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Abstract

This thesis provides a detailed derivation of the Friedmann Equations in the frame-
work of general relativity and for an FLRW universe. An introduction to the theory
of cosmic inflation, the motivations for it, and, the scalar field dynamics associated
with inflation presently follows. It further attempts to discuss models of inflation
and endeavors to make a classical introduction to cosmological perturbations gen-
erated in the course of inflation, which are thought to be the originator of structure
in the universe. Our metric signature is (+,−,−,−) and we will use the Einstein
summation convention.

Keywords: FLRW metric; Hot Big Bang; Inflation; Inflaton; Cosmological pertur-
bations
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Chapter 1

The Homogeneous Universe

Aleksandr Alexandrovich Friedmann1 was a Soviet mathematician and physicist
most renowned for first coming forth with a set of equations that act as the theo-
retical basis for an expanding universe. After the earliest general relativistic models
suggested that a universe which was dynamical and contained ordinary gravita-
tional matter would collapse upon itself, Einstein had went onto introduce the ad
hoc cosmological constant Λ, which would ensure a static, spherical, spatially closed
universe. Einstein’s first veritable encounter with a dynamic universe was in fact
Friedman’s 1922 article “Über die Krümmung des Raumes” (About the curvature
of space) [1].
The Friedmann equation incorporates the cosmological constant Λ, and is based on
the Einstein field equations. It models the expanding homogeneous and isotropic 4-
dimensional universe(that is positively curved)2 for a perfect fluid with a given mass
density3 ρ and pressure p. Besides, the equation contains the gravitation constant
G, the Hubble parameter H, a scaling parameter R, and a curvature factor k which
tells us about the geometry of the universe.

1.1 Friedmann–Lemâıtre–Robertson–Walker (FLRW)

metric

The FLRW metric is built upon the assumption of homogeneity and isotropy of
space. It also assumes that the spatial component of the metric can be time-
dependent. Although one may lack any prior understanding of general relativity
and still be sufficiently able to derive Friedmann equation from Newton’s theory of
gravity, the conventional derivation of the Friedmann equations begins by inserting
the FLRW metric into the Einstein field equations.
The square of two infinitesimally separated simultaneous4 events with coordinates

1His name in his own language is Friedman and not Friedmann, the more popular variation in
the spelling was in fact Einstein’s German rendition of the name!

2A flat surface is said to have zero curvature, a spherical surface is said to have positive curva-
ture, and a saddle-shaped surface is said to have negative curvature. General Relativity pronounces
that space itself can be curved. The space of General Relativity has 3 space-like dimensions and
one time dimension.

3The natural unit system has been adopted in this text and since the energy density ε is related
to the mass density ρ by ε = ρc2 and c is set equal to 1, thus ρ and ε may be used interchangeably.

4For an expanding universe, the positions of the two points must be noted at the exact same
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(t, x, y, z) and (t + dt, x + dx, y + dy, z + dz) may be given by the metric for flat
space-time:

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2 (1.1.1)

∆s =

∫ p2

p1

√
(ds)2 (1.1.2)

Figure 1.1: Infinitesimally separated points on the surface of a sphere

The distance between two points on the surface of a sphere, in terms of the 2-D
plane polar coordinates r and φ may be given by:

(dl)2 = (dD)2 + (rdφ)2 = (Rdθ)2 + (rdφ)2 (1.1.3)

Since r = R sin θ, we have dr = R cos θ = dθ and hence

Rdθ =
dr

cos θ
=

Rdr√
R2 − r2

=
dr√

1− r2/R2
(1.1.4)

thus:

(dl)2 =

(
dr√

1− r2/R2

)2

+ (rdφ)2 (1.1.5)

The Gaussian curvature of a sphere of radius R is defined to be K ≡ 1/R2 every-
where. Thus (1.1.5) is reduced to:

(dl)2 =

(
dr√

1−Kr2

)2

+ (rdφ)2 (1.1.6)

A three dimensional interpretation of the effect of curvature on the spatial distances
can then be said to be:

(dl)2 =

(
dr√

1−Kr2

)2

+ (rdθ)2 + (r sin θ dφ)2 (1.1.7)

instant for the measure of their separation to have any quantifiable meaning and not be complete
hogwash.
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where the radial coordinate is now considered to be r.

Adding in the temporal term:

(ds)2 = (cdt)2 −
(

dr√
1−Kr2

)2

− (rdθ)2 − (r sin θ dφ)2 (1.1.8)

The real (proper) distance5 is
√
−(∆s)2 where dt = 0.

Now, changing the radial coordinate to a comoving6 coordinate,

r(t) = a(t) · x (1.1.9)

Since the expansion of the universe verily affects all of its geometric properties it
may be prudent to further express the curvature in terms of the scale factor7 and a
time independent constant k.

K(t) =
k

a2(t)
(1.1.10)

Now, Substituting (1.1.9) and (1.1.10) into (1.1.8) we obtain the final form of the
FLRW metric.

(ds)2 = (cdt)2 − a2(t)

[(
dx√

1− kx2

)2

+ (xdθ)2 + (x sin θ dφ)2

]
(1.1.11)

where r is now the comoving distance in an infuriatingly confusing turn of notations.
The components of the FLRW metric may be written as a matrix8

gµν =


1 0 0 0

0 −a2
1−kr2 0 0

0 0 −a2r2 0
0 0 0 −a2r2 sin2 θ

 (1.1.12)

1.2 Einstein field equations

The Einstein equations are

Rµν −
1

2
gµνR− gµνΛ =

8πG

c4
Tµν (1.2.1)

5Proper distances may vary over time unlike comoving distances which are by definition fixed.
6Comoving coordinates are carried along with the expansion.
7a(t) is known as the scale factor. It characterizes the rate of expansion of the universe by

describing how physical separations grow with time.
8N.B. gµν = 1

gµν
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where,

Rµν - Ricci curvature tensor

gµν - The metric of the manifold where the equations apply

R - Ricci scalar curvature

Λ - Cosmological constant

G - Universal gravitational constant

c - Speed of light

Tµν - Energy-momentum tensor

(1.2.1) in essence demonstrates that it is the mass that inherently impels the curva-
ture of spacetime, and it is the curved spacetime that in turn dictates how the mass
must move.

1.3 Evaluating the Ricci Tensor and the Ricci Scalar

From §1.1 it is pretty much obvious that the FLRW metric is diagonal and has
a connection which is torsion-free. This vastly reduces the number of Christoffel
symbols one must compute, as the majority of them are either null or symmetric.

Γlji =
1

2
glm(∂jgmi + ∂igmj − ∂mgij) (1.3.1)

Since glm ≡ δlm and δlm = 0 for every l 6= m, and 1 for l = m, Γlji would also
therefore vanish whenever l 6= m. Now, using (1.3.1), the Christoffel symbols that
remain are as follows:

Γtrr =
aȧ

1− kr2

Γtθθ = r2aȧ

Γtφφ = r2aȧ sin2 θ

Γrtr = Γrrt = Γθtθ = Γθθt = Γφtφ = Γφφt =
ȧ

a

Γrrr =
kr

1− kr2

Γrθθ = −r(1− kr2)

Γrφφ = −r(1− kr2) sin2 θ

Γθrθ = Γθθr = Γφrφ = Γφφr =
1

r
Γθφφ = − sin θ cos θ

Γφθφ = Γφφθ =
1

tan θ

(1.3.2)

We may now proceed to calculate the Riemann tensor.

Rl
kji = −∂iΓlkj + ∂jΓ

l
ki − ΓmkjΓ

l
mi + ΓmkiΓ

l
mj (1.3.3)

4



For 4D spacetime there are 4×4×4×4=256 components and we must now compute
all of them. I jest. Fortunately for us, the symmetries of the Riemann tensor imply
that its only non-zero contraction is in fact the Ricci tensor.9

Rij = Rm
imj (1.3.4)

Hence, it follows that:

• Rtt = Rt
ttt+ Rr

trt+ Rθ
tθt+ Rφ

tφt

= 0 − 3
∂

∂t

(
ȧ

a

)
− 3

(
ȧ

a

)2

= −3

(
ä

a

) (1.3.5)

• Rrr = Rt
rtr+ Rr

rrr+ Rθ
rθr+ Rφ

rφr

=
∂

∂t

(
aȧ

1− kr2

)
− 2

∂

∂r

1

r

+
ȧ2

1− kr2
+

2k

1− kr2
− 2

(
1

r

)2

=
aä+ 2ȧ2 + 2k

1− kr2

(1.3.6)

• Rθθ = Rt
θtθ+ Rr

θrθ+ Rθ
θθθ+ Rφ

θφθ

= r2(aä+ 2ȧ2 + 2k)
(1.3.7)

• Rφφ = Rt
φtφ+ Rr

φrφ+ Rθ
φθφ+ Rφ

φφφ

= r2 sin2 (θ)(aä+ 2ȧ2 + 2k)
(1.3.8)

Rµν =


−3
(
ä
a

)
0 0 0

0 aä+2ȧ2+2k
1−kr2 0 0

0 0 r2(aä+ 2ȧ2 + 2k) 0
0 0 0 r2 sin2 (θ)(aä+ 2ȧ2 + 2k)


i.e. Rii = −gii

a2
(aä+ 2ȧ2 + 2k) spatially. Finally,10 we attain the Ricci scalar:

R = Rµνg
µν

= Rttg
tt +Rrrg

rr +Rθθg
θθ +Rφφg

φφ

R = −6

(
ä

a
+
ȧ2

a2
+
k

a2

) (1.3.9)

9In principle, Raacd 6= Rabad 6= Rabca. Contracting over the first index,

Raacd = gaeReacd = −gaeRaecd = −geaRaecd = −Reecd = −Raacd

The only way that can possibly be true is if −Raacd = 0. There exists exactly one non-zero
contraction of the Riemann curvature tensor, which we call the Ricci tensor. [2]

10After an excruciatingly painful amount of work. Period.
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1.4 Energy momentum tensor for a perfect fluid

The perfect fluid form of the energy momentum tensor is a perfect description of a
homogeneous and isotropic universe.

