) conditions and does not provide any information regarding the thermal 

effects of possible faults in the modules [14]. 

Alternatively, fault diagnosis using infrared thermography (IRT) is a non-contact and non- 

destructive technique that has been captivating great interest in the field of PV systems 

monitoring due to its potential in overcoming many of the limitations that electroluminescence 

imaging and other defect detection methods exhibits. Following are some of the reasons that 

make infrared thermography highly preferable over other methods for detecting and diagnosing 

PV module defects: 

• It is applicable for large-scale inspection of outdoor PV systems having large number 

of arrays [14]. 

• It can be performed under real field conditions without interrupting the operation of the 

modules [19]. 

• It provides information about output power loss as demonstrated in [20]. 

• Requires very few components and does not need sensors. 

• Infrared thermography is fast and accurate in detecting hotpots and locating the physical 

position of the fault. 

IRT-based defect diagnosis provides information regarding the thermal response of existing 

defects in an operating PV module by comparing it with the thermal pattern of the whole 

module. The defects appear as hot spots on infrared images indicating regions that have 

abnormally higher temperatures than the rest of the module and contributes to significant power 

loss. Hence, it is of utmost importance that PV systems undergo hotspot inspections to avoid 

damages and infrared thermography is a fitting method to locate the hot spots and find the exact 

physical location of the existing fault. 
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In their study [21], Buerhop et.al analyzed the robustness of IR-imaging for detecting faults of 

PV-generators under operating conditions. The modules that were suspected to be faulty in IR 

images were verified by taking down all the modules and measuring their respective power 

losses via I-V characteristics measurement. Their results indicated that 19% of all the modules 

had a power output less than 91% of the nominal power and this was consistent with the 

conclusions that were drawn from IR imaging. They finally concluded that IR-imaging is an 

effective, reliable and contactless method for monitoring PV-plants under operating conditions 

as it can detect modules which demonstrate reduced efficiency with high accuracy. Tsanakas 

and Botsaris [22] investigated the reliability of IR imaging in assessing the performance of PV 

modules by comparing the operating temperatures measured from the thermal images with the 

model-based temperature estimates of the modules. Their results were promising since they 

were able to detect an unseen 2mm crack on one of the modules which was affecting its 

performance. They deemed infrared thermography to be effective and authentic but suggested 

that emissivity problems and environmental conditions should be considered. 

For large-scale maintenance of PV plants that consists of several hundred modules, automating 

the condition monitoring process is essential for fast, reliable and consistent results. As 

computer vision and artificial intelligence transformed its way into industrial and medical 

applications, it has also been extended to PV systems fault detection and diagnosis providing 

many advantages. 

As suggested in [23, 24], a conventional automatic diagnosis system based on infrared 

thermography involves three main steps: 

• obtaining raw data by IRT monitoring method 

• thermal image processing 

• diagnosis/classification 
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Infrared image monitoring alone cannot constitute an efficient fault detection method since the 

IR images do not always lay out the proper information required for identifying the defects 

successfully. This is on account of low resolution of the images, noisy images, effect of climatic 

conditions and reflection or shading during the inspection process [25]. Therefore, additional 

analysis of the thermal images by digital image processing techniques is necessary to pick up 

detailed features and regions of interest (ROI). Digital image processing involves manipulating 

digital images by applying enhancement, restoration, analysis or compression. When dealing 

with large-scale PV plants, further analysis through digital image processing is crucial for 

thorough analysis of the condition, performance and efficiency of each module. There are a 

vast number of renowned image processing techniques which have been reported in the 

literature over the years and they are pretty straightforward and effective. In [26], image 

processing techniques such as thermal contrast computation, differential absolute contrast 

(DAC), Pulsed phase thermography (PPT), thermographic signal reconstruction (TSR) and 

Principal component thermography (PCT) were discussed and demonstrated with the use of a 

Kevlar composite panel having 16 artificial defects; DAC and TSR (2nd derivative) were the 

two techniques that showed promising results as they were able to identify the highest number 

of defects. In another study [23], standard thermal image processing techniques and edge 

detection were applied to thermal images of defective PV modules for hot spot detection. 

Firstly, basic processing methods such as ROI analysis, line profile analysis and image 

histogram analysis were implemented to demonstrate that an irregular temperature distribution 

in a module indicated the presence of hot spots. Canny edge detection and image segmentation 

were then applied together to successfully diagnose 13 out of 14 defective cells in PV-1 (array) 

and 27 out of 29 defective cells in PV-2 (array). Almeida et.al [27] utilized a powerful region-

based segmentation tool known as Watershed Transformation for diagnosing faults in surge 

arresters. In their study, the proposed methodology was able to classify the faults as normal, 
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faulty, light or suspicious and in addition, it was deemed capable of detecting both severe and 

developing faults; it had an overall accuracy of 90.6% with SiC surge arresters and 85.9% with 

ZnO surge arresters. Other image processing methods such as Laplacian model and Panel 

Energy Image have been investigated in [26, 28] and proved to be reliable and effective in 

diagnosing faults in PV systems. 

In the final step of the IRT-based automatic diagnosis system, the relevant features obtained 

from image processing are then fed to a classifier. Classifiers learn these features automatically 

and realizes complex patterns to make intelligent decisions based on the data [29]. In this way, 

they can help distinguish thermal images that correspond to defective modules from those that 

do not. In the recent past, machine learning-based image classification has been the primary 

approach in many field applications such as medicine, computer vision and also PV systems 

monitoring. Since ML is a data-driven approach, it requires a large historical dataset [30] and 

the availability of large datasets in the field of PV systems monitoring makes it convenient for 

PV fault classification. In addition, they are capable of handling the non-linear and complex 

settings of PV systems where unpredictable weather conditions affect the output of the PV 

system [31]. 

Jiang and Maskell [32] implemented a 2-layered ANN in conjunction with standard analytical 

methods for fault detection and diagnosis in string-based PV systems. The multi-layered ANN 

is first trained with an input dataset consisting of irradiance and module temperature values 

measured from healthy PV systems. It is then used to determine the expected power output of 

the PV system, which is compared with the actual power produced by the PV system. Finally, 

the variation between the two is further utilized by analytical methods to diagnose and identify 

the type of faults. The methodology proved to have a good accuracy and fast detection 

response. 
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In a similar study [33], a 3-layered feed forward neural network has been utilized for detecting 

and locating short circuit faults in a 3x2 PV array. In order to achieve high accuracy, 12 ANN 

models were developed for investigating 12 cases of short-circuit faults. The models were 

trained with different input values of irradiance level (E), cell temperature (Tc), Maximum 

Power Point (MPP) voltage (Vmp) and current (Imp) so that they can respond well to different 

environmental conditions. The trained ANN models are then validated by using it to estimate 

the terminal voltages of each module under different input scenarios. A controller, based on 

the actual string module voltages, is used to activate the ANN model that works best under 

fault condition, while the rest of the models remain deactivated. The results of the study were 

very promising as the proposed method can locate short-circuit faults in the same string with 

high accuracy. 

To research other ML techniques, Dunderdale et.al [34] used infrared imaging to analyze the 

performance of deep learning-based classifiers such as VGG-16 and Mobile-Net, and feature- 

based classifiers such as Scale Invariant Feature Transform (SIFT), in detecting and classifying 

different PV faults. Due to limited dataset, the study used data augmentation techniques and 

optimizers such as stochastic gradient descent (SGD) and Adam optimizer for increasing the 

classification accuracy. Their results showed that the feature-based methods were able to 

classify the defects with an average accuracy of 91.2%, while Mobile-Net architecture (with 

Adam optimizer) and VGG-16 architecture (with SGD optimizer) achieved classification 

accuracies of 89.5% and 85.8% respectively. Therefore, the study came to the conclusion that 

Mobile-Net Convolutional Neural Network had the best classification accuracy, and deep 

learning models in general, are much better at classifying module defects than feature-based 

models. 

Furthermore, another study [35] implemented the VGG-16 Convolutional Neural Network for 

assessing its performance in predicting PV cell degradations. The VGG-16 network was trained 
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with a dataset consisting of 3336 (2525 normal cells and 811 degraded cells) infrared images 

that were captured by a drone. In order to provide a precise and noise-free dataset for input, the 

images were manually interpreted and labelled using human observers. Data augmentation 

techniques like flipping and rotation were also performed on the images in order to balance the 

classes in the training data and ensure effective results. From the results, it can be seen that the 

VGG-16 architecture achieves better classification accuracy with a balanced dataset in contrast 

to an unbalanced dataset. Moreover, the network had the best accuracy of 75% (0.75 F1-score) 

when a balanced dataset comprising of rotated images were used. 

