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Abstract 

Fault Detection is essential for the safe and efficient operation of industrial manufac- 
turing. Successful detection of fault features allows us to maintain a stable produc- tion 
line. Therefore, establishing a reliable and accurate fault detection method has become 
a huge priority now. Historically, various artificial intelligence-based models are used to 
predict faults in machines accurately to some extent. Mainly, machine learning and 
deep learning-based processes are being used. However, there are some shortcomings 
in those processes. Firstly, machine learning is mostly dependent on previous data and 
fails to recognize new issues that have not been introduced to the model during the 
training phase. Secondly, with deep learning, it is very time- consuming to reliably 
classify faults and difficult to establish an effective model for complex systems of 
current days. Thus, in our paper, we are proposing to use a transfer learning-based 
optimization of the deep learning process to meet the re- quirements of real-time fault 
classification and accurate detection of faults in adverse operational conditions. We will 
be using wavelet transformation of raw signal data to 2D images and constructing a 
DCNN based transfer learning architecture to ex- tract the fault features of the machine. 
Finally, we will be feeding the network with data from our target domain for fine-tuning 
the network to work accurately in the target domain. We will be testing with two cases 
to find the accuracy and accuracy optimization over the deep learning (AAG) values of 
our system. Finally, we will be comparing our architecture with state-of-the-art transfer 
learning architectures from Keras. 

 

Keywords: Fault Detection; Machine Learning; Deep Learning; Real-Time Fault 
Classification; Wavelet Transformation; 2D Image; DCNN; Keras 
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Chapter 1 

Introduction 
 
1.1 Overview 

Due to the never-ending growth in global population and demand, industrial man- 
ufacturing has become the biggest issue of the 21st century. The manufacturing 
processes are mostly semi or fully automated via the use of machines nowadays. The 
efficiency of the process alongside the safety of the personnel involved in the process is 
mainly dependent on the operational accuracy of said machines [13]. One of the 
commonly used machines in the industry is the industrial air compressors. From the air 
compressor, the power we get can be used to replace steam and elec- tricity in most 
engineering and manufacturing areas. Compressed air helps to save time, money, and 
physical strain. There are many industrial uses of air compressor such as, glass 
manufacturing, automotive, nitrogen plants, chemical manufacturing, starting internal 
combustion engines, electronics, food and beverage, general man- ufacturing, 
aerospace, hospitals/medical, mining, plastics, power generation, wood products, 
pharmaceuticals, refrigeration, oxygen plants, spray paint, among other applications. 
Compressed air is a valuable resource since it can be stored and used as needed. The 
cost of production is lower than other forms of energy because it is a tidy and clean 
source of energy. Compressed air is used in almost every industry. To ensure the safety 
and efficiency of the air compressor, we need to detect faults of the air compressor as 
early as possible so that they can be fixed early [12]. 

 

1.2 Motivation 

Among the methods used to monitor the accuracy and predict further occurrences of 
operational errors, industrial fault detection has been the most effective [9]. Fault de- 
tection monitors the operational behaviors of a machine, evaluates its effectiveness, 
and classifies the behaviors as effective or faulty [8]. Traditionally, three techniques are 
used in industrial fault detection which includes model-driven, experience-driven, and 
data-driven fault analysis. The data-driven method uses the previous opera- tional data 
to learn about fault modes without establishing a precise model of the systems. 
Generally, machine learning-based algorithms such as KNN, SVM, etc. are used to 
develop models for classifying faults in industrial machines [19]. Nowa- days, due to the 
increase in computational power in consumer computers, hardware- accelerated deep 
learning models like TensorFlow, Keras, etc. are also used in fault classification model 
development. These models are easy to use but they have their 
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shortcomings as well. Machine learning models are highly reliant on previous data and 
fail to detect any new faults. Moreover, this method of fault detection can only function 
within the same domain of data. If the training and validation domain is different from 
the test domain, machine learning-based models cannot function. On the other hand, 
deep learning is much more effective in this regard. Deep learning- based neural 
networks are far more superior and complicated architectures capable of being 
domain-independent and much more efficient in classifying the data. But generating a 
neural network for a huge task such as industrial fault diagnosis can be very tricky. As the 
size of the data grows, the architecture of the model complicates exponentially. It is the 
most helpful while evaluating a very complicated system as it is really hard to establish 
an explicit model of such systems. 
Now in this paper, we are trying to eradicate the aforementioned shortcomings of 
both machine and deep learning in data-driven fault diagnosis. We propose to use 
transfer learning on a previously trained deep convolutional neural network (CNN) that 
has been trained with similar data and establish a model to accurately classify faults in 
complex machines. We are considering converting the raw sensor data to 2D images 
using the wavelet functions. Then we are going to create a CNN-based architecture 
using the images. Finally, the CNN will be fine-tuned using data from our target 
domain. 

 

1.3 Problem Statement 

One of the most commonly used tools in data-driven fault detection is machine 
learning [19]. Machine learning-based fault diagnosis is conducted using two steps 
which are collection and selection of the fault features and classification of fault types. 
Even though historically machine learning has been quite effective in accu- rately 
detecting and predicting faults, there are a few downsides to machine learning in terms 
of the most optimized fault detection. Machine learning is very reliant on the experts’ 
previous knowledge while extracting the features. Moreover, machine learning is most 
effective when designed to perform specified tasks and fails when trying to achieve a 
generalized performance for future problems. 

 

1.4 Thesis Statement 

To remedy some of the issues that occur in machine learning, deep learning is being 
implemented by many experts nowadays. Deep learning allows the model to forgo its 
reliability on the experts as it can automatically extract the data needed to select features 
from live signals. This eliminates the chances of experts’ influence over the dataset. 
However, there are still some shortcomings present in deep learning. Due to the huge 
computational complexity of deep learning, it is often unreasonable to use it. Especially, 
considering the complex nature of the systems as well. Additionally, deep learning 
assumes the target domain as the same as its training domain, reducing its overall 
effectiveness while trying to fit into the target domain. To solve some of the issues that 
occur in deep learning, we are proposing to detect fault using the transfer learning 
technique. In transfer learning, one pre-trained model’s weights are reused to optimize 
the performance of another model from the same or similar target domain. This 
approach allows for faster or more accurate classification when 
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modeling the second task. In transfer learning, pre-trained weights and features can be 
transferred to the new target network to be trained on a target dataset. Thus, it 
reduces the computational complexity significantly. 
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Chapter 2 

Literature Review 
 
In order to gain additional information regarding our topic, we have gone through 
some of the previously published papers on this topic. These papers provided us with a 
thorough picture of the current landscape of the field alongside showing us the 
shortcomings of previous works. We have tried to find out the opportunities to work on 
further improvements in Fault Detection. 
Among the papers that we have read, almost all of them talk about the inefficiencies of 
data-driven fault diagnosis using machine learning or deep learning. This infor- mation 
helped us in finding out our preferred method of fault diagnosis which is Transfer 
Learning. To generate a feasible model of unsupervised fault detection, we had to learn 
how to extract real-time data from the machines. From these papers, we have learned 
how we can transform the raw signal data from the machine-mounted sensors into 2D 
image data for our DCNN to work on for feature extraction. Addi- tionally, we have 
learned how to use the LeNet-5 architecture to build a DCNN for using it as an input 
CNN of our TCNN framework. 
This paper studied an approach for faulty severity monitoring of rolling bearings based 
on the texture feature extraction of sparse time-frequency images (TFIs) [16]. This study, 
suggests the novel one, a new time-frequency analysis method, named STFA-PD. Then 
Gray level co-occurrence matrix (GLCM)-based texture features of the sparse TFIs were 
extracted to realize fault severity monitoring. STFA-PD method can overcome the 
drawbacks of other methods. Therefore, It can not only used to obtain high-quality TFIs 
but also so universal that it can be used for other things. So, this study showed that this 
method has significant potential to be a powerful tool for the fault severity monitoring 
of rolling bearings. There are also some limitations of this model. Firstly, a training 
feature set is needed for this approach. So, it might be difficult to obtain in a practical 
situation. Secondly, the GLCM-based features are not correlated with physical 
significance. So, it might be hard for us to identify the bearing fault severity from the 
feature values. 
This paper includes the Local Binary Patterns (LBPs) to find out the problem 
and get the solution for the problems [7]. It is a two-dimensional texture analysis. This 
paper used the case of eight different motor operating situations, and great diagnostic 
performance was obtained. It changes the signal (1D) to image (2D) then extracts the 
feature descriptors. If the problem can be found, then classify the problem, and if the 
model can’t find the problem, then train it and find the problem again. This paper shows 
what problems cause the different vibration signals and corresponding gray-scale 
images, so the problem can be found by looking at the 



