
Blockchain-based Edge computing for Medical Data Storage
& Processing using Federated Learning

by

Fazle Rabbi Faiyaz
17101369

Afrin Sultana Lisa
16201055

Laisa Rahat
17201036

Nafisa Tabassum
17141023

Walid Bin Istiaq
17101392

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University

June 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Fazle Rabbi Faiyaz
17101369

Nafisa Tabassum
17141023

Laisa Rahat
17201036

Walid Bin Istiaq
17101392

Afrin Sultana Lisa
16201055

i

Approval

The thesis titled “Blockchain-based Edge computing for Medical Data Storage &
Processing using Federated Learning” submitted by

1. Fazle Rabbi Faiyaz (17101369)

2. Nafisa Tabassum (17141023)

3. Laisa Rahat (17201036)

4. Walid Bin Istiaq (17101392)

5. Afrin Sultana Lisa (16201055)

of Spring, 2021 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science and Engineering on June 06,
2021.

Examining Committee:

Supervisor:
(Member)

Moin Mostakim
Lecturer

Department of Computer Science and Engineering
Brac University

Co-supervisor:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Head of Department:
(Chairperson)

Sadia Hamid Kazi
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii

skazi@bracu.ac.bd
Signature

Abstract

With a great number of IoT devices being used in healthcare and a massive rise
in medical data produced by these devices, data storage and processing systems
using the traditional cloud computing framework are not enough to meet real-time
data re- requirements in Internet-based services as data is transferred to faraway
cloud servers for processing, resulting in high latency and costs. Edge computing
can provide a solution to this problem by effectively offloading a portion of the
workload from the cloud to nearby edge servers to perform data processing tasks
close to the end-users, thus reducing latency and cost as well as improving the
quality of service. However, edge computing faces threats regarding data privacy
and security due to edge nodes being more vulnerable to cyber-attacks. To address
this problem, blockchain can be integrated to protect data from tampering, maintain
data integrity, and allow reliable access, distributed computation, and decentralized
data storage. Thus, in this research, we present a secure medical data storage and
processing system using blockchain and edge computing to preserve our clients’ data
privacy. To tackle privacy and security concerns, federated learning using a neural
network has been used to train models locally using the data on the edge nodes
rather than sending relevant private information to a centralized server for training,
and model parameters, as well as IPFS file hashes and other private information,
are securely stored on the blockchain by incorporating cryptographic techniques.

Keywords: IoT; Edge Computing; Blockchain; Federated Learning; IPFS

iv

Acknowledgement

Firstly, we are grateful to the Almighty Allah for whom we have been able to finish
our thesis without any major interruptions. Secondly, we wish to express our sincere
thanks to our supervisor Mr. Moin Mostakim and co-supervisor Dr. Md. Golam
Rabiul Alam of the Department of Computer Science and Engineering at BRAC
University for their guidance and support throughout our entire thesis. They helped
us whenever we needed it, motivating and enabling us to bring forth new ideas and
make correct implementation decisions. Thirdly, we would like to take this chance
to thank all of the faculty members for the help and support they have provided in
our time in Brac University. Lastly, we would like to express our gratitude towards
our parents for their continued prayers, encouragement, and support without which
it would not have been possible for us to reach this point.

v

Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Thesis Organization . 2

2 Literature Review 4

3 Proposed blockchain-based edge computing framework 9
3.1 Cloud layer . 9
3.2 Global blockchain network . 10
3.3 Edge server layer . 10
3.4 Local blockchain network . 10
3.5 IoT device layer . 11

4 Using Blockchain for Security & Data Preservation 12
4.1 Within the Ethereum smart contract 12
4.2 Account access . 13
4.3 Storing and retrieving files . 14
4.4 File sharing . 15
4.5 Storing local model weights for FL 17

vi

5 Analysis & Results 18
5.1 Evaluating the application of blockchain in the proposed framework . 18
5.2 Federated learning with blockchain 20

5.2.1 Data pre-processing and train-test split 20
5.2.2 Creating clients . 21
5.2.3 Processing and batching clients’ and test data 22
5.2.4 Creating the Multi-Layer Perceptron 23
5.2.5 Federated model training with blockchain 25
5.2.6 Evaluating performance . 28

6 Conclusion 32

Bibliography 33

vii

List of Figures

3.1 Blockchain-based edge computing framework 9

4.1 Inside the Storage smart contract . 12
4.2 Account access . 13
4.3 Storing files . 14
4.4 File retrieval . 15
4.5 File sharing . 16
4.6 Storing weights . 17

5.1 Gas consumption of smart contract processes on transactions 18
5.2 Performance of smart contract processes 19
5.3 Label counts of clients created using training data 22
5.4 Model summary of MLP for binary classification 23
5.5 FL architecture with MLP neural network 24
5.6 Loss of each client’s local model using training data 26
5.7 Accuracy of each client’s local model using training data 27
5.8 Loss of Global Model over 100 rounds 28
5.9 Accuracy of Global Model over 100 rounds 28
5.10 Confusion matrix of Global Model . 29
5.11 Confusion matrices of each client’s local model 31

viii

List of Tables

5.1 Comparison between models . 28

ix

List of Abbreviations

The next list describes several abbreviations that will be later used within the body
of the document