Other popular machine learning methods which have proven to be effective in the PVSM field 

includes: k-Nearest-Neighbors (kNNs), ANNs optimized by Genetic Algorithms (GAs/ANN) 

and kernel extreme learning machine (KELM). The studies are given in [36, 37]. 

With the increasing application of large-scale PV systems, developing an automatic inspection 

method that is fast, simple and reliable is very important and demanding. While it is evident 

from the literature that the use of Artificial Neural Networks (ANNs) has been immense for 

automatic diagnosis of PV systems, researchers are reluctant to explore other machine learning 

techniques such as Convolutional Neural Networks (CNN) and Extreme Learning Machine 

(ELM). This is due to the fact that researchers tend to rely on previous works involving ANNs, 

which proved to be able to produce accurate and reliable results. Despite their admirable 

performances, ANNs have their own drawbacks when it comes to classifying images. As 

mentioned in [38], one of the drawbacks is that training an ANN model requires high 

computational power particularly when dealing with large images. With an increase in the 

image size, the number of trainable parameters increases significantly and can easily result in 

over-fitting. Additionally, it can be difficult to fine-tune an ANN model since it cannot 

maintain the spatial features of an image which are important for accurate classification. While 

an ANN architecture is made up of neurons which are connected to every other neuron, the 
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neurons in a CNN layer are connected only to a small number of neurons in the previous layer 

and not to all other neurons. This allows CNNs to automatically learn complex features of an 

image such as spatial features, which are essential for accurately identifying and locating 

objects in an image [39]. Furthermore, as opposed to ANNs, CNN models require fewer 

parameters to train due to parameter sharing and this results in reduced computational cost [38]. 

More recently, a new learning algorithm for single-hidden layer feedforward neural networks 

(SLFNs) known as Extreme Learning Machine (ELM), has emerged to be more advantageous 

than state-of-the-art learning algorithms such as SVMs and deep learning algorithms. First 

suggested by Huang, Zhu and Siew [40], ELMs have a learning speed that is extremely faster 

than classical learning algorithms like back-propagation algorithm and gradient-based learning 

algorithms. Such training efficiency is achieved by utilizing random feature mapping, where 

hidden nodes are generated randomly and do not need to be iteratively trained. ELMs can also 

achieve better generalization performance over traditional feedforward neural networks by 

reaching the smallest training error and smallest norm of output weights [41]. Last but not the 

least, ELMs can provide straightforward solutions without any issues of overfitting, which 

makes it suitable for problems with small datasets. 

This study proposes a conventional monitoring approach based on infrared imaging, for fault 

diagnosis of PV cells. Initially, the acquired thermal images of the cells in RGB format are pre-

processed in 3 different ways: temperature difference (ΔT) analysis, thresholding and contour 

detection and data augmentation.  In line with the ΔT value and a threshold value for the 

percentage degradation, each cell was labelled as either defective or non-defective. Moreover, 

due to the availability of a very limited dataset, we implemented data augmentation techniques 

such as flipping and rotating the images, to increase the training dataset for the deep learning 

classifiers. In the final step of our approach, the proposed deep learning models VGG-16, 
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VGG-19 and Efficient-Net, are trained with the labelled dataset and a testing dataset is used 

later to compare the performances of the classifiers. 

1.5 Thesis Organization  

In further proceedings of the book, contents have been divided into four more major chapters 

in order to thoroughly elaborate and illustrate our work. Earlier in this Chapter, we have 

provided an elaborated introduction to our work, with incentives and objectives. In Chapter 2, 

we have shed some light on the proposed methodology and the different techniques that were 

employed in order to obtain our results. Some results were illustrated in the form of images 

and tables as-well. Subsequently, in Chapter 3, we have provided some insight on the deep 

learning networks that we have used, their architectures and their significance in image 

processing tasks. Within Chapter 4, results of our work have been illustrated and compared 

using tables and graph plots. Finally, Chapter 5 provides an overview of our work and 

discusses the prospect and potential of our work. 
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Chapter 2 

Proposed Methodology 

2.1 Image Classification and Prediction 

Over the recent years, Convolutional Neural Networks have to be proven to excel immensely 

when it comes to image classification and has shown outstanding effectiveness in terms of 

predictions. The basis of image classification with the aid of any Convolutional Neural 

Networks is labelling the input images that will be fed as input for the network to analyze and 

train on. The deep learning classification algorithm then makes use of different learnable 

parameters such as weights and biases in order to put more emphasis on certain aspects of the 

images in order to be able to differentiate them from one another. These aspects can be 

controlled with the help of matrix of weights termed filters (features) that signify different 

aspects of an image such as vertical edges and horizontal edges, etc. Deeper into the network, 

the filters are designed to realize more complex attributes of an image.  

In our study, we have proposed several different pre-existing Convolutional Neural Network 

Architectures in order to oversee autonomous defect detection in Infrared images of 

commercially available solar cell modules. Our proposed methodology involves the follow 

neural network architectures – VGG16, VGG19 & EfficientNet (B5-B7); trained accordingly 

in order to differentiate between defective and non-defective. The method we have proposed 

has several different phases which are illustrated in figures 2.1 and 2.2. 
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Figure 2.1 Block Diagram Depiction of Proposed Methodology 

2.2 Infrared Thermography 

Infrared Theormography involves the study of infrared emission off of any heat emitting 

surface with the use of thermograms with the objective of inspecting heat distribution over the 

surface. Use of Infrared images in order to monitor and inspect the electrical condition of an 

electrical module has become very much prominent over the years, with the objective of early 

fault diagnosis by studying the thermal anomalies on the surface with the help of the infrared 

images. It does this by sensing infrared energy emission (temperatre measurement) of an 

electrical module. Abnormal generation of heat due to high electrical resistance within any 

electrical module will usually reorient the surface heat signature due to large change in heat 

and usually signifies an electircal failure.  



15 
  

 

 

Figure 2.2 Workflow Chart of Image Processing Techniques 
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2.2.1 Need for Automation   

Conventionally, direct measurement, inspection and analysis of electrical equipments with the 

help of infrared images is pretty convenient. However, the analysis results are subject to 

influence by certain factors such as different environmental effects and equipment’s condition. 

As such, direct inspection without consideration of such factors will certainly generate 

inaccurate measurements and hence incorrect conclusions will be made. Consequently, it has 

become imperative to pursue more ehnanced inspection techniques by the implementation of 

autonomous diagnosing procedure in order evaluate an electical equipments condition, 

primarily via image processing and aritifical intelligence.  

2.2.2 Thermal Anomalies   

Electrical modules usually come with power rating that signifies the amount of energy that the 

device can accommodate without becoming defective. Excessive power generation leads to 

overheating which will eventually reduce the efficiency and lifetime of the device itself. 

Typical faults within an electrical module may arise from factors such as poor electircal 

connections, short or open-circuit conditions and improper installation. Usually, these type of 

faults lead to the generation of abnormal amount of heat, which can be recognized by studying 

the heat signatures of an infrared image; a high temperature point or area, compared to the 

background or a referance value, indicates the portential location of the defect.  

2.2.3 IR Imaging Approach   

It is important to mention that when it comes to inspection of a large electrical system 

constituing several hundreds of equipments, analysis becomes much more sophisticated and 

expensive; more of a reason why an autonomous diagnosis method is imperative that offers 

enhanced accuracy and efficiency. As such, due to surge in developments in computer vision 
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using image processing as its basis, coupled with significant inclusion of artificial intelligence, 

it has become prominent in fault monitoring and diagnosis of electrical equipments and 

modules.  

Our dataset constitutes infrared images of PV modules that depicts the normal or abnormal 

distribution of heat signatures over the module itself. The images of the modules have been 

captured using an IR camera termed Fluke TiS 10. In our study, we have pursued the active 

approach, indoor IR Thermograhpy, in order to classify whether a module is defective or 

normal. This is depicted in Figure 2.3. 

 

Figure 2.3 Active Approach Indoor IR Thermography 
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2.3 Dataset 

Initially, we prepared a dataset containing raw Infrared images of different PV modules via IR 

imaging. For this, we have employed indoor IR imaging which was carried out in a dark 

environment, also adhering to other required conditions. Image obtained from IR imaging were 

then processed in SmartView Imaging Software. Subsequently, we pursued different image 

processing techniques in order to attempt to correctly classify and label these images for our 

algorithms to study, train and make predictions on. The prepared dataset comprises of a total 

of 15 infrared images of solar panel modules pertaining to 15 different modules, each taken 

one minute after consistent current flow within the module. It is important to note the 

significance of using 1-minute images; to detect any potential abnormal changes in temperature 

difference due to the flow of current. The images were prepared and processed in JPEG format.  

