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Abstract

Respiratory or thoracic diseases are one of the leading causes of death worldwide.
Many of these diseases can be treated and prevented with proper diagnosis and
early care. The diagnosis of thoracic diseases is mainly done with the use of chest
X-rays and other chest imaging techniques and making sense of these require expert
radiologists, who aren’t always accessible. Especially in underdeveloped countries, a
lot of patients with thoracic diseases are left to die due to a lack of proper diagnosis.
With the advent of Artificial Intelligence, there have been many initiatives trying
to tackle these medical diagnosis problems through the use of machine learning
techniques and pattern recognition. Using Deep Neural Networks, patterns corre-
sponding to different thoracic diseases can be easily detected from chest X-rays. In
this paper, we have proposed just such a model that can identify the presence of a
disease from a range of 14 different thoracic diseases using a Dense Convolutional
Neural Network. Our dense convolutional neural network model takes advantage of
the sheer amount of data that is now publicly available from chest X-ray datasets.
This novel approach works in 2 stages. first training on images from disease-ridden
patients alone, and then training the entire network on the whole dataset which
includes X-rays from both healthy and unhealthy patients. This allows the model
to make better predictions in detecting the presence of diseases as well as the ab-
sence. Given a chest X-ray alone, our model can give accurate predictions, with an
AUROC mean score of 82.9% competing with the existing state-of-the-art models
in this field.

Keywords: Deep learning; Chest X-ray; Convolutional Neural Networks; Thoracic
diseases; DenseNet;
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Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AT Artificial Intelligence

CADz Computer-Aided Diagnosis

CNN Convolutional Neural Network

CXR Chest X-ray

NIH National Institutes of Health

PACS Picture Archiving and Communications System

W HO World Health Organization



Chapter 1

Introduction

The thoracic cavity or the overall chest area is home to some of the most crucial
organs of the human body. It contains the lungs which supply us with oxygen and
delivers oxygen to the whole body and most importantly the brain; without it, we
cannot survive. The thoracic region also contains the heart, which is another crucial
organ that carries oxygen provided by the lungs through the whole body using the
circulation of blood. The survival and well-being of humans, therefore, is heavily de-
pendent on the functions occurring in the thoracic region. If either the heart or lung
has any problems, no matter how minute it may be, it can cause severe problems in
your health. This region, especially the lungs, is also most susceptible to infections
from external factors as it is constantly in direct contact with toxins, chemicals, and
harmful particles from the environment through the air that we breathe in [37]. It is
estimated that each year, about 4 million people die due to respiratory diseases and
this number is increasing every year [40]. Respiratory diseases and thoracic diseases
in general account for five of the most common reasons for death and chronic illness
worldwide [37]. Many of these deaths are avoidable, as thoracic diseases can be
widely prevented or treated.

The first step to the treatment of any disease is proper diagnosis. Respiratory or
thoracic diseases such as Emphysema, Pneumonia, Infiltration, etc are usually diag-
nosed with the help of microbiological tests or different imaging techniques such as
chest X-rays (CXRs) or CT scans[31]. Even diseases of the heart like Cardiomegaly
are initially diagnosed with the help of CXRs. But these images can be difficult to
interpret without the presence of an expert and this often leads to misdiagnosis and
therefore mistreatment of diseases, causing the condition to worsen. It is, therefore,
crucial to properly interpret CXRs and correctly diagnose these diseases. In this
paper, therefore, we propose a system to automate this process and to help doctors
better diagnose thoracic diseases with the help of artificial intelligence (AI).

1.1 Problem Statement

In this era of computers, machines, and a rapidly evolving world system, we are
all heavily dependent on technology. From the simplest tasks to the heftiest ones,
we can depend on machines to do the work for us. Technological advancements
not only make our lives easier but also allow us to perform more complicated and



specialized tasks efficiently. An example of the scenario in question can be Radiology.

Diagnostic Radiology is the branch of medical science that deals with the diagno-
sis of diseases by the use of medical imaging techniques such as X-rays, CT Scans,
MRIs, ete [36]. Most doctors for many years now have been using radiology to di-
agnose diseases and help treat them effectively [38]. This advancement in medical
technology has been revolutionary since we can now detect changes or complica-
tions in the internal organs from outside the body without the need for surgery or
even incisions. This is especially helpful when it comes to the diagnosis of thoracic
diseases. These diseases are primarily diagnosed with the help of radiological tools.
Currently, the imaging is done using machines [19], however, without the diagnosis
of a specialist, the radiological reports have little value[38].

Diagnosis of respiratory and thoracic diseases from CXRs require expert Radiolo-
gists, and if a doctor, for instance, is not in their usual mental state or is tired from
an entire day’s work, they might fail to detect a small but crucial detail in the report
of a patient[1]. Whether it be due to errors in diagnosis or some systemic fault in
the machines used to generate these images to help test the patients, medical errors
are very common and has been named as the third leading cause of death in the
United States[11]. Especially in the case of thoracic diseases such as Pneumonia,
Emphysema, etc. the identifying features of the diseases may be vague and can even
overlap with other diseases[35]. So chances of misdiagnosis are further increased, as
the human eye is less susceptible to such minute details.

Furthermore, trained Radiologists who can properly interpret CXRs might not be
available at all times and in all places [1]. According to a report by the World Health
Organization (WHO), as much as two-thirds of the world’s population lacks access
to advanced radiological diagnostics and specialists[35]. In lower-income countries,
it gets even harder to find trained Radiologists to look over a CXR and diagnose
diseases. Even when the radiologists are available, an appointment can be expen-
sive. Thus many treatable thoracic diseases are left to worsen the condition of the
patient, and patients suffer due to a lack of proper diagnosis. All these factors can
equate to a higher mortality rate in the fate of these often very treatable diseases.
We, therefore, propose a system to automate the whole process that will aid the
doctor in diagnosing and analyzing CXRs more efficiently.