5  

vibration signals and gray-scale images. The common limitation of the LBP is that 3x3 
matrix block cannot capture the dominant features if the structure’s scale is large. 
Also, this paper only includes 8 different situations. It does not have enough 
experiments. To find out more motor faults, the proposed model should try to find out 
more problematic motors and find out the solution. 
The authors of the research used the model called ’ Fault Feature Extraction in order to 
find out shortcomings of Gear [6]. The researchers used ’envelope extraction’ methods 
including Hilbert Transform demodulation, detector-filtering method, and high-pass 
absolute value demodulation method. The main tool in distributing time- frequency 
signals was S-Transformation. In the analysis of the findings, all features combined in 
GLCMs provide statistics. Although the findings are highly reliable in terms of 
practicality, some factors are not considered in the research. Some features do not suit 
in GLCMs and not appear in statistics. Moreover, S-Transformation underestimated the 
tiny signals in distribution. 
The proposed model uses image feature extraction, which is a recurrence plot (RP) that 
shows time-related information in the global topological properties of the system [21]. 
That is, when the system is stable, the texture of RP is evenly distributed, and when the 
system is unstable the RP texture will show relevant information. SIFT algorithm is 
needed for an automatic feature point extraction. The main limitation of the model is 
the inability to store key point descriptors of an image rather than an original image in 
order to save space. What is more, images cannot be smaller sized than the original 
image. 
Based on acoustic spectrum imaging of acoustic emission signals, this research pro- 
vides a viable problem diagnostic methodology [18]. ASI provides a visible represen- 
tation of acoustic emission spectral features in images. The proposed measurement 
provides a robust classifier technique with high diagnostic accuracy. This paper 
presents two major limitations. First, the requirement of domain-level expertise for 
feature extraction and selection under different operational speeds, and second is that 
the requirement of special dynamic algorithms for automation of the feature 
extraction process. 
This paper introduces a method for identifying problems that occur with Induction 
motors during their usage, using many different ways to detect failure [11]. The most 
used being Vibration analysis. The proposed model is divided into 4 parts. They first do 
data conversion, which converts vibration to produce 2D gray-level images. Then 
generate a DNS map to extract texture features and select the most distinctive figures 
using PCA. Lastly, utilizing SVM to classify the data and make a final decision to 
determine what kind of problem there is. 
In this paper, the authors proposed a new method for fault diagnosis of rolling 
bearings based on the SURF algorithm, where the two-dimension signal is used [34]. It 
is different from other classical 1-d processed methods, it transforms 1- dimensional 
images into signals. SURF is a computer vision technique that improves the SIFT 
methodology by extracting local information more efficiently using picture texture.SURF 
is developed from the SIFT algorithm, and it is a novel detector- descriptor scheme. 
Efforts have been made to develop a robust fault diagnosis system for rolling bearing. The 
model approach translates the input vibration signals into gray-scale images for the 
fault classification of the rolling bearing. The SURF-based algorithm is presented, for the 
sake of extracting texture features from the images. The proposed model method 
refers to rolling bearings and effectively classifies each 
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vibration signal to its corresponding fault category. The limitations of the model are the 
cost of the high computation for processing 0f 128-dimensional descriptors. Also, 
another one is that the number of feature descriptors for each image is uncertain, 
sometimes the number may even be too small to classify the type of faults. 
This study describes a two-dimensional Shannon wavelet representation for ex- 
tremely accurate fault identification of numerous induction motor problems [10]. In 
this study, a well-known image feature extraction scheme is employed, which was 
proposed by F. M. Khellah et al. to generate more effective and robust features of the 
induction motor. SVM is designed to separate the data into one of two classes and the 
OAA method is employed, which is one of the most popular and simplest techniques 
for multi-class classifiers. In order to detect and identify bearing defects in the 
induction motor, Algorithms 1 and 5 utilized time-domain features from vi- bration 
signals such as statistical features (e.g., root mean square, variance, and skewness) for 
a low computational burden, and zero-crossing features, which are durations between 
the successive zero-crossing intervals. Some of the weaknesses of the Shannon-Weaver 
Model The transmission model does not consider the medium that is used. The channel 
might be noisy, and the receiver might not be able to decode it, causing complications 
in the communication process. 
This paper explores an imaging-based approach to achieve rotational speed inde- 
pendence in bearings by using vibration signal imaging and local binary patterns [14]. 
They use 16 datasets using one classifier for the entire dataset. Case Western Reserve 
University’s Bearing Data Center puts the suggested method to the test using seeded 
fault test data (2016).On the rollers, inner raceways, and outer race- ways of the test 
bearings, single-point localized flaws were seeded. The classification accuracies for all 
fault conditions more than 95 
In this paper, the network learns from the massive source data set and that knowl- 
edge is applied to targets data to identity faults [17]. It has three methodologies that 
are source task, element transfer, and target task. They have three common they are 
data, vibration image, and convolutional neural networks. It works on mainly 
transform vibration which works is based on collecting the data and the collected data 
can be check so that we do not have to load time and again. Transfer learning allows an 
established model to identify errors that emerge under different working situations by 
using feature information obtained under one set of settings through hidden layers. To 
make the automated feature extraction more reliable and accurate, the discrete 
orthonormal Stock well transforms (DOST) was proposed as a preprocessing step for 
creating a load- and rpm-invariant scenario for considering signals of multiple health 
types. Experimental results showed that the proposed method achieves an average of 
99.8 
After that, we have looked for all the shortcomings in the papers to come up with 
the aspects of the field of study where we can bring improvements with our study. 
Firstly, in paper 1, we have learned that we should not use very low-level data in our input 
CNN. Moreover, using any kind of parallel computation method such as spark is more 
feasible to reduce the time complexity of the TCNN framework. Secondly, in paper 2, 
we have learned that by using only TCNN on supervised fault detection, we will only be 
able to detect one type of fault emerging in the future.  Thirdly, in paper 3, we have 
learned deeply about the mechanisms of deep learning in fault detection and how it is 
failing in executing the real-time classification of faults due to its high computational time 
complexity. Furthermore, in paper 4, the methods they 
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used were similar to one of the problems with machine learning. This was previous 
supervision of labels. Moreover, the paper taught us to properly study the various 
layers of the model for proper performance optimization. Finally, from paper 7, we 
have learned how we can apply our model for fault detection in different working 
conditions to calculate a much more representative result that is as close as possible to 
real-life scenarios. 
The aforementioned words were some of the many useful information that we had 
gathered from the papers that we studied for our work. This was really helpful for us in 
painting a clear picture of the problem at hand and also in finding a straight path that 
we can take to reach our objective precisely and effectively. 
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Chapter 3 

Background 
 
3.1 Air Compressor 

Compressed air is provided by air compressors in a variety of industries for a variety of 
applications. Air compressors are now used to power construction and manufac- turing 
equipment, as well as to control system valves; earlier compressors were much less 
versatile. Air compressors have been around for thousands of years. In the 18th century, 
air compressors were used for something other than metalworking; they were also 
used for mining, fabricating metals, and ventilating underground areas. Air 
compressors were frequently used to carry heavy air quantities into the 8-mile 
construction tunnel during the 1857 construction of the Italy-France rail system. 
People soon came up with new ideas for how to use the technology. People started 
utilizing air compressors to convey energy around 1800. In 1888, Austrian engineer 
Viktor Popp built the first compressor plant in Paris, which grew from 1,500 kW to 
18,000 kW in just three years. More air compression innovations improved the 
process, and it was soon incorporating electricity and pneumatic energy. There are so 
many different types of modern air compressors to choose from today. Depend- ing on 
unique needs, Compressed Air Systems provides a diverse product line that includes 
reciprocating, oil-less, vehicle-mounted, and other air compressors. 
Air compressors are vital parts of every industry or workshop. In recent years, 
they’ve shrunk in size and heft, making them more adaptable to a variety of work 
environments. These are compact units that provide energy to single air tools.  Air 
compressors pressurize containers by pumping air into them. The air is then driven 
through a hole in the tank, causing pressure to build up. Consider it as an open 
balloon: once the compressed air is released, it may be used as energy. An engine 
converts electrical energy into kinetic energy, which powers air compressors. A 
crankshaft, piston, valve, head, and connecting rod are all used in the same way as in a 
combustion engine. The compressed air may then be utilized to power a wide range of 
tools. Nailers, impact wrenches, sanders, and paint sprayers are some of the more 
common alternatives. 

 

3.2 Type of Air Compressors 

Positive and dynamic displacement are the two strategies for creating air compres- sion 
[25]. Each approach has multiple sub-categories, which we’ll go over in more 
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detail later. Although the results are identical, the methods used to reach them differ. 
 

3.3 Positive Displacement 

In a positive displacement air compressors compress the air by forcing it into a 
chamber with a smaller capacity. Positive displacement refers to a variety of air 
compressors that are powered by positive air displacement. While the internal sys- 
tems of different machines change, the mechanism of supplying electricity is the same. 
Some positive displacement compressors are more suited to industrial appli- cations, 
while others are better suited to amateurs or personal projects (BigRentz, 2020) [25]. 

 

Figure 3.1: Positive Displacement 
 

There are three basic types of positive displacement air compressors. Those are rotary 
screw, rotary vane, and piston type. 

 

3.3.1 Rotary Screw 

In a rotary screw air compressor, two internal screws are rotating in opposite direc- 
tions. Inside these opposite rotating screws, it tapped and compressed the air. As they 
revolve around, the two screws provide continual movement. This type of air 
compressor is very easy to maintain. It is used for industrial applications and ideal for 
long-term operations (BigRentz, 2020) [25]. 

 

3.3.2 Rotary Vane 

n rotary vane air compressors, vanes are placed on a rotor and spun inside the 
chamber instead of a screw. The air is compressed between the vane and its case 
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before being expelled through a separate exhaust outlet. As it is very easy to use, so 
it’s widely used in personal projects. 

 

3.3.3 Piston Type 

To deliver gas at high pressure, a piston-type air compressor employs pistons op- 
erated by a crankshaft. It is used for smaller projects. There are two types of piston-
type air compressors. Single-stage and two-stage air compressor (BigRentz, 2020) [25]. 

 

Figure 3.2: Piston Type Air Compressor 
 
 

3.3.4 Piston Type Air Compressor 

Single Stage 

Two cylinders or air storage chambers are included in the single-stage air compressor. The 
first piston compresses air and delivers it into the second storage tank to keep the 
compressed air for future use. Electricity or gas are used to operate a single-stage air 
compressor (BigRentz, 2020) [25]. 

 

Two Stage 

Two-stage air compressor consists of to compression chamber. A constant trickle of 
water across the engine is commonly used to cool double-acting compressors. Only a 
two-stage air compressor has this cooling system. Two-stage compressors are 
preferable for factories and workshops than private projects due to their high cost 
(BigRentz, 2020) [25]. 
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3.4 Dynamic Displacement 

2.2.2 Dynamic Displacement: To create airflow, dynamic displacement compressors use 
a revolving blade driven by an engine. After that, the air is constrained to generate 
pressure and within the compressor, the kinetic energy is stored. These air 
compressors are used in industrial applications such as chemical plant, steel 
manufacturing industries, glass manufacturing industries, etc. as it is designed for large 
industries. 

 

 

Figure 3.3: Dynamic Displacement 
 
Dynamic displacement is divided into two categories, similar to positive displacement 
compressors: axial and centrifugal (BigRentz, 2020) [25]. 

 

3.4.1 Axial Air Compressor 

Axial compressors create air by pushing it through a narrow space using a set of 
turbine blades. Axial compressors, like other bladed compressors, function with 
stationary blades that decrease airflow and increase pressure. This type of air com- 
pressor has limited uses. As they are mainly used in aircraft engine manufacturing 
industries. 

 

3.4.2 Centrifugal Air Compressor 

In a centrifugal compressor, the air is drawn into the center of it by a revolving 
impeller, which is then pushed forward by centrifugal force. More kinetic energy is 
created by slowing the flow of air via a diffuser (BigRentz, 2020) [25]. 
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3.5 Single Stage Air Compressor 

A single-stage reciprocating air compressor was used to collect data that we work with. 
A piston and a pressure-sensitive valve are used to operate a single-stage air 
compressor [27]. 
It’s built around a single cylinder that compresses air with a single-piston stroke. For 
generating the necessary force to compress the air that cylinder is attached to a power 
source. A single-stage air compressor has only one cylinder and valve which makes it 
different from the two-stage and multi-stage air compressor. The pressure 
measurement valve and the piston push the single-stage piston compressor. The piston 
is used in the compression operation. The piston is controlled by a connecting rod and a 
crankshaft. To control the torque produced by the crankshaft’s movement, appropriate 
flywheels are installed. The crankshaft of these compressors is powered by an electric 
motor. 

