
Prediction of Acute Lymphoid Leukemia using Privacy

Preserving Neural Network

by

Ishfaque Qamar Khilji
15301113

Kamonashish Saha
15341004

Jushan Amin Shonon
19241042

Ragib Israq
19341032

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
December 2019

c© 2019. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Ishfaque Qamar Khilji
15301113

Kamonashish Saha
15341004

Jushan Amin Shonon
19241042

Ragib Israq
19341032

i

Approval

The thesis/project titled “Prediction of Acute Lymphoid Leukemia using PrivacyP-
reserving Neural Network” submitted by

1. Ishfaque Qamar Khilji (15301113)

2. Kamonashish Saha (15341004)

3. Jushan Amin Shonon (19241042)

4. Ragib Israq (19341032)

Of Summer, 2015 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on December, 2019.

Examining Committee:

Supervisor:
(Member)

Muhammad Iqbal Hossain, PhD
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Associate Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Mahbubul Alam Majumdar, PhD
Professor and Chairperson

Department of Computer Science and Engineering
BRAC University

ii

Abstract

In today’s world, machine learning has become a big factor. It not only needs to
be helpful, but also accurate and precise prediction is required. Machine learning is
now becoming a widely used mechanism and applying it in certain sensitive fields
like medical and financial data has only made things easier, but it also brought
some difficulty in data privacy and data security which will protect the complete
implementation of cloud based machine learning for these aspects due to the law
and ethical needs. In this project, to give proper solution, we have come up with
the idea using concepts of CryptoNets and Neural Networks, where we will be able
to convert the learned neural network with the encrypted data to Cryptonets and
the data will be totally encrypted and this will prevent the chances of unencrypted
data being available to everyone. In this method, the owner will send the encrypted
data to the cloud first and will hold a private key which can be used to decrypt
the data later on. The cloud will have no idea about the data there since it will
be in encrypted form and any attempts to get data from the cloud will only give
the encrypted form. However, applying neural network to the cloud will enable us
to store the data and make predictions in encrypted form and also give back the
encrypted data to the user. In this way, the cloud will have no idea about the actual
data and after the prediction is made, it will give back the predicted data in the
encrypted form. We were able to achieve an encrypted prediction of about 78% close
to the validation accuracy amount we achieved when training our Neural Network
model.
Keywords: Crypto-Nets, Neural Network

iii

Dedication

We would like to dedicate this paper to the Almighty, our family and friends.

iv

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption.
Secondly, to our co-advisor Muhammad Iqbal Hossain, PhD sir for his kind support
and advice in our work. He helped us whenever we needed help.
And finally to our parents without their throughout sup-port it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 2
1.3 Our proposal . 2
1.4 Objective and contribution . 3
1.5 Thesis Structure . 3

2 Literature Review 4
2.1 Literature review . 4

2.1.1 CNN Features . 4
2.1.2 Handcrafted Features . 4
2.1.3 Updates to SEAL . 5
2.1.4 Updates to Cryptonets . 5

2.2 Homomorphic Encryption . 5
2.3 Selecting encryption parameters . 7
2.4 Homomorphic encryption scheme algorithms 9
2.5 Neural Network . 10
2.6 Algorithms used . 10

2.6.1 VGG 16 and VGG19 . 10
2.6.2 SVM . 13
2.6.3 AlexNet . 14
2.6.4 ResNet50 . 16

vi

3 Proposed Model 18
3.1 Workflow Graph . 18
3.2 Dataset Description . 19

3.2.1 Dataset and pre-processing and feature selection 19
3.3 Model Description . 21

3.3.1 Dataset Conversion and taking into array 21
3.3.2 Model Details . 23

4 Experiments and Result Analysis 34

5 Conclusion 40

Bibliography 43

vii

List of Figures

2.1 Layer Stucture of VGG16 model . 10
2.2 Difference in layers between VGG 16 AND 19 12
2.3 Layer shapes and Parameters of the layers after trained with our dataset 12
2.4 Support Vector Machine Seperated by a hyperplane 13
2.5 Sample AlexNet layer structure . 14
2.6 Residual Learning : a building block 16
2.7 ResNet 50 architecture . 17

3.1 Workflow Diagram . 18
3.2 Workflow Diagram . 19
3.3 Train and test subjects and the corresponding number of samples . . 20
3.4 Images in the training set. (a) ALL cell (b) Normal cell (c) ALL

cell with part of the cell cut off due to an imperfect segmentation
(d) Normal cell with superfluous background due to an imperfect
segmentation . 20

3.5 Code for training dataset conversion to Cifar-10 dataset format and
then to test and train arrays accordingly 22

3.6 Summary of layers in our own model 26
3.7 Code for adding layers to custom model 27
3.8 Code for adding layers to custom model 27
3.9 Code for adding layers to custom model 28
3.10 Code for generating .bin file of our dataset in CIFAR-10 format . . . 29
3.11 Code for .bin to.tsv . 29
3.12 Code snippet for the application . 30
3.13 Python code for generating encryption parameters 32
3.14 Output for the encrypted prediction 32

4.1 Training and Validation accuracy for VGG16 34
4.2 Training and Validation accuracies for SVM 35
4.3 AlexNet validation(orange) and train accuracy(blue) 36
4.4 Validation and training accuracy of ResNet50 model 37
4.5 Validation Accuracy using ‘Relu’ and ‘Sigmoid’: 38
4.6 Validation Accuracy using ‘Square’ and ‘Softmax’ 39

viii

List of Tables

4.1 Comparison between models . 38

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ALL Acute Lymphoid Leukemia

BFV Brakerski/Fan-Vercauteren

CIFAR Canadian Institute For Advanced Research

CNN Convolutional Neural Network

KNN K Nearest Neighbor algorithm

MLP Multi Layer Perceptron

MNIST Modified National Institute of Standards and Technology database

NN Neural Network

ReLU Rectified Linear Unit

ResNet Residual Neural Network

RNN Recurrent Neural Network

SEAL Software-Optimized Encryption Algorithm

SVM Support Vector Machine

SWHE Somewhat Homomorphic Encryption

Y ASHE Yet Another Somewhat Homomorphic Encryption

x

Chapter 1

Introduction

We are trying to make a system where there will be an assurance about privacy and
will also give an initial prediction i.e. whether the patient has cancer or not. This
will also decrease the cost of the system because the initial tests are expensive and
in our model the price will be less to give an initial prediction. The data will be
stored in the cloud and hence the cloud can charge money for the storage and will
also be financially beneficial for both the user and the supplier. This system can be
used in case of banks, hospitals and other systems.
In our model we included Homomorphic encryption. This system can be used in
hospitals, research institutes and others. In this system, it will allow one party to
have a public key such as in hospitals where a lot of patients can upload their data
through the public key which will be encrypted and stored in the commercial cloud.
The owner, in our case the hospital administration, lab techniques, doctors and
patients can have policies to decrypt the data when necessary. This will ensure the
encryption and decryption in a proper manner and will also ensure proper privacy
of the user is they want to store or export their information.
In the encryption process, the owner will only have the private key and will be
capable for decrypting the data, on the other hand, the cloud system does not have
any key and hence won’t decrypt the data and hence it won’t know about the data
inside or be able to get any data about the predicted data. This will provide a better
privacy and will also decrease the overall cost and since there is only one private
key, the service provider will not also know about the data.
In our project, the unencrypted data will be first used for training the network. The
training data sets can be difficult to find for these type pf projects because they
always have a privacy issue and also that its not easily available. The problem of
such type is also called Privacy Preserving Data Mining (Ahrawal Srikant, 2000).
To come to internal concept of our project, we used CryptoNets where we use
Homomorphic Encryption and Neural Network.

1

1.1 Motivation

In our research regarding the topics, we looked up for many different topics in dif-
ferent sectors. We wanted to work on something that will help our society and our
country in the medical sector. Since, cancer detection is quite expensive now and
many cannot afford it or is not much available to people, we wanted to find a detec-
tion system that would help detection in an easy manner and take less time and also
give effective results. We also wanted to make it different and not much research
was done on such topic. And since, privacy is a growing issue and not much taken
care of in our country, we wanted to make our system secured and ensure the privacy.