Deep Neural Networks usually require a significantly large dataset to train on in order to obtain 

a good or mediocre performance. However. In our case, due to covid restrictions, extending 

the size of the dataset was not viable and we were compelled to improvise. Figure 2.4 illustrates 

an image constituted by the dataset. 

 

Figure 2.4 Sample Image of a Photovoltaic Cell 
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2.4 Significance of Image Processing 

In order to differentiate between defective and normal modules among our test samples, we 

pursued 3 different image processing techniques, 2 of which were used to prepare our dataset 

for training, validation and dataset. Additionally, we also employed another image processing 

technique in order to increase the size of our dataset and observe its impact on the performance 

of the neural network algorithms.  

• Determination of temperature difference ΔT 

• Thresholding and Hotspot Contour Detection 

• Histogram Analysis (Results were not used for Training) 

• Data Augmentation 

2.5 Determination of Temperature Difference (ΔT) 

In order to determine whether the acquired infrared images of the PV cells, indicate if they are 

defective or non-defective, one of the approaches we implemented involves evaluating the 

difference between the maximum surface temperature of the PV cell and its minimum ambient 

temperature. The IR images were analyzed using the Fluke SmartView thermal imaging 

software, which automatically pinpoints and labels the maximum and minimum temperatures 

in an infrared image. For this approach, we assumed that a temperature difference greater than 

or equal to 5°C would indicate a defective cell and a healthy cell otherwise. The formula for 

computing the temperature difference ΔT is given as: 

                               ΔT = (Maximum Temperature – Ambient Temperature)                          (1) 
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Figure 2.5 Non-Defective PV Cell (Cell #1) 

Figure 2.5 shows a healthy cell which has a point that indicates a maximum surface temperature 

of 28.8°C and a point that is at a minimum ambient temperature of 25.4°C. The temperature 

difference ΔT is thus 3.4°C, which is less than our predefined condition of 5°C. 

Figure 2.6 Non-Defective PV Cell (Cell #7) 

Figure 2.6 shows another healthy cell which has a point that indicates a maximum surface 

temperature of 26.7°C and a point that is at a minimum ambient temperature of 22.7°C. The 

temperature difference ΔT is thus 4.0°C, which is less than our predefined condition of 5°C. 
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Figure 2.7 Defective PV Cell (Cell #4) 

Figure 2.7 shows a defective cell which has a point that indicates a maximum surface 

temperature of 28.7°C and a point that is at a minimum ambient temperature of 23.1°C. The 

temperature difference ΔT is thus 5.6°C, which is more than our predefined condition of 5°C. 

Figure 2.8 Defective PV Cell (Cell #6) 

Figure 2.8 shows another defective cell which has a point that indicates a maximum surface 

temperature of 31.0°C and a point that is at a minimum ambient temperature of 24.9°C. The 

temperature difference ΔT is thus 6.1°C, which is more than our predefined condition of 5°C. 
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The infrared images were taken within the first minute of the cells’ operation and in total, 15 

different photo-voltaic cells were used for the analysis. Table 2.1 summarizes the results of the 

ΔT analysis of all the cells, which shows that 3 of the cells are defective while the rest are 

healthy. In order to provide a better perspective of the results of our analysis, a histogram in 

Figure 2.9 shows the distribution of the defective and non-defective cells with respect to the 

temperature difference ΔT. 

2.5.1 Splitting the dataset   

In order to train the different neural network algorithms, we then split the dataset that was 

labelled using temperature difference. The dataset was split into training set, validation set and 

testing set. The training set constituted a total of 5 images (1 defective, 4 normal), the validation 

set constituted a total of 5 images (1 defective, 4 normal) and the test constituted a total of 5 

images (1 defective, 4 normal).  
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Table 2.1 Temperature Difference (ΔT) of all 15 PV Cells 
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Figure 2.9 Histogram distribution showing (ΔT) of all the Cells under analysis 

2.6 Thresholding and Contour Detection 

In this particular approach, we have attempted to detect the hotspot contour on the infrared 

image of the module and determine a rough estimation of the area taken up by the hotspot with 

respect to the module area. We have chosen contours as they are useful in emphasizing an area 

of interest (hotspot) on the image by using a bounding shape that is used to indicate the region 

of significant hotspot. Essentially, contours are drawn as a curve joined by a series of 

continuous points that constitute the same pixel color or intensity. Initially, we applied image 

segmentation on the images with the objective of making the image less sophisticated and more 

convenient and simpler to analyze the image pixels. The whole method was implemented using 

python OpenCV on Google Collaboratory.  

 



25 
  

2.6.1 Denoising   

The infrared image we obtained using the IR camera was in RGB format. In order to pixelate 

and remove noising from the image, we converted the image into grayscale and then applied 

FastN1MeansDenoising in order to remove significant noise (as noise introduces unwanted 

influence in the results) from the image. The Denoising algorithm only is applicable on 

grayscale images. This denoising technique operates by adjusting the color of a pixel after the 

image is scanned using a filter window. It does this adjustment by determining the average of 

the colors of the neighboring pixels. If most of the surrounding pixels within a particular filter 

window are found to be quite similar, the noise standard deviation will be low, which will make 

it simpler to obtain the noise and subtract it from the image. The algorithm was implemented 

by following these significant parameters: 

- templateWindowSize – 7; refers to the number of pixels within the template patch used 

to compute weights. An odd number is recommended.  

- searchWindowSize – 21; refers to the number of pixels within the search window that 

is used to determine weighted average for a particular pixel. Greater the ‘searchWindowSize’, 

more time is invested in denoising. An odd number is recommended. 

- h – 10; a parameter that can be altered to regulate the strength of the filter. A bigger 

value extensively removes noise but also takes out significant image details. Conversely, 

smaller value of h will strive to preserve more of the image details but fails to reduce significant 

amount of noise. Hence, we have used a larger value of h. 

Figure 2.10 illustrates examples of the images obtained as a result of this technique. 
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(a) 

 

(b) 

 

(c) 

Figure 2.10 Applying FastN1MeansDenoising; (a) Original RGB Images (b) Grayscale 

Images (c) Grayscales Images after Denoising 
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2.6.2 Thresholding 

Subsequently, we then employed a thresholding method in order to highlight the significant 

hotspots. To be more particular, we pursued a binary inverted approach to thresholding. In such 

a technique, the pixels in an image are replaced with either black or white pixels depending on 

a threshold value of pixel intensity (between black and white). In this study, if the pixel 

intensity value was greater than the threshold value, we assigned that pixel to be a particular 

maximum value and if it was otherwise, it would be assigned a value of 0, in order to create 

two distinctions. This can be represented by the following function: - 

                                               (2) 

 It is important to mention that this technique requires the input of a grayscale image in order 

to function. In our case, we have assigned a ‘maxval’ of 255 for pixels that have intensity values 

greater than the threshold value.  

Moreover, in order to determine an optimum threshold value ‘thresh’ for binary thresholding, 

we have used another software called ‘ImageJ’ that implements ‘moments thresholding’ [42] 

on the grayscale image in order to determine the optimum threshold value. It functions by 

making use of the gray level difference between object borders and background, and also the 

difference among pixels in a particular region. The threshold value within an image is 

determined by calculating the weighted average of the image pixels’ intensities of a particular 

region (centroid), in our case, the hotspot region.  

In order to obtain the optimum threshold value, we determined all the threshold values 

pertaining to all the images within our dataset and averaged them. Table 2.2 illustrates this 

process. 
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Table 2.2 Threshold Values Determined using ‘Moments Threshold’ 

Image Sample Threshold 

1.jpeg 137 

3.jpeg 138 

9.jpeg 133 

11.jpeg 137 

13.jpeg 143 

16.jpeg 119 

23.jpeg 137 

24.jpeg 137 

32.jpeg 138 

33.jpeg 90 

35.jpeg 138 

38.jpeg 135 

48.jpeg 127 

55.jpeg 128 

74.jpeg 133 

 

 

Average = (137+138+133+137+143+119+137+137+138+90+138+135+127+128+133)/15 

= 131.3 

≈ 131 (Optimum Threshold Value) 

 

The obtained optimum threshold value was then used in the binary inversion threshold 

algorithm as ‘thresh’ in order to signify which pixels should be assigned the ‘maxval’ and 

which ones are to be assigned a value of 0. The resulting images are as illustrated in Figure 

2.11.  
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Figure 2.11 Applying Binary Inverted Thresholding 

2.6.3 Contour Detection 

Subsequently, we then apply a contour retrieval function in order to determine the contours on 

the thresholded image. We get an output image which displays the detected contours and 

additionally, the algorithm calculates percentage area taken up the different contours and sums 

them up to find the total contour area. We then manually analyze the images in order to exclude 

contour area highlighted outside the module and determine a rough estimate of the contour 

detected within the module, which signifies the significant hotspot region that is defective. This 

is illustrated in Figure 2.12. 
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Figure 2.12 Contours on RGB Image 

2.6.4 Pertaining Dataset 

Any image that constituted a total contour area percentage of more than or equal to 10 percent 

within the photovoltaic cell module, was classified as a ‘defective’ module. Otherwise, it was 

classified as a ‘normal’ module.  