Tµν = (ρ+ p)uµuν − pgµν (1.4.1)

T µν = gµαTαν = (ρ+ p)gµαuαuν − pgµαgαν (1.4.2)

= (ρ+ p)uµuν − pδµν (1.4.3)

Here, uα is the macroscopic speed of the fluid, and its isotropy ensures that the
perfect fluid must look exactly same in all directions, and hence it has only the time
component,

uµ =


1
0
0
0


Therefore,

T µν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 (1.4.4)

and

Tr(T µν) = ρ− 3p (1.4.5)

Ttt = ρgtt = ρ (1.4.6)

For the spatial parts:

Tµµ = (ρ+ p) · 0− pgµµ = −pgµµ (1.4.7)

1.5 Friedmann equations

Now we may simply slip in all of the elements we have so far derived into the Einstein
equations.

Gµν = 8πGTµν + Λgµν (1.5.1)

We begin by deriving the first Friedmann equation with the temporal part of the
Einstein tensor:

Gtt = Rtt −
1

2
Rgtt (1.5.2)

= −3
ä

a
+ 3

ä

a
+ 3

ȧ2

a2
+ 3

k

a2
(1.5.3)

= 3

(
ȧ2 + k

a2

)
(1.5.4)

6



Plugging in:

Gtt = 8πGT00 + Λg00 (1.5.5)

3

(
ȧ2 + k

a2

)
= 8πGρ+ Λ (1.5.6)

ȧ2 + k

a2
=

8πGρ+ Λ

3
(1.5.7)

(
ȧ(t)

a(t)

)2

=
8πG

3
ρ(t) +

Λ

3
− k

a2(t)
(1.5.8)

and the Hubble parameter H,

H ≡ ȧ

a
usually parametrized as 100h kms−1Mpc−1

We now proceed to examine the effects of incorporating the spatial part into the
EFE:

=⇒ −gii
a2

(aä+ 2ȧ2 + 2k)− 1

2
Rgii − Λgii = 8πG(−p)gii (1.5.9)

=⇒ gii

[
−1

a2
(aä+ 2ȧ2 + 2k)− 1

2
R− Λ

]
= 8πG(−p)gii (1.5.10)

=⇒ − ä
a
− 2

(
ȧ

a

)2

− 2k

a2
+ 3

ä

a
+ 3

(
ȧ

a

)2

+
3k

a2
− Λ = −8πGp (1.5.11)

=⇒ ä

a
+

1

2

(
ȧ

a

)2

= −4πGp+
Λ

2
− 1

2

k

a2
(1.5.12)

It may be observed that 2×(1.5.12)−(1.5.8) eliminates
(
ȧ
a

)2
and we then obtain:

ä

a
= −4πG

3
(3p(t) + ρ(t)) +

Λ

3
(1.5.13)

Otherwise known as the acceleration equation. The Friedmann equations are
amongst the most consequential equations required to intuit the fate of the universe.

1.6 Simple cosmological models

Figure 1.2: k = 0 (flat) ; k > 0 (spherical) ; k < 0 (hyperbolic)

The simplest type of geometry that preserves the homogeneity and isotropy of our
universe is the flat geometry with k=0. However other geometries that correspond
to non-zero values of k are still altogether feasible.

7



1.6.1 Solutions for the scale factor

To verily assess how the flat universe may evolve, it is imperative to first discuss
what is contained within it, and we may further proceed by first describing the
relationship between the mass density ρ and the pressure p. For an expanding
volume V with physical radius a, the energy is given by

E = mc2 (1.6.1)

=
4πa3

3
ρc2 (1.6.2)

The change in volume in a time dt,

dV

dt
= 4πa2ȧ (1.6.3)

Thus the change in energy,

dE

dt
= 4πa2ρc2ȧ+

4πa3

3
ρ̇c2 (1.6.4)

Considering the first law of thermodynamics and assuming a reversible expansion
dS = 0,

dE + pdV = TdS = 0 (1.6.5)

we obtain,

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 (1.6.6)

This is the fluid equation.

Matter

In a cosmological context, matter may be anything in the universe that is non-
relativistic and exerts a negligible pressure, p = 0.
Having set p = 0 and ρ = ρmat in the fluid equation, it may be alternatively written
as,

ρ̇mat + 3
ȧ

a
ρmat = 0 =⇒ 1

a3

d

dt
(ρmata

3) = 0 =⇒ d

dt
(ρmata

3) = 0 (1.6.7)

i.e.

ρmat ∝
1

a3
(1.6.8)

ρmat =
ρ0

a3
(1.6.9)

8



Now substituting ρmat into Friedmann equation, for a flat universe11, we have:(
ȧ

a

)2

=
8πGρ0

3a3
(1.6.10)

ȧ =

√
8πGρ0

3

1√
a

(1.6.11)

=
α√
a

(1.6.12)

√
ada = αdt (1.6.13)

Integrating both sides:

2

3
a2/3 = αt =⇒ a =

(
3

2
α

)2/3

t2/3 =⇒ a(t) ∝ t2/3 (1.6.14)

Therefore,

a(t) =

(
t

t0

)2/3

(1.6.15)

In spite of the gravitational pull of matter, the universe does not collapse and instead
expands for all time - for the scale factor solution of a matter dominated ρ. However,
as the universe becomes infinitely old, the rate of expansion H(t) becomes infinitely
slow, as H(t) declines with increasing time:

H =
ȧ

a
=

2

3t
(1.6.16)

This is also known as the Einstein-de Sitter model.

Radiation

All particles travelling at relativistic speeds have the equation of state,

p =
ρradc

2

3
(1.6.17)

By substitution of p into the fluid equation (1.6.6) we get,

ρ̇rad + 4
ȧ

a
ρrad = 0 (1.6.18)

likewise this implies,

ρrad ∝
1

a4
(1.6.19)

ρrad =
ρ0

a4
(1.6.20)

and hence,

a(t) =

(
t

t0

)1/2

(1.6.21)

11The flat universe has one very useful symmetry, a(t) may be rescaled anyhow since it only ever
appears in the friedmann equation as the combination ȧ

a . Conventionally a is set to be equal to 1
at the present time, and consequently physical and comoving coordinate systems cooincide.
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It is further observed that a radiation dominated universe expands at a slower rate
in comparison to a matter dominated universe,

H =
ȧ

a
=

1

2t
(1.6.22)

Mixtures

If one were to contemplate the cases of mixed matter and radiation, the density will
then be,

ρ = ρmat + ρrad (1.6.23)

Now, considering the unambiguous and less complex setting where either of the two
components is predominant, we can safely assume that the Friedmann equation may
be solely governed by that dominant component.

Case 1: Radiation dominating over matter

a(t) ∝ t1/2 ; ρrad ∝
1

t2
; ρmat ∝

1

a3
∝ 1

t3/2
(1.6.24)

Case 2: Matter dominating over radiation

a(t) ∝ t2/3 ; ρmat ∝
1

t2
; ρrad ∝

1

a4
∝ 1

t8/3
(1.6.25)

It is apparent that the density of radiation falls off at a faster pace than the density
of matter for both of the cases, and we can conclude that radiation domination can
not last for all time and therefore is an unstable situation.

1.6.2 Evolution including curvature

H2 =
8πG

3
ρ− k

a2
(1.6.26)

An inspection reveals that for a k < 0 the right-hand side of the Friedmann equation
becomes entirely positive and a universe such as this expands evermore. Moreover,
the ρmat ∝ 1/a3 decreases at a faster rate than the k/a2 term as the universe expands.
Consequently, the curvature term ultimately dominates, reducing the Friedmann
equation to: (

ȧ

a

)2

= − k

a2
(1.6.27)

And thus a ∝ t; the universe expands at a faster rate.