1.2 Problem Statement

Many people in mainly the poor or developing countries fail to do the test. It is
mainly because it is either very expensive or it is not much available to everyone. In
addition to that, there is not much security to the data and does not ensure privacy.
This is because anyone can access the diagnosis reports of the patient in the hospitals
in many parts of the world. The initial tests to detecting blood Cancer are either
expensive or are not much available. Moreover, usually the whole diagnosis process
is really time consuming and patients have to wait more days for the diagnosis report
to arrive.Due to being more expensive , the people in the developing countries with
middle or poor income cannot afford it.Thus ,many people are left untreated and the
death rate increases.Also, even if the treatment is available, the diagnosis reports of
the patient remains available to anyone who wants to view it. Thus there is loss of
privacy. More hospitals and medical agencies will use our model since it is cheap .
Its cheap because our model requires only the dataset of the Cancer images needed
to for training and the rest of the model is entirely computer based.Moreover, less
resources are required compared to the original blood screening. It ensures patients
medical records or diagnosis reports being secure as medical predictions or diagnosis
is itself encrypted in our model . Hospitals or other medical agencies can provide
the securely fast working model then to the mass people at a lower price ,thus many
can afford it

1.3 Our proposal

We propose make a Privacy Preserving Neural Network model which can predict
blood Cancer as well as maintain the privacy of the patient. In our thesis, at first,
we have taken a blood cancer dataset and successfully ran it on various Neural Net-
work and Machine learning models which would accurately predict blood cancer.
The results are then compared among them. Moreover, then we made our own Neu-
ral Network model which is run on the dataset that we are having which is modified
at first in order to run on encryption application .The results are again compared
with that of the previous models to prove our NN model is better than the others
here. The model is then encrypted to give predictions in secured format. We are on
the process of having our own dataset collected from different labs which we kept for

2

future work. We want to provide a system that will not only give the initial result
of whether it is cancer or non-cancer but will also will be encrypted and the result
will only be known by the patient with the private key which will ensure the privacy.

1.4 Objective and contribution

Our objectives include Detection of Blood Cancer (Leukemia) from imagery test
samples after proper modification in order to run on custom the CryptoNets appli-
cation. A Homomorphic encryption scheme on the whole system which would be
used to homomorphically encrypt the images from the Neural Network on which
computations and predictions can be done even if the images are encrypted Com-
parative analysis is done among the first several models run and then between them
and our own NN model.The results are then compared. Work on CryptoNets is done
currently in mainly 3 datasets : MNIST,CIFAR-10 and Caltech-101. CryptoNets
has not been used in practical applications before. Thus our contribution in detect-
ing blood Cancer using imagery in privacy preserving model(CryptoNets) will be the
first of its kind.The process that we introduce will pave a way for implementations
in various field.This will ensure secure lives and provide customer satisfaction.

1.5 Thesis Structure

Chapter 1: Introduction where motivation, problem statement, objectives and con-
tributions were discussed.

Chapter 2: In literature review, we discussed the previous work and related works.
We described about Homomorphic Encryption and how to select its parameters and
the encryption scheme algorithms. We also discussed about Neural Network and
how it works describing some of the algorithm that are related to our project.

Chapter 3: We described about our proposed model and provided a workflow dia-
gram. There was a description data-set about how we pre-processed data and also
performed feature selection. There was a brief description about our model and also
about its detail.

Chapter 4: We discussed about the experiments we performed and analyzed the
results.

Chapter 5: It includes conclusion and the plan about our future works.

3

Chapter 2

Literature Review

2.1 Literature review

Early work on automated image-based ALL diagnosis can be loosely grouped into
more recent approaches that use convolution neural networks as feature extractors
and older approaches that use handmade features.

2.1.1 CNN Features

Shafique and Tehsin [1] used pre-trained AlexNet and fine-tuning for classification
of ALL subtypes on ALL-IDB augmented that includes 50 private images. Rehman
et al [2] used an AlexNet which was pre trained and fine-tuned for classification of
ALL subtypes,worked with a private datatset of 330 images. On the other hand,
Vogado et al [3] used a different pre-trained CNNs as fixed feature extraxctors to
classify ALL on ALL-IDB.

2.1.2 Handcrafted Features

Mohapatra et al. [4] and Madhloom et al. [5] use private datatset and classify using
an ensemble of SVM, KNN, näıve Bayes and a KNN classifier. Putzu and Ruberto
[6] classify a number of features such as, compactness area and ratio between cyto-
plasm and the nucleus with an SVM using ALL-IDB.
In the above case, the dataset used are small compared to others and also tough
to compare the results. The datasets which are private are not available and the
ALL-IDB datasets which are public are given on their own evaluation procedures.
All these factors make comparisons difficult.

Our project is divided into two parts of the programming languages Python and C.
The Neural network model building and comparisons of the ML and NN models are
done in the python part of the project. The encryption part after that where the
‘CryptoNets’ application is created is done on C sharp.

Grapel et al. [7] shows an implementation of homomorphic encryption of machine
learning algorithms where they concentrated on pointing out the algorithms showing
encrypted data can be trained and thus were more opted to use learning algorithm
where the training algorithm can be shown in a low degree polynomial. Zhan et al.,

4

[8]; Qi & Atallah, [9] looked up for nearest neighbor divisions but they do not give
the same level of accuracy as neural networks. Aslett et al. [10] [11] presented both
of the algorithms such as näıve Bayes classifiers and random forests but their model
cannot work efficiently in recognizing objects in images.

2.1.3 Updates to SEAL

The SEAL library has been changed and improved and it no longer uses the YASHE
scheme and instead uses the Fan-Vercauteren scheme (FV) [12]. The YASHE
schemes which was used previously relied on the unusual hardness assumption for
security [13] [14] which turned to be easier to break, but on contrast, the recent FV
scheme, relies on Ring-Learning with Errors (RLWE) assumptions. The FV when
compared with YASHE, has better noise growth properties specifically in homomor-
phic multiplication and hence many parameters will run with better improvements
and improved performance. In addition to that, some new features have been added
and a few API changed have been introduced.

2.1.4 Updates to Cryptonets

It was shown in [15] that high throughput can be gained when taken to examine
deep convolutional neural networks on encrypted data. That paper gave an accuracy
of approximately 99% on detection of hand written digits (MNIST dataset) using
neural network and an output of over 50,000 predictions per hour.

2.2 Homomorphic Encryption

Homomorphic encryption is a technique used for encrypting information , such that
the information can be evaluated or calculated on by anyone with no access to keys
needed for encryption or decryption, and the calculation results are obtained in en-
crypted form. Homomorphic encryption solutions, that require single operations ,
such as addition, are there for decades, such as for the ones that has its foundation on
the RSA or Elgamal cryptosystems.A homomorphic encryption method that allows
an infinite number of simultaneous operations, i.e. both addition and multiplication,
allows the calculation of any circuit and thus a complete method of homomorphic
(FHE) gained. A leveled homomorphic encryption scheme is an encryption algo-
rithm which makes it possible in selection of parameters that allows homomorphic
testing of any given fixed function. Implementing a leveled homomorphic scheme
with fixed parameters to enable a definite preset, fixed measure of calculations to-
gether with application-specific data encoding and algorithmic optimization points
to a certain amount of efficiency and collectively known as Practical Homomorphic
Encryption (PHE).
FHE was first presented in Gentry in 2009 [16]. In Gentry, the data encrypted in
the bits and for each bit in the message, a separate Ciphertext is produced. It is
a sort of addition and multiplication module represented by Boolean circuits with
XOR and AND gates.
FHE in ciphertexts contain some inherent noise which grows during homomorphic

5

encryption and it cannot be decrypted when it gets too large. To solve this problem,
Bootstrapping is used where the ciphertexts are constantly refreshed and their noise
is reduced [17] [18].
Converting these ideas into practical systems to solve performance and storage chal-
lenges are still a serious challenge. However, there are some noticeable improvements
which is done by encoding the data in a way which will deduct both the size of Ci-
phertexts and also test the depth of the circuits. The parameters for Practical
Homomorphic Encryption (PHE) should be chosen which would not only increase
the efficiency but also preserve privacy and ensure security. In our project, we have
used certain tools such as Noise Growth Simulator and Automatic Parameter Selec-
tion Module to help the user to achieve maximum performance [19].
Two types of homomorphic encryption includes: Partially and Fully Homomorphic
encryption.
Partial Homomorphic encryption is a system in cryptography that is considered par-
tially homomorphic if it demonstrates either additive or multiplicative homomorphic
characteristics, not both. Clearly, partial Homomorphic encryption schemes are use-
ful in certain applications.
Somewhat homomorphic encryption approaches can only evaluate a multiple but
limited number of addition and multiplication activities. SWHE schemes refer to
encryption systems that present certain homomorphic characteristics but lacks full
homomorphic capacity.
The fully homomorphic encryption supports a significant measure of multiplications
and additions, hence, can calculate functions of any form on encrypted information.
For all forms of computations on the information warehoused in cloud, the usage of
FHE is thus an important step in developing cloud-computing security.