In order to train the different neural network algorithms, we then split the dataset that was 

labelled using thresholding and contour detection. The dataset was split into training set, 

validation set and testing set. The training set constituted a total of 6 images (2 defective, 4 

normal), the validation set constituted a total of 5 images (2 defective, 3 normal) and the test 
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constituted a total of 4 images (1 defective, 3 normal). Some examples are illustrated in Figure 

2.13. 

 

                                             (a)                                                                (b) 

Figure 2.13 Classified Images using Threshold and Contour Detection Approach (a) 

Defective Module (b) Normal Module 

Algorithm for thresholding and contouring was taken from [43]. 

2.7 Pixel Distribution Analysis 

Furthermore, an additional analysis was carried out using histograms generated from the 

infrared images with the help of Fluke SmartView thermal imaging software. The histogram 

represents the frequency of pixels in the images distributed over different surface temperatures. 

For this analysis, the pixel count Pm at the maximum surface temperature Tm of each cells were 

determined and then calculated as a percentage of the total pixel count in the images PT. The 

formula for computing the percentage of pixels at maximum surface temperature is given as: 

                                                                    (Pm/PT) x 100                                                      (3) 
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Figure 2.14: Histogram showing pixel distribution of PV Cell #1 (non-defective) 

Figure 2.14 shows the distribution of pixels of the same PV cell that was shown in Figure 2.5. 

For this cell the maximum surface temperature Tm is 28.8°C and the number of pixels at this 

temperature Pm is 1. This is the lowest recorded observation among all the 15 cells. Since there 

are 76,800 pixels in total, the proportion of Pm in the IR image in percentage is (1/76800) x100 

= 0.001302% 

 

 

 

 

 

 



33 
  

 

Figure 2.15 Histogram showing pixel distribution of PV Cell #7 (non-defective) 

Figure 2.15 shows the distribution of pixels of the same PV cell that was shown in Figure 2.6. 

For this cell the maximum surface temperature Tm is 26.7°C and the number of pixels at this 

temperature Pm is 61. This is the highest recorded observation among all the 15 cells. Since 

there are 76,800 pixels in total, the proportion of Pm in the IR image in percentage is 

(61/76800) x100 = 0.07943% 
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Figure 2.16 Histogram showing pixel distribution of PV Cell #4 (defective) 

Figure 2.16 shows the distribution of pixels of the same PV cell that was shown in Figure 2.7. 

For this cell the maximum surface temperature Tm is 28.7°C and the number of pixels at this 

temperature Pm is 5. Since there are 76,800 pixels in total, the proportion of Pm in the IR image 

in percentage is (5/76800) x100 = 0.006510% 
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Figure 2.17 Histogram showing pixel distribution of PV Cell #6 (defective) 

Figure 2.17 shows the distribution of pixels of the same PV cell that was shown in Figure 2.8. 

For this cell the maximum surface temperature Tm is 31.0°C and the number of pixels at this 

temperature Pm is 18. Since there are 76,800 pixels in total, the proportion of Pm in the IR 

image in percentage is (18/76800) x100 = 0.02344% 

Table 2.3 summarizes the results of the pixel distribution analysis of all the cells, which shows 

that Cell #7 had the highest percentage of pixels at a maximum surface temperature of 26.7°C 

while Cell #1 had the lowest percentage of pixels at a maximum surface temperature of 28.8°C.  
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Table 2.3 Summary of Pixel Distribution Analysis of all 15 PV Cells 

 

The primary purpose of this analysis was to determine whether there is a clear relationship 

between the maximum surface temperature of a cell and the pixel count at that temperature; a 

scatter diagram can further help us understand the relationship between the two. Therefore, a 

scatter diagram is generated using the recorded observations for Tm and Pm, as shown in Figure 

2.18. 
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Figure 2.18 Scatterplot of Maximum Surface Temperature, Tm (°C) versus Pixel Count at 

Maximum Surface Temperature, Pm 

In order to interpret the above scatterplot properly, we also evaluated the Pearson’s correlation 

coefficient, which is given by: - 

                                                                         (4) 

X Values (Tm)                                                                             Y Values (Pm)                                                                                                                                           

∑ x = 437.1                                                                                  ∑ y = 167 

Mean, x̅ = 29.14                                                                          Mean, ȳ = 11.133 

∑ (x - x̅)2 = 22.096                                                                     ∑ (y - ȳ)2 = 3201.733 
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X and Y Combined 

N = 15 

∑ (x - x̅) (y - ȳ) = -112.48 

rxy calculation 

rxy = [∑ (x - x̅) (y - ȳ)] / [√ (∑ (x - x̅)2 ∑ (y - ȳ)2)] 

rxy = [-112.48] / [√ ((22.096) (3201.733))] = -0.4229 

2.7.1 Conclusion of Pixel Distribution Analysis 

A negative correlation coefficient value (rxy) closer to zero shows a negative correlation and a 

weak relationship between the x and y variables i.e., between Pixel Count at Maximum Surface 

Temperature (Pm) and Maximum Surface Temperature (Tm). Therefore, it can be concluded 

that there is very little or no clear relationship between the maximum surface temperature of a 

cell and the pixel count at that temperature. As such, we didn’t incorporate these results into 

our training phase of the networks. 

2.8 Data Augmentation 

Data size is an important factor for the effective training of deep neural networks. Deep neural 

networks consist of a vast number of parameters to learn and a lot of computational power is 

required to optimize all the parameters. When the dataset is considerably small, the network 

cannot train well and can result in overfitting.  

 

Overfitting occurs when the network models the training data too well. It learns the details, 

features and noise in the training data in such a way that it negatively impacts the performance 

of the model on the testing dataset. A larger dataset can help improve the optimization process 
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of the network and thus avoid overfitting. The network model can further generalize better as it 

can capture the inherent data distribution more effectively. 

 

In this study, we are provided with only 15 infrared images of different photo-voltaic cells that 

were taken in the 1st minute of their operation. This dataset is significantly small and it is the 

one of the main setbacks in our work. As expected, the proposed neural network models fail to 

train properly and often results in overfitting.  

2.8.1 Implementation 

Data Augmentation is a useful technique that can increase the number of images present in the 

dataset. Thus, data augmentation can reduce overfitting and allow the network model to 

generalize better. The following data augmentation techniques have been implemented in our 

work: - 

 Rotation 

 

 Flipping 

 

 Scaling 

 

 Histogram Equalization 

 

 Addition of Gaussian Noise 
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1. Rotation 

 
(i) 90 Degrees Left 

 

(ii) 90 Degrees Right 
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(iii) 180 Degrees 

 

Figure 2.19 Rotation of the IR images; (i) 90 Degree Rotation (ii) 90 Degrees Left Rotation 

(iii) 180 Degrees Rotation 

2. Flipping 

 

(i) Horizonal 
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(ii) Vertical 

 

Figure 2.20 Flipping of the IR images; (i) Horizontal Flip (ii) Vertical Flip  

3. Scaling (Scale factor 1.25 – Enlargement) 

 

Figure 2.21 Scaling of the IR images; (i) Normal Dimensions (ii) Scaled Dimensions  
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4. Histogram Equalization (0.3% Saturated Pixels) 

 

Figure 2.22 Histogram Equalization of the IR images; (i) Normal Image (ii) Histogram 

Equalization Applied Image  

5. Addition of Gaussian Noise (Mean distribution – 0, Standard deviation - 25) 

 

 

Figure 2.23 Addition of Gaussian Noise; (i) Image without Gaussian Noise (ii) Image with 

Gaussian Noise  
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2.8.2 Summary 

By applying each augmentation technique to 15 of the IR images, the size of the dataset has 

increased up to 120 images (24 defective and 96 non-defective – based on temperature 

difference). This may still be fairly small for training a deep neural network, but it is larger than 

the original dataset and will surely result in an improved training performance of the proposed 

models. The augmented images were then labelled (for the training of the algorithms) based on 

the ‘Temperature Difference’ technique and the ‘Thresholding & Contour Detection’ technique 

and then accordingly split into training, testing and validation sets. 
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Chapter 3 

Deep Learning Frameworks 

3.1 Convolutional Neural Networks (CNN) 

Convolutional Neural Network (CNN) is an Artificial Neural Network that is primarily used 

for image processing or analyzing images. CNN detects an image pattern and uses it to analyze 

the image. It detects the input image by detecting objects, edges and shapes of that image and 

differentiate it from one another.  CNN is constructed mathematically with 3 types of layers: 

convolutional, pooling and fully constructed layers. One convolutional layer takes input, 

transforms the input and sends it to the next layer. The layers have filters which are also known 

as kernel, which detect various patterns. The filters primarily will detect the more obvious 

pattern but when the filters are deeper into the layers, the more sophisticated they get so they 

can detect more detailed and sophisticated parts of the image. 