For k > 0, it becomes possible for the universe to not only cease expansion, but to
also eventually contract.

1.6.3 Dark Energy (Λ)

It is an innate form of energy inextricable from space. Whilst both the densities
of matter and radiation fall off in proportion to the volume of the universe, dark
energy(vacuum energy) is curiously distinct in the sense that as the universe expands
allowing for new space, the vacuum energy can never dilute, ρ̇Λ = 0. In due course,
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vacuum energy prevails and dominates over the other components. It has a negative
effective pressure, which implies that as the universe expands, work is done on
the cosmological constant fluid, allowing its energy density to perpetually remain
constant. This corresponds to the equation of state,

p

ρΛ

= w = −1 (1.6.28)

and, ρΛ ∝ a0 = const . (1.6.29)

a(t) ∝ eH0t (1.6.30)

This is known as the de Sitter solution.

Figure 1.3: Energy densities [3]
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Chapter 2

An Overview of the Hot Big Bang

The Hot Big Bang model quite succinctly surmises much of the happenings observed
in the universe today.

2.1 Observational Parameters

The particular density for which the universe is flat i.e. k = 0 is known to be the
critical density.

ρc(t) =
3H2

8πG
(2.1.1)

The critical density varies with time as does H. However, the present day critical
density is estimated to be,

ρc(t0) = 1.88h2 × 10−26 kgm−3 (2.1.2)

= 2.78h−1 × 1011M�/(h
−1Mpc)3 (2.1.3)

Since the universe may not be flat, the critical density need not be the actual
density of the universe and hence one very convenient way to define the density of
the universe is by expressing it relative to the critical density. This ratio is known
as the density parameter Ω,

Ω(t) ≡ ρ

ρc
(2.1.4)

Alternatively, the Friedmann equation can be written as:

H2 =
8πG

3
ρcΩ−

k

a2
= H2Ω− k

a2
(2.1.5)

or,

Ω− 1 =
k

a2H2
(2.1.6)

For our universe:

H2 +
k

a2
=

8πG

3
(ρmat + ρrad) +

Λ

3
(2.1.7)

1 +
k

H2a2
=

8πG

3H2
(ρmat + ρrad) +

Λ

3H2
(2.1.8)
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It is useful to define the density parameters:

Ωk =
k

H2a2
(2.1.9)

Ωmat =
8πGρmat

3H2
(2.1.10)

Ωrad =
8πGρrad

3H2
(2.1.11)

ΩΛ =
Λ

3H2
(2.1.12)

and,

Ω + ΩΛ − 1 =
k

a2H2
(2.1.13)

A plausible summary of the geometries
curvature geometry density parame-

ter
type of universe

k > 0 spherical Ω + ΩΛ > 1 Closed
k = 0 flat Ω + ΩΛ = 1 Flat
k < 0 hyperbolic Ω + ΩΛ < 1 Open

The total density of the observable universe is very close to ρc.

Figure 2.1: Predicted ages for open universes and for flat universes with a
cosmological constant.[12]
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2.2 Expansion and Redshift

Since everything is moving farther apart now, extrapolating this cosmic expansion
to the remote past one arrives at a point of singularity, this is followed by a state of
extreme high density and temperature. The Big Bang Cosmology is known as the
model of the universe with such a beginning.
The investigation of galactic redshifts proved to be a crucial observational evidence
for the cosmic expansion hypothesis.
The redshift z is defined by,

z =
λr − λe
λe

(2.2.1)

Let light pass between two infinitesimally separated objects. By Hubble’s law, their
relative velocity dv shall be

dv = Hdr =
ȧ

a
dr (2.2.2)

Considering a photon emitted at time t0 with wavelength λe and observed at time
t1 with λr, the change in wavelength between emission and reception is then, dλ ≡
λr − λe

dλ

λe
=
dv

c
=

dv

(dr/dt)
=
ȧ

a

dr

(dr/dt)
=
ȧ

a
dt =

da

a
(2.2.3)

Integrating, we find lnλ = ln a+ const.

λ ∝ a (2.2.4)

The Deceleration parameter is defined as

q(t) = − ä(t)

a(t)H2(t)
(2.2.5)

Consider the taylor expansion of the scale factor about the present time, t0,

a(t) = a0 + ȧ0(t− t0) +
1

2
ä0(t− t0)2 + ... (2.2.6)

By substituting the definitions for the Deceleration parameter and the Hubble pa-
rameter into (2.2.6) we then obtain,

a(t) = a0[1 +H0(t− t0)− 1

2
q0H0

2(t− t0)2 + ... ] (2.2.7)

The redshift is related to a(t) by

1 + z =
λr
λe

=
a(tr)

a(te)
=
a0

a
(2.2.8)

= H0(t0 − t) +
(

1 +
q0

2

)
H0

2(t0 − t)2 + ... (2.2.9)

Which when solved for t0 − t can be written as,

(t0 − t) = (H0)−1
[
z −

(
1 +

q0

2

)
z2 + ...

]
(2.2.10)
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2.3 Big Bang Nucleosynthesis (BBN)

Nuclear fusion reactions in stellar interiors or during supernovae explosions account
for the heavier elements present in the universe, however the prevalence of lighter
elements suggests that stellar nuclear reactions could not have possibly been the
only source of production. However, BBN accurately predicts the light element
abundances. Roughly one minute in, all anti-matter and most matter had been
destroyed by annihilation, all remnant matter - protons, neutrons, electrons - were
fully ionized and dissociated. As the temperature rapidly plummeted to 10 000
000 000 K, protons and neutrons underwent fusion to form heavier atomic nuclei.
Photons were free to interact with both nuclei and electrons.

2.4 The Cosmic Microwave Background (CMB)

Another indisputable and pivotal piece of evidence for the Big Bang universe was
the detection of the CMB radiation. The total energy density εrad of radiation at
temperature T ,

εrad ≡ ρradc
2 = αT 4 (2.4.1)

Since the density of radiation falls off with the expansion of the universe,

ρrad ∝
1

a4
(2.4.2)

and, αT 4 = ρradc
2

(2.4.3)

T ∝ 4
√
ρrad (2.4.4)

T ∝ 1

a
(2.4.5)

i.e. The temperature of the universe falls as it expands. Compared to today’s
temperature of about 3K, when the universe was about one millionth of its current
expanse, the temperature back then is estimated to be a staggering 3 000 000 K.
Since the average energy of photons in the thermal distribution was substantially
great in that era, any free electrons attempting to latch onto a proton were blasted
away by or coupled to a photon of light via Thomson scattering. Thus, atoms did
not exist. Eventually the universe expanded and cooled and when it was about one
thousandth of its present size, the electrons fell back to their ground states forming
atoms that couldn’t be ionized with the photons that now had lower energy. The
universe had thus lost its opacity and turned utterly transparent at decoupling,
the photons were free to travel and are observed as the CMB today.
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Chapter 3

Inflationary Cosmology

In spite of all its successes, the Hot Big Bang Model brings about a number of
upsetting conundrums. The conventional Big Bang theory prerequisites a very fine-
tuned set of initial conditions which would have permitted the universe to have
evolved to its present state. Indeed that would just mean that the universe as we
see it, is just an unconvincing and fanciful accident.

This gave rise to the idea of cosmological inflation, not as a replacement theory,
but in fact adjunct to the Hot Big Bang Model as it perfectly explains the generic
initial conditions of the observable universe. Inflation is described as a period of
accelerated expansion at a very early stage.

3.1 Big Bang : Why It’s Not So Perfect

3.1.1 The horizon problem

In general relativity the propagation of light is affected by the gravitational poten-
tial(metric),

ds2 = dt2 − a2(dr2 + r2dΩ2) (3.1.1)

Assuming there is no scattering, the radial null geodesic of the light particle, ds2 = 0.
Therefore,

dt = ±adr (3.1.2)∫
1

a
dt = ±

∫
dr (3.1.3)

∆r =

∫
dt

a(t)
(3.1.4)

This is the particle horizon or comoving distance. The physical distance traversed
by light may be expressed as a∆r. a(t) is a function of t, that is to say, for light to
have propagated over large expanses, a sufficiently long amount of time must have
elapsed.
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Figure 3.1: Causally disconnected regions

Supposing a radiation dominated evolution down to a = 0 (Big Bang singularity),
the state of the universe at an early time is affected by numerous disconnected
pieces, splitting apart into countless disconnected volumes which have not had time
to communicate. For instance, choosing the Planck time, tp, where tp ∼ 10−43

∆r =

∫
dt

a(t)
=

∫
1

t1/2
dt = 2t1/2 (3.1.5)

and,

∆r(t0)

∆r(tp)
=

(
1017s

10−43s

)1/2

= 1030 (3.1.6)

Which is 1090 when translated from the linear scale to the Hubble volume. For
so many patches without causal contact, one would ordinarily expect breaks in
homogeneity and isotropy however, near-homogeneity of the CMB tells us that it in
fact varies by only one part in a 100 000. This is the so-called horizon problem.