Encoding

As described previously, a discrepancy exists between the atomic structures in neural
networks (real numbers) and the atomic structures in the homomorphic encryption
schemes (polynomials in Rn

t) [20].
Each other is mapped by an encoding scheme in a manner that protects the opera-
tions of addition and multiplication. Such a scheme of encoding can be constructed
in several ways. For example, real numbers can be converted to set precision num-
bers, and then their binary version can be used to turn them into a polynomial
having the binary expansion coefficients. This polynomial will have the property of
returning the encoded value when evaluated at 2. Another alternative is to encode
as a constant polynomial the fixed number of precision. This encoding is straight
forward, but taking into account that only one polynomial coefficient is being ap-
plied may seem inefficient. One problem with the scalar encoding is that when
homomorphic operations are performed, only the coefficient of the message polyno-
mials grows very quickly.

6

Encoding Large Numbers

As we have already explained, in this encryption scheme, a major challenge for com-
putation is to prevent the coefficients of the plaintext polynomials from overflowing
t [20]. This forces us to pick large values for t, which allows the noise to grow faster
in the ciphertexts and reduces the total amount of noise tolerated (with q fixed).
Therefore, for security reasons, we need to choose a larger q, and then a larger n.
One way to overcome this problem partially is to use the Chinese Remainder The-
orem (CRT) (see the supporting material). The concept of using multiple primes
is t1, ..., tk. Given a polynomial

∑
aix

i we can convert it to k polynomials in such
a way that the j-th polynomial is

∑
[ai(modtj)]x

i. Each polynomial like this is en-
crypted and controlled in the same way. It is the confirmation of CRT that would
enable us to decode back the output, till its coefficient does not grow beyond

∏
tj

.Thus, this method lets us to encode exponentially large numbers at the same time
incriminating time and space linearly in the number of primes operated.

Plain-text space and homomorphic operations

Plaintext elements(messages encrypted by homomorphic encryption schemes) can
be represented as a polynomial ring,R with coefficients minimalized modulo the
integer,t. Cipher text elements(encrypted plaintext elements) on the other hand
can be similarly represented but instead has coefficients minimalized modulo the
integer ,q [19]. Thus , the plaintext space for the ring. Formally, this means that
the plain-text space is the ring Rt := R/tR = Zt[X]/(Xn + 1), and the ciphertext
space is contained in the ring Rq := R/qR = Zq[X]/(Xn + 1). However, some
of elements in Rq are invalid ciphertext. A ciphertext created by the function
used for encryption in the scheme that we are using encrypts one plaintext message
polynomial m in Rt. If a homomorphic addition(resp. multiplication) is done
on ciphertext that encrypts two plaintext messages for example m1,m2 in Rt , the
output ciphertext will encrypt the summation of m1+m2(resp.the product m1.m2).
Plaintext element computations are done in the ring Rt.Thus,incase of homomorphic
addition, the output ciphertext will encrypt the coefficient wise summation m1+m2 ,
where the coefficients are likewise reduced modulo the plaintext modulus ,t. Incase of
homomorphic multiplication, the output ciphertext will encrypt the product m1.m2
in Rt, meaning the polynomial will likewise be reduced modulo Xn+1 where –1
will substitute all powers of Xn and continued till no monomials of n degree or
higher than that is remaining. Just like homomorphic addition, the coefficients of
polynomial m1.m2 will likewise be deducted modulo integer, t.

2.3 Selecting encryption parameters

The particular scheme that is used in SEAL is the more practical derivation of the
YASHE scheme.Encryption parameters of the scheme are : degree n, the moduli
q and t, the decomposition word size w, and distributions Xkey,Xerr. Thus, pa-
rameters := (n,q,t,w,Xkey,Xerr). These parameters are explained in more detail
below

7

• n here is used as the maximum number of terms in the polynomials used for
showing the plaintext as well as ciphertext elements. SEAL shows n always
as a power of 2. Xn + 1 polynomial is the polynomial modulus, shown as
polymodulus in SEAL.

• q the coefficient modulus,is an integer modulus operated in reduction the co-
efficients of ciphertext polynomials. SEAL represents q as coeffmodulus.

• t ,the plaintext modulus,is an integer modulus taken in reductionof the coef-
ficients of plaintext polynomials.SEAL shows t as plain modulus..

• Integer coefficients is decomposed into smaller parts according to the integer
base w. The integer calculates the number w,q := blogw(q)c + 1 of parts when
decomposing an integer modulo q to the base w. Practically, we take w as a
power of two, and take the decomposition bit count as log2w .SEAL, shows
log2w as decomposition bit count.

• Xkey distribution is a probability distribution on polynomials of degree at
most n-1 with integer coefficients implemented to sample polynomials with
small coefficients that are taken in the key generation procedure. In SEAL,
coefficients are sampled uniformly from [1,0,1].

• Likewise, the distribution Xerr on polynomials of degree at most n-1 is used
for sampling noise polynomials, essential in time of both key generation and
encryption. SEAL has the distribution Xerr as a shortened discontinuous
Gaussian centered at zero having standard deviation . SEAL has it called
Noise Standard Deviation.

8

2.4 Homomorphic encryption scheme algorithms

The following chart gives a detailed representation of the key generation, encryption,
decryption and homomorphic evaluation algorithms [19]:

9

2.5 Neural Network

The term Neural Network is an artificial network which is composed of circuits or
neurons or artificial nodes. These are leveled circuits and in layers and are usually
found in an order where the last layer is the input layer and the first being the
output layer. Each layer consists of nodes and they are all incorporated a value of
the features of the project. In these layers, the above or previous nodes of the layer
compute a function based on the nodes of the layers under it and the first node in
the stack becomes the output layer.

2.6 Algorithms used

On pre trained CNN models as well as SVM (Support vector machine) model of our
own. The CNN models that we used includes VGG16 and VGG19, AlexNet and
ResNet. After running these models with the mentioned dataset, we compared the
accuracies (both train and test accuracies). The whole process of running different
neural networks mentioned is as follows:

2.6.1 VGG 16 and VGG19

Figure 2.1: Layer Stucture of VGG16 model

From the diagram, the input images are getting filtered in each block of layers .Thus,
as the image passes through the Convolutional and Max Pooling layers , their ker-
nel and tensor shape of the input changes .For example in the first Convolutional
and Max Pooling layers, the tensor changes to [224,224,64], then to [56,56,256] . In
each block, the input image is beeing filtered and features are being extracted. The
output layer being a MaxPooling layer [1,1,512].

10

Over here, we used pre trained VGG 16 and VGG 19 models, using image net
Dataset. ImageNet is a project that is used for computer vision search and is where
the images are manually labelled into almost 22,000 object categories where the im-
ages are used to train the model and later can be used to classify the input images
into different categories.