1.2 Research Objective

The main objective of this research is to build and analyze the performance of an
automatic radiological diagnosis tool to assist doctors. Our model implementation
is based on the concept of Deep Learning and will allow us to detect precisely the
appearance of signs or anomalies in CXRs to be able to identify different cases of
thoracic diseases from a range of 14 different pathologies [13].

The most popular approach to analyzing medical images has been through image
segmentation using Convolutional Neural Networks (CNN). For the default CNN
model, the simple yet effective Network-In-Network model is used because the model



is small in size, fast to train, and achieves similar or better performance than pre-
vious models[29]. The use of CNNs to diagnose the disease of a patient is expected
to be at an accuracy level of a professional Radiologist, if not better|[23].

Our main objectives therefore are :

e To develop a working system that can take in CXRs as input and label the
presence of 14 different thoracic diseases ( if any ) accurately.

e Equate the probability of the disease most likely to be present and report
disease diagnosis accordingly.

e Develop a system that can help distribute the load of a Radiologist and be im-
plemented in the medical field to help diagnose diseases and reduce mortality
rates.

1.3 Research Methodology

CXRs alone can be used to diagnose a plethora of thoracic diseases such as Mass,
Cardiomegaly, Effusion, Atelectasis, Emphysema, Infiltration, Pneumonia, Pneu-
mothorax, Consolidation, Nodule, Fibrosis, Edema, Pleural Thickening, Hernia,
etc.[13].  With the recent developments in data reservoirs, there are now large
amounts of such CXRs available for public use. This makes this the perfect prob-
lem to be solved using neural networks and can be used to train and develop deep
learning models that can help diagnose thoracic diseases and automate the entire
process. With the availability of such data on the internet, it is now easier than
ever before, to accurately train neural networks so that they can detect patterns in
a wide range of cases. One such publicly available dataset is the National Institute
of Health (NIH) ChestX-ray 14 dataset [39][28], which gives us access to 112,120
labeled chest X-rays[15].

In our model, we propose a novel multi-stage optimization approach to diagnosing
thoracic diseases from CXRs by training a CNN on the NIH dataset so that it can
identify the important features that equate to the presence of thoracic diseases. In
the first stage, the model is trained on CXRs that have been labeled with the pres-
ence of thoracic diseases, i.e. CXRs of non-healthy patients. And in the second
stage, we train the model on the entire dataset including both sick and healthy pa-
tients’ CXRs. The neural network, once trained, should be able to correctly label
the presence of a disease given just the CXR of the patient. Our model implementa-
tion is based on the DenseNet-121 structure[16] and inspired from the other existing
models in this field.Using transfer learning, we have combined different features and
have designed a model that works in two stages and several sub-stages or phases to
give better results.



1.4 Thesis Outline

Our research aims to develop a working system that can detect the presence of
thoracic diseases from a range of 14 different thoracic diseases which include Mass,
Cardiomegaly, Effusion, Atelectasis, Emphysema, Infiltration, Pneumonia, Pneu-
mothorax, Consolidation, Nodule, Fibrosis, Edema, Pleural Thickening and Hernia
from a CXR of a patient. We have used the ChestX-ray14 dataset from NIH to train
our model in two different stages to properly predict the presence and/or absence
of these 14 diseases. The overall paper explores these steps that were followed to
develop this working model.

Chapter 1 outlines our inspiration for choosing this topic and discusses the prob-
lems that are to be addressed with our research.

Chapter 2 deals with relevant work in this field by others. We look deeper into
the various methods and approaches to detecting thoracic diseases and explore the
potentials of these kinds of systems in the medical field.

Chapter 3 describes the dataset and its nuances and incompetencies. We go in
depth into how the dataset was collected and how we processed it for use in our
model.

Chapter 4 proposes the model structure that we have used to implement our re-
search. We go into detail about how each aspect of the model works together to
predict results, starting from analyzing the data to how the two stages work together
to produce better accuracy.

Chapter 5 analyzes how our model performs and compares the results with the
state-of-the-art models in this field. We also discuss the scope of our model, address
our limitations and discuss future work.

Chapter 6 concludes our proposal and talks about the future potential for this
research.



Chapter 2

Literature Review

With the help of CXRs, we can now easily observe the internal condition of the
lungs and bones that exist in the chest area. They allow the detection of anomalies
or diseases of the airways, blood vessels, bones, heart, lungs, and whether there is a
presence of fluids in the lungs[25]. These features of abnormalities can be indicative
of diseases like Pneumothorax, Consolidation, Atelectasis, Cardiomegaly, Effusion,
Pleural Thickening, Infiltration, Mass, Nodule, Pneumonia, Edema, Emphysema,
Fibrosis, and Hernia[36]. Just recognizing these slight changes in an X-ray can be a
crucial point in the diagnosis of a disease.

Computer-Aided Diagnosis (CADx) systems have already been around for a while,
and are clinically approved, and proven to decrease false detection rates|2|. However,
unlike CAD systems, which just highlight the anomalies, deep learning can extract
useful features which are beyond the limit of radiology detection[27]. Furthermore,
the system should increase in accuracy as more and more data is fed into it, and it
evolves with time.

Perhaps the most prominent work in this area has been by Wang et al(2017) who
have become the benchmark for all other following approaches to working on diag-
nosing diseases from CXRs[15]. They were the first to work with such huge amounts
of data in this field, release the database (that paved the way for future work by
multiple others), and also popularize the use of pretraining models on ImageNet for
better results[4]. They showcased that it was possible to detect diseases and spatially
locate them using a “unified, weakly supervised, multi-label image classification and
disease localization framework”. As Wang et al[15] is part of the NIH, they have
used their institute’s CXR image database to develop this labeled dataset with 14
different diseases. Using text-mining techniques each of the images is labeled with
which diseases they correspond to. A certain number of images they have provided
also come with hand-labeled bounding boxes that can help with evaluating disease
localization performance.