AES Advanced Encryption Standard

ANN Artificial Neural Network

CDN Content Delivery Network

Dapp Decentralized Application

DoS Denial-of-Service

FL Federated Learning

IoT Internet of Things

IPFS InterPlanetary File System

MEC Mobile Edge Computing

ML Machine Learning

MLP Multilayer Perceptron

P2P Peer-to-Peer

PoW Proof of Work

ReLU Rectified Linear Unit

RSA Rivest–Shamir–Adleman

SGD Stochastic Gradient Descent

x

Chapter 1

Introduction

1.1 Background

The current world revolves around data and the amount of data being generated
is increasing at a rapid pace as time goes on. This is why so many cloud storage
systems such as Google Drive, Dropbox, Microsoft OneDrive have been created
where people store their important files/data. Medical data is very valuable because
medical records often contain the private information of individuals such as social
security numbers, their home address, the medical treatments they have undergone,
information regarding family members and employment. According to reports, this
type of information is worth more than a credit card on the black market [29]. It may
seem like a good idea to store your medical data in a cloud storage system at first,
however, transmitting data back and forth between distant cloud servers has resulted
in high latency, bandwidth consumption, and energy consumption as well as there
may be data loss due to a single point of failure and thus gradually cloud computing
has become unable to meet the demands of IoT applications [13]. Moreover, current
security systems are inadequate as medical data is still being stolen from healthcare
organizations and people are having their private information leaked, removed, or
altered even from cloud storage systems due to data breaches. Hence, securing
and preserving private medical data has become a huge concern around the world
nowadays.

1.2 Motivation

At present, maintaining the privacy and security of stored medical data is one of
the greatest problems we are facing with the situation getting worse over the years.
Due to the issues presented by the traditional cloud computing paradigm, we switch
to edge computing. Edge computing allows us to move processing and storage tasks
close to the network’s edge and thus reduces latency, costs, and energy consumption.
It also allows periodical data uploads to cloud servers for further processing and
storage if needed. However, edge computing alone is not enough to keep data safe
as it presents vulnerabilities due to multiple attack surfaces, the distributed nature
of the edge nodes across the local network and cloud, closeness to sensitive data
generators, collection of heterogeneous data in the devices, and the scale of the
network [23]. If hackers can successfully take advantage of these vulnerabilities,
there will be severe repercussions due to large amounts of data being leaked or

1

tampered with and it will be hard difficult to track them down as well. Although
there are some countermeasures to this security risk such as CAPTCHAs, it still has
limitations in protecting data [24]. Nowadays, blockchain is strongly recommended
for privacy protection purposes as it creates a distributed digital ledger that keeps
decentralized, tamper-resistant records of data. However, it is a challenging task to
find a proper way to integrate these two architectures. Therefore, we have based our
work on incorporating both edge computing and blockchain together in an effective
manner in addition to applying federated learning and cryptography to provide a
secure, user-friendly, decentralized storage and processing system that shifts data
processing and storage near the network’s edge, allowing data transmission at low
latency and minimal cost as well as preserving the privacy and integrity of medical
data.

1.3 Objectives

In our research, we aim to find a way to create a system by integrating blockchain
with edge computing which will provide users with a fast, secure, and user-friendly
way to store and process private medical data at minimal cost to be used in the
healthcare industry. To accomplish our main goal, we will need to achieve the
following objectives:

• Allow users to access their account in the site/application using their email
address or phone number, password, and a user-set question (only in the case
of the account being accessed from an unregistered device of the user or on
password reset).

• Minimize latency, energy consumption, and costs of data transmission.

• Allowing secure storage of medical data provided by the user by encrypting it
before storing it in IPFS and decrypting data after it is retrieved for use.

• Find a suitable way to incorporate edge computing and blockchain to provide
fast access and data preservation.

• Allow users to share particular files or folders with other registered users se-
curely when necessary.

• Use federated learning to address security and privacy concerns during data
processing and analysis.

1.4 Thesis Organization

This section provides an overview of what has been discussed in each chapter of our
thesis paper. After discussing what we plan on doing, the reason behind it, and what
we hope to accomplish in this chapter, the next chapter is the literature review where
we summarize and discuss the information collected from various scholarly articles,
books, past research papers, and other sources of information which are relevant
to our area of research. In chapter-3, we present our proposed blockchain-based
edge computing framework and discuss it in detail, and in chapter-4, we describe

2

the application of blockchain in securing and preserving data during storage and
processing. We analyze and evaluate the results of both the use of blockchain in our
proposed framework and the performance of federated learning with blockchain in
chapter-5 and finally, we conclude our work in chapter-6.

3

Chapter 2

Literature Review

Huge amounts of data are being produced every day through different IoT devices
such as phones, tablets, PCs, sensors, etc. However, this has raised an important
concern regarding a particular matter and that is the privacy of data. Data pri-
vacy refers to how data should be handled based on its relative performance [1].
According to Geambasu et al.’s paper [2], due to our rising dependence on Web
services, our data is being cached, copied, and archived without us knowing about it
or being able to control it. Data privacy is a very important concern because if our
data is not properly handled, our data may get leaked due to a breach, leading to
identity theft, unwanted disclosure of important information, and legal implications.
The threat to data privacy is even more of an issue in the healthcare industry with
patient data breaches on the rise, leading to millions of individual records being
exposed. Therefore, our research aims to protect medical data using blockchain,
edge computing, and federated learning.
So far, cloud computing has provided us reliable and convenient Internet-based ser-
vices by processing and storing data in remote servers. However, according to Irei
[3], due to the constant growth of connected devices and their continuous use of
Internet-based services, cloud computing may soon prove to be insufficient to han-
dle this situation. This is because, with the constant growth and continuous use of
IoT devices, traditional cloud computing networks will soon be overwhelmed by the
data traffic due to having centralized distant servers as well as causing a delay due
to data transmission across long distances. To address this issue, we will use edge
computing.
Edge computing has brought computation and data storage as close as possible
to the network’s edge, thus minimizing the distance between client and server [4].
According to Satyanarayanan [5], IoT devices forward their traffic to nearby edge
nodes/servers to perform data processing tasks and provide IoT-edge-centric services
locally or in nearby edge nodes using content delivery network (CDN) concepts with
the cloud infrastructure. It provides multiple paths for devices to connect to the
Internet and allows most of the data to remain scattered across distributed networks
of the server while some necessary/valuable data is sent to the cloud server after be-
ing processed and refined. Hence, due to IoT data storage, processing, and analytics
at the network’s edge, the load on the cloud is reduced as well as reduced chances
of data privacy leakage as all private information does not have to be moved to the
cloud servers due to data being stored locally or in edge nodes. Since edge comput-
ing has decreased the physical distance for data transmission, latency is reduced and