In VGG16 architecture, the images are passed through a sequence of convolutional
layer which are of fixed size (224x224 RGB image). Thus, we use the default image
size for this model in our dataset. In those layers, the filters that were used had a
very short receptive field: 3 by 3 (that is the minimal size in capturing the concept
of left/right, up/down, center). In one of the settings, it also uses 1 by 1 convolution
filter, that may be considered as a linear change of the input channels. The convo-
lution stride is set to one pixel; the spatial padding of conv. layer input is in a way
that the spatial resolution is kept after convolution, i.e. the padding is one pixel for
3 by 3 conv. layers. Spatial pooling is done by five max-pooling layers, which follow
some of the convolutional layers . Max-pooling is performed over a two by two pixel
window, with stride of two.
There are three fully connected layers which have different dept in different archi-
tectures. Amongst them, the first two have 4096 channels, and the third performs
2-way Leukemia dataset classification and contain 2 channels for each individual
class and the last layer is soft-max layer. This configuration is the same in all the
networks.
The difference between VGG16 and VGG19 is that, VGG19 has 3 more convolu-
tional layers than VGG16. The “16” and “19” shows the number of weight layers
in the network (columns D and E in Figure 2.2 below):

Like we mentioned earlier we are using pre trained VGG16 and VGG19 models of
ImageNet dataset. Thus, in building our own VGG16 and VGG 19 model we use
the ‘Weights’ of ImageNet. We then extract features of our dataset that is used
through VGG16 and VGG19 convolutional base. After the feature extraction the
data then passes through the layers described above (VGG 16 and VGG 19). The
models are then fitted and trained for 100 epochs. The results are shown in section
4. The layers the VGG16 model involving our dataset is mentioned below:

11

Figure 2.2: Difference in layers between VGG 16 AND 19

Figure 2.3: Layer shapes and Parameters of the layers after trained with our dataset

12

2.6.2 SVM

Supervised Vector Machine (SVM) is a supervised machine learning algorithm which
divides the dataset into two classes and are mostly used for classification and re-
gression purposes.

Figure 2.4: Support Vector Machine Seperated by a hyperplane

The support vectors are one of the important components which determine the
position of the hyperplane because these are the points what are the closest to the
hyperplane.
In order to train a linear support vector machine, the machine learning approach is
used. We can use K-fold cross-validation where we can estimate error of our mode.
Since this will be used, we can enlarge our training data by concatenating the train
and the validation sets.
After the feature extraction using the convolutional base of VGG16 the output
tensor [,2] is used in the model fitting if the SVM model. Thus, no separate feature
extractions of the pre-processed images that are used are required. The model is
run for 100 epochs. The result analysis is given later in this paper.
Lastly, we ensure that the SVM classifier has one hyperparameter which is a penalty
parameter C of the error term.
A sample of the code for building the model using ‘feature extracted output tensor’
as input data is given below:

13

2.6.3 AlexNet

Figure 2.5: Sample AlexNet layer structure

14

The AlexNet model was first introduced by Alex Krizhevsky, Ilya Sutskever, and
Geoffrey E. Hinton (ImageNet Classification with Deep Convolutional Neural Net-
works by Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, 2012)
Classifying the image is a big issue and AlexNet solves it by taking the input image
of one of 1000 different classes and gives an output of a vector of 1000 numbers in
general use. Here, there are 2 classes instead of 1000 thus there will be an output
vector of just 2. The sum of all the elements of the output vector is 1. AlexNet
takes an input image of RGB image size 100x100 from the pre-processed dataset.
All the images are in RGB, however, is the image is not in RGB or is in grayscale,
it is converted to RGB by replicating the single channel to obtain 3 channel RGB
image. AlexNet has 5 Convolutional Layers and 3 Fully Connected Layers

Multiple Convolutional Kernels
Multiple convolutional kernels are also called filters which extract the necessary fea-
tures from an image where the single convolutional layers consist of more then one
kernels of the similar size.

The first two convolutional layers
The third, fourth and fifth convolutional layers are linked directly. An Overlapping
Max Pooling layer follows the fifth convolutional layer, whose output goes into a
series of two fully integrated layers. The second fully integrated layer feeds into 2
class labelled SoftMax heuristic.

Max Pooling Layer
The depth is kept unchanged by down sampling the height and with of the samples.
Overlapping Max Pool layers are comparable to Max Pool layers, other than for the
neighboring windows over which the max gets calculated to overlap. The model’s
authors used to pool 3x3 size windows with 2 step between adjacent windows. This
overlapping nature of pooling helped lower the top-1 error rate by 0.4 percent, top-
5 error rate by 0.3 percent, compared to using 2x2 sized non-overlapping pooling
windows with a step of 2 giving similar output dimensions.

An important feature of AlexNet is the use of the non-linearity function in the
layers. Activation functions of sigmoid or Tanh functions used to be the standard
way to train a neural network model. AlexNet showed that deep CNNs could be
trained much faster using the non-linearity function of ReLU other than using sat-
urated activation functions such as tanh or sigmoid.

A network is dropped from the network with a probability of 0.5 in the dropout
layer. It doesn’t lead to either forward or backward propagation when a neuron is
dropped. Each input passes through different architectural design of the network.
The parameters of the learned weight are more rigorous and are not easily overfitted.
There is no dropout during testing and the entire network is used, but output is
scaled by a factor of 0.5 to account for the neurons that have been missed during
training. Dropout raises the amount of simulations required to converge by a factor
of 2, but AlexNet will be significantly over-fitting despite dropout.

15

The pre-processed images from our dataset are given as inputs through the first
layer of the AlexNet model. The feature extraction part is taken care of in the
convolutional layers as the input images are segmented and pixelated in the layers
with each pixel having particular weights and bias. So, each layer of the CNN model
has different values of weights and biases. After the model is fitted with the data
and the layers and the functions are defined, the model is put to training and the
validation accuracy of the model is recorded.

2.6.4 ResNet50

Residual Networks or ResNet creates network though models known as residual
models known as the degradation problem. Although increasing depth increases the
accuracy of the network, but the problem increases when vanishing gradient arises.
Another problem which arises with training the deeper network is greater training
error as when performing optimization on huge parameter space adds the layers to
a greater training error. The ResNet architecture is similar to VGGNet which has
3x3 filters. An image is given to give a brief description:

Figure 2.6: Residual Learning : a building block

16

The ResNet50 model that we will be using is a pre-trained model trained on Im-
ageNet dataset. Below is the architecture of a pre-trained ResNet50 model. The
model has ‘50’ weight layers.

Figure 2.7: ResNet 50 architecture

17

Chapter 3

Proposed Model

3.1 Workflow Graph

Figure 3.1: Workflow Diagram

18

Figure 3.2: Workflow Diagram

3.2 Dataset Description

3.2.1 Dataset and pre-processing and feature selection

Intense lymphoid(lymphoblastic) leukemia (ALL) , a blood cancer/malignancy that
is portrayed by the multiplication of unusual lymphoblast cells, in the end prompt-
ing the gathering of a deadly number of leukemia cells [21]. In the event that ALL
is analyzed in a beginning time, treatment is conceivable. Conclusion is commonly
performed using a full blood check and morphological testing of cells using a mag-
nifying instrument by a medicinal master. Stream cytometry can support this work
manually, yet needs costly gear that isn’t accessible all over the place. Along these
lines, robotized frameworks that can perform finding utilizing relatively minimal
effort minute pictures give an incredible preferred position. To additionally inquire
about toward this path, open datasets are important to analyze various methodolo-
gies and track the best in class. A famous model for single cell ALL grouping is
ALL-IDB2 [22], however with just 260 white blood cell pictures, the dataset is ex-
cessively little to appropriately exploit late profound learning approaches. In 2018,
another dataset with in excess of 10,000 preparing pictures and a different test set
of ordinary B-lymphoid forerunners and threatening B-lymphoblasts has been dis-
charged as an online test (*) open to the general population. The enormous size of
this new dataset permits to make better classifiers dependent upon profound neural
systems and furthermore gives an increasingly dependable correlation of contending
approaches. Here, we showcase our way in dealing with the arrangement of sound
and dangerous cells on the referenced dataset utilizing a convolutional neural system.