Ever since large data sets like the ChestX-ray 14[13][14][15] and MIMIC-CXR|26]
have been available there has been a large number of research papers and projects
attempting to computerize the diagnosis process. Just focused on CXRs alone, there
are a variety of approaches to using Convolutional Neural Networks to label and di-
agnose these diseases. One such approach is by Mahmud Monshi et al (2019), where



the authors propose a deep convolutional neural network architecture, based on
ResNet50, to detect the presence (or absence) of twelve thoracic diseases|[27]. Their
model was tested on the MIMIC-CXR dataset|[26], using eight epochs and a subset
of the multiview CXRs that are available, to detect 12 common thoracic diseases
which include: pneumonia, lung lesion, enlarged cardiomediastinum, cardiomegaly,
airspace opacity, edema, consolidation, atelectasis, pneumothorax, pleural effusion,
etc.

Their system works in 3 stages, with a total of 12 sub-tasks each considering the
presence or absence of one disease. In the first stage, they train the ResNet50
model, using a transfer learning approach to train faster with a model that is al-
ready trained to recognize 1000 categories of things in ImageNet. The second stage
calls the fit-one-cycle method, to observe the model’s performance and increase accu-
racy. The final stage trains the model again for 4 epochs, using an optimal learning
rate finder. The experiments are performed using 10% of the MIMIC-CXR dataset,
using all available frontal and lateral views of the chest X-rays using small image
sizes of 224 by 224 pixels and resulted in an average AUC score of 0.7999[27].

Another similar study has been done by Hongyu Wang and Yong Xia (2020), in
which they have used the ChestX-rayl4 dataset along with an additional 180,000
images from the Prostate, Lung, Colorectal, and Ovarian or PLCO dataset from
NIH[5] for more training data[33]. Their neural network model, named Thorax-
Net, consists of two branches working together to diagnose the 14 diseases. The
(Classification Branch is used for Label Prediction and is just the ResNet-152 model
adapted to their problem by removing the softmax layer and replacing the last fully
connected layer with a 14 neurons layer, each of which uses the sigmoid activation
function. The other branch is used to detect abnormalities and is called the Atten-
tion Branch. This branch is used to exploit the correlation between class labels and
the regions of pathological abnormalities, using the output of the residual module in
ResNet 152 as the input layer, by analyzing the learned feature maps. The diagnosis
is obtained by averaging and binarizing the outputs of both branches and achieves

an AUC score of 0.7876.[33].

A common limitation of most approaches is that they focus only on the X-ray image,
and ignore any other radiological reports which can often be crucial in the diagnosis
process. TieNet, developed by Xiaosong Wang et al. (2018) has also considered
this and proposed a system that stimulates the real-world reporting process by out-
putting disease classification and generating a preliminary report spontaneously[19].
Their approach to this problem involves the use of a multi-level attention model[14]
integrated into an end-to-end trainable Convolutional Neural Network - Recurrent
Neural Network architecture that highlights the meaningful text words and relevant
image areas. The text embedding learned from the model is incorporated into the
rest of the model as a priori knowledge.

The Recurrent Neural Network (RNN)[3] used in this model is based on a visual
image spatial attention model for image captioning. This RNN accepts the current
word at each time step as input, as well as the soft-weighted visual features. It
uses attention to combine the most salient portions of the RNN hidden states. It



re-uses the attention mechanism except that it performs a max-over-r operation,
producing a sequence of saliency values for each word. These saliency values are
used to weight and select the spatial attention maps generated at each time point.
This system annotates the images from the Chest X-ray 14 dataset, hand-labeled
images, and the Openl[8| dataset. With global representations computed for both
the image and report, these are combined to produce the final classification which
is the simulation of a text report that a radiologist would write[19].

Another disadvantage most machine learning systems face with analyzing and di-
agnosing diseases is the lack of pixel-wise annotated data by radiologists or coarse
bounding boxes in sufficient amounts. Chaochao Yan et al.(2018) in their paper,
have therefore devised a weakly supervised deep learning system to aid radiologists
with unlabeled data[20]. The proposed system classifies thoracic diseases merely by
reading provided CXRs as well localizes the disease regions on the CXRs at pixel-
level granularity. The system produces disease-specific results instead of treating all
diseases as the same. In this paper, the publicly available Densenet-121[16] model
has been used as a backbone network because it consists of four consecutive dense
blocks. At first, a Squeeze-and-Excitation step is done which takes the advantage
of the widely existing cross-channel dependency. In between two consecutive dense
blocks of DenseNet[16], there is a convolution-pooling operator where the squeeze
and excitation block is inserted. Once that step is done, the system moves onto
Multi-map Layer and Max-Min Pooling. The Multi-map layer is required due to
CXR having multiple disease labels which requires multi-class classification there-
fore each output feature map corresponds to a particular disease class. To sufficiently
utilize the provided multi-class level, the Max-Min Pooling was introduced to ag-
gregate information on feature maps for each disease class[20].