4

response speed is higher compared to cloud computing. In addition, since only the
required data is sent and stored in the cloud server, there is less redundant data stor-
age and energy consumption in cloud servers along with reduced bandwidth costs.
Moreover, due to the presence of edge data centers, even if the cloud server faces
an outage or a failure, the IoT devices will still be able to work effectively because
they can still perform various functions by themselves by rerouting data through
multiple pathways and hence, users will still be able to access the information they
need [6].
However, edge computing has a major issue regarding security. Edge computing
security issues concern the end-to-end devices and the network in between. Accord-
ing to Acken and Sehgal [7], since the edge computing framework is more widely
distributed, controlling access via identification authentication is especially difficult
in an IoT environment in addition to preventing hackers from stealing or manipu-
lating private data since due to attack surfaces available, it is possible for hackers
to hack the device from any channel and hence it is difficult to track or trace them
as well. Furthermore, the data produced by IoT devices are divided into several
parts and stored within different edge servers that are located in separate locations,
which makes it difficult to ensure data integrity due to data loss and may lead to
erroneous data storage in edge servers. However, we may be able to prevent cyber
attacks and information theft by establishing smart contracts with devices with a
history of successful connections/logins/transactions via blockchain along with the
application of cryptographic techniques.
For data encryption and decryption purposes, we use two types of cryptography:
symmetric key cryptography and asymmetric key cryptography. Symmetric key
cryptography is a cryptographic technique that uses a single shared secret key to
encrypt and decrypt data for all parties involved. The AES (Advanced Encryption
Standard) algorithm is an example of symmetric key cryptography used in both
hardware and software to encrypt susceptible data in blocks of 128 bits and consists
of three block ciphers which are AES-128, AES-192, and AES-256 and they have a
key size of 128, 192, and 256 bits respectively. It is not recommended to be used
alone because, since the key is shared between the involved parties, if the key comes
into the possession of a hacker somehow, they would be able to decrypt any file
encrypted with that secret key and different keys would have to be generated for
communicating with different people or groups of people. On the other hand, asym-
metric key cryptography is a cryptographic technique that provides better security
because a public-private key pair is used where the public key is open to all for
encrypting data whereas the private key is kept secret by the user and is used for
decrypting data [22]. The RSA (Rivest–Shamir–Adleman) algorithm is an example
of asymmetric key cryptography used in modern computing systems where the al-
gorithm is based on Euler’s theorem and a public-private key pair is produced with
key sizes typically of 512, 1024, 2048, or 4096 bits. Kartik et al. [20] proposed in
their work that using AES and RSA algorithms together will ensure the integrity
and confidentiality of data in storage systems.
A blockchain is a shared, decentralized digital ledger based on a P2P system that can
be openly distributed among individual clients to create an unchangeable record of
transactions where each transaction is time-stamped and connected to the previous
one. Data is added as a new block to a continuously expanding chain each time a set
of transactions is added where each block is connected to its prior one except for the

5

genesis block which is the first block created in the blockchain [12]. However, to add
a block to the blockchain, a consensus mechanism is used by a network of participant
nodes to work together to authenticate and validate a piece of data or a proposed
transaction before adding it to the blockchain to provide secure and trustworthy
storage of data [25]. This process is known as mining and miners are compensated
in cryptocurrency in exchange for processing everyone’s transactions and appending
validated transactions to the network which requires very complex calculations that
need massive amounts of processing power to run. Blockchain data is usually stored
within many devices on a dispersed network of nodes due to which both the system
and the data are highly impervious to technical issues and malicious attacks. Each
node on the blockchain network makes a copy of the database and stores it, ensur-
ing that there is no single point of failure. In contrast, standard databases usually
depend on a single or a few servers and therefore are more susceptible to technical
problems and cyber-attacks. However, blockchain has some demerits as well. As it
uses asymmetric cryptography to allow clients to obtain ownership over their cryp-
tocurrency units or any other blockchain data, if the private key is lost, then clients
can no longer access their funds, and thus that the money is lost with no way to
regain it. In addition, blockchain storage is limited, and storing huge amounts of file
data in the blockchain causes access latency, expensive transaction costs as well as
introduces the risk of losing nodes in the network [11]. However, to resolve this issue,
different decentralized storage systems can be used to store huge amounts of data
as well as to share files with other people. Among the different platforms available,
the InterPlanetary File System (IPFS) is a peer-to-peer, distributed, open-source,
content-addressed file sharing and storage system. Its goal is to replace HTTP to
build a better web and instead of a central database/server, it is built around a
decentralized system of storage providers, creating an effective system of file storage
and sharing. When files are uploaded on IPFS, a cryptographic hash of the file is
created which uniquely identifies the file and hence prevents duplicates from being
stored. Any user in the network can retrieve the file using the file hash due to the
distributed hash table present [16].
Blockchain is evolving at a rapid rate with its use spreading in many systems. It has
found its use in many industrial sectors such as banking, healthcare, e-commerce,
property, retail, trade, media and entertainment, and automotive where its imple-
mentation varies depending on the area it will be used in and the purpose it will
be used for [8]. In Deloitte’s 2018 global blockchain survey [9], it was stated that
blockchain technology has enabled faster business process execution in comparison
to existing systems due to its improved trustworthiness and ability to keep a his-
tory of records. Although centralized databases which are built on more mature
technology are faster when it comes to transactions performed per second, they fall
short when it comes to evaluating the end-to-end journey. With its chain of blocks
containing information, blockchain acts as a database that is consensually shared
in a decentralized manner and synchronized across various places and institutions
for providing access to multiple people. Once data is inserted into a blockchain, it
becomes extremely hard to alter it. Each block contains valuable data as well as the
hash of the current block and the previous block [14]. The blockchain keeps track
of information regarding its transactions, such as the sender, the receiver, and the
amount of money. It also uses a hash like a fingerprint to uniquely identify a block
and all of its data. After the creation of a block, its hash is calculated, and altering