 

Figure 3.4: Suction of Air 
 

 

 

Figure 3.5: Compression of Air 
 
All of the compression happens in a single cylinder in a single-stage reciprocating 
compressor. The cylinder is connected to two valves: an inlet or suction valve, and an 
exit or delivery valve. The friction differential affects how a spring or plate valve opens 
and closes. Cams regulate the operation of mechanical valves used for suction and 
discharge. As a result, when the piston is at TDC, the amount of air in the cylinder is 
negative. In this situation, clearance volume should be ignored. 
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Figure 3.6: Working Principle of Single Stage Air Compressor 

 
The cylinder pressure decreases below ambient pressure as the piston pushes down- 
ward. The suction valve is opened as a result of the pressure differential. The suction 
valve allows air to penetrate the cylinder at this stage. This is referred to as a ”suction 
stroke”. Due to crankcase movement, the piston moves upward and compresses the air 
as it passes BDC. At the compression phase in the cylinder, the internal cylinder 
pressure reaches a point where it is slightly higher than ambient pressure, at which 
point the suction valve shuts. The receiver is connected to the pressure valve. The 
distribution or outlet valve opens when the compressed air pres- sure reaches the 
pressure at the receiving end, and compressed air is released. As a result, it’s known as 
”The Delivery Stroke.” This is a single-stage air compressor compression stroke. The 
discharge valve opens at the end of this stroke, and com- pressed air is delivered to the 
receiver. The piston spins at a high rate, and the energy applied to the cylinder by the 
piston is enormous. It shortens the life of the compressor. A minor curvature at the tip 
of the cylinder prevents this. 

 

3.5.1 Components 

Piston 

This section of the compressor is used to compress air. In the cylinder, it goes forward 
and backward. As it goes backward, it suckers air, and when it moves forward, it 
compresses air. 

 

Crankshaft 

For air compression, it rotates the piston. The electric motor is directly connected to 
the crankshaft 
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Figure 3.7: Components of Single Stage Air Compressor 

 
Inlet Valve and Discharge Valve 

The suction valve is also known as the inlet valve. It aims to draw air into the 
compression chamber. When the internal cylinder pressure drops below the external 
pressure as the piston pushes downward, the suction valve opens. The discharge valve, 
on the other hand, is used to discharge compressed air into a receiver or holding tank. 
If the internal cylinder pressure exceeds the external pressure, this valve opens. The 
outlet or distribution valve is another name for the discharge valve. The cylinder is 
directly connected to these single-stage compressor elements. Cams monitor the 
operation of inlet and outlet valves. 

 

Connecting Rod 

The piston movement is regulated by this compressor feature. The piston and the 
crankshaft are linked by the connecting rod. 

 

3.6 Application of Air Compressor 

3.6.1 Glass Manufacturing 

Air compression system is an important part of bottle making plant and glass sheet 
manufacturing factory. This system helps to move everything from the silos to the 
finishing phases [29]. Air compressors are also used in heavy machinery that carries tons 
of raw materials. These materials are transported to the mixing chamber  and forming 
phase, which create one-of-a-kind bottles and glass slabs. The use of compressed air 
and gas in the glass factory’s smelting furnace aids in achieving a high burn-away rate. 
Because of friction, high-pressure compressed air can drill through the glass. 
Sandblasting is used to etch the pattern on the glass. By using compressed air to cool 
some glass sheets to a high temperate, the glasses become 
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breakage-proof and have a higher tensile strength. To reduce the risk of breakage, the 
glass sheets are lifted by vacuum chuck. 

 

3.6.2 Automotive 

Many people are familiar with the use of compressed air to inflate tires.  While  air 
compression for body shops and vehicle technicians is a popular mainstream and 
professional function, it extends well beyond correctly inflated tires. Air compressors will 
be used in auto body businesses, particularly for repainting vehicles. However, these 
companies and their staff do not stop there [30]. Nozzles and couplers, dryers, brushes, 
blowguns, and lubricators are all examples of this equipment. These prod- ucts are 
portable and do not require batteries. They come in a variety of sizes, don’t require a lot 
of storage space, and are convenient to educate technicians on. These air compressor 
pneumatic tools — and more — will be found in each functioning garage with an auto-
body reputation to improve the pace and quality of their job. 

 

3.6.3 Nitrogen Plants 

Nitrogen is widely used in industrial sectors including perishable food packaging in the 
atmosphere [24]. It’s also used to keep chemical plants safe from fires and explosions. 
Providing the generators with high-quality compressed air ensures long, trouble-free 
service and optimal performance. Air compressors offer a complete line of nitrogen 
generating systems that contain everything you’ll need to get started. To provide the 
best quality air supply for the generators, air compressors and pre- treatment kits 
incorporate adsorption dryers and coalescing filters. With minimal additional floor 
space, the gas may be produced from your current system. High- pressure cylinders, 
liquid micro tanks, and bulk storage containers are common gas delivery techniques. 
Employees are safer in the workplace with an air compressor generator, which 
eliminates the dangers associated with older techniques. When compared to 
outsourced nitrogen sources, on-site nitrogen production provides more flexibility and 
saves time and money. 

 

3.6.4 Chemical Manufacturing 

The chemical sector places extremely high demands on equipment. Air compressed 
comes into touch with the process it supports in many applications, thus its quality is 
crucial. Compressed air is commonly used in the chemical industry for the following 
applications: 

• Cleaning, aeration, and product movement all need process air, which is uti- lized 
in direct contact with the product. 

• Compressed air controls regulate valves and cylinders, which are employed in the 
production process. 

• Material handling — air-operated fluid pumping devices are employed in po- 
tentially explosive settings. 

• Air is filtered via a membrane to create nitrogen, which is employed in several 
chemical applications. 
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• Air curtains used to create a secure and sanitary environment Drying of prod- ucts 
– air is combined with the product to speed up the drying process. 

 

3.6.5 Starting internal combustion engines 

A compressor for charging an internal combustion engine consists of a compres- sor 
that blows compressed air into the engine’s intake manifold and a fuel-powered 
turbine that drives the compressor [31]. The ventilation from a small gas-powered 
turbine is combined with the driving turbine of a regular turbocharger in one em- 
bodiment. The drive shaft of a small gas-powered turbine is combined with the drive 
shaft of a regular supercharger in a second embodiment. A compressor turbine with an 
air intake compressed air outlet, and bleed air outlet is combined to a small gas- 
powered turbine in a third embodiment, with the bleed air outlet supplying the gas 
turbine’s combustor intake. The compressor is driven by a gas turbine, and com- 
pressed air is received from the compressor via the bleed outlet. The compressor’s 
compressed air outlet can provide a constant boost, requires no engine horsepower, is 
simple to install, and does not require coupling to a rotating shaft or the engine’s 
exhaust system. A compressor turbine with an air intake compressed air outlet, and 
bleed air outlet is coupled to a small gas-powered turbine in a third embodi- ment, 
with the bleed air outlet supplying the gas turbine’s combustor intake. The compressor 
is driven by a gas turbine, which also receives compressed air via the bleed outlet. The 
compressor’s compressed air outlet can provide a constant boost, requires no engine 
horsepower to operate, is simple to install, and does not require coupling to a rotating 
shaft or the engine’s exhaust system. 

 

3.6.6 Electronics 

Compressors of air are commonly used to power a wide range of electrical and 
electronic devices [23]. To provide the power required to actuate pneumatic devices or 
perform cleaning operations, the potential energy stored in compressor tanks is 
released in a controlled manner in the form of kinetic energy. Compressed air systems are 
used in robotics, 3D industrial printers, high-voltage pneumatic circuit breakers, 
conveyor systems, and a variety of other industrial machines.  In the fabrication  of 
electrical and electronic devices, the use of air compressors is very common. Cleaning 
printed circuit boards (PCBs) is one of the compressed air’s most common applications in 
electronics. After production, compressed air is a non-obstructive, low-impact, and 
non-abrasive way to remove unwanted matter from these sensitive electronic 
components. In the manufacturing industry, pick-and-place machines are also used to 
transport items from one process to the next. These pick-and-place machines are also 
powered by compressed air. A tubing system delivers controlled amounts of 
compressed air to specific parts of the robot, which is efficiently converted into 
mechanical energy. In many applications, pneumatic systems are seen as a viable 
replacement for servo, electric, and hydraulic systems. 

 

3.6.7 Food and Beverage 

Compressed air has a wide range of uses in a variety of industries. Air compressors are 
used in the food and beverage industry in production chains, packaging, and 
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cleaning [29]. A contact system is compressed air that comes into direct contact with 
food products. To ensure food safety, this compressed air must be properly purified 
and filtered. It’s also important to keep the dewpoint of contact compressed air at the 
right level to avoid microbial growth. The British Compressed Air Society recommends a 
pressure dewpoint of -40 degrees Fahrenheit for contact compressed air in their 
Compressed Air Best Practice Guideline. 
In the beverage sector, compressed air from air compressors completes the canning of 
soft drink bottles and wine bottles. The compressed air will push the compression tube 
within the barrel to spray out the resin for coating in a brewery or winery’s barrel 
production workshop. Other uses for an air compressor in the beverage in- dustry 
include liquid transfer between barrels, grain unloading from lorry to shop, and barrel 
leakage testing. The air compressors also control the automatic bottle filling machine. 

 

3.6.8 Manufacturing 

An air compression system is the key source of energy that maintains a firm in 
manufacturing, whether it’s in refineries, plastics, assembly factories, or metal fab- 
rication [23]. Food, beverage, and pharmaceutical manufacturers use rotary screw 
machinery to guarantee that their goods are clean, contaminant-free, and firmly 
sealed. Conveyor belts, nozzles, crushers, and packing can all be powered by ro- tary 
screw machinery at the same time. Air compressors with high output help in 
manufacturing by: 

• On the production line, using air tools 

• Equipment for the welding process 

• Pieces are ejected from manufacturing frames. 

• Manufacturing is being monitored. 

• Roller and feed equipment adjustments 

• Blowing up a plastic container or a manufactured gas tank 

• Conducting fundamental activities efficiently, including driving screws and ro- 
tating nuts 

• Liquid padding, carton stapling, appliance sanding, dry powder conveying, and 
fluidizing are all done with pneumatic machines. 