In the present world, perhaps the most substantial application of a Neural Network
model that diagnoses CXRs would be the relation of Pneumonia to Covid-19. While
the exact percentage of Covid-19 patients who get diagnosed with Pneumonia is still
uncertain, often the cases that do may lead to more serious consequences[34]. With
the disease being a global pandemic as declared by the World Health Organization
[32], and numbers skyrocketing each day, an automated system to help doctors save
their precious time and effort might prove to be crucial. Tanvir Mahmud et al. pro-
poses a model called CovXNet, a deep convolutional neural-network-based architec-
ture, which extracts diversified features from chest X-rays of confirmed COVID-19
patients[30]. Due to the significant similarities between viral/bacterial pneumonia
and COVD-19 caused pneumonia, the system is initially trained using 11583 nor-
mal CXRs, 1493 non-COVID viral pneumonia CXRs and 2780 bacterial pneumonia
CXRs collected in Guangzhou Medical Center, China[18]. Once the initial training
is done, the model is then further specialized using a radiologist verified database
containing 305 CXRs of different COVID-19 patients collected from Sylhet Medi-
cal College, Bangladesh. Different resolutions are used to improve accuracy and a
stacking algorithm is also employed. The proposal uses a gradient-based discrimi-
native localization to differentiate between abnormal regions of X-rays referring to
the different types of pneumonia. While the system has produced an accuracy of
97.4%, it is to be noted that the system is mainly trained on non-COVID data, as
the data is still evolving and changing due to the situation.



Unlike the other papers aforementioned, the CovXNet approach rather focuses on
one specific disease instead of 13 others. The system as of yet is far from being used
effectively in the medical world, as not enough compiled data is available in a way
that can be used to teach the network. The current ChestX-ray 14 dataset may
not be suitable for this as well, since the labels do not distinguish between Viral
and Bacterial Pneumonia, which is a crucial factor in the diagnosis of Covid-19[34].
As the virus and disease are still evolving, the studies are simultaneously evolving
and changing to account for the vast amounts of data being collected. As more
and more data is available, many other systems will be better equipped to diagnose
and deal with Covid-19 Pneumonia. Our aim however is slightly different, as we
diagnose 13 other thoracic diseases as well as Pneumonia, but the system itself may
be specialized to meet requirements.

While most problems in the medical imaging field are perfect candidates for imple-
mentation using neural networks and machine learning techniques, there are a lot
of realistic constraints that become obstacles in these models being applied in the
medical field. Since this is the question of human lives and one wrong prediction
could cause a lot of damage, it is very important to consider all relevant aspects
that deal with the accuracy of these predictions. One such important factor is that
in a lot of the cases, the features presented in a CXR (or any medical imaging
technique) are that the presence of a certain feature may indicate the presence of
multiple diseases. It is not just a simple binary classification problem. They are
in fact, multi-label classification problems. The paper by Yao et al incorporates
this factor and uses LSTMs[9] to take advantage of multi-label dependencies|21].
They manage to get state-of-the-art results in predicting the 14 different diseases
on the ChestX-ray14 dataset[13] [14] from NIH, and they do so without pre-training.

As can be seen, there are a lot of different approaches to solving the same problem.
However, our work is inspired by that of Pranav Rajpurkar et al(2017)[13], in the
CheXNet model which uses DenseNet [16] and batch normalization for optimization.
The CheXNet model is the standard for most of the work in this path, as it has been
widely acknowledged. The weight of this network is initialized from ImageNet’s[4]
pre-trained models and normalization is based on the mean and standard deviation
of images from ImageNet. The system replaces the final fully-connected layer with a
fully connected layer producing a 14-dimensional output, after which an elementwise
sigmoid nonlinearity is applied.

Another recent proposal that is similar to our model is that of Hongyu Wang et
al(2021)[35]. They have proposed a model that can detect 14 different thoracic
diseases, just from a CXR. They have used a DenseNet-121 [16] architecture, pre-
trained on ImageNet[4], as their base model, and have incorporated three different
attention modules to focus on scale-wise, element-wise, and channel-wise learning.
They train their model on the ChestX-rayl4 dataset[13] [14] and yield the highest
average per-class AUC of 0.826.

Different models aim to solve different issues in the diagnosis of thoracic diseases
from CXRs, and in return have limitations of their own. One of the most important



problems of these systems is the disregard of patients’ medical histories and current
clinical records, which can often prove to be crucial in diagnosing a disease. Other
problems include data augmentation and pixel normalization, lack of accurate lo-
calization of lesion areas utilizing the limited amount of bounding boxes, and not
treating the diseases separately and thus ignoring that those lesion areas on chest
X-rays are disease-specific. One other significant factor is that many images from
the ChestX-ray14 dataset contain lesion areas of overlapping thoracic diseases. With
such varied differences and problems to a singular solution, there are many strides
left to be taken in improving computer-aided diagnosing systems for Chest X-rays
and thoracic diseases. A more holistic approach would be necessary to make any of
these systems applicable in the real medical world.



Chapter 3

Dataset Description and
Pre-Processing

3.1 Data Collection

This is the age of data, and with such huge amounts of data publicly available, new
doors of data science and research have opened up and every day new and improved
ways of utilizing this data are being discovered. The availability of such huge data
makes it perfect to be used in deep leaning methods.In our approach, we have cho-
sen the ChestX-rayl4 dataset [39] [28], or the “NIH Chest X-ray Dataset”, which
is publicly available on Kaggle, one of the largest data science communities that
provide powerful and effective tools and resources for public use[39].

Before this release, the largest available dataset of CXRs was Openl with only 4143
images available. Wang et al. [15] paved the way for hundreds of others to use
this data and develop new ways to detect thoracic diseases. This dataset was first
released by to utilize the huge data reserves of CXRs that NIH holds in their Picture
Archiving and Communications System(PACS). One of the members was a fellow at
NIH and another one was an employee and hence they had access to huge amounts
of CXRs as well as their corresponding radiological reports from doctors.