6

anything within the block will cause the hash to change as well due to which it will
no longer remain the same block and match the hash stored in any of the following
blocks, thus making all subsequent blocks invalid. To make the blockchain work
again, we have to tamper with all of the following blocks and recalculate all their
hashes but it is not possible to do so due to consensus mechanisms, thus making
the stored data unchangeable. Hence, hashes are very convenient in detecting any
alterations in the data of a block.
Blockchain storage works by first sharding data and distributing the shards across
thousands of nodes after which each data shard is encrypted on the local system
to guarantee that no one can access the data shard except for the user to whom
it belongs. Next, the blockchain storage system generates a unique hash and en-
crypted output string depending on the data shards or encryption keys. The hash
is appended to both the ledger and the shard metadata to link transactions to the
stored shards following which the system makes a copy of each data shard a specific
number of times to make sure that sufficient copies are present to avoid the loss
of valuable data. After that, a P2P network distributes the replicated shards to
spatially scattered storage nodes belonging to individuals called farmers with the
data still being accessible to its owner. Lastly, the storage system records all the
information of the data stored or removed [15].
The blockchain architecture can be public or private. A private blockchain uses
access control to limit the users who can participate in the network as well as
the transactions they can perform while a public blockchain is permissionless and
decentralized, allowing anyone to access the blockchain network while maintain-
ing anonymity to read and write on the blockchain. Ethereum and Bitcoin are
the two most popular examples of a public blockchain. Ethereum is a blockchain-
based decentralized, open-source computing platform that allows the creation of
smart contracts as well as decentralized applications (Dapps) [19]. In an Ethereum
blockchain, a smart contract refers to a program that is stored at a specific address
within the Ethereum blockchain and is used to execute an agreement between two
people. Rather than being controlled by a client, smart contracts are deployed to
the network and run like they are programmed to [21]. The Ethereum blockchain
requires fees known as gas to operate due to avoiding network abuse problems and
evading the questions coming from Turing completeness. Therefore, for any given
amount of programmable computation in the Ethereum blockchain, there is a uni-
versally agreed fee represented by gas and it does not exist outside of the execution
of a transaction. Every transaction comes with a specific amount of gas known as
the gas limit. This refers to the maximum amount of gas you are willing to use on
a transaction and it allows any unused gas at the end of a transaction to be sent
back to the sender’s account at the same rate of purchase. The purchase happens
at the gas price which is the amount paid for each unit of gas and if the account
balance is not enough to pay for a purchase, the transaction is considered invalid.
Ethereum uses the cryptocurrency Ether to purchase gas consumed in a transaction
and is delivered to the address of an account usually under the control of the miner.
However, miners are free to select which transactions to ignore and transactors are
free to state any gas price that they want. Senders will use more Ethers on a trans-
action with a higher gas price and provide more value to miners, and thus more
miners will likely want to add the sender’s block to the blockchain.
Various devices in the modern age such as mobile phones, laptops, PC, sensors, ac-

7

tuators, etc. are connected to the Internet via IoT systems to sense, communicate,
and exchange information to reach a particular goal and blockchain can be used
to provide security to such systems as well. Ramesh [18] proposed in his work a
way to collect sensor data from IoT devices and provide secure, decentralized stor-
age within a closed system using blockchain which can be applied to companies or
industries like shipping where data needs to be shared as it reduces latency and
lessens the dependence on cloud-based systems. In addition, he also discussed the
performance of distributed systems like Ethereum Swarm and IPFS on low-powered
devices such as Raspberry Pi was also compared there. However, to use blockchain
in IoT systems, sufficient computing resources, and energy of IoT devices are re-
quired because of the high amount of processing power needed to be consumed for
the mining process [26]. In Li et al.’s work [10], a blockchain-based decentralized
federated learning framework is proposed which uses a committee consensus mecha-
nism. This framework addresses the security concerns regarding continuous attacks
by malicious clients or cloud servers on the global model or private data from the
user’s IoT device by replacing the cloud server with a blockchain that stores the
global model and performs the local model update exchange as well using an effi-
cient and secure committee consensus mechanism to effectively lessen the amount
of consensus computing and ensure a decrease in malicious attacks.
Incorporation of edge computing with blockchain can be done to allow IoT devices
to enhance their computing capability by offloading storage and processing tasks to
nearby edge servers located at the base stations of radio access networks. In turn,
blockchain can also alleviate security issues by hiding private client information and
providing reliable access and control of the network through dispersed edge servers
and cloud servers. However, according to Luo et al. [27], this integration presents
several challenges that regarding scalability, consensus optimization, interoperabil-
ity and cost standardization, the security of the blockchain itself as well as security
challenges like communication security and protecting the privacy of devices. De-
spite the challenges presented in integration, some systems have been developed
from the successful incorporation of blockchain and edge computing. Rahman et al.
[28] present an in-home therapy management system where patients receive therapy
from professional healthcare providers/therapists through the use of gesture-tracking
IoT devices, along with other in-home sensors to collect multimedia data and a
blockchain-based mobile edge computing (MEC) framework supporting anonymous
fast, safe, spatiotemporal multimedia data communication which is available at all
times and shares data whenever it is needed. In the work done by Nyamtiga et al.
[17], an IoT design was discussed which achieves the necessary security and scal-
ability levels for the successful incorporation of blockchain and edge computing to
allow safe storage of IoT data and transactions in IoT systems. In our research, we
investigate the different approaches used in other works and derive the most suitable
approach that we can model our system on.