• Metal sandblasting and finishing 
 

3.6.9 Aerospace 

In the aerospace industry, air compressors are used in a wide range of applications 
[22]. Air compression that is reliable and free of contaminants is essential for the safe 
operation and optimal performance of aerospace equipment. Rotary screw air com- 
pressors and piston-type air compressors are the two main types of air compressors 
used in these applications. 
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• Rotary Screw Air Compressor: Rotary air compressors are the best choice when 
large volumes of air at high pressures are required regularly. Pulsation or surging 
of airflow is also eliminated by the compressor’s continuous sweeping motion. 

• Piston Type Air Compressor: Piston-type air compressors are best for intermittent- use 
applications. These units, also known as reciprocal air compressors, make excellent 
use of the energy they receive and tend to last longer. The recipro- cating motion of 
the pistons, however, causes airflow pulses and surges, which may be undesirable in 
some applications. 

 

3.6.10 Hospital/Medical 

Many systems in medical facilities and medical air plants are powered by medical air 
compressors [28]. Medical air compressors are used in a variety of ways in a facility. 
Here are a few examples: 

• Patient Breathing: To provide clean air to patients who are sedated or have 
difficulty breathing on their own. 

• Compressors are used in laboratories to power equipment such as blood an- 
alyzers, mammograms, and x-rays, chiropractic tables, oxygen, and nitrogen 
generation, etc. 

• Surgical instruments that perform puncturing, drilling, and other surgical pro- 
cedures are also powered by air compressors. 

• Clean air infiltration and duct systems are another application for compressors in 
medical facilities. The air in medical facilities must be clean and pure at all times. 

• Cleaning and sterilization systems can also be powered by compressors. 
 

3.6.11 Mining 

Air compressors are widely used on every mining site [33]. They play a crucial role in 
making the work of miners much faster, easier, and more efficient. Mining air 
compressors are used to power air tools such as air picks, screwdrivers, ventilation, 
jackhammers, dust filtering, pneumatic hoists, driving pumps, filling cracks with 
cement, running punching machines, and radial percussive coal cutters. Among all air 
compressors, a rotary vane air compressor is highly appreciated in the mining sector. 
They are a reliable choice for meeting the mining industry’s increasingly demanding 
challenges. For consistent performance across a wide range of applica- tions, rotary 
vane air compressors have nearly unlimited capabilities. The rotary vane compressor is 
distinguished from other products by its unique design. The rotary vane principle’s 
simplicity ensures a long life span and quiet operation. With a single offset rotor 
supported by two bushings, daily maintenance is simplified and unscheduled downtime 
is greatly reduced. A well-maintained rotary vane compres- sor will not degrade in 
performance over time. This compressor’s specialized design and construction ensure 
minimal wear, and replacement parts are inexpensive and readily available. 
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3.6.12 Plastic Industries 

Almost every plastic manufacturing industries are automated, which necessitates 
extreme precision and accuracy in process power input [29]. Air compressors are now 
used throughout the plastics manufacturing process, from instruments and handling of 
materials to manufacturing lines and machinery and facility cleaning. Rotary vane 
compressors are used by both large and small manufacturers in the plastics industry 
for a variety of applications. Rotary vane compressors also save resources and costs, 
which makes a lot of difference in this growing industry. 

 

3.6.13 Power Generation 

The high-pressure steam generated by the steam boiler drives the turbine, which then 
drives the generator to generate electricity in most factories that burn chemical fuel [29]. 
Boilers that use coal or fuel oil require a complete ash removal system. Because 
combusting the petrochemicals will produce a lot of dust. Before releasing the gas into 
the atmosphere, the harmful and polluting gas, primarily sulfur dioxide, must be 
removed. The use of an air compressor in a power plant will successfully resolve the 
issues mentioned above. 

 

3.6.14 Wood Products 

Without air compressors, carpentry and furniture construction would be far more 
difficult for everyone from beginners to seasoned carpenters. While most people are 
aware of pneumatic tools that are specifically intended to be powered by com- pressed 
air, such as nail guns, many people are surprised by how much equipment is specifically 
intended for compression. Sandblasters are used to prepare the surface by removing 
excess rust or dust, as well as other defects. Air sanders, like other electric or 
mechanical sanders, use air compression which makes these tools ideal for long-term 
uses. Although there is plenty of additional woodworking equipment that uses air 
compression. 

 

3.6.15 Pharmaceuticals 

Antibiotics are a miraculous cure for a variety of diseases. When taking antibiotics, a lot 
of compressed air is required during the fermentation process [29]. During the 
production of medicine, an air compressor is critical for supplying oxygen to 
microorganisms. The air compressor is also an auxiliary piece of equipment that aids in 
the spray dryer’s transition and drying. The moisture is evaporated after the 
concentrated liquid is jetted into the diffuser to become the hot airflow, and the 
remaining solid power is put into the collector. Medicines are also packed with 
compressed air. Medicine in powder form is blown into a thin fibrous capsule in a 
pharmaceutical factory. Compressed air is also useful for filling and sealing various 
plastic containers. 

 

3.6.16 Spray Painting 

In both personal and professional spray painting, small air compressors are used for 
power airbrushes [23]. For intricate tasks such as picture editing, painting nails, 
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or fine art, airbrushes are utilized instead of brushes. Spraying with an air cannon 
necessitates the use of heavier equipment. It’s often used to apply a uniform coating of 
liquid on huge surfaces. 

 

3.7 Machine Learning 

Machine learning employs mathematical algorithms to learn and analyze data in order 
to make future predictions and judgments. The term ”machine learning” was coined in 
1950 by Alan Turing, a pioneering computer scientist, in response to the question ”Can 
a machine think?” [1]. In 1957, Frank Rosenblatt developed the Per- ceptron model, 
which is the first neural network [2]. The perceptron algorithm was created to identify 
visual inputs and divide the group into two categories. Bernard Widrow and Marcian 
Hoff built two neural network models in 1959, Adeline and Madeline, that could 
recognize binary patterns and reduce echo on phone lines, re- spectively [3]. The 
”nearest neighbor” technique was developed in 1967, allowing computers to perform 
very basic pattern recognition [4]. Gerald Dejong proposed the notion of explanation-
based learning in 1981, in which a computer examines data and produces a general rule 
to exclude irrelevant information [5]. During the 1990s, machine learning research 
evolved from a knowledge-based to a data-driven ap- proach. Scientists began creating 
programs for computers to analyze large amounts of data and learn from the results. In 
recent decades, machine learning has grown at an exponential rate. Our computers’ 
ability to process and interpret data will grow in tandem with the amount of data we 
produce. 

 

Figure 3.8: Machine Learning Workflow 
 
 

3.7.1 KNN 

The k-NN classification algorithm determines the k-nearest neighbor(s) and clas- sifies 
numerical data records by utilizing any distance calculating methods such 



21  

as(Euclidean distance, Manhattan distance, Hamming Distance, Minkowski Dis- tance) 
to calculate the distance between the test sample and all of the training samples [20]. 

 

Figure 3.9: KNN Workflow 
 

In KNN, first, it calculates the distance between the new sample and the training 
sample, then finds the nearest K neighbors; then, determines the category of the new 
sample based on the category to which the neighbor belongs. It is a supervised machine 
learning algorithm as the target variable is known. The k-nearest neighbor method saves 
all existing data and classifies fresh data points based on their similar- ity (e.g., distance 
functions) [26]. When new data appears, this is what it signifies. Then, using the K-NN 
method, it may be easily sorted into a suitable category. 
In ”Figure 3.10”, there are two classes, Class A and Class B, and we have a new 
unknown data point ‘’?” to find out in which of these classes will this data point belong 
to. The data point is identified by a majority vote of its neighbors, with the data point 
being assigned to the most common class among its K closest neighbors as determined 
by a distance function. 
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Figure 3.10: KNN Classification 

 
Here we can see that if k = 5, the data point’s closest three neighbors are discovered 
using the distance function, and the data point is categorized into class B using the 
majority votes of its neighbors. When k = 11, the data point in the preceding diagram is 
classed as Class A based on the majority votes of its neighbors. 
There are some drawbacks to the KNN model, such as its accuracy being dependent on 
data quality, and the prediction step being slow with massive data. It is extremely 
sensitive to data scale and irrelevant attributes. It also needs a large amount of 
memory to store all of the training data. It can be computationally expensive because 
it stores all of the training data [26]. 

 

3.7.2 Random Forest 
 

Figure 3.11: Random Forest - Flow Diagram 
 
The random forest machine learner is made up of a large number of individual learners 
(trees) [32]. Multiple random tree classifications are used in the random 
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forest to vote on an overall classification for a given set of inputs. 
 

Figure 3.12: Random forest sample with replacing 
 
The technique of ”bootstrapping” is used to create a data set [inbag] by sampling 
replacement members from the training set. The [inbag] data set has the same num- ber 
of examples as the training data set. It’s possible that this fresh data collection contains 
duplicates from the training set. One-third of the training set data is gen- erally missing 
from the [inbag] when using the bootstrapping strategy. Out-of-bag data [oob] refers 
to the data that has been left over. Each tree is given a random number of properties. 
Using typical tree-building algorithms, these properties are used to create nodes and 
leaves. Without pruning, each tree is allowed to reach its full potential. 
This technique is repeated in order to create a number of different random tree 
learners. The out-of-bag samples are used to test individual trees as well as the 
complete forest once the tree has developed. The out-of-bag error estimate is the 
average misclassification over all trees. This error estimate is useful for estimating 
machine learning performance without using the test set example. This data could be 
used to calculate the weights of individual tree classifications in the weighted random 
forest learner. 
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Chapter 4 

Methodology 
 
4.1 Workflow 

 

 

Figure 4.1: Workflow Diagram 
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∗ ∗ 

Data has been taken from dataset repository (Verma et al., 2016). Acoustic dataset was 
collected on a single stage reciprocating type air compressor [15]. The air compressor’s 
specifications are as follows: 

• Air Pressure Range: 0-500 lb/m2, 0-35 Kg/cm2 

• Induction Motor: 5HP, 415V, 5Am, 50 Hz, 1440rpm 

• Pressure Switch: Type PR-15, Range 100-213 PSI 

The dataset has eight states, including a healthy state and seven faulty states, including 
the Leakage Inlet Valve (LIV) fault, the Leakage Outlet Valve (LOV) problem, the Non-
Return Valve (NRV) problem, the Piston ring fault, the Flywheel problem, the Rider belt 
fault, and the Bearing problem. In every category there are 50000 acoustic data. For our 
uses we have triple stacked the data and keep 102400 data to convert it (32 32 100) for 
getting 100 images for each category. Then we process the data into images using 
Wavelet transformation. 