3.1.2 The flatness problem

It is known that the universe possesses a total density that lies very close to the
critical density, which implies that the universe must be flat/euclidean geometrically.
Since the Friedmann equation can be rewritten in the form,

|Ωtot(t)− 1| = |k|
a2H2

(3.1.7)

Ignoring the effects of the curvature and the cosmological constant term and con-
sidering a universe dominated by radiation or matter, we have:

a2H2 ∝ 1

t
radiation domination;

a2H2 ∝ 1

t2/3
matter domination;

or, |Ωtot − 1| ∝ t radiation domination;

|Ωtot − 1| ∝ t2/3 matter domination;

|Ωtot − 1| is a growing function of time for either of the above cases. For even the
slightest deviation, the universe will immediately be increasingly curved. A flat
universe seems like an unstable solution of the Friedmann equation. Presently, for
our universe to be so close to spatially flat has only one possible implication, it would
mean that the universe was exceedingly flat during very early times. An explanation
for these fine tuned initial conditions for Ω would be gratifying.
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3.1.3 The monopole problem

Modern particle physics predict a variety of relic particles, including magnetic monopoles
(which play a crucial role in originally instigating inflation). The problem is, these
relic particles are expected to be created with a high abundance very early in the uni-
verse’s history. Radiation density reduces with a−4, much faster than any other type
of matter. Even if the early universe had a very small quantity of non-relativistic
matter, then its slower dilution in density (compared to radiation) should have
rapidly brought it to prominence. However, observations say otherwise. Theories
predicting them are irreconcilable with the standard Hot Big Bang model.

3.2 An Inflationary Retrospective

The fine-tuning problems have left us with reservations in regards to the credibility
of the Big Bang model, but there exists a most widely accepted explanation to this
befuddling puzzle. That comes in the form of cosmic inflation.

3.2.1 Solutions to the Flatness and Horizon Problems

The acceleration equation,

ä

a
= −4πG

3
(ρ+ 3p) (3.2.1)

Since inflation is defined as the interval in the course of the evolution of the universe
in which the scale factor was accelerating, therefore,

ä > 0

Which inherently means that ȧ = aH increases in the inflationary phase and hence
the comoving Hubble radius, (aH)−1 decreases during inflation. (It is important
to draw attention to the subtle distinction between the comoving horizon and the
comoving Hubble radius, if particles are set apart by distances greater than the
comoving horizon, then they could never have had any interaction in the past, but if
they are separated by distances greater than the Hubble radius, then they can not
communicate in the present.) It also becomes immediately obvious that ρ + 3p <
0 Consequently this necessitates that the pressure must be negative as density is
always assumed to be positive. This corresponds to,

a(t) = aie
H(t−ti) (3.2.2)

For an H which is exactly constant, this would be equivalent to the de Sitter space,
purely dominated by vacuum energy with a constant energy density.
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The particle horizon for a light particle from some initial time ti when inflation had
begun, to some time t may then be expressed as,

∆r =

∫ t

ti

dt′

a(t′)
=

∫ t

ti

1

aieH(t′−ti)
dt′

=
1

aiHi

(1− e−H(t−ti))

=
1

aiHi

(1− e−N(t))

N(t) = H(t− ti)

N is the number of e-folds.1 Comoving particle horizon barely varies during in-
flation, it increases a bit and then it just freezes in place. This is wildly different
from radiation or matter domination or any kind of decelerated phase of the uni-
verse where the comoving particle horizon grows without restraint. Here instead, it
approaches a maximum value 1

aiHi
. Subsequently, the physical distance:

a ·∆r =
eN

Hi

(3.2.3)

An initial Hubble patch 1
Hi

stretches exponentially, as time passes the physical dis-
tance grows and proliferates rapidly. Inflation blows up the universe, light just like
everything else is carried along. Be that as it may, the comoving coordinates remain
effectively frozen.

Revisiting the flatness problem, we know that observationally today, Ωk < 10−2

and if we extrapolate this very far back in time |Ωk(ti)| must have been very very
small. This can be explained by a period of inflation2,

Ωk =
−k

(aH)2
(3.2.4)

Substituting,
aH = aiHie

N (3.2.5)

We then obtain,

Ωk =
−k

(aiHi)2
· e−2N (3.2.6)

i.e. |Ωk| decreases exponentially and is especially small if N can be a reasonably
large number. Which begs the question, exactly how large does N need to be?

We need,

|Ωk(ti)| =
1

(aiHi)2
<< 1 |Ωk(t0)| = 1

(a0H0)2
< 1

1As N increases, a gets multiplied by that many e

2Physically, one could interpret this as Ωk ∝ 1

( a
1/H )

2 = (1/H)2

a2 =
(

size of Hubble patch
size of universe

)2
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Figure 3.2: Rapid expansion caused very small regions to expand to very large
sizes [4]

at some initial time ti at the beginning of inflation and some time today t0. Thus:

a0H0

aiHi

> 1 (3.2.7)

This offers solutions to both the flatness and horizon problems, accounting for
why there are multitudes of independent horizon volumes in our past and yet why
they look so similar and so flat. Inflation solves the horizon problem by suggesting
that preceding the inflationary period all of the universe was causally connected, and
it was during this period that the physical properties levelled out. Inflation then
expanded it rapidly, freezing in these properties all over the sky; today faraway
regions in the sky appear to be disengaged causally, but in fact were in far greater
proximity in the past.
Ergo, the largest scales perceived today 1/H0 must be well within the horizon at
the beginning of inflation, corresponding to a simple rearrangement of (3.2.7):

1

aiHi

<
1

a0H0

(3.2.8)

and, a0 = aie
N
(
a0
af

)
where, af = aie

N = scale factor at end of inflation

Now using (2.4.5), we then obtain:

eN >
T0

H0

Hi

Tf
= 1027 (3.2.9)

N > 62 (3.2.10)

This adequately solves the flatness problem. But in many models, it’s not nec-
essary for N to be quite that large. Now, to further go over the particulars of the
horizon problem, we discuss the behaviour of the particle horizon in a little more
detail. Inflation begins at t = ti and inflation ends at t = tf = ti + N

Hi
, considering

a very simple model where right after inflation ends the universe becomes radiation
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dominated all the way from tf to t0 (As opposed to the real universe where radiation
domination is followed by matter domination which eventually gives way to vacuum
energy domination). A further supposition for the sake of simplicity is made by
presuming that we can actually observe the universe at tf (Whilst in reality, we
only ever observe CMB since decoupling). Reheating marks the end of inflation and
we link that to the last scattering.
The conformal time,

τ =

∫ t

ti

dt′

a(t′)
= ∆r (3.2.11)

(i) Without inflation

a = ai

(
t

ti

)1/2

(3.2.12)

τ =
ti

1/2

ai
2t1/2 =

1

Hiai

√
t

ti
(3.2.13)

(ii) With inflation

ti < t < tf : a = aie
H(t−ti) (3.2.14)

t > tf : a = aie
N

(
t

tf

)
(3.2.15)

t < tf : τ =
1

aiHi

(1− e−N(t)) (3.2.16)

t > tf : τ =
1

aiHi

+
2
√
ti

aieN
(
√
t−
√
tf ) (3.2.17)

If t→ t0, then
√
t >>

√
tf and hence for t > tf ,

τ =
1

aiHi

+
2
√
ti

aieN

√
t ' 1

aiHi

(
1 + e−N

√
t

ti

)
(3.2.18)

Compared to the amount of conformal time between ti and tf , the conformal time
between tf and t0 is much much less. As we have assumed Hi to be constant during
inflation, a(t) becomes infinite at τ = 0. This suggests that inflation will go on for
all time, with τ = 0 representing the infinite future, t→∞. In our actual universe,
inflation stops at some finite time, and the conjecture, although valid at early times,
falls through towards the end of inflation. So the surface τ = 0 is not the Big Bang,
but the end of inflation. Inflation pushes the initial singularity to an arbitrary point
far in conformal time τ = −∞, allowing light cones of two seemingly independent
CMB points to be in causal contact in the past.[5]

3.2.2 Relic Particle Abundances

Energy density of the relic particles is reduced much faster than the cosmological
constant. During the inflationary era the dramatic expansion causes these particles
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to be red-shifted away, thereby solving the Monopole problem. (One must be wary
of the possibility that reheating may regenerate these unwanted particles via thermal
production, but this may be easily avoided if reheating temperature is sufficiently
low.)

3.3 Physics of Inflation

At the time of inflation, the early universe expanded exponentially within a tiny
fraction of a second. This corresponds to a negative pressure source in Einstein
gravity. In this section we acquaint ourselves with the physics underlying inflation.