8

Chapter 3

Proposed blockchain-based edge
computing framework

Figure 3.1: Blockchain-based edge computing framework

Figure 3.1 illustrates our proposed framework which supports both data storage and
federated learning for data processing and analysis with minimal cost and latency
while addressing privacy and security concerns. Our framework can be split into the
following components:

3.1 Cloud layer

In edge computing, the topmost layer is the cloud layer which consists of multiple
cloud servers communicate with each other and provide cloud storage and processing
services in a centralized location. Although cloud servers may have large storage
and processing power compared to edge devices, due to their centralized/ remote
nature, there is latency and higher cost due to data transmitting from a distant
remote location. Hence, this layer provides large storage space and performs big
data analytics for the edge networks with limited resources. In addition, cloud

9

servers are generally equipped with better security policies than edge servers to stop
the spread of malware. Hence, some data is sent to the cloud server periodically
to be processed or stored while some data is processed and stored in edge devices.
Cloud servers broadcast the weights of the global model used for federated learning
as well as use the local model weights of each client to perform model aggregation
via the federated averaging process to update the global model.

3.2 Global blockchain network

Among the cloud servers, there exists a global blockchain network. Each cloud
server has a copy of all the blockchain data generated by every client and from the
blockchain, the local model weights for each client can be retrieved so that they can
be used for model aggregation in federated learning. Data cannot be tampered with
once a data block is added to the blockchain because any block points to the hash
value of its previous block and thus a change in data will cause a change in hash
value which can be easily detected. Moreover, cloud servers can use the PoW (Proof
of Work) consensus algorithm to update the global blockchain since we are using
Ethereum blockchain which currently only supports PoW and PoW requires large
amounts of computing power to solve a mathematical puzzle before adding a block
to the chain.

3.3 Edge server layer

It consists of a set of edge servers which can be single-board computers such as Intel
Xeon, Brix, or Raspberry Pi 3 are deployed at the base station to form an edge
computing network. Edge servers locally manage registered IoT devices involved in
healthcare and are responsible for delivering data to the user device when required
as well as interacting with cloud servers in the upper layer to transfer data in the
local edge network periodically to the cloud server for further processing or storage.
IoT devices are registered by edge server nodes to avoid being added to the edge
network without the permission of edge server nodes. This layer provides storage
and computing facilities within a P2P network of edge servers to provide storage
and prevent data loss due to a single point of failure which would be the case if
we relied just on a centralized cloud server. It distributes computing and storage
resources near the edge provides services locally in a reliable manner, and reduces
latency and cost due to the distance required to travel being reduced. On top of
providing the required resources to IoT devices close to the network’s edge, the edge
servers can also pass messages amongst themselves to allow each edge server to have
a copy of data of other edge servers including the blockchain data stored in other
edge servers and manage data processing tasks. In federated learning, edge servers
create local models for each client and these models are trained on their respective
client data to send local model weight updates for each client to the cloud server.

3.4 Local blockchain network

Between the edge center and the registered IoT devices, there exists a local blockchain
network to allow secure transmission and storage of data where client data is en-

10

crypted and stored in IPFS while the IPFS hash is stored in the client’s respective
local blockchain. Healthcare-related IoT devices can also communicate with each
other through edge servers for data sharing purposes. PoW is also used here to
validate transactions and add new blocks to the local Ethereum blockchain. Edge
servers periodically upload the data in local blockchains to the global blockchain
by dividing the data into blocks and then to ensure that no changes are made to
the data when uploaded to the cloud server, the hash values of these blocks are
calculated by the cloud server and is compared to the hash values stored in the
local blockchain. For federated learning, client data can be retrieved from the local
blockchain so that the client’s corresponding local model can train on it for data
analysis tasks.

3.5 IoT device layer

This layer consists of IoT end devices that can be used for obtaining medical infor-
mation such as smartphones, PCs, smartwatches, and laptops that use the appli-
cation to store and share data with other users as well as analyze the data stored
via blockchain, edge computing, and federated learning. As healthcare-related IoT
devices have limited resources and capabilities, medical data is sent to edge servers
through blockchain for storage and processing tasks.

11

Chapter 4

Using Blockchain for Security &
Data Preservation

To explain our use of blockchain in our system, our total work can be divided into 5
segments in this chapter. First of all, we discuss the variables and methods within
our smart contract. Then, we discuss the various applications of our smart contract
in the blockchain.

4.1 Within the Ethereum smart contract

For coding our smart contract, we have used Solidity programming language which
is a high-level, contract-oriented programming language used for writing Ethereum
smart contracts for Dapps, and the smart contract is written in a browser-based
IDE called Remix. Our smart contract for storage contains various methods and
variables related to storage and retrieval as well as verification.