The NIH PACS is huge and contains reserves of many different categories of reports.
To create the database, first of all, a list of 8 pathological keywords that were most
commonly found in thoracic disease diagnosis from radiologist reports was estab-
lished with help from the radiologists at NIH. Then these 8 keywords were used
to text mine the relevant radiological reports from the PACS reserve using Natu-
ral Language Processing (NLP). They also used NLP to remove any negation and
uncertainty. The NIH has not released these radiological reports to the public and
hence this dataset is our only gateway to using NIH’s huge data reserve. The labels
are claimed to be more than 90% accurate[28]. Wang et al[28| further demonstrated
the application of this dataset with a disease localization framework as well. Figure
3.1 summarizes their methods. This then inspired many more researchers to attempt
to solve this problem in their way.We are no different and it would have been nearly
impossible for us to gather such huge amounts of data ourselves. This is why have
chosen to utilize this public reserve and use it to train our neural network.
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Figure 3.1: The deep convolutional neural network used to show the localization of
diseases from CXRs, developed by Wang et. al. [28].

3.2 Description of the Dataset

The dataset consists of 112,120 CXR images with disease labels from 30, 805 unique
patients, collected during the span of 1992 to 2015. The 14 common thoracic dis-
eases that are labeled here include Atelectasis, Consolidation, Infiltration, Pneu-
mothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural thickening,
Cardiomegaly, Nodule, Mass, and Hernia[28].

Since the data from the ChestX-ray-14 dataset [39] [28] is labeled with the use of
NLP techniques, there are still some discrepancies in the data, as opposed to the
accuracy of radiologist-labeled data[15]. With such a large dataset it is extremely
hard to manually label all this data, especially since it involves the expertise of a
Radiologist. It is expected, therefore, that there will be the presence of certain er-
rors. The data is also rather imbalanced, as shown in Figure 3.2; for instance there
are about 19894 X-rays for Infiltration whereas only 227 for Hernia. So the model
is better trained on detecting Infiltration. Furthermore, out of the 112,120 images,
more than 60, 000 images have been labeled with “No Findings”; which means that
these are images with no presence of any of the 14 detectable diseases.

CXR or any form of medical imaging contains certain areas or tell-tale signs that
help the doctor diagnose the disease as noted in Figure 3.3. Wang et al [28] have
also shown that these diseases can be spatially located using localization techniques.
Using pattern recognition and deep learning to detect these areas rather than CADs
is much more effective because of the minute details that can signify the presence of
a disease. Our system also attempts to recognize these spatial patterns to classify
the diseases.

Furthermore, often some of these thoracic diseases have connections to each other[28].
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Figure 3.2: Disease distribution in the dataset. Evidently, there is inconsistency in
the data; while Infiltration has 19894 occurrences, Hernia has just 227.
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Figure 3.3: CXRs of patients with different diseases. Circled areas showing region-
specific features correlated to the disease[15].
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Figure 3.4: Proportional representation of disease co-occurrence statistics in the
dataset released and labeled by Wang et al.[28].

This has been established by radiologists and it is also obvious from the PACS re-
serve. Thus in a lot of the cases, multiple diseases will be present and their cor-
responding spatial locations that signify their presence can overlap as can be seen
from Figure 3.4. This overlapping is coherent with the radiologist’s insights.

Certain combinations of pathologies always seem to appear together or with all kinds
of pathologies. These include Effusion, Atelectasis, Cardiomegaly with Effusion,
Emphysema with Pneumothorax, Nodule with Infiltration, Edema with Infiltration,
Fibrosis with Infiltration, and Pneumonia with Infiltration. Multiple pathologies
are therefore much more common in most of these CXRs as shown in Figure 3.5.

3.3 Data Pre-Processing

Since the dataset was developed for a classification task in the first place, it has
already been through certain steps of necessary pre-processing and it isn’t the same
as raw data. As can be seen from Figure 3.6, the data is pretty organized and the
image distribution has already been pre-determined with labels and corresponding
information. We use the image distribution file developed by Rajpurkar et al.[13]
The image distribution file is then merged with the NIH label set, which correlates
the information with the images.

The original images with dimensions of about 2500x2800 are resized to 224x224. for
ease of processing. They are resized so they can be easily used in the DenseNet-121
structure[16]. They are then further processed with the help of Dense Net-121 where
horizontal flipping, standard normalization and a 15 degree rotation was performed
and zoomed by 0.15 times to introduce more versatility into the data. This allows
the system to better recognize the image even with different alterations or rotations.
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Figure 3.5: Occurrence of pathologies alone vs together.

The images and labels are fed separately into the model, with the labels containing
the information of all the patients including gender, age, presence of disease (de-
noted with a 0 (absent) or 1 (present)), and the path to each corresponding CXR.

Figure 3.6: A snippet of the Dataset Label File.

3.4 Training, Validation, and Testing

There are cases of multiple CXRs from one patients in the dataset. We have ensured
that there is no overlapping in the train-validation-test data. This means, no two
CXRs from the same patient are used in more than one stage. Each set of data fed
into these 3 phases are different and belong to different patients so there is no bias
involved in pattern recognition.

During the training phase, we use an image size of 224x224 and a batch size of 16,
during both stages. As can be seen from Table 3.1, for the training data-set, we use
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32, 422 images from about 12, 961 patients, during the first stage. For the second
stage, we use 77, 946 images from 27, 724 patients. Augmentation is done using
horizontal flipping, and standard normalization methods are also used.However, we
do not use vertical flipping,.

For the validation phase, we use 1440 patients and about 2599 images in the first
stage. Whereas for the second stage we use 8575 from 3078 patients.

Finally, for the testing phase, the batch size is 8192, and we use about 15,734 images
from 1286 patients during the testing phase for the first stage and 25,595 images
from 2797 patients in the second stage. The batch size is still kept to 16 for both
stages.