3.3.1 Scalar Field Dynamics

The scalar field ϕ is called the inflaton, and it is canonically coupled to gravity.
This is governed by the action:

S =

∫
d4x
√
−g(Lg + Lϕ) (3.3.1)

where the Lagrangian of gravitation and the scalar field,

Lg =
R

16πG
Lϕ =

1

2
∂µϕ∂

µϕ− V (ϕ) =
1

2
gµν∂µϕ∂νϕ− V (ϕ) (3.3.2)

The variation of the action w.r.t. gµν allows us to define the energy-momentum
tensor,

Tµν = − 2√
−g

δSϕ
δgµν

= ∂µϕ∂νϕ− gµν
(

1

2
∂σϕ∂σϕ+ V (ϕ)

)
(3.3.3)

The variation of the action w.r.t. ϕ gives us the field equation of motion,

δSϕ
δϕ

=
1√
−g

∂µ(
√
−g∂µϕ) + V,ϕ = 0 (3.3.4)

where V,ϕ = dV
dϕ

. The same equation could have been obtained by using the compo-

nents of Tµν for a perfect fluid, assuming homogeneity and isotropy ϕ = ϕ(t), then
we can calculate

ρϕ ≡ −T 0
0 =

1

2
ϕ̇2 + V (ϕ) (KE + PE) (3.3.5)

pϕ ≡
1

3
T ii =

1

2
ϕ̇2 − V (ϕ) (KE − PE) (3.3.6)

Therefore the equation of state:

wϕ ≡
pϕ
ρϕ

=
1
2
ϕ̇2 − V

1
2
ϕ̇2 + V

(3.3.7)
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Acceleration occurs when potential energy dominates over kinetic energy. Substi-
tuting (3.3.5) and (3.3.6) into the Friedmann equations3 we get,

H2 =
1

3M2
pl

(
1

2
ϕ̇2 + V (ϕ)

)
(3.3.8)

Ḣ = − 1

2M2
pl

ϕ̇ (3.3.9)

and, H2 + Ḣ2:
ϕ̈+ 3Hϕ̇ = −V,ϕ (3.3.10)

This is the Klein-Gordon equation.4

Condition for inflation to occur,

ε = − Ḣ

H2
=

1

M2
pl

ϕ̇2

H2
= −d lnH

dN
< 1 (3.3.11)

So inflation happens for small KE. This sort of inflation is known as the ”slow-roll”
inflation. For the inflationary phase to sustain for an adequately long amount of
time we need the acceleration to be small(so that KE remains small):

η ≡ − ϕ̈

Hϕ̇
= ε− 1

2ε

dε

dN
< 1 (3.3.12)

The slow-roll approximations enable us to ignore the KE term from (3.3.8) and the
acceleration term from the Klein-Gordon equation leading to

H2 ≈ V

3M2
pl

(3.3.13)

3Hϕ̇ ≈ −V,ϕ (3.3.14)

The slow roll parameters ε, |η| < 1 may be expressed on the shape of the inflationary
potential,

εV (ϕ) ≡
M2

pl

2

(
V,ϕ
V

)2

(3.3.15)

ηV (ϕ) ≡M2
pl

V,ϕϕ
V

(3.3.16)

A breach of the slow-roll conditions ends inflation:

ε(ϕf ) ≡ 1, εV (ϕf ) ≈ 1 (3.3.17)

3 M2
pl = 1/8πG

4 where,

ϕ̈ : Acceleration

3Hϕ̇ : Friction

−V,ϕ : Force
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Therefore, the number of e-folds before inflation ends:

N(ϕ) ≡
∫ af

ai

d ln a =

∫ tf

ti

Hdt ≈
∫ ϕf

ϕi

1√
2εV

|dϕ|
Mpl

≥ 60 (3.3.18)

N ∝ 1/
√
εV , hence small εV results in large N and the duration of inflation is

affected by ηV hence ϕi and ϕf are set farther apart for smaller ηV .

3.3.2 Reheating

In the course of the inflationary phase, the potential energy in the field ϕ is the
most dominant energy component. When V (ϕ) is minimum, inflation comes to an
end. The inflaton field rolls to the bottom of the V-hill and then oscillates about
the minimum, and the scalar field behaves the same as pressureless matter

dρ̄ϕ
dt

+ 3Hρ̄ϕ = 0 (3.3.19)

The inflaton energy then decays due to a coupling of the inflaton field to other par-
ticles. (The coupling parameter Υϕ is dependent on complex and model-dependent
physical operations.)

dρ̄ϕ
dt

+ (3H + Υϕ)ρ̄ϕ = 0 (3.3.20)

Thereby the universe reheats to a sufficiently high temperature for BBN.

Figure 3.3: The inflaton potential [6]

3.3.3 Models of Inflation

Power-law Inflation

Chaotic inflation is the typical inflationary model. There are numerous models of
this type, a lot of which do not necessarily fulfill the condition of a minimum wherein
inflation may end, and instead allows inflation to continue perpetually. Power-law
inflation (PLI) is one such case, with a(t) ∝ tp where p is a constant greater than
1 [7].

PLI is explored shortly.
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The total energy density ρ(t) is given by

ρ(t) = V (ϕ(t)) +
1

2
ϕ̇2(t) + ρr(t) (3.3.21)

The total pressure is given by

p(t) = −V (ϕ(t)) +
1

2
ϕ̇2(t) +

1

3
ρr(t) (3.3.22)

In our case ρr << V (ϕ), thus thermal corrections to the effective potential are
inconsequential and we assume that the scalar field has minimal coupling with the
geometry.
The time evolution of the model is decided by the following equations

d

dt

[
1

2
ϕ̇2 + V (ϕ)

]
= −3Hϕ̇2 − δ ;

d

dt
ρr = −4Hρr + δ ;

H2 =
8π

3Mpl

[
V (ϕ) +

1

2
ϕ̇2 + ρr

]
;

(3.3.23)

The quantity δ accounts for the formation of the ultra-relativistic particles due to the
time variation of ϕ. The preceding set of equations describes the energy conservation
(equation of motion) for ϕ, the energy conservation equation for radiation, and the
Friedmann equation. For the term δ it is presupposed

δ = Γϕ̇2 (3.3.24)

wherein Γ−1 stands for the characteristic time for particle creation by ϕ, relating to
the interactions of ϕ with other fields. It is then obtained

ρ̇r +
4

3
(Γ + 3H)ρr = −

M2
pl

4π
ΓḢ ;

ϕ̇2 = −
M2

pl

4π
Ḣ − 4

3
ρr ;

V (ϕ) =
M2

pl

8π
(3H2 + Ḣ)− 1

3
ρr ;

(3.3.25)

Given that V (ϕ) is dependent on t solely via ϕ; when the scale factor is provided, it is
then obvious that ρr(t), ϕ(t), and V (ϕ) is determinable from (3.3.25). Henceforward
the solution to (3.3.25) is considered under the hypothesis,

a = a∗(t/t∗)p (3.3.26)

wherein p > 1 is a constant, a∗ and t∗ are arbitrary constants whose value do
not appear in any physical quantity. [7] only solves the (3.3.25) during the period
when particle creation is insignificant, Γ << 3H, i.e. t << tΓ ≡ 3p/Γ. The particle
creation process is then assumed to be rapidly reheating the universe. The evolution
of a system from an initial time ti with ϕ(ti) = ϕi 6= 0 is taken into consideration,
when supposedly ρr is insignificant w.r.t. the kinetic and potential contributions to
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ρ, because a small duration of inflation is sufficient to undermine it. Then, using
(3.3.25) it is then obtained,

ϕ̇2 '
M2

pl

4π
pt2 (3.3.27)

which leads to

ϕ(t) ' ϕi ± σ ln (t/ti) where, σ =
( p

4π

)1/2

Mpl (3.3.28)

By plugging in the positive solution into 3.3.25,

V (ϕ) ' 3p− 1

2
(σ/ti)

2 exp

{
−ϕ− ϕi

σ

}
(3.3.29)

(The negative solution paves way to a potential growing with ϕ.) It is made obvious
that the potential has to be considered just as an approximation of a more intricate
potential for the interlude ϕi . ϕ . ϕ(tΓ). Such potentials are found in Kaluza-
Klein and supergravity/superstring models after the implementation of dimensional
reduction mechanisms.
Upon further assuming that a slow rolling occurs, ϕ̈ << 3Hϕ̇, then p >> 1

3
is

obtained.
To study the evolution of perturbations [7] employs a gauge-invariant approach,
the likes of which may be seen in the Bardeen, Steinhardt, and Turner analysis
for Standard Inflation[8] (the semantics of which I will begin to explore in the next
chapter); the ensuing mass variance at the horizon is perceived to be growing weakly
with the scale of the perturbation.