Figure 4.1: Inside the Storage smart contract

12

4.2 Account access

People provide info to create their accounts and become part of the storage network.
These people can upload, download and share files with other users to allow them
to access important medical data. When users want to be a part of this system,
they must first register themselves by providing some mandatory information such as
their password, phone number, and email. After submitting the required registration
info, each user is assigned a unique user ID along and their device is registered in
the network to complete the creation of a user profile. All this information is hashed
using the SHA256 algorithm and stored on the blockchain and users then will be
able to access their account by providing only their email/phone and password
they provided during registration. When the user enters his/her email/phone and
password, they are passed via POST requests and hashed. If the hash of the entered
email/phone and password are equal to their existing hashes saved on the blockchain,
the user will be redirected to the file storage page, or else the user will be redirected
to the login screen with a flash message for the incorrect info entered. However,
even if the login info is correct, if the device address is not registered as one of the
user’s trusted addresses, you have to answer a short question, or else you can’t be
able to access the account due to suspicious access.

Figure 4.2: Account access

13

4.3 Storing and retrieving files

Since directly storing entire medical files on the blockchain is a bad idea due to the
amount of data capable of being stored limited either by protocols or because of the
large transaction fees required to be paid alongside the access latency produced, we
have chosen an alternative scheme. In Ethereum, there are data structures known as
struct (similar to a JavaScript object) and mapping (like Python dictionaries). The
DocInfo struct consists of a boolean variable for the file’s existence and a variable
for the IPFS hash which is used to store or retrieve data from IPFS. The mapping
data structure is used by using the hashed filename as the key where the hash is
generated using the SHA256 function and the value is the DocInfo struct. Simply
storing files in IPFS and saving the IPFS hash in the blockchain is inadequate
because if anyone gets the IPFS hash, they will gain access to that file. Hence,
for data encryption, we have chosen the AES-256 symmetric key algorithm which is
mathematically efficient and elegant, fast, and highly secure due to the higher-length
secret keys (128, 192, and 256 bits). AES keys can be stored in the blockchain to be
retrieved or updated when required from the AESkeyStore mapping data structure
which uses the AESkeyDetails struct, which consists of the AES key and a boolean
value for the key’s existence, as the value and a string as the key.
To store a file, firstly, we use the storeFile method to encrypt the file using the
AES-256 secret key. The encrypted file is then uploaded to IPFS and in return, we
receive an IPFS hash of the file. Lastly, the IPFS hash of the encrypted file is stored
in the DocInfo struct in the blockchain along with setting the boolean variable as
true since the IPFS file hash now exists in the blockchain, and the struct is inserted
into the mapping data structure with the hashed filename as the key.

Figure 4.3: Storing files

14

To retrieve the file, firstly, we retrieve the IPFS hash of the file using the getFile
method which checks if the filename hash exists in the mapping data structure, and
if it exists, the filename hash is used to retrieve the IPFS hash of the file from the
corresponding DocInfo struct. The IPFS hash is then used to retrieve the encrypted
file from the IPFS storage. Lastly, we use its AES secret key to decrypt the file,
turning it from cipher text to plain text.

Figure 4.4: File retrieval

4.4 File sharing

Sometimes, we may need to share files with other users but simply using the AES-256
algorithm is not good enough because, like other symmetric key algorithms, a single
secret key is used to encrypt and decrypt data and if the secret key is intercepted by
a hacker while it is being transferred from the sender to the recipient, the hacker will
be able to use it to decrypt the encrypted file. Therefore, to prevent it from falling
into the wrong hands, we use the RSA asymmetric key algorithm for encrypting
and decrypting the AES key rather than the user data because it is relatively slower
and RSA can only encrypt data smaller than or equal to its key length. Using the
getFile method, the sender gets the IPFS hash of the file he/she wants using which
he/she gets the encrypted file to be sent to the recipient. A public-private key pair
is generated on the receiver end using the RSA-1024 algorithm and the AES-256

15

secret key is encrypted using the RSA public key of the recipient. The encrypted
key is sent alongside the encrypted file to the address of the recipient and thus, even
if the hacker gets the encrypted file, they will not be able to decrypt the file as
it requires its original AES secret key which has now been encrypted by the RSA
algorithm. After the recipient receives both the encrypted file and secret key, the
recipient uses his/her RSA private key to decrypt the AES-256 secret key which is
used to obtain the original file.

Figure 4.5: File sharing

To cut off the file access, after retrieving the IPFS hash using the filename hash,
retrieving the encrypted file from IPFS, and decrypting the file using its AES secret
key, the original AES secret key is replaced by another secret key, and the decrypted
original file is again encrypted with the new key and stored in IPFS which in return
gives a new IPFS hash after which by first using the removeFile method and then
the storeFile method, the updated file information is placed into the mapping data
structure of the Ethereum blockchain and the new key replaces the old key in the
Ethereum blockchain by using the updateKey method.

16

4.5 Storing local model weights for FL

In our federated learning algorithm, the global model weights are broadcasted to
the edge servers where these weights are used by the local model for each client for
training on the client data and updating their weights. These updated local weights
are then sent to the cloud servers and undergo the federated averaging process where
a new global model is produced with adjusted weights and this process is repeated
several times. If a hacker were to alter these local weights, it would severely impact
the performance of the neural network and therefore, to protect these weights, a
separate AES-256 secret key is created to encrypt the weights and store them in the
blockchain for each client as bytes from an array using the setWeight method and
the AES-256 secret key is encrypted with the RSA-1024 public key of the recipient
cloud server. When the weights are required to be fetched, the AES key is decrypted
using the RSA private key of the recipient server and then the AES key is used to
decrypt the weights returned using the getWeight method, and lastly, the weights
converted back to their original array format.