*https://competitions.codalab.org/rivalries/20429

The test dataset [23] [24] [25] [26] [27], from now on alluded to as C-NMC dataset, has
pictures of platelets(white).This is volunteered by 154 individual subjects, of which
84 display ALL. Table 1 gives a nitty gritty explanation of the quantity of subjects
and cells in preparing and test sets. The dataset is imbalanced with about twice the
same number of ALL cells as ordinary cells. Each picture has a goal of 450 by 450

19

*https://competitions.codalab.org/rivalries/20429

pixels and contains just a solitary cell as a result of preprocessing steps applied by
the dataset creators: A mechanized division calculation has been utilized to isolate
the cells from the foundation. Every pixel that was resolved not to be a piece of the
cell is hued totally dark. In any case, since the division calculation isn’t great, there
are examples where parts of the cell are coincidentally shaded dark or pointless
foundation is incorporated. Moreover, the sum total of what pictures have been
preprocessed with a stain-standardization system that performs white-adjusting and
fixes blunders acquainted due with varieties in the recoloring compound [24]. See
Figure 1 for instance pictures from the dataset. Table 1: Composition of the dataset.
At the time of writing the ground truth for the final test set is not yet released, so
some information is missing.

Figure 3.3: Train and test subjects and the corresponding number of samples

Despite the fact that the dataset contains in excess of 10,000 pictures, a few in-
formation enlargement strategies can be used to build the measure for preparing
greater information and enhance the preparation of our convolutional neural sys-
tem. Since tiny pictures are invariant to flips and turns, we demonstrate level and
vertical flips which has 50 % likelihood and pivots with edge from (0, 360) degrees
picked consistently at irregular. Since convolutional neural systems with pooling
tasks or walks bigger than one is not flawlessly interpretation invariant, we addi-
tionally demonstrate arbitrary interpretations of up to 20 % of each side-length in
flat and vertical ways. We don’t haphazardly scale the pictures since cell size might
be a symptomatic factor to separate among ALL and typical cells [28]. Moreover,
we don’t have any significant bearing any splendor or shading enlargement because
of this current dataset’s stain-standardization preprocessing. The two information
expansion techniques are usually utilized however would prompt a superfluous dis-
persion move among preparing and test set on this particular dataset.

Figure 3.4: Images in the training set. (a) ALL cell (b) Normal cell (c) ALL cell
with part of the cell cut off due to an imperfect segmentation (d) Normal cell with
superfluous background due to an imperfect segmentation

Also, the pictures are focus trimmed to 100x100 pixels to diminish the dimensional-
ity of the information. This will for the most part make learning a classifier quicker
and simpler. Despite the fact that the editing disposes of huge pieces of the picture,

20

it has no impact on the arrangement exactness in light of the fact that without a
doubt, not very many cells are really bigger than this harvest. Much of the time,
pictures that are not totally dark outside of the harvest are division disappointments
that incorporate pieces of the foundation. The dataset is further trimmed, labeled
and pre-processed into CIFAR-10 format so that we can run our Crypto Nets model
with ease. This part is explained in detail in the next section.

3.3 Model Description

Our own proposed privacy-preserving neural network model consists mainly of 3
components:

1. A Neural-Network model trained and tested with the CNM C dataset modified
to Cifar-10 format in order to run efficiently in Crypto-Nets.

2. A wrapper for Homomorphic Encryption that allow working with matrices and
vectors while hiding much of the underlying crypto.

3. Implementation of main Neural-Network layers using the wrapper.

According to the workflow diagram given previously, firstly the CNM C 2019 dataset
is modified, pre-processed to CIFAR-10 format, split into training and test and taken
in numpy array accordingly. The conversion of the dataset to CIFAR-10 format is
essential because previously Crypto-Nets model has been run on mainly 3 datasets
namely Cifar-10,MNIST and Caltech-101 as mentioned earlier of which Cifar-10
deals is much more convenient in dealing with real-life image classification and has
an organized ‘labeling’ along with ‘classes’ of images in binary format, all of which are
convenient in running the Crypto-Nets application using the SEAL version 3.2 HE-
wrapper in C and .NET framework version 4.6.2 [20]. The conversion of the dataset
to numpy array and using it to train our own cancer predicting Convolutional Neural
Network, generating encryption parameters and conversion of test samples to binary
version of CIFAR-10 are done prior to building the Crypto-Nets wrapper around it
is done using python version 3 code.

3.3.1 Dataset Conversion and taking into array

For our own Neural Network model:

• After the pre-processing has been done; our 10,000 training images are at first
separated equally and placed into 2 different folders with names: ‘Cancer’ and
‘Normal’

• From each class sub folder, we are taking 80% of the images for training and
20% of the images testing. After placing the images, the class subfolders and
the images inside the folder are iterated accordingly. An array is first created
with dimensions of 32x32 images and an RGB value of ‘3’.Thus the shape of
array would be (32,32,3).For each class subfolder, each image in the subfolder
are sliced to obtain the ‘R’,’G’ and ‘B’ values which are then into that array
that are concatenated as iteration is done over each image. The array is then
appended.

21

• For the ‘index’ value, a separate array is declared. Each class folders in the
input directory would correspond to an image label. The ‘index’ value thus
is assigned to each class folder namely ‘0’ for ‘Cancer’ and ‘1’ for ‘Normal’.
Each class folder is iterated for images inside and the assigned ‘index’ value is
appended in to an array for each iterated image in the subfolder.

• The above steps are repeated for another class subfolder. Below is the code
snipped for the training image

Figure 3.5: Code for training dataset conversion to Cifar-10 dataset format and then
to test and train arrays accordingly

• The above steps are repeated for the rest 20% of the training images. The test
and train image arrays and the corresponding test and train image labels are
saved in variables ‘X train,Y train’ and ‘X test, Y test’. The code snippet is
given below

¨
np.save(’X train.npy’, out) Saving train image arrays
np.save(’Y train.npy’, index array) Saving train labels

np.save(’X test.npy’, out test) Saving test image arrays
np.save(’Y test.npy’, index array test) Saving test labels
”

Since the label numpy array is being iterated and concatenated within the same
loop as the same array, one-hot encoding is not necessary here. But we are doing it
any way just to be on the safe side .Thus numpy arrays are then one-hot encoded
where input that is list of ground truth table where ‘0’ is Cancer and ‘1’ is Normal.
Thus, the image data taken in the test and train arrays are in Cifar -10 format as
with each image taken in ‘X’ the corresponding ‘Y’ label is inserted in the arrays
accordingly.

22

3.3.2 Model Details

Our own ‘CNN’ model is built using Tensorflow and Keras. Hence, we use ‘tf.tensorflow’
The neural network of Crypto-Nets supports only the following types of layers:
Dense layers, Convolution layers, Square activations, and mean pool layers. Incase
of ‘Depth’ , one should prefer to use only few square activations if possible since there
will be a loss in terms of inference latency and memory requirements for networks
with many nonlinear transformations. Incase of ‘Width’, to improve performance, it
is beneficial to make sure that each hidden layer is not wider than the width of the
cipher text which is typically 8192 or 16384. To improve performance, it is benefi-
cial to make sure that the inputs and weights do not require high fidelity to ensure
correct predictions. This lessens the number of bits required in each message and
allows working with smaller parameters. At training time this can be achieved by
quantizing the inputs before training. As an example, if the inputs are numbers in
the range 0-255 the following command will normalize them to be in the range 0-1
as well as quantize them to have only 8 levels. According to our workflow diagram:

• The images are at first pre-processed, taken in numpy arrays and split accord-
ingly as mentioned in section 3.2

• The arrays are then passed through the layers sequentially as shown in the
workflow diagram.