 

Figure 4.2: Sample Data 
 

Normalizing the data, removing null values, and encoding class variables are all part of 
the data preprocessing. Then the dataset is divided into training and testing part, with 70 
percent of each category for training and the remaining 30 percent being used for 
testing. 

 

Figure 4.3: Data Spliting 
 

Then we feed this data in our DCNN model. Then we specify the training and validation 
part of the DCNN. Then we test the model using the data. We save the model to 
transfer the weights for the new datasets. Then we use the save model for 
implementing the transfer learning. Later on we analyze and compare the results from 
both DCNN and transfer learning outputs. We also implement transfer learning on our 
data using Keras models. Finally we compare the outputs from both our model and 
Keras model. 
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4.2 Architecture Used 

4.2.1 Lenet-5 

In our work, we have used the Lenet-5 architecture (LeCun et al, 1998) for con- 
volutional neural networks. Lenet-5 or Lenet architecture was first proposed in 
“Gradient-Based Learning Applied to Document Recognition” (1998) by French 
computer scientist Yann LeCun. This architecture was developed to recognize 32x32x1 
greyscale images containing one digit. The author took a set of 32x32x1 greyscale 
images and fed them into the model. Then 6 convolutional filters of kernel size 5x5 were 
used to convolve the images with stride size 1. The output from this operation 
converted the images into another image of size 28x28 with 6 channels. As the output of 
the convolution operation is defined as [(32-5)/1+1] and the number of channels is 
equal to the number of filters. After that, the average pooling layer was applied to the 
output from the first convolutional layer. The author used a pool size of 2 and a stride 
of 2. After this operation, the images were reduced to 14x14x6 images as the pooling 
operation shrunk the images to half their previous size. Then the next convolutional 
layer is applied to the images with 16 same 5x5 filters. Similarly, the output of the layer 
modified the data into [(14-5)/1+1] or 10x10x16 images. Then the images were shrunk 
again using average pooling re- sulting in 5x5x16 images as the pooling layer was the 
same as before. Then the 5x5x16 data were flattened. This operation generated a 
vector of (5x5x16) or 400 components. These components ultimately were the 
neurons. These flattened neu- rons were then fed into a dense deep neural network. 
The first hidden layer of the network had 120 neurons. The neurons were fully 
connected. The next hidden layer comprises 84 neurons. Finally, the author used 
Euclidean Radial Basis Function units (RBF) to squash the neurons into the 10 
specification classes. The activation functions among the hidden layers were tanh 
activation functions. The RBF units interpreted the results as an unnormalized negative 
log-likelihood of a Gaussian dis- tribution over the last fully connected layer. The Lenet-
5 architecture was dubbed as it is because it had 5 layers. 

 

Figure 4.4: Internal Structure of Lenet-5 Architecture 



27  

4.2.2 Resnet50 

Residual Neural Network or Resnet (He et al, 2015) was first proposed by a group of 
researchers at Microsoft. The model was generated to find a better alternative to the 
VGG19 (Simonyan et al, 2014) architecture. The network was based upon VGG19 and 
was modified accordingly. The model was first converted into a 34 layer plain image 
classification model and then implemented its residual properties. The architecture was 
used to classify the imagenet dataset. The model takes in 1x224x224x3 RGB color 
images. It then applies 64 convolution applications using filters of kernel shape 7x7, 
3x3x3x3 padding, and 2x2 strides. For  the padding, the inputs are converted into 
1x230x230x3. After the convolution impact [230-(7- 1)] and stride impact 224/2, the 
final shape of the output becomes 1x112x112x64. The values within the batches are 
then normalized by the batch normalizer. The normalized neurons are then activated 
using RelU. The neurons are then sent into the max-pooling layer. The pooling size is 
3x3, padding is 1x1x1x1, and stride size is 2x2. Similar to the convolution layer, after 
padding, the data are converted into 1x114x114x64. After the kernel impact [114-(3-
1)] and stride impact 112/2, the output is shrunk to 1x56x56x64. Moving on from here, 
the tensors are convoluted in two parallel methods and summed after the sequence. 
One sequence consists of two 64 filter convolutions and one 256 filter convolutions 
with 2 RelU and 3 batch normalizations in between. The other sequence only has one 
256 filter convolutions with one batch normalization. The batch normalization outputs 
are summed and turned into an output of shape 1x56x56x256. At some point in the 
network, the number of filters in the convolutions is increased to 512 and the tensor 
channels are also subsequently changed. The shape of the tensor becomes 
1x28x28x512. Similarly, after some more layers, the convolution filters are increased to 
1024 and the tensor is converted to 1x14x14x1024. The number of filters is raised to 
2048 and the tensor becomes of size 1x7x7x2048. Finally, before generating the output 
probability distribution using softmax, the RelU activated neuron of size 1x7x7x2048 is 
downsized using an average pooling layer of kernel 7x7 and stride length 1x1. This 
operation generates an output of 1x2048. Then a general matrix multiplication is 
applied to the tensor before feeding it to the softmax function. Finally, the softmax 
function gives an output of size 1x1000. 
Above figure shows the in-depth details of each layer within resnet and also denotes 
the modification made to VGG19 by the researchers. 
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Figure 4.5: Each Layers of Resnet50 Architecture 
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Chapter 5 

Implementation of Proposed Models 
 
5.1 Lenet-5 Based 2D Deep CNN 

We derived our model suitable for our task from the base architecture of lenet-5. Our 
model comprises two convolution operations, two subsampling layers, and two dense 
fully connected layers. The model takes greyscale images of size 32x32x1 as input. It 
then applies a convolution operation with 32 5x5 filters. For our model, we have 
decided to use padding size which is the same as the filters. Therefore, after the first 
convolution layer, our model gives us an output of size 32x32x32. The 
equation W −F+2P + 1 helps us find the shape of the output. 

 

 
 

Figure 5.1: First Convolution Model 

 
 

Figure 5.2: Creating First Convolution Model 

After that, we have sampled the image down using max pooling. We know, max- 
pooling takes a pixel matrix as input and then reduces its dimensionality. Subsam- pling 
or pooling divides the input into smaller patches based on the pool size. It 
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starts from the top-right corner of the matrix and traverses the entire matrix based on 
its stride length. In the case of max pooling, it takes only the maximum value or the most 
prominent feature within the patch. In our case, we have used max-pooling with 2x2 
patch size and 2x2 stride length. From the first convolution, the pooling layer gets the 
input of size 32x32x32. Following the same equation as mentioned above, max-pooling 
reduces this down to 16x16x32 size images. 

 

Figure 5.3: First Subsampling Layer 
 
 

 

Figure 5.4: Creating First Subsampling Layer 
 
For our next convolution layer, we have decided to use 64 filters with a 3x3 kernel size 
and again with the same padding. After the layer is finished, the shape of our weights 
becomes 16x16x64. 

 

Figure 5.5: Second Convolution Model 
 
After the second convolution layer, we have used an activation function to activate the 
neurons. For our purpose, we have used rely on as the activation function. RelU 
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Figure 5.6: Creating Second Convolution Model 

 
or Rectified Linear unit is an activation function that takes any value as input and 
returns an output after comparing it with 0. The governing function for relU can be 
defined as, 

f (x) = max(0, x) (5.1) 

Therefore, if the input is 0 or greater than 0, relU returns the input as it is. For negative 
inputs, relU simply outputs 0. This activation function takes the most positive values. 
Hence, the more positive a neuron is, the more activated it is using relU. 

 

Figure 5.7: Second Subsampling Layer 
 
 

 

Figure 5.8: Creating Second Subsampling Layer 
 
As relU does not make any changes to the input shape, we have decided to use another 
subsampling layer using max pooling. This has allowed us to map out  the more 
prominent features and also has helped us to reduce the computational complexity of 
our network. We have used max-pooling with pool size 2x2 and stride length 2x2. Again, 
following the same equation of W −F+2P + 1, we get a downsized 
feature map of size 8x8x64. 
This completes our two convolutional and two subsampling layers. Now, we flatten the 
weights into a single column weight vector. From the final shape of the matrix, 
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we get 8x8x64 or 4096 components of neurons. These neurons are then connected to a 
hidden fully connected layer. The fully connected layer consists of 128 neurons. We have 
activated these neurons with relU as well. 

 

 

Figure 5.9: Second Subsampling Layer 
 
 

 

Figure 5.10: Creating Second Subsampling Layer 
 
Finally, as shown in figure x.x, to generate our output layer with 8 classes, we have 
created another fully connected layer with 8 neurons. We have used the softmax 
activation function in this layer to activate the neurons. 
Softmax or softargmax is an activation function that generates a normalized proba- bility 
distribution over the predefined multi-classed output layer. Softmax operates following 
Luce’s choice axiom (Luce, 1959). The governing equation for softmax is as follows, 

 

α(z)i = 
szi 

k 
j=1 

 
szj 

for i = 1, ..., K and z = (z1, ..., zk ) ε R (5.2) 

 

Here, σ is the softmax function, z is the input vector. The number of components 
within the vector is denoted by K and it ranges from 1 to K which is represented by i. In 
simple terms, softmax takes the exponents of each neuron in the input and divides it by 
the sum of the exponents of all the neurons. This operation normalizes the neurons and 
generates a probability distribution over K classes. 
In our network, softmax takes each of the 8 neurons in the output layer and generates 
their exponents. Then it normalizes them by dividing them by the sum of their 
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Σ Σ 

exponents. We have then used the probabilities of each class as the output of our 
model. 

 

Figure 5.11: Image of Full Model 

 
Apart from these, we have used categorical cross-entropy as our loss function and 
adam as our optimization function. Categorical cross-entropy has been derived from 
the maximum log likelihood estimation process. As we know, minimizing the classic 
squared error is just like maximizing the log likelihood when the error is distributed. 
Softmax activation function distributes the output probabilities over a Bernoulli 
distribution. 
If we consider a model with n samples, an outcome tnk = 1 where k is found for nth 
sample or 0 otherwise and a model prediction ynk, we can estimate the log likelihood 
using the PMF of the probability distribution of the model. The PMF of the categorical 
distribution of the model is denoted by the given function, 

 
N 6 

L = wktnk (5.3) 
n=1 k=1 

 

Therefore, if ynk is large, tnk = 1 is more probable or more right. Categorical cross- 
entropy calculates the cost simply by measuring the negative log-likelihood of the 
category of the outputs. 