Stage Train | Validation | Test
1st stage 32,422 | 2,599 15,734
Unique Patient | 12,961 | 1,440 1286
Batch size 16 16 8,192
2nd stage 77,946 | 8,575 25,595
Unique Patient | 27,724 | 3,078 2,797
Batch Size 16 16 8,192

Table 3.1: Splitting of the data-set
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Chapter 4

Proposed Model

4.1 Architecture

Our model works in two stages, with slightly different data input sets. After resizing
the original CXR images, only the CXRs with some label of existing pathology is fed
into a pre-trained DenseNet-121 model for Stage 1. We do not feed the CXRs with
a "No Findings” label into the neural net, which accounts for about 60, 000 images.
Once weights are initialized, we freeze all the weights from lower convolutional layers,
and then we begin stage 2. In stage 2 we then feed the entire dataset including CXRs
from both healthy and sick patients. Then we replace the final fully-connected layer
with a fully connected layer of a 14-dimensional output and treat the DenseNet-121
as a fixed feature extractor. In the second stage, we fine-tune the weights from all
the layers by backpropagation. Each training iteration optimizes the cross-entropy
losses.

4.1.1 CNN Layers and Functions

Before we dive into the working system, here is a summary of the different existing
techniques we have used to develop our model.

DenseNet-121

DenseNet121 consists of 121 layers of Densely Connected Convolutional Neural Net-
works. Each layer in the model of the DenseNet architecture obtains additional
inputs from all preceding layers and propagates its feature maps to all other sub-
sequent layers. Due to this concatenation, all of the layers are receiving “collective
knowledge” from all the preceding layers. This means the network built will be
thinner and more compact thus improving the computational efficiency and mem-
ory efficiency[16]. The classifier in DenseNet gives smoother decision boundaries
even when training data is insufficient because it uses features from all existing
complexity levels.

Convolutional Neural Network

CNN is a popular class of deep learning neural networks. CNNs can be thought of
as a machine learning algorithm that mainly works with image classification prob-
lems. It takes in an input image, assigns relative importance (learnable weights and
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biases) to various aspects/objects in the image, allowing them to differentiate one
feature from the other. CNN works by extracting features from the images[12]. All
CNNs consist of three main layers- the input layer which is a grayscale image, the
Output layer which is a binary or multi-class label, and the hidden layers consisting
of convolution layers, ReLU (rectified linear unit) layers, the pooling layers, and a
fully connected Neural Network. Each of the layers of a CNN has multiple convo-
lutional filters working and scanning the complete feature matrix and carrying out
dimensionality reduction. This enables CNNs to be a very apt and fit network for
image classifications and processing[12].

] - 11

— micYCLE

o INPUT CONVOLUTION + RELU POOLING CONVOLUTION « RELU POOLING } FLATTEN CD::::;:‘ED SOFTMAX
ki bi
HIDDEN LAYERS CLASSIFICATION

Figure 4.1: The layers of the Convolutional Neural Network Explained.[6]

We start by converting our images into gray-scale form because it makes it easier to
process without losing important features that are necessary to make the algorithm
scalable onto massive datasets.We can see the layers of a CNN in Figure 4.1

Convolution Layers

The convolution layer is made up of one or more filters (which is basically like a
matrix) each with different weights that are used to extract features from the input
image. In the case of convolutional layers, the neurons aren’t all connected to each
other, but only connected to a few significant input neurons so that there are less
parameters to focus on [17]. This allows the entire network to go much deeper, using
less parameters. The features for the various images are calculated based on their
neighboring pixel values, while the filter slides over the input image. As the filter
travels along the height and width of the image, the dot product between the filter
matrix and the input image matrix is calculated at every spatial position. This is
known as convolving. Each filter convolves or slides over all the pixels of the input
image and extracts relevant features from it.

Adam Optimizer

Adaptive Moment Estimation or Adam is an optimization algorithm that we used to
train the model with the CXRs[22]. Adam uses an exponentially decaying average
of past squared gradients in order to produce an adaptive learning rate. It is similar
to the momentum optimizer and the RMSProp optimizer as implied by its defin-
ing equations, (where © denotes the Hadamard product and # denotes Hadamard
division):

17



m = fym — (1 — 1) VyJ (6)
s =fas+ (1 — B2) VoJ(0) © Vo J(6)
= 25 (4.1)

0=0+nm@V3+e

ReLLU Function

ReLU or rectified linear unit is a form of the activation function that is used to
increase the non-linearity of the network[24]. However, it does not affect the re-
ceptive fields of each of the convolution layers, while doing so. ReLLU allows faster
training of the data. This is introduced after each convolution layer to introduce
non-linearity in the feature maps. It ignores negative values and only outputs the
positive values or zero.

ReLU = max(0, value) (4.2)

Max Pooling

The max pooling layer applies a non-linear down-sampling on the convolved feature
often referred to as the activation map [7]. This is done so that the computational
complexity is reduced, as we are dealing with large amounts of data that is linked
to an image. This is performed by sliding a window over the image selecting the
average, maximum or minimum values in the window depending on the task at
hand. So that reduces further complexity of the network by minimizing the number
of parameters.

Image Flattening

The neural network can work on a tabular structure so the output of the pooling
needs to be converted to a compatible format so that it can be classified. The
data is therefore converted into a one-dimensional array. Also often a dropout layer
is added to prevent overfitting of the algorithm. Dropouts prevent overfitting by
reducing the correlation between neurons.

Fully Connected Layer

This is the last layer, where the feature maps are flattened into a one-dimensional
array and dense layers are connected to it i.e. every neuron in the current layer is
connected to every other neuron in the next layer. A softmax classifier at the end
is used to finally classify the image into the given number of classes[10].

So to summarize, the flattened feature maps obtained from DenseNet-121 will be
inputted into the CNN in the form of a dataset. The CNN will carry out supervised
learning by using an adequate number of convolutional and pooling layers. Finally,
it will classify the feature maps into correct classes of disease.
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4.1.2 Developing the Model

The task of diagnosing or detecting the presence of certain diseases from a CXR is
first and foremost a binary classification task. This is to say, that in the chance of an
actual implementation of the thoracic complication detection model, the resulting
model, given a CXR, should accurately predict whether or not there is the presence
( denoted with a "0’ ) or absence (denoted with a "1’ ) of each of the selection of
diseases.