Figure 4.6: Storing weights

17

Chapter 5

Analysis & Results

5.1 Evaluating the application of blockchain in

the proposed framework

Similar to how cars require fuel to operate, the Ethereum blockchain requires fees
known as gas to successfully perform transactions or execute a contract. It measures
the amount of computational work necessary to execute particular operations on the
Ethereum network. A gas limit is specified for each transaction to set the maximum
amount of gas available for consumption and any remaining gas from transactions is
returned to the sender’s account. In our program, we have imported the eth tester
and web3 packages to test our blockchain code and set a gas limit of 10000000000
to avoid any errors occurring due to insufficient gas remaining in the account after
each transaction is performed. In our code, get-methods contain the function type
keyword ‘view’ since they do not change the state of the contract and is only used
for retrieving and thus we use the call() function instead of the transact() function
in the case of get-methods as no transactions are created here. The following graph
shows the methods that alter the state of the contract and thus uses the transact()
function to generate transactions and consume gas for execution on the blockchain.

Figure 5.1: Gas consumption of smart contract processes on transactions

18

Since any transaction on the blockchain uses gas, from the graph we can see that
the deployment or instantiation of smart contract uses the most gas out of any of
the other processes available in the smart contract. This means that to deploy the
smart and successfully perform its transaction, miners will need the most compu-
tational effort here. In contrast, the miners will need the least computing energy
when it comes to de-registering devices that can read or write to the system. Since
gas is used by the contract to compensate miners who secure a particular transac-
tion on the blockchain, the process of de-registering devices faces the greatest risk
for transactions not occurring because, if the amount of gas is low, miners receive
comparatively lower compensation for their efforts due to which they may abandon
the job. The method for setting model weight consumes the second most amount of
gas which means that it will require the second most amount of computing energy
to storage the large array of neural network weights in the blockchain. The methods
for setting password, email, phone number, and answer requires similar units of gas
when compared to the rest of the functions performed in the blockchain and hence
require similar levels of computational work.
Similarly, we also measure the performance of different processes in our smart con-
tract which are used for the Ethereum blockchain network using the average time
taken to complete each process as shown in the following graph:

Figure 5.2: Performance of smart contract processes

Among the processes here, the devicePresent method has the best performance as
it is the fastest with an average time of 0.093 seconds. Like before, the setModel-
Weight method is in second but here it is in terms of performance with an average
time of 0.426 seconds. In addition, the methods for setting the password, email,
phone number, and answer as well the methods for retrieving AES key and entering
passwords have average time values very close or equal to one another indicating
that they have similar performance. Instantiation of smart contract and the method
for storing AES key has similar performance as well along with the registerDevice,
deregisterDevice device, and enterMail methods. The storeFile method has the
worst performance as it is the slowest with an average time of 1.906 seconds and in

19

testing this method, we have used our dataset file which has a file size of 122KB.

5.2 Federated learning with blockchain

Federated learning refers to machine learning on decentralized data with privacy
by default. Rather than sending data to a centralized server for training, models
are sent to edge nodes to be trained locally using the local data of clients, and
data at edge nodes never leave the device; only the new model parameters leave
the device [30]. However, model parameters are susceptible to alteration or theft
by hackers, and hence we the Breast Cancer Wisconsin (diagnostic) dataset [31] to
perform federated learning with blockchain to address security and privacy concerns
in addition to enhancing performance.

5.2.1 Data pre-processing and train-test split

Feature Selection

Feature selection is used to remove redundant features from our dataset so that
we can train our algorithm only on important features and thus remove the com-
plexity from our model and improve its performance. Strongly correlated features
are removed using feature selection because they bring similar types of information
into the algorithm and the performance of the model will be impacted by multi-
collinearity. Thus, this will allow a change in one feature to bring about a huge
change in another feature. The stronger the correlation, the more difficult it is to
change one feature value without it affecting the value of another feature and thus
it becomes difficult to differentiate between the individual effects of the indepen-
dent feature on the dependent output variable as the values of strongly correlated
features change in unison. This can lead to overfitting and problems with interpret-
ing the results, therefore, reducing the model’s performance. Therefore, we used a
threshold value of 0.8, and any features with correlation values greater than or equal
to this value are considered to be strongly correlated and the corresponding feature
columns were removed from the dataset.

Stratified train-test split

After feature selection, we make separate numpy arrays for feature data and label
data from the original dataset. Next, since the label values are strings, we convert
them into integer values of 0 and 1 for binary classification using the LabelEncoder
class from scikit-learn. Finally, due to some classification problems not having a
balanced number of examples for each class label, we have used stratified train-test
split to divide the original dataset into the training and test dataset in a 7:3 ratio
such that it preserves the same proportions of examples in each class like in the
original dataset.

Feature Scaling

Feature scaling is a data pre-processing technique that is used to normalize the
range of features of data. It is important because most of the time, our dataset will
contain features that are highly differing in magnitudes, units, or a range of values

20

due to which the algorithm may end up assigning higher weights to features with
greater values regardless of the unit of these values as a change in that feature can be
considered more important than the other feature and hence the objective functions
may not work properly. We have used standardization as our feature scaling method
which re-scales each feature in our dataset, ensuring each feature has a distribution
with a mean and the standard deviation of 0 and 1 respectively, and it is useful for
optimization algorithms used in neural networks. It uses the equation:

xstd =
xi − x

σ
(5.1)