 
N k 

Categorical Cross Entropy Loss = − tnk log ynk (5.4) 
n=1 k=1 
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Now, if ynkis more wrong, we want loss to be larger and if ynk is more right, we want 
loss to be smaller. For example, if we consider a case with only 1 sample, the equation 
for loss would be, 

 
k 

Loss = − tk log yk (5.5) 
k=1 

 

If the model prediction is exactly right, 

Loss = − log(1) = 0 

If the prediction has 50% probability of being on correct target, 

Loss = − log(0.5) = 0.693 

If the prediction has 25% probability of being on correct target, 
 

Loss = − log(0.25) = 1.386 

If the prediction has 0% probability of being on correct target, 
 

Loss = − log(0) = ∞ 

Following the aforementioned formula, categorical cross-entropy is measuring the loss 
from our model. 
In order to optimize the model, we are feeding the loss function to our optimizer 
algorithm. For our model, we have decided to use the adam optimizer. Adam is the 
combination of adagrad or adaptive gradient descent and the momentum concept 
from stochastic gradient descent (SGD). Stochastic gradient descent can be quite 
effective at optimizing the loss for a single class predictor model. But for multiclass 
models, SGD fails to traverse the loss curve and update the weights accordingly. This is the 
result of having a fixed learning rate in SGD. Adagrad allows the model to have an 
adaptive learning rate for different parameters. The learning rate is adapted based on 
the sum of the square of gradients with respect to the data following the given 
equation, 

 

θt+1,i = θt,i − √
G

 
η 

t,ii 

.gt,i (5.6) 
+ s 

 

Here, Gt,ii is the squared sum of the gradients. 
But the problem with this adaptive learning is that the squared sum of the gradients are 
monotonically increased and the learning rate is slowly reaching a point where it is 
tending to zero and very little learning is happening. This is mitigated by the adam 
optimizer. Adam is the combination of adadelta and momentum. Adadelta reduces the 
effect of past gradients in adagrad by using a gamma weight to all the past gradients. 
This improves the situation exponentially and prevents the learning rate tanking to zero. 
It is then further improvised with the addition of momentum. Adam uses an expected 
value from the past gradients. The equation governing adam is as follows, 
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θt+1 = θt − √
v

 
η 

+ s
mt (5.7) 

 

This means adam starts slowly at the beginning but with more and more itera- tions, it 
picks up speed similar to the concept of momentum. This way, adam can take different 
sized steps for different parameters. This also leads to a much faster convergence. 

 

5.2 Implementation of Transfer Learning on our 2D CNN 

Once the model has been trained and validated on set3, we have saved our model as 
an .h5 file. Then we have imported our pre-trained model and have collected all the 
optimized and updated weights from it. After that, we have fed set2 into our model. 
This then classified the data within set2 based on the weights generated in the 2D 
CNN. 

 

Figure 5.12: Implementation of transfer flow 
 

 

5.3 Implementation of Transfer Learning Using Resnet50 

In order to implement this model, we have imported the resnet50 model using the 
keras module in python. Resnet50 is a state of the art image classification model 
developed by researchers at Microsoft in 2015. This model is pre-trained to classify the 
1000 classes within the imagenet dataset. 

 

Figure 5.13: Importing Resnet50 
 
 

 

Figure 5.14: Our Layer 

t 
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For our purpose, we have imported the pre-trained model and have made the final fully 
connected output layer false. It thereby freed us to generate a fully connected output 
layer with 8 neurons for our classes. We have used the regular algorithm for resnet50 
and have not changed any of its parameters. Then we have used the training set of our 
dataset to adapt the model to our task. The model has used  all the previous neurons 
and trainable parameters from resnet50 along with the parameters gained from our 
data. Then we have tested the model with our test dataset. Thus we have transferred 
the weights from resnet50 to our task. 
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Chapter 6 

Results 
 
In order to train, validate and test our model, we have fed our model with our data 500 
times. After The epochs are executed, we have generated the validation accuracy, 
validation loss and testing accuracy, testing loss curves with respect to every epoch. 
Along with that, we have generated a confusion matrix depicted by a heatmap and a 
precision-recall chart. Using the information from the chart, we have also generated an 
F1 score for our model. It has allowed us to properly evaluate our model’s capability to 
properly detect and classify each of the 8 classes. 

 

6.1 Model Summary Results From 2D CNN 

6.1.1 Model Summary 

Our 2D CNN model is summarized in the given table. 
 

Layer(type) Output Shape Param 

conv2d 6 (Conv2D) None, 32, 32, 32 832 
maxpooling2d 6(MaxPooling2 None, 16, 16, 32 0 

dropout 9 (Dropout) None, 16, 16, 32 0 
conv2d 7 (Conv2D) None, 16, 16, 64) 18496 

maxpooling2d 7(MaxPooling2) None, 8, 8, 64 0 
dropout 10 (Dropout) None, 8, 8, 64 0 

flatten 3 (Flatten) None, 4096 0 
dense 6 (Dense) None, 128 524416 

dropout 11 (Dropout) None, 128 0 
dense 7 (Dense) None, 8 1032 

Table 6.1: 2D CNN model 
 

Total params: 544,776 
 

Trainable params: 544,776 
 

Non-trainable params: 0 
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6.1.2 Validation  Accuracy Curve 
 
 

Figure 6.1: Validation Accuracy 
 
 

6.1.3 Validation Loss Curve 
 

Figure 6.2: Validation Loss 
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6.1.4 Accuracy Curve 
 

 

Figure 6.3: Accuracy Rate Graph 
 
 

6.1.5 Testing Loss Curve 
 

 

Figure 6.4: Testing Loss 
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6.1.6 Confusion Matrix 
 

 

Figure 6.5: Confusion Matrix 
 
Here, the columns represent the target classes and the rows represent the predicted 
classes. The values 0-7 represent the classes Bearing, Flywheel, Healthy, LIV, LOV, NRV, 
Piston, Riderbelt respectively. 

 

6.1.7 Precision-Recall Calculations 
 

Class Name Precision Recall f1-score Support 

Bearing 1.00 0.99 0.99 101 
Flywheel 0.84 0.97 0.90 87 
Healthy 0.98 0.82 0.89 119 

LIV 0.93 1.00 0.96 93 
LOV 0.85 0.77 0.81 111 
NRV 0.95 0.99 0.97 96 

Piston 0.98 1.00 0.99 98 
Rider Belt 0.91 0.96 0.93 95 
Macro Avg 0.93 0.94 0.93 800 

Table 6.2: Precision-Recall Table 
 

Accuracy: 93% 

 

6.2 Model Summary Results From Transfer Learn- ing 
Framework 

6.2.1 Model Summary 

As we have simply forwarded the weights from our 2D CNN in our TCNN framework, the 
model is the same here. Therefore, the model summary is also the same. 
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Layer(type) Output Shape Param 

conv2d 6 (Conv2D) None, 32, 32, 32 832 
maxpooling2d 6(MaxPooling2 None, 16, 16, 32 0 

dropout 9 (Dropout) None, 16, 16, 32 0 
conv2d 7 (Conv2D) None, 16, 16, 64) 18496 

maxpooling2d 7(MaxPooling2) None, 8, 8, 64 0 
dropout 10 (Dropout) None, 8, 8, 64 0 

flatten 3 (Flatten) None, 4096 0 
dense 6 (Dense) None, 128 524416 

dropout 11 (Dropout) None, 128 0 
dense 7 (Dense) None, 8 1032 

 

Table 6.3: TCNN Framework 
 

 
Total params: 544,776 
Trainable params: 544,776 

Non-trainable params: 0 
 

6.2.2 Validation Accuracy Curve 
 
 

Figure 6.6: Validation Accuracy Graph 
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6.2.3 Validation Loss Curve 
 

Figure 6.7: Validation Loss Graph 
 
 

6.2.4 Accuracy Curve 
 

 

Figure 6.8: Accuracy Graph 
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6.2.5 Testing Loss Curve 
 
 

Figure 6.9: Testing Loss 
 
 

6.2.6 Confusion Matrix 

 

 

Figure 6.10: Confusion Matrix 

 
Here, the columns represent the target classes and the rows represent the predicted 
classes. The values 0-7 represent the classes Bearing, Flywheel, Healthy, LIV, LOV, NRV, 
Piston, Riderbelt respectively. 
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6.2.7 Precision-Recall Calculations 
 

Class Name Precision Recall f1-score Support 

Bearing 1.00 0.96 0.98 104 
Flywheel 0.82 0.96 0.88 85 
Healthy 0.99 0.93 0.96 107 

LIV 1.00 1.00 1.00 100 
LOV 0.87 0.89 0.88 98 
NRV 0.95 0.93 0.94 102 

Piston 0.99 0.99 0.99 100 
Rider Belt 0.90 0.87 0.88 104 
Macro Avg 0.94 0.94 0.94 800 

Table 6.4: Precision-Recall 
 

Accuracy: 94% 

 

6.3 Model Summary and Results from Transfer Learning 
using Resnet50 

6.3.1 Model Summary 
 

Layer (tyoe) Output Shape Param Connected to 

input1(InputLayer) None, 224, 224, 3 0  

conv1pad(ZeroPadding2D) None, 230, 230, 3 0 input1[0][0] 
conv1 (Conv2D) None, 112, 112, 64 9472 conv1pad[0][0] 

bnconv1(BatchNormalization) None, 112, 112, 64 256 conv1[0][0] 
activation1(Activation) None, 112, 112, 64 0 bnconv1[0][0] 

pool1pad(ZeroPadding2D) None, 114, 114, 64 0 activation1[0][0] 
maxpooling2d1(MaxPooling2D) None, 56, 56, 64 0 pool1pad[0][0] 

 
 

... 

... 
 

 
 

Layer (tyoe) Output Shape Param Connected to 

add16(Add) None, 7, 7, 2048 0 bn5cbranch2c[0][0] 

activation46[0][0] 

activation49(Activation) None, 7, 7, 2048 0 add16[0][0] 
flatten1(Flatten) None, 100352 0 activation49[0][0] 
dense1(Dense) None, 8 802824 flatten1[0][0] 

 

Table 6.5: Model Summary of Resnet50 
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Total params: 24,390,536 
Trainable params: 802,824 

Non-trainable params: 23,587,712 
 

6.3.2 Validation Accuracy Curve 
 
 

Figure 6.11: Validation Accuracy (Resnet50) 
 
 

6.3.3 Validation Loss Curve 
 

Figure 6.12: Validation Loss (Resnet50) 
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6.3.4 Accuracy Curve 
 
 

Figure 6.13: Accuracy Graph (Resnet50) 
 
 

6.3.5 Testing Loss Curve 
 

 

Figure 6.14: Testing Loss (Resnet50) 



47  

 
 
 

 

Chapter 7 

Result Analysis 
 
7.1 Analysis of Results from 2D CNN 

If we look at the validation accuracy curve, after training our model on our training data 
over 500 generations, our model has successfully recognized 92% of our valida- tion 
dataset correctly on average. After that, we have tested our model with our test dataset. 
Our testing accuracy curve shows how our testing accuracy has converged to the 
overall accuracy of 93% that the model has achieved. 