There are already a few different approaches in the problem space of thoracic dis-
ease classification from CXRs, as discussed before. We started inspired by several
different models[35] [13] [15] [21], and have experimented with several different ex-
isting approaches and tweaked certain aspects to yield better results. Doing so has
helped us significantly in developing a better understanding of the overall model.
Experimenting with different techniques we have finally ended up with an innovative
model of our own. Having tested out different existing techniques, we detected the
incompetencies in the data and tried to cater to them. Our approach is designed to
get the most out of the available data and manipulate it in such a way that produces
better results.

1st Stage

ED Il = ¢

2nd Stage

Figure 4.2: The architecture of the proposed model.

We have designed a model which works in stages and deals with some of the data
at a time as portrayed in Figure 4.2. This significantly speeds up the training pro-
cess. As mentioned earlier, more than half the data does not even contain disease
features. As the priority of the model is to detect, classify and label the presence of
a disease, the model must be very familiar with CXRs of patients diagnosed with a
disease, rather than the one of a healthy patient.

Stage 1

The first stage of our model is trained solely on the CXRs of patients with a disease
label, i.e. not the ones labeled “No Findings”. This helps the model better recognize
and learn the features of each disease, and also significantly decreases training time.
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The model is designed to do this in several sub-stages, with increasing numbers
of epochs each time, to further quicken the process. The entire network uses the
DenseNet-121 model[16] as the base model.

We use transfer learning to start training. Instead of starting from scratch, we ini-
tialize the first stage with the weights from the ImageNet[19] model. This helps the
network “understand” how to classify and label a large range of objects. and thus it
can extract features from new data more efficiently. This can be analogous to how
it will be easier for a college student to understand deep learning than it would be
for a kindergarten student who has just started learning.

The first phase of stage 1 is initializing the model with the weights from ImageNet
[19] and training the network on the non-healthy images from the ChestX-rayl4
dataset[39] [28] with Adam optimizer. This optimization algorithm helps deal with
the noise present in the Chest X-rays. We start with a learning rate of 0.001, and
gradually increase the number of epochs and reduce the learning rate by a factor of
10 each time if there is a plateau. At the beginning of the rest of the phases, we ini-
tialize the model with the weights from the previous phase (instead of the ImageNet
weights we used from transfer learning) and continue training. This concludes the
first stage of the model.

Stage 2

The second stage starts from where the first one ends, using the weights the model
has learned from the preceding phases. This time, however, the model uses all
112,120 images of the dataset, including the ones on which it has been trained in
the first stage (the non-healthy patients’ CXRs). This teaches the model how to
identify the absence of these diseases as well. We repeat the phases of stage 1 in
stage 2 and this time we used the entire dataset. Since there is a significant increase
in the amount of data as compared to the first stage, this stage takes longer. We
fine-tuned the optimizer’s learning rate for different epochs. Once all phases have
been completed, the model has been completely trained.

In the final layer of our DenseNet model, we use the sigmoid function, and the fi-
nal output is a binary column vector, representing the predicted probability of the
presence or absence of each of the 14 diseases.

4.2 Developing a Web Application

In this study, a web application, named Thoracic Complication Detector !, was de-
veloped to classify between healthy and disease-ridden images. The user interface
of the web application is shown in Figure 4.3. In the web application, a CXR image
can be uploaded and based on the uploaded image, the web application provides a
verdict for possible complications.

'https://thoracic-detection.herokuapp.com/

20



The proposed model was used at the back end of the web application. Whenever an
image is uploaded in the web application, the trained CNN model is loaded and it
predicts the class label of the uploaded image. The web application was developed
by using Flask 2,which is a popular full stack web development framework written
in python. At first, the web application was built on a local machine. Then, it
was hosted on Heroku ?, which is a platform for running, building and operating
applications in cloud.

THORACIC COMPLICATION DETECTOR

Please select the image you want to diagnose

Fpieasmags

The Patient should be checked for:
—>Atelectasls —>Consolidation
—>Cardiomegaly —>Hernia

Figure 4.3: User Interface of the proposed thoracic complication detector system.

Zhttps:/ /flask.palletsprojects.com/en/1.1.x/
3https://www.heroku.com/
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Chapter 5

Result Analysis and Discussion

5.1 Result Evaluation

While our multi-stage optimization approach to detecting thoracic diseases from
CXRs starts with a low AUC score of about 0.607 during the very first phases
of stage 1, after stage 2 is completed, the score rises to about 0.829. Our model
performs better for more than half the diseases out of the 14 diseases and gives
satisfactory results for the other 6 as well.As the ROC curve in Figure 5.1 shows,
the model performs well for all 14 diseases, while performing the best for Hernia,
and the worst for Infiltration.
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Figure 5.1: ROC curve for all the 14 diseases showing the True Positive vs False
Positive rate which is indicating the model’s discriminative ability.

Our model performs significantly better than previous models developed by Wang et
al.[15] and Yao et al.[21] across almost all 14 diseases. We get better results for At-

electasis, Infiltration, Pneumothorax, Edema, Effusion, Cardiomegaly, Mass, Hernia
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than the other 3 models. Our results are more comparable with the A% model[35],
the state-of-the-art benchmark of thoracic disease detection models, with similar
results and even beating their score in 8 diseases out of the 14 as displayed in Table
5.1. The A® model gives a score of 0.938 in predicting Hernia, while the model devel-
oped by Yao et al. [21] yields an even lower value of 0.914. Our model outperforms
them with an AUC score of 0.950 and gives better prediction results.