• The input tensor of [32,32,3] passes through the first ‘Convolutional’ layer.
The tensor shape is changed to [32,32,128] output with ‘same’ padding in
the layer and kernel size of 3x3. Due to ‘same’ padding, there won’t be any
shrinking outputs or loosing information on corners of the image. It is the
first layer where output parameters are obtained and feature extraction takes
place. The job of the ‘Convolutional’ layer here is to make the product of
the vector of values at the layer below it and a weights vector and sum of the
outputs. During the inference processes, the weights being kept constant. The
function is mainly a dot product of the vector of the weights and the vector
of magnitudes of the feeding layer. The convolution layer consists of a set of
independent filters. Each filter convolves independently with the image and
the result is 128 feature maps of shape 32*32*1. All these filters are initialized
randomly and become our parameters which will be learned by the network
subsequently. In a definite feature map (the output received on convolving
the image with a particular filter is called a feature map), each neuron is
connected only to a small part of the input image and all the neurons have
the similar link‘weights. Hence, explaining the feature extraction. This layer
has parameters equal to 3584.

• Next, the data from the output tensor from the previous layers passes through
the first ‘Mean Pooling Layer’. Its function is to sequentially lessen the spatial
size of the output in reducing the number of parameters and calculations in
the network. Pooling layer works on each feature map independently. No
parameters are there in the layer but it has a pool size of 2x2 the output
tensor shape changes to [16,16,128].

• The data from the output tensor of the ‘Mean Average Pooling Layer’ is passed
to the 2nd ‘Convolutional’ layer which has no ‘padding’ and has a kernel size

23

of 3x3 .Further feature extraction takes place in this layer like in step 3 . The
shape of the layer is now [14,14,83] with parameters equal to 95699.

• The tensor is then passed to the first ‘Dropout’ layer. ‘Dropout’ basically
refers to ignoring units (i.e. neurons) during the training phase of certain
set of neurons which is chosen at random. It is an approach to regulariza-
tion in neural networks which helps reducing interdependent learning amongst
the neurons. Technically, at each training stage, individual nodes are either
dropped out of the net with probability 1-p or kept with probability p, so that
a reduced network is left; incoming and outgoing edges to a dropped-out node
are also removed. It is a layer is used to prevent model ‘over-fitting’ .Here,
‘Dropout’ layer after every pooling layer will be used to reduce ‘over-fitting’ in
the model with setting the fraction value to .25 so that .25 fraction of units will
be dropped .The tensor shape however remains unchanged with no trainable
parameters.

• After some neurons being “dropped-out”, the tensor passes through the first
‘Activation’ layer where an activation function operates on the input data from
the previous neurons. In our model, there are 3 ‘Activation layers with this
being the first one. Our model is trained at first with functions ‘ Relu’ in the
1st and 2nd and ‘Sigmoid’ in the 3rd Activation layers then again is trained
using ‘Square’ and ‘Softmax’ layers later the same way. The tensor shape re-
mains the same and no trainable parameters.

Sigmoid: Take the value of one of the nodes from the feeding layer and
calculates the function

z− > 1
(1+exp(−z))

Rectified Linear: Takes the value of one of the nodes from the feeding layer and
calculates the function

z− > 1
max(0,z)

.

Square Activation Layer: The value at each input node is squared by this layer.

Softmax Layer: This activation function forces the output neurons to take values
between zero and one, so that they can represent the probability score.

’ Sigmoid’ and ’Relu’ activation functions are non polynomials. The fix was to
estimate these functions with low-degree polynomials but here we will be using a
different method. [15] We tried to manipulate the trade-off between possesses a non-
linear transformation required by the learning algorithm and also need to maintain
the degree of the polynomials minimal to make the parameters of homomorphic en-
cryption realistic. We opted to use the non-linear lowest degree polynomial function,
which is the Square function: sqr (z):= z2. It has been suggested by a theoretical
study of a problem regarding neural networks with polynomial activation functions
and dedicated majority of their study to the square activation function. [29]

For the training stage, the sigmoid activation function is used to get reasonable terms
of error when running the gradient descent algorithm. However in the encrypted

24

world, we don’t have a reasonable way to deal with the sigmoid. Fortunately, once
we have our weights set and would like to make predictions, we can just take it out.
This is because the neural network’s prediction is given by the index of its output
vector’s maximum value, and since the sigmoid function is increasing monotonously,
whether we apply it or not will not affect the prediction.

• The output tensor from the 1st activation layer is then fed to 2nd ‘Mean
Average Pooling Layer’ with pool size of 2x2 also where the dimension of the
output tensor changes to [7,7,83].

• This tensor is then passed to the last ‘Convolutional’ layer with ‘same’ padding
and a kernel size of 5x5. The shape of the output tensor changes to [7,7,130]
and the parameters are now equal to 256880.

• This tensor is now fed to the 2nd ‘Activation Layer’ where the activation
function is either ‘Sigmoid’ or ‘Softmax’.

• In the last ‘Mean Average Pooling’ layer, the shape of the output tensor
changes [3,3,130] which is then fed to the last ‘Dropout’ layer.

• The tensor is then passed to the first “Flatten” Layer (a layer which transforms
the two-dimensional matrix into a vector to be easily fed into a fully connected
neural network) which is found between the Fully connected and Convolutional
Layers. Here, the matrices are flattened in a shape of [,1170] finally feeding
it to the 2 ‘Dense’ Layers

• In a “Dense” Layer, the neurons are densely connected since all the inputs of
the neurons from the previous layers are received by each neuron from this
layer. In the layer there is a weight matrix W, a bias vector ‘b’, and the
activations of previous layer ‘a’. The first ‘Dense’ layer gives an output shape
of (,512) with parameters equal to 599552 and the 2nd ‘Dense’ layer being [,2]
with parameters equal 1026.

• The last output tensor is from an ‘Activation’ layer either ‘Sigmoid’ or ‘Soft-
max’ which finally gives an output of [,2] representing output tensor for 2
classes in the Neural Network.
The picture of the summary of the model is given below:

• The model is them compiled using ‘Adam’ as optimizer and taking loss function
as ‘categorical crossentropy’. The model is then trained 100 epochs. After
training the model is loaded. The part of code using all the layers and model
compilation is shown below

25

Figure 3.6: Summary of layers in our own model

26

Figure 3.7: Code for adding layers to custom model

• Since CryptoNets models are using the square activation which does not exist
in Keras. We have thus defined the square function before loading a previously
saved model. Below is the code snippet.

Figure 3.8: Code for adding layers to custom model

Converting Weights and Biases to Crypto-Nets format

Once the model is training the next step is to convert the weights and bias vectors
to a format that Crypto-Nets recognizes. Crypto-Nets expects the weights to be in
a CSV file where the weights for each layer are in a separate line. One challenge
is to collapse adjected linear layers into a single linear layer. For each layer with
trainable weights (a dense layer or a convolution layer) a bias file and a weights
file should be generated. Once done that for all the relevant layers, we combine all
the weights into a one file and all the biases into a second file. Below is the code
snippet of how the ‘weights’ and ‘biases’ of the ‘Convolutional’ and ‘Dense’ layers

27

are obtained as a separate file. A total of 10 files (5 for weights and 5 for biases)
are generated for the 3 ‘Convolutional’ and 2 ‘Dense’ layers.