Multi-field Theories

In inflationary model building, a present-day tendency has been to delve into models
with more than one scalar field. Within the more extensive category of two and
multi-field inflation models, it is pretty common for only one field to be dynamically
significant, the standard example is the hybrid inflation. The potential is of the
form,

V (ϕ, ψ) =
λ

4

(
ψ2 − M2

λ

)2

+
1

2
m2ϕ2 +

1

2
λ′ϕ2ψ2 (3.3.30)

When ϕ2 is large the field rolls down the channel until it reaches the potential
minimum at ψ = 0, leading to

V ' M4

4λ
+

1

2
m2ϕ2 (3.3.31)

The mass-squared of ψ is negative for ϕ < ϕc ≡M/g and is indicative of instability.
Then the field rolls down into one of the true minima at φ = 0 and ψ = ±M/

√
λ.
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Figure 3.4: The potential for the hybrid inflation model. The field rolls down the
channel at ψ = 0 until it reaches the critical ϕ value, then falls off the side to the

true minimum at ϕ = 0 and ψ = ±M/
√
λ.

Inflation shortly comes to a conclusion after the break in symmetry caused by the
rapid rolling of the field ψ. [9]
The number of e-foldings,

N ' 2πM4

λm2M2
pl

ln
ϕi
ϕc

(3.3.32)

ϕi is the initial value of the inflaton and ϕc is the critical value of the inflaton below
which ψ = 0 becomes unstable.
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Chapter 4

Cosmological Perturbations and
Inflation

So far we have assumed everything to be perfectly homogeneous. However, inho-
mogeneities in the form of quantum fluctuations during the course of inflation gives
rise to advancements or delays in the local time at which inflation ends. The parts
of the universe where the inflation ends earlier, are naturally older. Since the den-
sities of matter and radiation are inversely proportional to time, the older parts of
the universe are also less dense. Thus, these quantum fluctuations lead to a patch-
work of regions with differing densities, sowing the seeds for cosmological structure
formation. [6, 10, 12, 13]

4.1 Cosmological perturbation theory

Henceforward small perturbations are accounted for. All quantities shall now be
regarded as,

X = X̄︸︷︷︸
background

+

perturbation︷︸︸︷
δX

To ensure that the spatial average of the perturbation is zero, the background and
perturbation are set apart.

4.1.1 Metric perturbations

The perturbed FLRW metric may be written as,

ds2 = a2(τ)
[
(1 + 2A)dτ 2 − 2Bidx

idτ − (δij + hij)dx
idxj

]
(4.1.1)

where A(τ, xi), Bi(τ, x
i) and hij are small quantities1. It would be prudent to

effectuate a Scalar-Vector-Tensor (SVT) decomposition, viz. the small quantities
may be written as2,

A→ A

B → ∂iB︸︷︷︸
scalar

+ BV
i︸︷︷︸

vector

where, ∂iBV
i = 0

1A(τ, xi) is called the lapse function, and Bi(τ, x
i) the shift vector.

2The bolded V, T superscripts are being used to denote Vectors and Tensors respectively.
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In similar fashion, the symmetric traceless (0, 2)-tensor may be split into the scalar,
vector and tensor components,3

hij → 2Cδij + 2∂〈i∂j〉E︸ ︷︷ ︸
scalar

+ 2∂(iE
V
j)︸ ︷︷ ︸

vector

+ 2ET
ij︸︷︷︸

tensor

and,

∂〈i∂j〉E ≡
(
∂i∂j −

1

3
δij∇2

)
E,

∂(iE
V
j) ≡

1

2

(
∂iE

V
j + ∂jE

V
i

)
where, ∂iEV

i = 0, ∂iET
ij = Ei

i
T

= 0.

Hence, the metric perturbations constitute,

1 + 1 + 1 + 1 = 4 scalars : A, B, D, E

2 + 2 = 4 vectors : BV
i , E

V
i

2 = 2 tensor : ET
ij

10 degrees of freedom.

In first-order perturbation theory, scalar, vector and tensor parts evolve indepen-
dent of each other and may therefore be treated separately, that is what makes the
SVT division so important. The complete evolution of the full perturbation is the
linear superposition of the individual parts. The scalar perturbations are responsi-
ble for the formation of structure in the universe from small initial perturbations.
The vector perturbations decay like a−2 in an expanding universe, and are therefore
possibly unimportant in cosmology. Tensor perturbations/gravity waves are an im-
portant prediction of inflation since, if sufficiently powerful, they have an observable
effect on the anisotropy of the CMB. [10]

4.1.2 Gauge choice

The metric perturbations in (4.1.1) are determined by the gauge choice4. The per-
turbed metric is described by specific spatial coordinates in a distinct time slicing
of the spacetime. i.e. opting for a different set of coordinates may actually vary
the perturbation variables. As a result, fictitious perturbations may be introduced.
This unfortunate aspect is confirmed if one were to consider an unperturbed universe
with metric

ds2 = a2(τ)(dτ 2 − δijdxidxj) (4.1.2)

With a change of coordinates,

xi → x̃i = xi + ξi(τ,x)⇒ dxi = dx̃i − ∂τξidτ − ∂kξidx̃k (4.1.3)

3The 〈 〉 subscript is used to signify that only the trace-free portion of the object has been taken
into consideration.

4Choice of coordinates
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The line element then takes the form

ds2 = a2(τ)
[
dτ 2 − 2ξi

′dx̃idτ − (δij + 2∂(iξj))dx̃
idx̃j +O(ξ2)

]
(4.1.4)

Here, ξ′i ≡ ∂τξi. And, the perturbations introduced are ξ′i and ξi, which are ficti-
tious gauge modes that can be easily dismissed by just reverting to the earlier
coordinates.
Likewise, we perturb time, τ → τ̃ = τ + ξ0(τ,x)⇒ ρ(τ)→ ρ(τ̃) = ρ(τ + ξ0(τ,x)) =
ρ̃(τ) + ρ̃′ξ0. Here, ρ̃′ξ0 = δρ is the fictitious density perturbation that has been
induced. It is thus made obvious that even in an unperturbed, perfectly homo-
geneous universe, an inappropriate gauge choice may result in fake perturbations.
Conversely, a real perturbation in the energy density may be removed by choos-
ing the hypersurface of constant time to coincide with the hypersurface of constant
energy density[6]. These complications associated with metric perturbations being
dependent on the gauge choice are jointly referred to as the gauge problem.

4.1.3 Gauge transformations

Recall that a gauge transformation is a first order change in the coordinates. [12]

xµ → x̃µ = xµ + ξµ(τ,x) ξ0 ≡ T, ξi ≡ Li = ∂iL+ LV
i (4.1.5)

As can be seen, there is no tensor part. This is because tensor perturbations are
gauge invariant. [12]

Implementing the transformation law,

gµν =
∂x′α

∂xµ
∂x′β

∂xν
g′αβ (4.1.6)

The effect to the 00-component of the metric (4.1.1) is then,

g00 =
∂x̃α

∂x0

∂x̃β

∂x0
g̃αβ =

(
∂x̃0

∂x0

)2

g̃00 =

(
∂τ̃

∂τ

)2

g̃00 (4.1.7)

Substitution of (4.1.5) and (4.1.1) leads to5,

a2(τ)(1 + 2A) = (1 + T ′)
2
a2(τ + T )(1 + 2Ã) (4.1.8)

= (1 + 2T ′ + . . . )(a(τ) + a′T + . . . )
2
((1 + 2Ã) (4.1.9)

= a2(τ)(1 + 2HT + 2T ′ + 2Ã+ . . . ) (4.1.10)

Ã = A− T ′ −HT (4.1.11)

In similar fashion, in terms of the SVT decomposition,

B̃ = B + T − L′ B̃V
i = BV

i − L
′V
i

C̃ = C −HT − 1

3
∇2L

Ẽ = E − L ẼV
i = EV

i − LV
i ẼT

ij = ET
ij

(4.1.11)

5where, H ≡ a′/a is the comoving Hubble parameter
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A course of action that can be undertaken to find a way around the gauge problem
discussed in §4.1.2 is to work with Gauge invariant quantities. Otherwise known as
the Bardeen variables.

Ψ ≡ A+H(B − E ′) + (B − E ′)′ ΦV
i ≡ E

′V
i −BV

i ET
ij

Φ ≡ −C −H(B − E ′) +
1

3
∇2E

Another alternative is to fix the gauge.[10, 11] There are three popular metric gauges:

Synchronous

A = B = 0, time is unperturbed.

Spatially Flat

C = E = 0, space is unperturbed.

Longitudinal/Newtonian

The gauge freedom is used to set the scalar perturbations B = E = 0. It is obvious
from (4.1.11), that this may be achieved by assigning

ξ = −E
ξ0 = −B + E ′

And, we have A ≡ Ψ and C ≡ −Φ. Then the metric takes the form,

ds2 = a2(τ)
[
(1 + 2Ψ)dτ 2 − (1− 2Φ)δijdx

idxj
]

(4.1.12)

Newtonian gauge is to be the preferred gauge for studying the origin of large-scale
structures.