 

The correlation between the predicted class and target class depicted in the con- 
fusion matrix heatmap shows the correlation among true positive (TP) and false 
positive (FP) outcomes of our model based on our target dataset. It paints a picture of 
how accurate our model has been on predicting the specified classes accordingly. The 
matrix also allows us to measure some more effective performance measurement 
metrics as well. The precision for each class denotes the rate of correct prediction for 
that class. Then based on the number of predictions made for that class we have 
calculated the recall rate for each class. Based on the precision and recall, we have 
generated the F1 scores as well. The F1 scores indicate the weighted average of pre- 
cision and recall. Therefore, we are generating a proper performance measurement of 
predicting target classes taking both false positive (FP) and false negative (FN) 
predictions into account. 

 

7.2 Analysis of Results from Transfer Learning Framework 

If we look at the validation accuracy curve, after training our model on our training data 
over 100 generations, our model has successfully recognized 94% of our valida- tion 
dataset correctly on average. After that, we have tested our model with our test dataset. 
Our testing accuracy curve shows how our testing accuracy has converged to the 
overall accuracy of 94% that the model has achieved. 

 

Similar to the 2D CNN, we have generated the confusion matrix and precision-recall 
measurements for the transfer learning framework. If we compare the two matrices 
from the 2D CNN and also the transfer learning framework, we can clearly deduce the 
optimization acquired due to implementation of transfer learning. Moreover, 
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transfer learning has allowed us to achieve similar, even better results than what we 
have achieved from the 2D CNN. It has also reduced the computational complexity of 
the task by reducing the generations required by 5 times. Most importantly, the 
framework has allowed us to execute the task without even having to develop a 
complicated network from scratch, saving much valuable time and expenses. 

 

7.3 Analysis of Results from Resnet-50 based Trans- fer 
Learning 

If we look at the validation accuracy curve, after training our model on our train- ing 
data over 100 generations, our model has successfully recognized 20% of the validation 
dataset from imagenet correctly on average. After that, we have tested our model with 
our test dataset. Our testing accuracy curve shows how our testing accuracy has 
converged to the overall accuracy of 93% that the model has achieved. 

 

7.4 Comparison Between 2D CNN based transfer learning 
and Resnet-50 based Transfer Learn- ing 

Even though the overall accuracy of detecting the target classes has been quite sim- ilar 
between both transfer learning methods, we can clearly see the problem with resnet50 
or other state of the art imagenet classifier based transfer learning frame- works when 
we look at the model summaries and validation losses and accuracies. We know, resnet 
is trained on imagenet dataset containing millions of samples of data distributed over 
1000 classes. Most of these data and features extracted from those data are irrelevant 
for our purpose. If we look at the number of total parame- ters and trainable parameters 
in the resnet50 based architecture, it is very apparent that we are extracting and 
conducting many resource heavy operations on a lot of non-meaningful features. This 
is not at all a very efficient way of solving the task. On the other hand, if we look at our 
transfer learning based architecture, we can see that the model used has been tailor-
made for the task. Based on the sample size of our data the total and trainable 
parameters in our architecture is much fewer than it is in the resnet50 based model. 
Along with that, the ratio of total and trainable parameters are 1:1. This is implying 
that no extra or useless computation is not present in our architecture. Hence, our 
model is much more optimized and efficient in detecting air compressor faults than 
implementing transfer learning with other models pre-trained on imagenet. 
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Chapter 8 

Discussion and Future Work 
 
In our paper, we have discussed the DCCN model and how to transfer weights from a 
DCCN model using transfer learning. Here we can see that 2D CNN takes 500 epochs to 
achieve 92% accuracy to classify the data. On the other hand, transfer learning takes 
100 epochs to achieve 94% accuracy to classify the data. We are able to achieve equal, 
if not better, outcomes using transfer learning than with the 2D CNN. It has also lowered 
the task’s computing complexity by having fewer generations. Most importantly, the 
architecture allowed us to complete the task without having to create a complex 
network from scratch. We know that the Resnet-50 transfer learning architecture is 
trained on the Imagenet dataset, which has millions of data samples distributed over 
1000 classes. For our purposes, the majority of these data and the attributes generated 
from them are unimportant. 

 

In the outputs of our model, we can see that, there are few classes that can not be 
classified consistently due to fewer data. In the future, if we can get more consistent and 
more organized data we can work on our model for achieving greater accuracy. 
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Chapter 9 

Conclusion 
 
Industrial manufacturing has become the most pressing issue of the twenty-first cen- tury 
as a result of the world’s never-ending population and demand increase. Fault 
detection is critical for industrial manufacturing to run safely and efficiently. We can 
maintain a steady manufacturing line by successfully detecting defect charac- teristics. 
As a result, developing a reliable and precise defect detection technology is now a top 
priority. In our paper, we have used the transfer learning model to detect industrial air 
compressor faults. Transfer learning improves network perfor- mance under invariant 
working circumstances and unifies the learning method into a single network design. 
Experimental results show that our proposed model is achieving an average 94% 
accuracy to classify the data. Furthermore, the suggested model is outperforming other 
fault detection methods such as machine learning and convolutional neural network. 



51  

 
 
 

 

Bibliography 
 

[1]A. M. TURING, “I.—COMPUTING MACHINERY AND INTELLIGENCE,” 
Mind, vol. LIX, no. 236, pp. 433–460, Oct. 1950, ISSN: 0026-4423. DOI:10 . 
1093/mind/LIX.236.433. eprint:https://academic.oup.com/mind/article- pdf / 
LIX / 236 / 433 / 30123314 / lix - 236 - 433 . pdf. [Online]. Available:https : 
//doi.org/10.1093/mind/LIX.236.433. 

[2]F. Rosenblatt, “Perceptron simulation experiments,” Proceedings of the IRE, 
vol. 48, no. 3, pp. 301–309, 1960. DOI:10.1109/JRPROC.1960.287598. 

[3]B. Widrow and M. Hoff, “Associative Storage and Retrieval of Digital Informa- tion in 
Networks of Adaptive “Neurons”,” Biological Prototypes and Synthetic Systems, pp. 
160–160, 1962. DOI:10.1007/978-1-4684-1716-6 { }25. 

[4]T. Cover and P. Hart, “Nearest neighbor pattern classification,”    IEEE Trans- actions 
on Information Theory, vol. 13, no. 1, pp. 21–27, 1967. DOI:10.1109/ 
TIT.1967.1053964. 

[5]G. Dejong and R. Mooney, “Explanation-based learning: An alternative view,” 

Machine Learning, vol. 1, no. 2, pp. 145–176, 1986. DOI:10.1007/bf00114116. 

[6]J. Liu, Y. Liu, J. Cheng, and F. Feng, “Extraction of gear fault feature based on the 
envelope and time-frequency image of s transformation,” Chemical Engi- neering 
Transactions, vol. 33, pp. 55–60, Jul. 2013. DOI:10.3303/CET1333010. [Online]. 
Available:https://www.cetjournal.it/index.php/cet/article/view/ CET1333010. 

[7]U. C. Md Rifat Shahriar Tanveer Ahsan, “Fault diagnosis of induction motors utilizing 
local binary pattern-based texture analysis,” EURASIP Journal on Image and 
Video Processing, vol. 29, no. 29 (2013), 2013, ISSN: 1687-5281. [Online]. 
Available:https://rdcu.be/clwu7. 

[8]R. Walker, S. Perinpanayagam, and I. Jennions, “Rotordynamic Faults: Re- cent 
Advances in Diagnosis and Prognosis,” International Journal of Rotating 
Machinery, vol. 2013, pp. 1–12, 2013. DOI:10.1155/2013/856865. 

[9]M. Farzam Far, A. Arkkio, and J. Roivainen, “Electrical fault diagnosis for an induction 
motor using an electromechanical fe model,” English, in 2014 In- ternational 
Conference on Electrical Machines (ICEM), United States: IEEE Institute of 
Electrical and Electronic Engineers, Sep. 2014. DOI:10 . 1109 / 
icelmach.2014.6960440. 

[10]M. Kang and J.-M. Kim, “Reliable fault diagnosis of multiple induction motor defects 
using a 2-d representation of shannon wavelets,” IEEE Transactions on 
Magnetics, vol. 50, no. 10, pp. 1–13, Oct. 2014, ISSN: 1941-0069. DOI:10. 
1109/TMAG.2014.2316474. 

https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1109/JRPROC.1960.287598
https://doi.org/10.1007/978-1-4684-1716-6%7B_%7D25
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1007/bf00114116
https://doi.org/10.3303/CET1333010
https://www.cetjournal.it/index.php/cet/article/view/CET1333010
https://www.cetjournal.it/index.php/cet/article/view/CET1333010
https://rdcu.be/clwu7
https://doi.org/10.1155/2013/856865
https://doi.org/10.1109/icelmach.2014.6960440
https://doi.org/10.1109/icelmach.2014.6960440
https://doi.org/10.1109/TMAG.2014.2316474
https://doi.org/10.1109/TMAG.2014.2316474


52  

[11]J. Uddin, M. Kang, D. Nguyen, and J. Kim, “Reliable Fault Classification of Induction 
Motors Using Texture Feature Extraction and a Multiclass Support Vector 
Machine,” Mathematical Problems in Engineering, vol. 2014, pp. 1–9, 2014. 
DOI:10.1155/2014/814593. 

[12]R. Jegadeeshwaran and V. Sugumaran, “Fault diagnosis of automobile hy- draulic 
brake system using statistical features and support vector machines,” Mechanical 
Systems and Signal Processing, vol. 52, pp. 436–446, 2015. DOI: 
10.1016/j.ymssp.2014.08.007. 

[13]A. Taheri-Garavand, H. Ahmadi, M. Omid, S. Mohtasebi, K. Mollazade, A. Russell 
Smith, and G. Carlomagno, “An intelligent approach for cooling ra- diator fault 
diagnosis based on infrared thermal image processing technique,” Applied 
Thermal Engineering, vol. 87, pp. 434–443, 2015. DOI:10 . 1016 / j . 
applthermaleng.2015.05.038. 

[14]S. Khan and J. Kim, “Rotational speed invariant fault diagnosis in bearings using 
vibration signal imaging and local binary patterns,” The Journal of the Acoustical 
Society of America, vol. 139, no. 4, EL100–EL104, Apr. 2016. DOI: 
10.1121/1.4945818. 