The computer sees an image as an array of pixels and numbers. When an image is given as 

input, the image is divided into matrix where each element of the row and column consist of 

one pixel. CNN filters start to process the image from the top left corner using the 

corresponding matrix format (3*3, 4*4, 9*9 etc.) and makes it into one single pixel value. This 

process will continue until every single set of pixels are transformed from the given input 

picture. 

3.1.1 Convolution Process 

CNN is a great algorithm for image classification and data analysis. With lots of training and 

some pre-processing, this algorithm can classify images with optimum accuracy. It is vastly 

used in the field of various technological fields and the usage of this is growing exponentially. 
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It is a very complex yet very effective algorithm. The most prominent CNN algorithms are 

VGGNet16, MobileNet, ResNets, GoogleNet, LeNet, AlexNet etc. All of these are very 

successful in image classification and they are being implemented in various tasks and fields 

successfully. 

3.1.2 General Architecure of CNN 

The CNN architecture is made of number of layers and each layer has its significance. The 

CNN architecture can be described as follows: 

Input - The Input is a matrix of values with a set of height, width and number of channels. 

Convolution - This layer is responsible for feature detection. In the layer at first low-level filters 

are used. When we go deeper into the layer, high level filters are used and high-level feature 

extraction is performed. 

Pooling layer - The pooling layer reduces the size of each feature map which came from the 

convolution layer. The pooling layer operates on each feature map and creates a new set of 

maps with the same numbers of pooled feature maps. The size of the pooling filter is much 

smaller than the size of the feature maps. It is almost always 2x2 pixels applied with a stride of 

2 pixels. So that means the pooling layer will always reduce the feature map by a factor of 2. 

The pooling operation is of 2 types: 

1. Average pooling: Calculating the average value of each patch of the feature maps. 

2. Maximum Pooling:  Calculating the maximum value of each patch of the feature maps. 

Activation Function - This layer returns 0 for every negative value in the input image and 

returns the same value for every positive image. When the value is zero, the neuron does not 
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get activated.  For example, The ReLu and Softmax are very popular activation functions, 

which we have employed for our algorithms:  

- Rectified Linear Unit (ReLu): 

This is the most popular activation function which is used in the hidden layer of the neural 

network. It is a nonlinear function and performs better than the sigmoid activation function.  

The first advantage that this activation function has is that it does not activate all the neurons 

at a time. This layer returns 0 for every negative value in the input image and returns the 

same value for every positive image. When the value is zero, the neuron does not get 

activated. It makes the computation process very efficient. Secondly, it is not prone to the 

vanishing gradient problem unlike Sigmoid and Tanh.  

There are some drawbacks for this activation function. Sometimes there might be a 

negatively saturated region in the ReLU which means that the gradient at that region is 

zero. It can lead to dead neurons hence; those neurons won’t respond to the variations in 

error or the inputs. 

The ReLU Activation Function is illustrated in Figure 3.1. 
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Figure 3.1 – Input vs Output Plot of ReLu Activation Function  

- Softmax Output Activation Function: 

This function is usually used in the last layer of the neural network which calculates the 

probability distribution of n number of events. The outputs of this function are vector values 

that sum up to 1 that also can be interpreted as class membership. This is closely related to 

the argmax function, which outputs a 1 for the chosen option and a 0 for the options other 

than the chosen options. It is able to handle multiple classes. The Softmax Activation 

Function is illustrated in Figure 3.2. 
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Figure 3.2 – Input vs Output Plot of Softmax Activation Function  

Fully Connected layers (FC layer) - In this layer, the neurons establish all the connections with 

the previous layers. Also, we flatten the output of the last layer and connect them with the next 

layer. This is the final phase of the CNN network. 

3.1.3 Learning Parameter Update 

The backpropagation algorithm is used to update learnable parameters of the neural network. 

The loss of model decreases by the backpropagation algorithm, making small changes to each 

learnable parameter. It updates each parameter in a way which enables it to take a step in the 

direction along which the loss decreases. The direction is the gradient of the weight. As the 

gradient keeps moving backwards towards the initial layers, this value keeps getting 

manipulated by each local gradient. The gradient keeps shrinking which makes the initial 

update very small which also increases the training period. 

3.2 Convolutional Neural Networks: VGG16 

VGG is the acronym for the lab at Oxford University (Visual Geometry Group) and 16 is the 

number of layers in the model with trainable parameters. In our research, we have used VGG16 
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which is a convolutional neural network model proposed by K. Simonyan and A. Zisserman 

from the University of Oxford in the paper “Very Deep Convolutional Networks for Large-

Scale Image Recognition” [44].  VGG16 is a 16-convolution layer architecture which consist 

of 138 million parameters. The architecture of VGG-16 explains some of the fundamental 

building blocks of the convolutional network - pooling layers and conv layers. 

 

Figure 3.3 Diagram of the architecture of VGG-16 with example Conv Layer and preceding 

input layer highlighted. 

3.2.1 VGG16 Architecture 

In the algorithm the input image has to be of fixed size of 224x224 RGB image. The image is 

passed through several stack of convolutional (conv.) layers and filtered within a very small 

size of 3×3 for the receptive field: (which is the smallest size to capture the notion of left/right, 

up/down, center for CNN algorithm). In the “Flatten” and “Dense” configuration it utilizes 1×1 

convolution filter as a linear transformation of the input channels followed by non-linearity 

configuration. The convolution stride is fixed to 1 pixel and the spatial padding of conv. layer 

input is set in such that it will preserve the spatial resolution even after convolution. In our case 

if the padding is 1-pixel for 3×3 conv. Layers then the spatial pooling is carried out by five 
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max-pooling layers, which follow some of the conv.  Layers (shown in the above figure). The 

max-pooling is performed over a 2×2 pixel window, with stride 2. 

“Flatten” layer is used to convert all the resultant 2D arrays as single long continuous linear 

vector. 

Two “Dense” layers and one “Output Classes” are the three Fully-Connected (FC) layers which 

follows a stack of convolutional layers. The first two FC has 4096 channels each and the third 

performs 1000-way ILSVRC classification, thus contains total of 1000 channels where one is 

for each class. The final layer is the soft-max layer which is used for classification of images. 

The configuration of the fully connected layers is the same in all networks. 

3.3 Convolutional Neural Networks: VGG19 

Similar to VGG16, VGG19 has the same baseline network, but only with additional layers (19) 

in the model with trainable parameters. It’s a simple model that shares most of the same basic 

architecture and algorithms as LeNet5, one of the first ConvNets from the 90s. The main 

difference is the addition of several more layers, which seems to validate the idea that deeper 

networks are able to learn better representations. VGG-19 is significantly more accurate 

ConvNet architectures, which not only achieve the great accuracy on ILSVRC classification 

tasks, but are also applicable to other image recognition datasets, where they achieve excellent 

performance even when used as a part of a relatively simple pipelines.   

3.3.1 Architecture of VGG-19 

VGG-19 is a 19 layers variation of VGGNet architecture consisting of 16 convolutional layers 

with 3 fully connected layers and the 5 pooling layers as VGG-16. The VGG-19 consists of 

two fully connected layers with 4096 channels each and followed by another fully connected 

layer with 1000 channels for a 1000-way ILSRVC prediction. The last fully connected layer 

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
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uses Softmax layer for classification. Figure 3.6 depicts the typical architecture of VGG-19 

network. 