Figure 3.9: Code for adding layers to custom model

Values in the files are now in single columns. Thus, each column in each file of all the
weights and biases for each layer in transposed into single rows. All the ‘weights.csv’
and ‘bias.csv’ files are combined to a single ‘all weights.csv’ and ‘all bias.csv’ file
.This is done using passing a command in the windows command shell after installing
the ‘Gnu’ software for windows. Below is the command line for it:
gawk ‘{print $0;}’ weights1.csv weights2.csv weights3.csv... > all weights.csv
The same is repeated for biases:
gawk ‘{print $0;}’ bias1.csv bias2.csv bias3.csv... > all bias.csv
Building and Testing the application without Encryption
The model is first tested without any encryption parameters. Prior to that, the
‘test.tsv’ file is created in python. At first we a create ‘.bin’ file similar to the binary
version of the CIFAR-10 dataset for our test samples of the cancer dataset which
had been trimmed, pre-processed and put into folders with labels ‘0’ and ‘1’ in order
to work with Crypto-Nets like the Cifar-10 dataset. The test samples of the cancer
dataset are thus arranged accordingly. The ‘.bin’ file hence is a batch file created
containing binary version of the 3527 test samples arranged in bytes in the .bin file.
The code snippet for the file conversion is given below:

28

Figure 3.10: Code for generating .bin file of our dataset in CIFAR-10 format

The ‘.bin’ is then converted to ‘.tsv file where should have one line per image where
each line contains 1 + 33232 tab separated columns in which the first column is the
label and the other column are the RGB values of a 32*32 image. The bytes in the
‘.bin’ file are converted to strings when converting to ‘.tsv’. This is done using C.
The code snippet for this is given below:

Figure 3.11: Code for .bin to.tsv

The application is coded in C# using ‘Visual Studio 2019’ and was tested in the
windows environment used .Net framework version 4.6.2. This project depends on

29

SEAL version 3.2 .Thus a Nuget package containing SEAL, is added as reference
which is essential.The ‘all weights’ and ‘all biases’ are passed in the ‘WeightsReader’
function and the parameters are loaded. The string file is passed into the applica-
tion. The project is then built in x64 architecture The code snippet is given below:

Figure 3.12: Code snippet for the application

30

Notice that the line of code: var Factory = new EncryptedSealBfvFactory(new
ulong[] 957181001729, 957181034497 , 16384); is commented out. Thus, the vari-
able ‘factory’ has only one value.

Selecting Encryption Parameters(key generation)

The theoretical process and mathematical formulae to calculate the correct parame-
ters are given in the previous section 2.3 ‘Parameter Selection’ part. We know from
our previous section of 2.2 , to allow correctness the parameters should support large
enough number to be processed. Much like in traditional programming where a pro-
gram might fail if number are allocated with insufficient space (short integers vs.
long integers or floats vs. doubles), the same thing may happen when using homo-
morphic encryption. Thus, The first step is to determine the amount of space needed.
When running without encryption (using the RawFactory), CryptoNets keys track
of the size of number of processes using the SEAL function ’Raw.Matrix.Max’ which
keeps track of the maximum number used (in absolute value) and the number of
bits this number required to encode this number. To determine the number of bits
needed, we add 1 to this number since an additional bit is required to hold the sign
of the number.

To provide the required number of bits, a number of prime numbers are provided
such that the product of these numbers is as at least the required number of bits.
For example, if 70 bits are needed, we can use 2 prime numbers with 35 bits each.
Working with more prime numbers increases the running time. However, smaller
primes allow more computation to be done before the noise budget exceeds.
Noise budget is another important parameter of Homomorphic Encryption. In a
nut-shell, a freshly encrypted number has a certain amount of noise budget. Ev-
ery operation on such number (addition, multiplication, etc) reduces this budget.
Once this budget equals zero, the decryption will fail to provide correct results. The
amount of noise budget available is determined by several parameters, the most
important of them are the dimension used. (N) and the size of the prime numbers
used as plaintext-modulus. The dimension N should be a power of two, the larger it
is, the greater the noise budget is. However, the larger N is, the slower the program
runs. Typical values for ‘N’ range from 2ˆ2 to 2ˆ5. On the other hand, greater
noise budget is available when the plaintext modulus is smaller. However, working
with smaller plaintext modulus requires using more plaintext modulus to achieve
the required number of bits and therefore slows down the application. Selecting a
good set of parameters is currently done manually.

After determining the required number of bits, select a value for N and the number of
primes to be used. 3 parameters are specified to generate the encryption parameters
that are to be passed in the application. The code in python 3 generates these
parameters:

31

Figure 3.13: Python code for generating encryption parameters

In the code above 3 parameters are set where ‘bits’ is the minimal number of bits
of each prime, ‘ndegree’ is the number of bits in N and ‘count’ is the number of
primes to generate. The code above generates parameters of 957181001729 and
957181034497
These parameters are passed into the application and the line of code: var Factory =
new EncryptedSealBfvFactory(new ulong[] 957181001729, 957181034497 , 16384);
where 16384 is the value of ‘N’. Since 2 prime numbers were demanded with 39.8
bits each, these parameters can support 79.6 bits. Below are the outputs after the
application with parameters has been created:

Figure 3.14: Output for the encrypted prediction

Where each sample is checked with the label and the accuracy is measure for each

32

sample along with inference time for each sample. Here, the output accuracy of each
sample is 77.9% a bit less than 79% when running an un-encrypted model.

33

Chapter 4

Experiments and Result Analysis

Each model mentioned earlier in the paper is trained on a PC of GTX 750ti, 8gb
Ram and a processor of core i5 4th generation. Each model is trained for100 epochs
except for AlexNet and ResNet which are trained for approximately 20 epochs since
they are better CNN models with more convolutional layers and training them for
more epochs may result in ‘over-fitting’.

The validation and training accuracy graphs for experimental models for our mod-
ified dataset are mentioned given below. Some of them are generated in code and
some from Alexnet:

Figure 4.1: Training and Validation accuracy for VGG16

34

SVM:

Figure 4.2: Training and Validation accuracies for SVM

35

AlexNet: Validation accuracy

Figure 4.3: AlexNet validation(orange) and train accuracy(blue)

From the graph after training AlexNet model after 100 epochs , we see that the
training accuracy is approximately 73% which is higher than the steady increasing
validation accuracy of 68%.The model thus is not over-fitting Both the model’s
training and testing accuracy increases at a decreasing rate .

36

ResNet50:

Figure 4.4: Validation and training accuracy of ResNet50 model

From the graph after training AlexNet model after 100 epochs , we see that the
training accuracy is approximately 72.50% which is higher than the steady increas-
ing validation accuracy of 67.80%.The model it seems is not over-fitting The model’s
training accuracy increases at a decreasing rate but the validation accuracy remains
constant.

37

The table below shows the comparison between all the other models:

AlexNet ResNet50 VGG16 SVM CNN(our model)
Training accuracy 72.90% 72.50% 68.20% 100% 82.6%
Validation Accuracy 68% 67.80% 64.80% 86% 80%

Table 4.1: Comparison between models

From the above table we see that SVM has the most validation accuracy. It is sur-
prising how an ML model had performed better than the rest of the Neural Network
models. This maybe be due to ‘over-fitting’ of the model after put into training
taking the output tensor of the convolutional base of VGG16 into the model for
feature extraction. VGG19 model also works the same way except that there are
differences in layers. Since we have included the work of VGG19 in our workflow
diagram, our implementation on this will be for future works.

Our own Neural Network model is defined as above and is trained for 100 epochs.
Like mentioned earlier our model is first fitted using ‘Relu’ function in the first
two ‘Activation’ layers and ‘Sigmoid’ function in the last ‘Activation’ layer and the
Neural Network is trained. The same process is repeated using ‘Square’ function
instead of ‘Relu’ and ‘Softmax’ instead of ‘Sigmoid’. The graphs of the validation
accuracy our own model using different set of functions twice is given below. The
graphs were obtained from Tensorflow. Although the models with different functions
are trained for different number of epochs, they are trained with the same dataset.
Thus, there won’t much of a difference in accuracy.

Figure 4.5: Validation Accuracy using ‘Relu’ and ‘Sigmoid’:

The model with the ‘Square’ and ‘Softmax’ activation functions have higher test
or validation accuracy of 80% than the previous AlexNet and Resnet models when
compared and also has more validation accuracy than that when the other two
functions are used to build or own model.