[15]N. Verma, R. Sevakula, S. Dixit, and A. Salour, “Intelligent Condition Based Monitoring 
Using Acoustic Signals for Air Compressors,” IEEE Transactions on Reliability, vol. 
65, no. 1, pp. 291–309, 2016. DOI:10.1109/tr.2015.2459684. 

[16]Y. Du, Y. Chen, G. Meng, J. Ding, and Y. Xiao, “Fault severity monitoring of rolling 
bearings based on texture feature extraction of sparse time–frequency images,” 
Applied Sciences, vol. 8, no. 9, 2018, ISSN: 2076-3417. DOI:10.3390/ app8091538. 
[Online]. Available:https://www.mdpi.com/2076- 3417/8/9/ 1538. 

[17]M. Hasan and J. Kim, “Bearing Fault Diagnosis under Variable Rotational Speeds 
Using Stockwell Transform-Based Vibration Imaging and Transfer Learn- ing,” Applied 
Sciences, vol. 8, no. 12, p. 2357, 2018. DOI:10.3390/app8122357. 

[18]M. J. Hasan, M. M. Islam, and J.-M. Kim, “Acoustic spectral imaging and transfer 
learning for reliable bearing fault diagnosis under variable speed con- ditions,”  
Measurement,  vol.  138,  pp.  620–631,  2019,  ISSN:  0263-2241.  DOI: https:// doi . org/ 
10 . 1016 / j . measurement. 2019 . 02 . 075. [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/S0263224119301939. 

[19]P. Mohan, “An analysis of air compressor fault diagnosis using machine learn- ing 
technique,” JOURNAL OF MECHANICS OF CONTINUA AND MATH- EMATICAL 
SCIENCES, vol. 14, Dec. 2019. DOI:10.26782/jmcms.2019.12. 00002. 

[20]L. Wang, “Research and implementation of machine learning classifier based on 
knn,” IOP Conference Series: Materials Science and Engineering, vol. 677, p. 052 
038, Dec. 2019. DOI:10.1088/1757-899X/677/5/052038. 

https://doi.org/10.1155/2014/814593
https://doi.org/10.1016/j.ymssp.2014.08.007
https://doi.org/10.1016/j.applthermaleng.2015.05.038
https://doi.org/10.1016/j.applthermaleng.2015.05.038
https://doi.org/10.1121/1.4945818
https://doi.org/10.1109/tr.2015.2459684
https://doi.org/10.3390/app8091538
https://doi.org/10.3390/app8091538
https://www.mdpi.com/2076-3417/8/9/1538
https://www.mdpi.com/2076-3417/8/9/1538
https://doi.org/10.3390/app8122357
https://www.sciencedirect.com/science/article/pii/S0263224119301939
https://doi.org/10.26782/jmcms.2019.12.00002
https://doi.org/10.26782/jmcms.2019.12.00002
https://doi.org/10.1088/1757-899X/677/5/052038


53  

[21]Y. Wang, B. Zhou, M. Cheng, H. Fu, D. Yu, and W. Wu, “A fault diagnosis scheme for 
rotating machinery using recurrence plot and scale invariant feature transform,” in 
Proceedings of the 3rd International Conference on Mechatron- ics Engineering and 
Information Technology (ICMEIT 2019), Atlantis Press, 2019, pp. 675–681, ISBN: 
978-94-6252-708-9. DOI:https://doi.org/10.2991/ icmeit - 19 . 2019 . 108. [Online]. 
Available:https :/ / doi . org/ 10 . 2991 / icmeit - 19.2019.108. 

[22] Compressed Air Systems”, Air Compressors for Aerospace, Oct. 2020. [Online]. 
Available:https:// www. compressedairsystems. com/ blog/ air- compressors- 
aerospace/. 

[23] iSeekplant”, Top 10 Uses of Air Compressors, Jun. 2020. [Online]. Available: 
https://blog.iseekplant.com.au/blog/top-ten-uses-air-compressors. 

[24]P. Scientific, Nitrogen Compressor Technology - How does it work? Oct. 2020. 
[Online]. Available:https://www.peakscientific.com/discover/news/nitrogen- 
gas-generator-compressor-technology-how-does-it-work/. 

[25]BigRentz, Inc.”, How Air Compressors Work: An Animated Guide — Bi- gRentz, 
Apr. 2021. [Online]. Available:https://www.bigrentz.com/blog/how- air-
compressors-work. 

[26]M. Chatterjee, A Quick Introduction to KNN Algorithm, Apr. 2021. [On- line]. 
Available:https:// www. mygreatlearning. com/ blog/ knn- algorithm- 
introduction/. 

[27]G., Single Stage Compressor — Working, Components and Applications: Mar. 
2021. [Online]. Available:https://mechanicalboost.com/single-stage-compressor- 
working-components-and-applications/. 

[28] Medical Air Systems by DD Compressor Inc in San Jose, Apr. 2021. [Online]. 
Available:https : / / www . danddcompressor . com / blog / 2019 / 09 / what - is - 
compressed-air-used-for-in-hospitals/. 

[29] quincycompressor”, Compressed Air in Glass Manufacturing, Feb. 2021. [On- 
line]. Available:https://www.quincycompressor.com/compressed- air- glass- 
manufacturing/. 

[30] Rotary Air Compressors For The Automotive Industry — Kaishan USA, May 2021. 
[Online]. Available:https://kaishanusa.com/blog/rotary-air-compressors- for-the-
automotive-industry/. 

[31]A. Albert F., Air compressor for charging an internal combustion engine - 
ARAUJO ALBERT F. [Online]. Available:https:// www. freepatentsonline. 
com/6434940.html. 

[32]F. Livingston, Ece591q machine learning journal paper. fall 2005. implemen- 
tation of breiman’s random forest machine learning algorithm. 

[33]Mattei Compressors, Inc.”, Air Compressors for the Mining Industry — Mat- tei. 
[Online]. Available:http://www.matteicomp.com/mining- industry- air- 
compressors# : %7E : text = In % 20surface % 20and % 20subsurface % 20mines , 
material%20conveyors%2C%20and%20ventilation%20systems.&text=The% 
20unique%20design%20of%20the,it%20apart%20from%20other%20products.. 

https://doi.org/10.2991/icmeit-19.2019.108
https://doi.org/10.2991/icmeit-19.2019.108
https://www.compressedairsystems.com/blog/air-compressors-aerospace/
https://www.compressedairsystems.com/blog/air-compressors-aerospace/
https://www.compressedairsystems.com/blog/air-compressors-aerospace/
https://blog.iseekplant.com.au/blog/top-ten-uses-air-compressors
https://blog.iseekplant.com.au/blog/top-ten-uses-air-compressors
https://www.peakscientific.com/discover/news/nitrogen-gas-generator-compressor-technology-how-does-it-work/
https://www.peakscientific.com/discover/news/nitrogen-gas-generator-compressor-technology-how-does-it-work/
https://www.bigrentz.com/blog/how-air-compressors-work
https://www.bigrentz.com/blog/how-air-compressors-work
https://www.bigrentz.com/blog/how-air-compressors-work
https://www.mygreatlearning.com/blog/knn-algorithm-introduction/
https://www.mygreatlearning.com/blog/knn-algorithm-introduction/
https://mechanicalboost.com/single-stage-compressor-working-components-and-applications/
https://mechanicalboost.com/single-stage-compressor-working-components-and-applications/
https://www.danddcompressor.com/blog/2019/09/what-is-compressed-air-used-for-in-hospitals/
https://www.danddcompressor.com/blog/2019/09/what-is-compressed-air-used-for-in-hospitals/
https://www.danddcompressor.com/blog/2019/09/what-is-compressed-air-used-for-in-hospitals/
https://www.quincycompressor.com/compressed-air-glass-manufacturing/
https://www.quincycompressor.com/compressed-air-glass-manufacturing/
https://www.quincycompressor.com/compressed-air-glass-manufacturing/
https://kaishanusa.com/blog/rotary-air-compressors-for-the-automotive-industry/
https://kaishanusa.com/blog/rotary-air-compressors-for-the-automotive-industry/
https://kaishanusa.com/blog/rotary-air-compressors-for-the-automotive-industry/
https://www.freepatentsonline.com/6434940.html
https://www.freepatentsonline.com/6434940.html
http://www.matteicomp.com/mining-industry-air-compressors#%3A%7E%3Atext%3DIn%20surface%20and%20subsurface%20mines%2Cmaterial%20conveyors%2C%20and%20ventilation%20systems.%26text%3DThe%20unique%20design%20of%20the%2Cit%20apart%20from%20other%20products
http://www.matteicomp.com/mining-industry-air-compressors#%3A%7E%3Atext%3DIn%20surface%20and%20subsurface%20mines%2Cmaterial%20conveyors%2C%20and%20ventilation%20systems.%26text%3DThe%20unique%20design%20of%20the%2Cit%20apart%20from%20other%20products
http://www.matteicomp.com/mining-industry-air-compressors#%3A%7E%3Atext%3DIn%20surface%20and%20subsurface%20mines%2Cmaterial%20conveyors%2C%20and%20ventilation%20systems.%26text%3DThe%20unique%20design%20of%20the%2Cit%20apart%20from%20other%20products
http://www.matteicomp.com/mining-industry-air-compressors#%3A%7E%3Atext%3DIn%20surface%20and%20subsurface%20mines%2Cmaterial%20conveyors%2C%20and%20ventilation%20systems.%26text%3DThe%20unique%20design%20of%20the%2Cit%20apart%20from%20other%20products
http://www.matteicomp.com/mining-industry-air-compressors#%3A%7E%3Atext%3DIn%20surface%20and%20subsurface%20mines%2Cmaterial%20conveyors%2C%20and%20ventilation%20systems.%26text%3DThe%20unique%20design%20of%20the%2Cit%20apart%20from%20other%20products
http://www.matteicomp.com/mining-industry-air-compressors#%3A%7E%3Atext%3DIn%20surface%20and%20subsurface%20mines%2Cmaterial%20conveyors%2C%20and%20ventilation%20systems.%26text%3DThe%20unique%20design%20of%20the%2Cit%20apart%20from%20other%20products
http://www.matteicomp.com/mining-industry-air-compressors#%3A%7E%3Atext%3DIn%20surface%20and%20subsurface%20mines%2Cmaterial%20conveyors%2C%20and%20ventilation%20systems.%26text%3DThe%20unique%20design%20of%20the%2Cit%20apart%20from%20other%20products


54  

[34]H. Yuan, F. Wen, H. W. Qu, and H. Wang, “Fault diagnosis of rolling bearings based on 
surf algorithm,” 