 
Figure 3.4 Architecture of a typical VGG-19 network 

 

3.3.2 Layers and their Functions 

VGGNet architecture uses the fix size RGB Image for 224*224 resolution with 64 filter 

channels. The matrix shape for the image will be (224, 224, 3) where 3 means the color of the 

image will be RGB. In this layer the mean RGB value is subtracted from each pixel and 

computed over the training set. The filters in this layer are sized 3*3 with stride of 1 which 

enables the filters to cover the whole image. To preserve the spatial resolution of the image 

spatial padding was used. After performing a max pooling over a 2*2 pixels windows with 

stride 2, the image resolution can be reduced to 112*112 with 64 filters.  

After this, the image is followed by 2 more convolution layers consisting of 128 filters and 

formats the dimension of the image to 112*112*128 from 112*112*64. Then after next pooling 

layer the image is reduced to 56*56*128. After two more convolution layers with 256 filters 

and followed by pooling layer the size of the image is again reduced to 28*28*256. After more 
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stack each with 3 convolution layers are separated by a max-pool layer and followed by a final 

pooling layer is used the image size converts to 7*7*512. 

Table 3.1 Summary of VGG-16 and VGG-19 Architecture Configurations  

VGG-16 VGG-19 

16-weighted layers 19-weighted layers 

 

Input Image (224 x 224 Resolution) 

3 x 3 convolution, depth-64 

3 x 3 convolution, depth-64 

3 x 3 convolution, depth-64 

3 x 3 convolution, depth-64 

Maxpool Layer 

 

3 x 3 convolution, depth-128 

3 x 3 convolution, depth-128 

3 x 3 convolution, depth-128 

3 x 3 convolution, depth-128 

Maxpool Layer 

3 x 3 convolution, depth-256 

3 x 3 convolution, depth-256 

3 x 3 convolution, depth-256 

3 x 3 convolution, depth-256 

3 x 3 convolution, depth-256 

3 x 3 convolution, depth-256 

3 x 3 convolution, depth-256 

Maxpool Layer 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

Maxpool Layer 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

3 x 3 convolution, depth-512 

Maxpool Layer 

FC-4096 Fully-Connected Layer 

FC-4096 Fully-Connected Layer 

FC-2 Fully-Connected Layer 

Soft-max Output 

 

After this, the image is followed by 2 more convolution layers consisting of 128 filters and 

formats the dimension of the image to 112*112*128 from 112*112*64. Then after next pooling 

layer the image is reduced to 56*56*128. After two more convolution layers with 256 filters 



54 
  

and followed by pooling layer the size of the image is again reduced to 28*28*256. After more 

stack each with 3 convolution layers are separated by a max-pool layer and followed by a final 

pooling layer is used the image size converts to 7*7*512. Then three fully connected layers are 

implemented from which first two with 4096 channels and followed by a layer with 1000 

channels for 1000-way ILSVRC classification and the final layer is a Softmax function which 

is used for multi-classification. This is represented in Table 3.1.  

In our study, we have employed VGG-16 and VGG-19 typical networks for a binary image 

classification task. 

3.3.3 Modern Applications 

VGG 19 is applied in object detection or fault classification of various images. It can go through 

thousands of images at a time and can focus on the specific parts in them. VGG19 also can be 

pre-trained so that means it has sets of data for making the detection process smoother. It is 

used to detect objects, human faces, body parts, animals: almost anything and everything if its 

programmed or trained in the proper way. it is capable of distinguishing various objects if it is 

trained with the proper sets of data. The VGG series is vast and each of them has its specialties, 

so the application of VGG also depends on the type of VGG algorithm. Some of them are as 

follows: 

Human face detection - the use of VGG in detecting faces through cameras, especially security 

cameras, is a very widely popular idea at the moment. It becomes very efficient to detect 

suspicious activity or events. It is also useful in detecting faces while wearing a mask and now 

it is much needed since now, we are in the middle of a global pandemic. It is extremely efficient 

as it can distinguish between human and other objects and thus, making face detection really 

easy. 
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Fault detection in PV panels - VGG can be used in fault detection in PV panels. Since the 

human eye cannot detect a faulty PC cell, using deep learning algorithms make the detection 

process more accurate. VGG is a great algorithm for that purpose. A faulty solar cell will be 

generating different types of heat spots and thus the VGG can detect those faulty cells. This 

can mainly be achieved by properly training the VGG model with lots of cell images and data 

sets regarding the images. 

Application of VGG in the medical field - The concept of detecting cancer cells or the detection 

of eye diseases by using VGG algorithm was being introduced in recent years. It has shown 

quite promising results and now it is going to be implemented very soon in detecting cells. This 

will be revolutionary if it can be implemented successfully.   

3.4 Convolutional Neural Networks: EfficientNet 

EfficientNet is a state-of-the-art convolutional neural network (CNN) model, initially 

introduced by Tan and Le in [45], which employs a scaling method in order to efficiently 

improve dimensional depth, width and resolution of the neural network using a compound 

scaling method using a parameter called compound coefficient (ɸ). Standard implementations 

arbitrarily adjust and scales the aforementioned factors, while EfficientNet emphasizes on 

uniform scaling of the network depth, width and resolution in accordance with a set of pre-

defined scaling coefficients. The model has manifested outstanding accuracy in classification 

tasks and has proven to be superior to many state-of-the-art CNNs.  The model adopts a 

computation method that incorporates a versatile improvement of the efficiency of the model 

where the parameters and FLOPS (Floating Point Operations Per Second) are significantly 

minimized in contrast to other renowned CNN models. 
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3.4.1 Model Scaling 

Model Scaling refers to the determination of an ideal model size for a particular classification 

task, one that would provide the best possible accuracy for the designated task. To be more 

specific, it involves the adjustment of one of the following dimensions - the model’s depth, 

width or the input image resolution, in order to determine the ideal set of dimensions for the 

network to perform efficiently. 

EfficientNet employs a standard baseline network and implements compound scaling method 

in order to strengthen the networks predictive capability by working with the baseline 

network’s basal convolutional operations and network structure. Some of the mainstream CNN 

architectures that are employed as a baseline network or model includes MobileNet, GoogleNet 

and ResNet, but not limited to these. One of the most fundamental architectures of EfficientNet 

is termed EfficientNet-B0, that constitutes MBConv as the primary building block of the 

network. The general principle is to employ such a baseline network and then modify the 

different dimensions of the network in an attempt to improve the accuracy and efficiency of 

the network. Dimensions which can revamped are elaborated below –  

Adjusting Model Depth: The depth of a network signifies the number of layers in a network. A 

model with a large number of convolutional layers signifies a much deeper network, one that 

is capable of learning and retaining more finer details of the image and is therefore more 

accurate, as opposed to a model that constitutes a comparatively smaller number of layers. 

Therefore, by increasing the depth, by incorporating more convolutional layer, more 

sophisticated features of an image can be studied and learned. However, a deeper network 

involves more time-consuming computations and is therefore slower than a shallow network 

(a smaller number of layers).  
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A deeper network usually comes with few constraints: - 

 They can be difficult to train due to vanishing gradient problem when training with 

gradient-based learning methods. In such instances, gradient value becomes small and 

insignificant, inhibiting the weight update. And in many severe instances, it could lead 

to the stoppage of further training. 

 As depth is significantly increased, the increase in accuracy saturates at a certain point. 

Considering these constraints, the depth of the model scaled up and adjusted accordingly. 

Adjusting Model Width: The width of a network corresponds to the number of filters or 

channels within a convolutional layer. Similar to the different channels (R, G, B) that a typical 

image constitutes, convolutional neural network layers also constitute multiple channels. A 

wider network is one that has a larger number of channels in each layer. The width of the 

networks can be scaled accordingly in order to capture higher-level features. A wider and 

shallow network are quite easy to train, however, they come with few constraints as-well: -  

 Networks that are made to be immensely wide and shallow can be quite inefficient in 

terms of studying high-level features. 

 As width is significantly increased, the increase in accuracy saturates at a certain point. 

Hence, considering such constraints, the model width can be scaled up and adjusted 

accordingly in order to construct a well performing model. 

Adjusting Input Image Resolution: The resolution of an image is its corresponding height and 

width. Generally, convolutional neural networks employ input images that are usually fixed. 

An image with a resolution of 512x512 constitute more information as opposed to a 224x224 

image. Consequently, the architecture of a model can be changed accordingly in order to feed 

it with an image that has a high resolution, which would yield better performance and accuracy. 
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Needless to say, an increase in accuracy signifies a required increase in processing power due 

to the of large amount of information of a larger image that needs to be processed. Similar to 

the other parameters, the increase in accuracy tends to saturate after a certain image resolution. 