38

Figure 4.6: Validation Accuracy using ‘Square’ and ‘Softmax’

39

Chapter 5

Conclusion

In our work, we tried to compare different accuracies of the different neural network
models in the same dataset and also making our own CNN model and all being
under the light of an encryption technique called homomorphic encryption. We
used the techniques from machine learning, cryptography and engineering to come
up with our model which will not only give a high throughput of 80% (77.934%
with our own encrypted NN model) but will also ensure proper security. For future
works, we are collecting ALL- Acute Lymphoid Leukemia images with ‘patient id’,
‘age’, and ‘gender’. For now, we have 290 images which is more than the ALL-
IDB dataset which is frequently used in detection of blood cancer using ML and
NN models.Previous works done on ALL detection used ALL-IDB dataset which
has about 270 ALL blood cancer images. As of now, we are using the CNM-C
dataset of our model which is significantly larger than the ALL-IDB dataset and
has about 10000 training images of which we are using 3257 images for testing.
Prior to building our own CNN model, we have used this dataset on various NN and
ML models and achieved test accuracies of 68% (Alexnet), 67.8% (ResNet), 64.8%
(VGG16) and 86% (SVM). We are hopeful to successfully collect about 2000 images,
label it and run it on our own Crypto-Nets model for secure prediction of Cancer.
Moreover it will provide a comparatively less expensive preliminary screening and
will also ensure the proper privacy of the user. Our model can also be used in
different sectors such as in other medical fields, finance and banking .

40

Bibliography

[1] S. Shafique and S. Tehsin, “Acute lymphoblastic leukemia detection and classi-
fication of its subtypes using pretrained deep convolutional neural networks”,
Technology in cancer research & treatment, vol. 17, p. 1 533 033 818 802 789,
2018.

[2] A. Rehman, N. Abbas, T. Saba, S. I. u. Rahman, Z. Mehmood, and H. Ko-
livand, “Classification of acute lymphoblastic leukemia using deep learning”,
Microscopy Research and Technique, vol. 81, no. 11, pp. 1310–1317, 2018.

[3] L. H. S. Vogado, R. D. M. S. Veras, A. R. Andrade, F. H. D. De Araujo,
R. R. V. e Silva, and K. R. T. Aires, “Diagnosing leukemia in blood smear
images using an ensemble of classifiers and pre-trained convolutional neural
networks”, in 2017 30th SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI), IEEE, 2017, pp. 367–373.

[4] S. Mohapatra, D. Patra, and S. Satpathy, “An ensemble classifier system for
early diagnosis of acute lymphoblastic leukemia in blood microscopic images”,
Neural Computing and Applications, vol. 24, no. 7-8, pp. 1887–1904, 2014.

[5] H. T. Madhloom, S. A. Kareem, and H. Ariffin, “A robust feature extraction
and selection method for the recognition of lymphocytes versus acute lym-
phoblastic leukemia”, in 2012 international conference on advanced computer
science applications and technologies (ACSAT), IEEE, 2012, pp. 330–335.

[6] L. Putzu and C. Di Ruberto, “White blood cells identification and count-
ing from microscopic blood image”, in Proceedings of World Academy of Sci-
ence, Engineering and Technology, World Academy of Science, Engineering
and Technology (WASET), 2013, p. 363.

[7] T. Graepel, K. Lauter, and M. Naehrig, “Ml confidential: Machine learning
on encrypted data”, in International Conference on Information Security and
Cryptology, Springer, 2012, pp. 1–21.

[8] J. Z. Zhan, L. Chang, and S. Matwin, “Privacy preserving k-nearest neighbor
classification.”, IJ Network Security, vol. 1, no. 1, pp. 46–51, 2005.

[9] Y. Qi and M. J. Atallah, “Efficient privacy-preserving k-nearest neighbor
search”, in 2008 The 28th International Conference on Distributed Computing
Systems, IEEE, 2008, pp. 311–319.

[10] L. J. Aslett, P. M. Esperança, and C. C. Holmes, “Encrypted statistical ma-
chine learning: New privacy preserving methods”, arXiv preprint arXiv:1508.06845,
2015.

[11] ——, “A review of homomorphic encryption and software tools for encrypted
statistical machine learning”, arXiv preprint arXiv:1508.06574, 2015.

41

[12] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryp-
tion.”, IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

[13] M. Albrecht, S. Bai, and L. Ducas, “A subfield lattice attack on overstretched
ntru assumptions”, in Annual International Cryptology Conference, Springer,
2016, pp. 153–178.

[14] P. Kirchner and P.-A. Fouque, “Comparison between subfield and straightfor-
ward attacks on ntru.”, IACR Cryptology ePrint Archive, vol. 2016, p. 717,
2016.

[15] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and M. Naehrig,
“Crypto-nets: Neural networks over encrypted data”, arXiv preprint arXiv:1412.6181,
2014.

[16] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.”, in Stoc,
vol. 9, 2009, pp. 169–178.

[17] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from
ring-lwe and security for key dependent messages”, in Annual cryptology con-
ference, Springer, 2011, pp. 505–524.

[18] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomor-
phic encryption without bootstrapping”, ACM Transactions on Computation
Theory (TOCT), vol. 6, no. 3, p. 13, 2014.

[19] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Werns-
ing, “Manual for using homomorphic encryption for bioinformatics”, 2015.

[20] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Werns-
ing, “Cryptonets: Applying neural networks to encrypted data with high through-
put and accuracy”, in International Conference on Machine Learning, 2016,
pp. 201–210.

[21] C.-H. Pui, D. Pei, S. C. Raimondi, E. Coustan-Smith, S. Jeha, C. Cheng,
W. P. Bowman, J. T. Sandlund, R. C. Ribeiro, J. E. Rubnitz, et al., “Clinical
impact of minimal residual disease in children with different subtypes of acute
lymphoblastic leukemia treated with response-adapted therapy”, Leukemia,
vol. 31, no. 2, p. 333, 2017.

[22] R. D. Labati, V. Piuri, and F. Scotti, “All-idb: The acute lymphoblastic
leukemia image database for image processing”, in 2011 18th IEEE Inter-
national Conference on Image Processing, IEEE, 2011, pp. 2045–2048.

[23] A. Gupta, R. Duggal, R. Gupta, L. Kumar, N. Thakkar, and D. Satpathy,
“Gcti-sn: Geometry-inspired chemical and tissue invariant stain normalization
of microscopic medical images”, Under review,

[24] R. Gupta, P. Mallick, R. Duggal, A. Gupta, and O. Sharma, “Stain color
normalization and segmentation of plasma cells in microscopic images as a
prelude to development of computer assisted automated disease diagnostic tool
in multiple myeloma”, Clinical Lymphoma, Myeloma and Leukemia, vol. 17,
no. 1, e99, 2017.

[25] R. Duggal, A. Gupta, R. Gupta, M. Wadhwa, and C. Ahuja, “Overlapping
cell nuclei segmentation in microscopic images using deep belief networks”,
in Proceedings of the Tenth Indian Conference on Computer Vision, Graphics
and Image Processing, ACM, 2016, p. 82.

42

[26] R. Duggal, A. Gupta, and R. Gupta, “Segmentation of overlapping/touching
white blood cell nuclei using artificial neural networks”, CME Series on Hemato-
Oncopathology, All India Institute of Medical Sciences (AIIMS). New Delhi,
India, 2016.

[27] R. Duggal, A. Gupta, R. Gupta, and P. Mallick, “Sd-layer: Stain deconvolu-
tional layer for cnns in medical microscopic imaging”, in International Con-
ference on Medical Image Computing and Computer-Assisted Intervention,
Springer, 2017, pp. 435–443.

[28] S. Chiaretti, G. Zini, and R. Bassan, “Diagnosis and subclassification of acute
lymphoblastic leukemia”, Mediterranean journal of hematology and infectious
diseases, vol. 6, no. 1, 2014.

[29] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational efficiency
of training neural networks”, in Advances in neural information processing
systems, 2014, pp. 855–863.

43

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Problem Statement
	Our proposal
	Objective and contribution
	Thesis Structure

	Literature Review
	Literature review
	CNN Features
	Handcrafted Features
	Updates to SEAL
	Updates to Cryptonets

	Homomorphic Encryption
	Selecting encryption parameters
	Homomorphic encryption scheme algorithms
	Neural Network
	Algorithms used
	VGG 16 and VGG19
	SVM
	AlexNet
	ResNet50

	Proposed Model
	Workflow Graph
	Dataset Description
	Dataset and pre-processing and feature selection

	Model Description
	Dataset Conversion and taking into array
	Model Details

	Experiments and Result Analysis
	Conclusion
	Bibliography