4.1.4 Matter perturbations

The perturbed stress energy-momentum tensor,

T 0
0 = ρ̄(τ) + δρ

T i0 = [ρ̄(τ) + p̄(τ)]vi

T ij = −[p̄(τ) + δp]δij − Πi
j

(4.1.13)

Here, vi is the bulk velocity, Πi
j is the anisotropic stress. In a multi-component

universe consisting of for e.g. baryons, photons, dark matter et cetera, the sum
of the individual energy momentum tensors make up the total energy-momentum
tensor. Implying,

δρ =
∑
a

δρa, δp =
∑
a

δpa, qi =
∑
a

qi(a) Πij =
∑
a

Πij
(a) (4.1.14)
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where, qi is (ρ̄+ p̄)vi. Once again, SVT-decomposition is to be implemented, δρ and
δp are scalars; qi has scalar and vector parts;

qi = ∂iq + qVi (4.1.15)

Πij has scalar, vector and tensor parts;

Πij = ∂〈i∂j〉Π + ∂(iΠ
V
j) + ΠT

ij (4.1.16)

Under the general gauge transformation,

T µν =
∂xµ

∂x̃α
∂x̃β

∂xν
T̃αβ (4.1.17)

Computing this for the the different components leads to,

δρ̃ = δρ− T ρ̄′ (4.1.18)

δp̃ = δp− T p̄′ (4.1.19)

q̃i = qi + (ρ̄+ p̄)L′i (4.1.20)

ṽi = vi + L′i (4.1.21)

Π̃ij = Πij (4.1.22)

There are two favourable matter gauges[11]:

Uniform density gauge

δρ = 0, spatial slices imitate surfaces of constant density.

Comoving gauge

q = 0, scalar momentum density is set to zero.

Gauge invariant quantities can be devised from metric and matter variables, one
popular gauge invariant quantity,

∆ ≡ δρ

ρ̄
+
ρ̄′

ρ̄
(v +B) (4.1.23)

It may be useful to write δρ
ρ̄
≡ δ, where δ is the dimensionless density contrast.

4.1.5 Equations of motion

In the Newtonian gauge, the metric tensor takes the simple form,

gµν = a2

(
1 + 2Ψ 0

0 −(1− 2Φ)δij

)
(4.1.24)

A tedious calculation of the Christoffel symbols(recall equation 1.3.1) leads to:

Γ0
00 = H + Ψ′

Γ0
i0 = ∂iΨ

Γi00 = δij∂jΨ

Γ0
ij = Hδij − [Φ′ + 2H(Φ + Ψ)]δij

Γij0 = [H− Φ′]δij

Γijk = −2δi(j∂k)Φ + δjkδ
il∂lΦ

(4.1.25)
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Conservation Equations

Now, with the connection coefficients, we may evaluate the constraint equations
from[13]

∇µT
µ
ν = 0 (4.1.26)

= ∂µT
µ
ν + ΓµµαT

α
ν − ΓαµνT

µ
α (4.1.27)

For ν = 0,

∂0T
0
0 + ∂iT

i
0 + Γµµ0T

0
0 + ΓµµiT

i
0︸ ︷︷ ︸

O(2)

−Γ0
00T

0
0 − Γ0

i0T
i
0︸ ︷︷ ︸

O(2)

−Γi00T
0
i︸ ︷︷ ︸

O(2)

−Γij0T
j
i = 0 (4.1.28)

Now, plugging in (4.1.13) and (4.1.25), yields

∂0(ρ̄+ δρ) + ∂iq
i + (H + Ψ′ + 3H− 3Φ′)(ρ̄+ δρ)

−(H + Ψ′)((ρ̄+ δρ)− (H− Φ′)δij
[
−(p̄+ δp)δji

]
= 0

and,

ρ̄′ + ∂0δρ+ ∂iq
i + 3H(ρ̄+ δρ)− 3ρ̄Φ′ + 3H(p̄+ δp)− 3p̄Φ′ = 0

(
0th order

)
ρ̄′ = −3H(ρ̄+ p̄) (4.1.29)(

1st order
)

∂τδρ = −3H(δρ+ δp)︸ ︷︷ ︸
dilution due to expansion

+ 3Φ′(ρ̄+ p̄)︸ ︷︷ ︸
perturbed expansion

− ∇ · q︸ ︷︷ ︸
fluid flow

(4.1.30)

The
(
0th order

)
equation does not account for perturbations and is merely represen-

tative of the conservation of energy in the homogeneous background. The (1st order)
equation is the continuity equation for the perturbation in density δρ.

For ν = i,

∂0T
0
i + ∂jT

j
i + Γµµ0T

0
i + ΓµµjT

j
i − Γ0

0iT
0
0 − Γ0

jiT
j
0 − Γj0iT

0
j − ΓjkiT

k
j = 0 (4.1.31)

Now, plugging in (4.1.13) and (4.1.25), yields6

−∂0qi + ∂j
[
−(p̄+ δp)δji − Πj

i

]
− 4Hqi − (∂jΨ− 3∂jΦ)p̄δji − ∂iΨρ̄

−Hδjiqj +Hδji qj +
(
−2δj(i∂k)Φ + δkiδ

jl∂lΦ
)
p̄δkj︸ ︷︷ ︸

−3∂iΦp̄

= 0

Consequently,
∂τqi = −4Hqi − (ρ̄+ p̄)∂iΨ− ∂iδp− ∂jΠij (4.1.32)

This is the Euler equation(for a viscous fluid).

6 T 0
i = −qi
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Einstein Equations

Now we may proceed onwards with the Einstein equations. We recall the Ricchi
tensor and the Einstein tensor are defined as,

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ (4.1.33)

Gµν = Rµν −
1

2
Rgµν (4.1.34)

After plugging in all of the connection coefficients, and computing the Ricchi tensor
and the Ricchi scalar, the Einstein tensor in the Newtonian/Longitudinal gauge is
eventually found to be,

G00 = 3H2 + 2∇2Φ− 6HΦ′

G0i = 2∂i(Φ
′ +HΨ)

Gij = −(2H′ +H2)δij + ∂i∂j(Φ−Ψ)

+ [∇2(Ψ− Φ) + 2Φ” + 2(2H′ +H2)(Φ + Ψ) + 2HΨ′ + 4HΦ′]δij

(4.1.35)

Merging with the stress energy-momentum tensor, the subsequent equations are
derived,

(i) For the trace free space-space Einstein equation, µ = i and ν = j,(
∂i∂j −

1

3
δij∇2

)
(Φ−Ψ) =

(
∂i∂j −

1

3
δij∇2

)
Π (4.1.36)

and hence, presuming there is little to no anisotropic stress[13], i.e. Π ≈ 0, the
Bardeen potentials are equal, i.e. Φ = Ψ.

(ii) For the temporal part, µ = 0 and ν = 0,(
0th order

)
3H2 = 8πGa2ρ̄ (4.1.37)

This is the Friedmann equation with Λ = 0

(
1st order

)
∇2Φ = 4πGa2ρ̄δ + 3H(Φ′ +HΦ) (4.1.38)

(iii) For the time-space Einstein equation, µ = 0 and ν = i,(
1st order

)
Φ′ +HΦ = −4πGa2q (4.1.39)

(iv) Considering the trace of the space-space Einstein equation, µ = i and ν = j,(
0th order

)
2H′ +H2 = −8πGa2p̄ (4.1.40)(

1st order
)

Φ” + 3HΦ′ + (2H′ +H2)Φ = 4πGa2δp (4.1.41)

In this evolution equation for the metric potential, δp is the total pressure pertur-
bation.

Combining (4.1.38) and (4.1.39) gives the Poisson equation,

∇2Φ = 4πGa2ρ̄∆ (4.1.42)
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4.2 Initial Conditions

At an adequately early epoch, all scales of interest to present observations were
outside the Hubble radius. On super-Hubble scales, the evolution of perturbations
becomes very straightforward, particularly for adiabatic initial conditions.

4.2.1 Adiabatic Fluctuations

An important feature of the adiabatic perturbations is that the local state of matter
at some spacetime point (τ,x) of the universe that is perturbed is equivalent to the
local state of matter at a slightly different time τ+δτ(x) in the background universe.
Adiabatic perturbations can hence be perceived as a consequence of some parts of
the universe leading the evolution compared to other parts by having reheated earlier
on.