3 T
Pathology Wang et at.  Yao et al. A®Net Proposed Multi-Stage

(2017) (2017) (2021) Optimization
Atelectasis 0.716 0.772 0.779  0.78885
Consolidation 0.708 0.788 0.759  0.75264
Infiltration 0.609 0.695 0.710  0.71155
Pneumothorox 0.806 0.841 0.878  0.88464
Edema 0.835 0.882 0.855  0.86904
Emphysema 0.815 0.829 0.933  0.92624
Fibrosis 0.769 0.767 0.838  0.83530
Effusion 0.784 0.859 0.836  0.84499
Pneumonia 0.633 0.713 0.737  0.73181
Pleural Thickening 0.708 0.765 0.791  0.77917
Cardiomegaly 0.807 0.904 0.895 0.91113
Nodule 0.671 0.717 0.777  0.75844
Mass 0.706 0.792 0.834  0.85568
Hernia 0.767 0.914 0.938  0.95034

Table 5.1: Comparison of AUC scores of our model, versus the benchmark, popular
models in thoracic disease detection.

We get significantly better prediction results for Cardiomegaly as opposed to all
the other three models. Our model gives an AUC score of 0.911 while the others
give 0.895, 0.904, 0.807 for Cardiomegaly. From Table 5.2 we can see the model’s
performance metrics for precision, recall, and F1 score of all the 14 diseases. 10-fold
cross-validation is used to evaluate the model. We have taken the mean average of
all the folds for a better insight into the performance. The model performs signifi-

cantly well on all 14 diseases, and exceptionally well for Hernia with a recall score
of 1.00 and 0.99 Precision and F1-score.
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Disease Precision | Recall | F1-score
Atelectasis 0.76 0.87 0.81
Consolidation 0.87 0.93 0.90
Infiltration 0.58 0.76 0.65
Pneumothorax 0.80 0.89 0.84
Edema 0.93 0.96 0.95
Emphysema 0.91 0.96 0.93
Fibrosis 0.97 0.98 0.97
Effusion 0.66 0.82 0.73
Pneumonia 0.96 0.98 0.97
Pleural Thickening | 0.92 0.96 0.94
Cardiomegaly 0.92 0.96 0.94
Nodule 0.88 0.94 0.91
Mass 0.87 0.93 0.90
Hernia 0.99 1.00 0.99

Table 5.2: K-Fold cross validation performance metrics of the proposed model

5.2 Scope and Limitations

This study aimed to develop a deep learning model that can efficiently diagnose up
to 14 different thoracic diseases, from a CXR alone. Thoracic diseases are one of the
leading causes of death in children and adults alike[40]. If implemented and further
developed this model like the many others in this field is meant to aid doctors and
help save lives. Having experimented with the existing approaches to solving this
problem, we ended up with a multi-stage optimization model that works in 2 differ-
ent stages, each fine-tuned in a way to cater to the discrepancies of the data. We
managed to outperform the state-of-the-art models in this field in detecting almost
all of the 14 diseases, and also achieved a high AUROC mean score of 82.9%.

However, as with any system, our model has some limitations that need to be dealt
with if we were to make use of this system in the medical diagnostic field. One
significant limitation of our approach is the lack of incorporation of patient history
or any sort of holistic diagnosis approach to the problem. As the dataset itself
does not contain supplementary information on the patient and any track of the
presence of other problems in their body, there might be cases of misdiagnosis. An-
other limitation is the incoherent data itself, which does not provide the system
to learn with consistent amounts of data across the spectrum of diseases. Some
diseases have a lot more images available, and some have very few. Therefore, the
model cannot properly train to the same accuracy levels for detecting all 14 diseases.

5.3 Future Work

The model as it is now, is not suitable to be used in the medical diagnosis field.
Since one wrong move can affect someone’s life, we need much better performance
and accuracy in our predictions if we are to aid the diagnosis process. Our model
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has a lot of potential and can be further developed to incorporate patient histories
and underlying diseases if given the chance. However, since the original diagnosis
reports accompanying the CXRs that we have used have not been made publicly
available by NTH, we could not utilize them. If made available, these reports can
help improve the accuracy of these prediction models greatly.

Any future work with our existing model might also compensate for the inconsistent
data across the 14 thoracic diseases. If a more even distribution is possible, i.e.
more data of diseases like Hernia, Edema, Pneumonia, etc are fed into the system,
then the system might recognize these diseases even more accurately. However, even
with better-equipped systems, medical diagnosis models built with neural networks
are not meant to replace doctors, but simply aid them and speed up the diagnosis
process.

Doctors with their expertise, have years of experience and have a much better un-
derstanding of these diseases and their diagnosis processes. Including a doctor or
incorporating their opinion into the development phases might also greatly increase
the scope of this model.

As can be seen, there is much stride left to be made before we can envision the
implementation of these models in the medical field. But the high AUC scores give
us hope that progress is possible. It won’t be long before we will see neural network
models being used alongside X-ray machines and CT scan machines.
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Chapter 6

Conclusion

Pneumonia alone affects about 150 million people worldwide and can cause up to
4 million deaths in a year. These thoracic diseases, if diagnosed early and treated
properly can save millions of lives. Though our model is yet to be suitable for
practical use in the medical field, it is an example of how much potential neural
networks and deep learning have in the advancement of medical science. Our model
works in 2 stages, dividing the data into healthy and unhealthy patients and using
a base model of DenseNet-121. We managed to reach an AUROC mean score of
82.9% and have yielded results better than the state-of-the-art models in this field,
in 8 of the diseases out of the 14 labels. If neural network models like ours can
improve the diagnosis process and make it more efficient, we can help greatly reduce
the mortality rate related to thoracic diseases. We look forward to a future where
this model, like many others, will contribute to a digital world in which machines
can help save lives.
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