All things considered, it was observed that scaling up the network width, depth, or resolution 

of the network can significantly increase accuracy, but the increase in accuracy starts to saturate 

for larger values of the coefficients. Henceforth, in order construct a well performing model, 

in terms of efficiency and accuracy, balancing and uniform scaling of all dimensions of network 

width, depth, and resolution during scaling is essential. However, deciding on the depth, width, 

and resolution for a network is not very apparent and requires searching over all the 3 

dimensions to have them scaled up uniformly. Henceforth, it can be concluded that, in order to 

improve the accuracy of the network, contributions from all three dimensions must be 

integrated.  

3.4.2 Compound Scaling 

The compound scaling method is a scaling technique put forward by the authors of the 

introductory paper, a technique that uses a compound coefficient (ɸ) in order to uniformly scale 

the network width, depth and resolution and also maintain a balance between the dimensions. 

Compound coefficient (ɸ) is a user-defined parameter, a global scaling factor, which is used to 

determine the size of resources that can be allocated for the network width, depth and 

resolution. The parameters α, β, and γ determines how the allocated resources can be distributed 

to the width, depth and resolution of the network. Doubling the depth doubles the FLOPS, 

doubling width or resolution will increase FLOPS by a times four; which indicates that FLOPS 

of a convolutional operation is proportional to d, w2 and r2. Hence, using a compound 

coefficient to scale the dimensions will increase the total FLOPS by (α * β² * γ²) ɸ. As such, in 

order ensure that FLOPS do not exceed 2 ɸ, the condition (α * β² * γ²) ≈ 2 is applied. Hence, if 
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compound coefficient is set to 1 and we have twice the resources available, FLOPS get scaled 

by a factor of 21. 

The determination of the parameters α, β, and γ is done by employing grid search with ɸ set to 

1, which then determines the best set of values that results in highest accuracy. Once the ideal 

values for these parameters pertaining to the network is determined, they are then fixed, and 

the value of ɸ can be further increased to build larger but more accurate models. The values of 

the parameters α, β, and γ are not re-evaluated after every scale up of ɸ as it is computationally 

expensive to carry out repeated grid search. In this manner, many different versions of the 

EfficientNet model have been constructed, EfficientNet-B1 to EfficientNet-B7, where the 

integer in the name signifies the value of the compound coefficient ɸ. In these models, 

EfficienNet-B0 is set as the baseline network, using which the values of α, β, and γ were 

determined and fixed for other models of the family. This technique of model scaling can be 

applied to any CNN architecture in order to attain an improved accuracy. 

In our work, we have employed models B5-B7 within the EfficientNet family in order to 

analyze their predictive capability on our dataset. 
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Chapter 4  

Result Analysis and Discussion 

In our study, we have employed the use of solar cell images obtained through Infrared 

Thermography in order to inspect their respective thermal mappings with the help of 

Convolutional Neural Networks (CNN) and use these algorithms to make prediction between 

defective and normal modules. Prominent CNN models such as VGG16, VGG19 and 

EfficientNet were employed in order to be trained and tested on these Infrared Images.  

4.1 Performance Analysis – VGG-16 and VGG-19  

Since the IR images have been classified according to two different image processing 

approaches, temperature difference (ΔT) and thresholding; both the VGG models have been 

trained and validated in terms of both type of approaches. As mentioned before, our research 

originally involves only 15 infrared images of solar cells and according to the ΔT analysis, 12 

of the images are classified as normal and the other 3 as defective. On the other hand, according 

to the thresholding approach, 10 of the images are classified as normal and the other 5 are 

classified as defective. 

In order to train the VGG models using the temperature difference appraoch, these 15 images 

are divided into 3 sets of data: training set (5 images), validation set (5 images) and testing set 

(5 images); with each set containing the same number of defective and normal images (4 

normal and 1 defective). Both VGG16 and VGG19 models were able to achieve an overall 

accuracy of 80 percent, which is reasonable considering the small size of the dataset. However, 

VGG19 achieved the performance with over half the number of epochs that was required for 

VGG16.  

Moreover, in order to increase the size of the dataset and improve the performance of the 

models, data augmentation techniques such as rotation, flipping, histogram equalization, noise 
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and scaling are applied on the images. As a result, 120 additional IR images are obtained, which 

consists of 24 defective cells and 96 normal cells. For training, the total of 135 IR images are 

divided into 3 sets of data: training set (45 images), validation set (45 images) and testing set 

(45 images); with each set containing the same number of defective and normal images (36 

normal and 9 defective). Comparing the performances of the VGG16 and VGG19 models on 

the augmented data sets, the VGG16 model had an improved overall accuracy of 93.75% while 

the VGG19 model had no changes in the overall accuracy. 

Subsequently, for training the VGG models using the thresholding and contour detection 

appraoch, the original 15 images are also divided into 3 sets of data: training set containing 6 

images (4 normal and 2 defective), validation set containing 5 images (3 normal and 2 

defective) and testing set containg 4 images (3 normal and 1 defective). In this case, the VGG16 

model outperformed the VGG19 model with the highest overall accuracy of 100%, which is 

also greater than the accuracy values in the temperature difference approach; the VGG19 model 

had the lowest overall accuracy of 60% in this particular approach. A 100 percent accuracy 

cannot be proclaimed reasonable here, since the validation dataset is too small. Hence, correctly 

assessing the predictive accuracy was not viable. The VGG16 network might be coincidentally 

achieving such a high overall accuracy and hence to reach an authentic conclusion, data 

augmentation techniques are applied to increase the dataset and compute the new overall 

accuracy. However, we can conclude that the model does depict a good performance. 

Therefore, data augmentation techniques similar to the ones in the first approach were applied 

to increase the size of the dataset and improve the performance of the models. Again, 120 

additional IR images are obtained, consisting of 24 defective cells and 96 normal cells. 

Similarly, the entire dataset of 135 IR images are again divided into 3 sets of data: training set 

containing 54 images (36 normal and 18 defective), validation set containing 45 images (27 

normal and 18 defective) and testing set containing 36 images (27 normal and 9 defective). 



62 
  

From the results of the training, it can be seen that the overall accuracy of VGG16 came out to 

be 100% again while the overall accuracy of VGG19 improved to 84.44 percent. Hence, we 

can conclude that the VGG16 model performed better than VGG19 model in all the approaches 

while having achieved the highest accuracy of 100% with the thresholding and contour 

detection approach.  

Table 4.1 summarizes the learning performances of both the VGG models on the original 

dataset and the augmented dataset. 

Table 4.1 Summary of performances of the VGG models 

Model Learning 

Rate 

Epochs Performance 

accuracy 

with 

Temperature 

Difference 

approach 

Performance 

Accuracy 

with 

Thresholding 

Approach 

Performance 

accuracy with 

Temperature 

Difference 

approach (with 

Data 

Augmentation) 

Performance 

accuracy with 

Thresholding 

approach 

(with Data 

Augmentation 

VGG16 0.0001 100 80% 100% 93.75% 100% 

VGG19 0.0001 50 80% 60% 80% 84.44% 

 

4.2 Performance Analysis – EfficientNet 

In addition to the VGG architectures, we have also utilized 3 different EfficientNet model 

architectures, EfficientNet B5, B6, B7. Some of the optimized parameters such as the number 

of width, depth and resolution has been shown in Table 4.2. These three models have been 

trained using both the classification approaches, temperature difference analysis and 

thresholding. The same dataset that was used for the VGG models has also been used for 
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training the EfficientNet models and both the original and augmented datasets have been split 

in the exact same manner. In temperature difference approach, 12 IR images are classified as 

normal and 3 are classified as defective. In thresholding and contour detection approach, 10 IR 

images are classified as normal and 5 are classified as defective. 

 

Initially, using the temperature difference approach, all the three models achieved the same 

performance accuracy of 80%. Moreover, incorporating augmented datasets that were used for 

the VGG models, the accuracy remained at 80% for all the three models. Hence for 

this approach, data augmentation did not provide any consistent improvement in the learning 

of the network models.  