Adiabatic density perturbations,

δρa(τ,x) ≡ ρ̄a(τ + δτ(x))− ρ̄a(τ) = ρ̄′aδτ(x) (4.2.1)

where the local time perturbation is the same for all species a. So we have,

δτ =
δρa
ρ̄′a

=
δρb
ρ̄′b

for all species a and b (4.2.2)

Now, using ρ̄′a = −3H(1 + wa)ρ̄a, this can be written as

δa
1 + wa

=
δb

1 + wb
for all species a and b (4.2.3)

And hence, all matter components (wm = 0) have equivalent fractional perturbations
and all radiation perturbations (wr = 1

3
) follow,

δr =
4

3
δm (4.2.4)

Since the total density perturbation,

δρ ≡
∑
a

ρ̄aδa

This implies that whichever species dominates the background, i.e. carries the dom-
inant energy density ρ̄a, dominates the fluctuations(as all δa’s are similar). At the
time of inflation, the energy density is dominated by the inflaton perturbation δϕ
which will have spatially varying fluctuations. Thus there will be local differences in
the time when inflation comes to an end, leading to distinct regions of space being
subject to varying degrees of inflation. The histories of the local expansions induce
the differences in the local densities following inflation. 7

7The fluctuations to the inflaton field are a natural consequence of handling inflation quantum
mechanically.
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4.2.2 Curvature Perturbations

If the equation of state of the background is constant, only then is Φ, the gravita-
tional potential, constant on super-Hubble scales. Whenever the equation of state
transitions, for instance from inflation to radiation domination or from radiation to
matter domination, so will Φ. It would be prudent to adopt an alternative pertur-
bation variable that even in these more generalized circumstances remains the same
on large scales . The comoving curvature perturbation is a variable of this sort. R
is gauge-invariant.

R = −Φ +
H

ρ̄+ p̄
δq (4.2.5)

wherein δ0
j ≡ −∂jδq Expressing the intial conditions in terms of this comoving cur-

vature perturbation enables us to readily relate to the predictions made by inflation
to the fluctuations in the primordial plasma. [13] At horizon crossing, we make a
shift from the inflaton fluctuation δϕ to R. However, we consider a spatially flat
gauge(The reason for which is discussed in §4.3). Thus for the unpertubed spatial
part of the metric, we have, Φ = 0. The perturbed momentum density is given by,

δT 0
j = g0µ∂µϕ∂jδϕ = ḡ00∂0ϕ̄∂jδϕ =

ϕ̄′

a2
∂jδϕ (4.2.6)

and, for ρ̄+ p̄ = a−2( ¯̇ϕ′)2, we get,

R = −H¯̇ϕ′
δϕ = −Hδϕ

¯̇ϕ
= −Hδt (4.2.7)

i.e. The curvature perturbation is introduced by the time delay at the end of infla-
tion.

4.2.3 Statistics of Cosmological Perturbations

Quantum mechanics during inflation describes the CMB fluctuations in individual
directions as opposed to identifying the temperature fluctuation in one particular
direction. The ensemble average of the fluctuations is given by the two-point corre-
lation function,

〈R(x)R(x′)〉 ≡ ξR(x, x′) = ξR(|x− x′|) (4.2.8)

The Fourier transform of R supplies,

〈R(k)R∗(k′)〉 =
2π2

k3
∆2
R(k)δD(k − k′) (4.2.9)

Here ∆2
R is the power spectrum of R.

∆2
R =

(
H2

2πϕ̇

)
(4.2.10)

The inflaton satisfies, ϕ̈ + 3Hϕ̇ + V ′ = 0. And during slow-roll, we can ignore ϕ̈,
and hence, ϕ̇ ≈ V ′

3H
. Therefore, ∆2

R may also be written as,

∆2
R =

1

24π2

1

εV

V

M4
pl

(4.2.11)
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The spectrum is very nearly described by a power law, ∆2
R = As(k/k∗)

ns−1, with
the spectral index,

ns − 1 ≡ d ln ∆2
R

d ln k
=
d ln ∆2

R
d ln aH

≈ d ln ∆2
R

d ln a
=
d ln ∆2

R
Hdt

= −6εV + 2ηV (4.2.12)

This elucidates the amplitude of curvature perturbations and the spectral index in
terms of the inflaton potential shape.8

4.3 Inflaton fluctuations: Classical

During inflation, the perturbations are dictated by δϕ and δgµν , the inflaton pertur-
bations and the metric perturbations respectively. In a general gauge, a perturbation
in the inflaton field means a perturbation of the energy-momentum tensor.

δϕ =⇒ δTµν

A perturbation in the energy-momentum tensor thereby suggests a perturbation of
the metric. viz. the Einstein equations,

δTµν =⇒
[
δRµν −

1

2
δ(gµνR)

]
= 8πGδTµν =⇒ δgµν

Concurrently, any perturbation of the metric interjects a backreaction on the evo-
lution of δϕ by way of the perturbed Klein-Gordon equation of the inflaton field,

δgµν =⇒ δ

(
∂µ∂

µϕ+
∂V

∂ϕ

)
= 0 =⇒ δϕ

i.e. these are tightly coupled, we conclude by this method of reasoning

δϕ⇐⇒ δgµν

We begin this section by looking at the classical dynamic of the inflaton fluctuation.
The inflaton action,

S =

∫
dτd3x

√
−g
[

1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
(4.3.1)

where, g ≡ det(gµν). We require the action at quadratic order in fluctuation for us
to study the linearised dynamics. However, looking into the quadratic action for the
couple fluctuations δϕ and δgµν may prove to be unnecessarily tedious, a trouble that
we may be exempted from if were to opt for a more favourable choice of gauge. We
work with the spatially flat gauge, wherein the freedom in the choice of coordinates
allowed us to set the unperturbed spatial metric, gij = −a2δij. The perturbations
are dictated by δϕ and δg0µ. The perturbations δg0µ are subdued compared to
the inflaton fluctuations by factors of the slow-roll parameter ε; when ε → 0, δ0µ

vanishes. Thus at leading order, we may perturb the inflaton field separately from
other fluctuations.[13]

8Here, εV and ηV are as defined in (3.3.15) and (3.3.16).
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We obtain from (4.3.1), for the unperturbed FLRW metric,

S =

∫
dτd3x

[
1

2
a2((ϕ′)2 − (∇ϕ)2)− a4V (ϕ)

]
(4.3.2)

The perturbed inflaton field may be written as,

ϕ(τ, x) = ϕ̄(τ) +
f(τ, x)

a(τ)
(4.3.3)

Plugging in (4.3.3) into (4.3.2) and separating the terms with two factors of f leads
to,

S(2) =
1

2

∫
dτd3x

[
(f ′)2 − (∇f)2 − 2Hff ′ + (H2 − a2V,ϕϕ)f 2

]
(4.3.4)

Integrating ff ′ = 1
2
∂τ (f

2) by parts,

S(2) =
1

2

∫
dτd3x

[
(f ′)2 − (∇f)2 + (H′ +H2 − a2V,ϕϕ)f 2

]
(4.3.5)

=
1

2

∫
dτd3x

[
(f ′)2 − (∇f)2 +

(
a′′

a
− a2V,ϕϕ

)
f 2

]
(4.3.6)

During slow-roll inflation,

V,ϕϕ
H2
≈

3M2
plV,ϕϕ

V
= 3ηV � 1

And because, a′ = a2H, with H ≈ const. during inflation, we have,

a′′

a
≈ 2a′H = 2a2H2 � a2V,ϕϕ

Therefore, we can drop V,ϕϕ

S(2) =

∫
dτd3x

1

2

[
(f ′)2 − (∇f)2 +

(
a′′

a

)
f 2

]
(4.3.7)

This suggests the following equation of motion

f ′′k +

(
k2 − a′′

a

)
fk = 0 fk(τ) ≡

∫
d3x

(2π)3/2
f(τ, x)e−ik·x (4.3.8)

Which is sometimes knows as the Mukhanov-Sasaki equation. We have a′′

a
≈ 2H2 =

2
τ2

in a quasi-de Sitter background. Thereby, the Mukhanov-Sasaki equation reduces
to

f ′′k +

(
k2 − 2

τ 2

)
fk = 0

38



During inflation, the comoving Hubble radius H−1 = (aH)−1 shrinks (a ≈ −1/(Hτ)
and τ the conformal time progresses from −∞ to 0). The Mukhanov-Sasaki equation
then becomes

f ′′k + k2fk ≈ 0 (at early times, for |τ | � k−1) (4.3.9)

which is simply the equation of a simple harmonic oscillator. The quantum fluctu-
ations of these oscillators brings forth the emergence of structure in the universe.

Figure 4.1: [6]
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Chapter 5

Conclusion

This thesis provided an introductory account to inflationary cosmology with a cul-
minating focus targeted towards corroborating inflation as a model for the origin of
structure. There is much scope for elaboration and improvement, by delving more
deeply into the study of the models of inflation and by quantising the inflaton fluctu-
ations. Structure formations are thought to be a consequence of these fluctuations.
Through ages, and under the effects of gravity, these matter fluctuations eventually
formed galaxies, stars and all celestial bodies as we know them.
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