 

Next, using the thresholding and contour detection approach, EfficientNet models B5 and B6 

had overall accuracy values of only 40% while EfficientNetB7 had a higher overall accuracy 

of 60%.  This is much lower when compared with the learning performance in the temperature 

difference approach. With the augmented images (135), the performance of the EfficientNet 

B5 and B6 improved up to 60% while no improvement was recorded for EfficientNetB7. This 

is still much lower than the learning performances observed in the temperature difference 

approach. Therefore, it can be concluded that the EfficientNet models performed much better 

with the temperature difference approach and data augmentation had very little improvement 

in their learning performances. A much larger dataset would have helped us assess the 

performances better. Table 4.2 summarizes the learning performances of the EfficientNet 

models. 
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 Table 4.2 Summary of the learning performances of EfficientNet-B5, B6 and B7 

Efficient

Net 

Model 

Width, 

Depth, 

Resol-

ution 

Epochs Performance 

accuracy 

with 

Temperature 

Difference 

approach 

Performance 

Accuracy 

with 

Thresholdi-

ng Approach 

Performance 

accuracy 

with 

Temperature 

Difference 

approach 

(Data 

Augmentati-

on) 

Performance 

accuracy 

with 

Thresholdi-

ng approach 

(Data 

Augmentati-

on) 

Efficient

Net-B5 

(1.6, 

2.2, 

456) 

50 80% 40% 80% 60% 

Efficient

Net-B6 

(1.8, 

2.6, 

528) 

50 80% 40% 80% 60% 

Efficient

Net-B7 

(2.0, 

3.1, 

600) 

50 80% 60% 80% 60% 

 

4.3 Performance Comparison of best performing models 

Finally, Table 4.3.1 sums up the performances of the deep learning models in terms of both the 

approach of the classification and the size of the dataset. 
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Table 4.3 Overall performance comparison of VGG-16, VGG-19 and EfficientNet models 

 

The most obvious conclusion we can draw from the table is that VGG16 had the best overall 

accuracy of 100%, while VGG19 had the second-best overall accuracy of 84.44% and 

EfficientNet had the lowest overall accuracy of 80%. This is also illustrated in Figure 4.1. 

 

Figure 4.1 Performance comparison of best performing models 
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Moreover, we can also deduce that the VGG models performed better using thresholding 

approach when compared with the temperature difference approach while the EfficientNet 

models performed better using the temperature difference approach when compared with the 

thresholding approach. 

Lastly, data augmentation helped improved the performances of the VGG models to a small 

extent but had very small to no impact on the performances of the EfficientNet models. 

The inconsistent performance results in some of the models can be justified by pointing out the 

lack of dataset, which created an imbalance during the splitting of the dataset into training, 

validating and testing dataset. It was observed that in some instances, the model had only 1 

defective image and 4 normal images to train on. Similar issue was experienced in the 

validation datasets as-well. Thus, the models had very small number of images to train and 

validate on.  
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4.4 Training Performance Overview  

This section provides an illustration of some of the training evaluations pertaining to VGG-16 

VGG-19 and EfficientNet, with the help of plots. The accuracy of a model signifies the extent 

to which a model was able to make correct predicts. In addition, the loss of model signifies 

how deviated the model is away from the true labels. A greater loss indicates that the model is 

experiencing difficulties in making the right set of predictions (with reference to the training 

and validation dataset) and a reduction in loss indicates that the model is gradually progressing 

closer to making more accurate predictions on the datasets. Moreover, the number of epochs 

within the plots refer to the number of times the model has entirely processed the training 

dataset (one epoch = one forward pass and one backward pass). 

 

Figure 4.2 Training and Validation Performance of VGG-16 (Temperature Difference 

approach with Data Augmentation) 

Figure 4.2 shows that training accuracy and loss has increased and decreased respectively over 

an increase in epochs, for VGG-16 model trained on the IR augmneted dataset, that was 
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labelled using Temperature Difference approach. The training was halted early due to no 

further increase in validation accuracy. Due to lack of extensive validation dataset, a significant 

amount of validation loss was observed due to overfitting. A validation accuracy of 93.75 

percent was achived in this case as opposed to the model that trained on unaugmented dataset, 

which had delivered a validation accuracy of 80 percent.  

 

Figure 4.3 Training and Validation Performance of VGG-16 (Thresholding and Contouring 

approach with Data Augmentation) 

Figure 4.3 shows the extensive decrease in validation loss and training loss (over an increase 

in epochs) on the IR Image augmented dataset that was labelled using Thresholding and 

Contouring. We can also observe a very high validation and training accuracy. A validation 

accracy of 100 percent was achived in this case, which is not an optimum conclusion 

considering the small size of the validation dataset. However, we can conclude that the model 

performed really well considering an extensive decrease in both validation and training loss 

over an increase in number of epochs. 
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Figure 4.4 Training and Validation Performance of VGG-19 (Thresholding and Contouring 

Approach) 

Figure 4.4 shows the accuracy and loss performance of the VGG-19 model over number of 

epochs, which was trained and validated on the IR image dataset that was labelled using 

Thresholding and Contouring approach. It can be noted that there was a signifcant decrease in 

training and validation (test) loss as number of epochs increased. It also had a good training 

and validation accuracy. A validation accuracy of 60 percent was achieved for the model on 

the unaugmented IR image dataset.  

 

Fig 4.5 Training and Validation Performance of VGG-19 (Thresholding and Contouring 

Approach with Data Augmentation) 
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Figure 4.5 shows the accuracy and loss performance of the VGG-19 model over number of 

epochs, which was trained and validated on the augmented dataset that was labelled using 

Thresholding and Contouring approach. It can be noted that there was a signifcant decrease in 

training and validation (test) loss as number of epochs increased. It also had a good training 

and validation accuracy. A validation accuracy of 80 percent was achieved using this method, 

which is a better result as opposed to the model that trained on unaugmented dataset that was 

labelled using Thresholding and Contouring.  

 

Figure 4.6 Training and Validation Performance of EfficientNet-B7 (Temperature Difference 

Approach with Data Augmentation) 
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Figure 4.6 illustrates the accuracy and loss model of EfficientNet-B7 on the IR augmented 

image dataset. It can be observed that the model achieved a validation accuracy of 80 

performance. However, a significant amount of loss in training and validation dataset also 

persisted. 

 

 

Figure 4.7 Training and Validation Performance of EfficientNet-B6 (Thresholding and 

Contouring Approach) 
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Figure 4.7 illustrates the accuracy and loss model of EfficientNet-B6 on the IR image dataset, 

labelled using Thresholding and Contouring. We can observe a significant decrease in training 

loss over an increase in number of epochs. However, on the validation dataset, the model 

performed poorly, with only a validation accuracy of 40 percent.  

 

 

Figure 4.8 Training and Validation Performance of EfficientNet-B6 (Thresholding and 

Contouring Approach with Data Augmentation) 
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Figure 4.8 illustrates the accuracy and loss model of EfficientNet-B6 on the IR augmented 

image dataset, labelled using Thresholding and Contouring. It can be observed that the B6 

model’s validation has increased from 40 percent to 60 percent when the augmented dataset 

was used to train the model.   
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Chapter 5  

Conclusion and Future Work 

With increase in prominence of deep learning networks, more and more fields are incorporating 

deep learning frameworks in order to improve the efficiency of a particular task. As such, the 

need for autonomous monitoring and fault diagnostic techniques in electrical equipment and 

modules has become progressively essential over the years, particularly pressing more 

emphasis on image classification tasks. Early fault diagnosis of electrical modules can 

provision a reduction in manual labor, minimize cost and potential damage. In our study, we 

have put emphasis on solar cell modules whose heat emission can be analyzed and realized 

with the help of Infrared images. In addition, in order to develop an estimated difference 

between a potential defective and normal module, we have employed several different image 

processing techniques. These techniques were then used to label the images in order for the 

different CNN models to train on. Experimental results showed that for both normal and 

augmented datasets, the VGG-16 outperformed other models. Moreover, in order to improve 

the efficiency of the models, we have applied data augmentation, which has shown significant 

improvements in VGG-16 and VGG-19 models, while it has had little to no effect in 

EfficientNet models. One of the constraints that is imperative to mention is the outstanding 

lack of dataset- 15 images (due to Covid restrictions), which is an outstandingly small figure 

for a dataset that is to be used to train a CNN model. Due to the lack of dataset, the splitting of 

the dataset into training, validation and testing dataset was quite imbalanced as-well. As such, 

the results obtained were significant but not up to par.  Our objective was to use the available 

dataset in order to assess the performances of the different CNN on the IR image dataset. All 

in all, we can conclude from our work, that among the 3 different CNN, VGG-16 has 

demonstrated the best performance in all datasets.  
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Fault diagnosis using image classifiers has witnessed progressive advancement over the years, 

especially with regards to deep learning frameworks. Our work can be further improved in the 

future by integrating a larger dataset that would help better assess the performances of the 

different models. Moreover, other state-of-the-art models, that depend on larger datasets, can 

also be employed in order to study their predictive capability on Infrared Images of solar cell 

modules. Last but not the least, other image processing techniques (such as Histogram-Profile 

Analysis or Line Profile Analysis) can also be used to potentially provide better labelling of 

the dataset. The ultimatum is to determine the most optimum CNN model that would have the 

best predictive capability in differentiating between IR images of defective and normal solar 

cell modules. 
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