5.2.2 Creating clients

Just like in a real-life implementation of federated learning, each client has their own
data and training has to be carried out in a decentralized manner as the system will
not have direct access to all the training data. In this step, we create clients and
the data they have by sharding the training data since each client will have their
own separate data. Sharding (also known as horizontal partitioning) allows us to
break our data into smaller chunks or shards to be stored in separate servers, just
like breaking up a single large table to create multiple tables with different rows but
the same schema and columns. Here, we have used the training data to create 10
data shards, one for each client and a dictionary is created for the 10 clients where
each client’s id is the key and their shard of the training data is the value. The
graphs below show how the label counts for each client according to the data shard
they possess:

(a) Label count for client-1 (b) Label count for client-2

(c) Label count for client-3 (d) Label count for client-4

21

(e) Label count for client-5 (f) Label count for client-6

(g) Label count for client-7 (h) Label count for client-8

(i) Label count for client-9 (j) Label count for client-10

Figure 5.3: Label counts of clients created using training data

5.2.3 Processing and batching clients’ and test data

After creating our client dictionary which consists of client ids as keys and their cor-
responding training data shards as values, for each client, we create a TensorFlow
dataset using their corresponding data shard and then batch them. Batching is nec-
essary because the data shard of each client can have a huge size and if you load the
entire data into the memory, the training time of the model will be very long because
a lot of memory is used in your CPU which is very inefficient and hence it is very
costly for the computer. Moreover, if the neural network has to store error values
for all consecutive elements of the dataset in the memory, training will become even
slower. All of this can also lead to out-of-memory errors. To ensure faster training,
prevent out-of-memory errors, less noisy gradients, and perform highly optimized
array operations, batching is used and the model updates its hyperparameters after
completing each batch. Like with our client data, we also do the same for our test
data. We have used appropriate batch sizes so that overfitting of data does not
happen.

22

5.2.4 Creating the Multi-Layer Perceptron

For binary classification, we have chosen the Multilayer Perceptron (MLP) model be-
cause our data is neither sequential nor does it have a spatial relationship. The mul-
tilayer perceptron is a fully connected, feedforward artificial neural network (ANN)
composed of perceptrons which gives a solution to problems that need complex cal-
culations. A perceptron is a neuron that can be defined as a linear classifier with one
or more input connections with each connection having a weight/parameter learned
from training, an activation function and produces a single output based on the re-
sult of the activation function on the sum of products of inputs, the weight of their
connections, and biases from their predecessors in the previous layer since MLPs are
fully connected. An MLP is typically composed of 3 types of layers: an input layer
providing input signals from the data used for the model, an output layer which is
the final hidden layer that outputs a prediction based on the provided input, and in
between those two, an arbitrary number of hidden layers which play a critical role
in the operation of an MLP. A network can consist of multiple hidden layers de-
pending on the complexity of its functions. The hidden layers are called so because
the results they produced are not displayed as their outputs are used as inputs for
the output. Data flows from the input layer to the output layer and throughout
the training process of an MLP, forward and backward passes occur. In the forward
pass, using feed-forward propagation, the input signal flows through the network
layer by layer from the input layer until it reaches the output layer, and the result
of the output layer is measured against the desired response. In the backward pass,
using backpropagation, partial derivatives of the error function with respect to the
various biases and weights are propagated backward through the MLP layer by layer
on comparing the output of the MLP with the desired response to make successive
adjustments to the parameters of the model to minimize error [32]. The forward
and backward pass continues until the network reaches the convergence state when
the error can go no lower.
For federated learning, we have used an MLP with two fully connected hidden layer
with the same number of neurons as the number of remaining features after feature
selection and the output layer consists of a single neuron to make predictions.

Figure 5.4: Model summary of MLP for binary classification

23

In our federated learning architecture, each global server has a global MLP while
each client of the network has a local MLP which is trained using local data provided
by clients. The architecture is depicted in the following figure:

Figure 5.5: FL architecture with MLP neural network

In our MLP model, we have used the following:

• Sigmoid activation function: It is a type of activation function, which limits
the output to a range between 0 and 1, and hence it is also known as a
squashing function. It is usually used for supporting non-linear behavior and
it is the correct choice for the output layer of a binary classification problem like
ours since its output can be treated as probabilities of a data point belonging
to a particular class as the input to the function is transformed into a value
between the range of 0 and 1. One of its big advantages is that the derivative
of a sigmoid function can be represented using the sigmoid function itself. The
sigmoid function for all possible inputs results in an ”S”-shaped curve and can
be expressed by the following equation:

σ(x) =
1

1 + e−x
(5.2)

• ReLU activation function: It is a type of activation function that will output
the input directly if the input value is positive, otherwise, it will produce an
output of zero. It can be represented by the following equation and graph:

y = max(0, x) (5.3)

Many neural networks use ReLU because it is easier to train models with it
and hence they often perform better. This is due to the fact that the ReLU
function does not activate all the neurons at the same time because if the

24

output of a linear transformation has a value less than 0, only those neurons
will only be deactivated [33]. In our work, we have used the ReLU function
for the hidden layers.

• Binary cross-entropy loss function: It measures the performance of a binary
classification model. Loss functions typically measure the deviation of the
output from the true result and the greater the deviation, the larger the loss.
The binary cross-entropy loss function compares the predicted output to the
actual class output which can be either 0 or 1 and then calculates the deviation
from the actual value [34]. It calculates the loss of an example using the
following equation where N is the output size:

LossBCE = − 1

N

N∑
i=1

ytrue log(ypred) + (1 − ytrue) log(1 − ypred) (5.4)

• Adam optimizer: For our model, we used the Adam optimizer. It is a variant
of stochastic gradient descent (SGD). SGD has a fixed learning rate which is
why it takes longer for it to iterate over all the data and reach convergence.
In addition, newer approaches can outperform SGD in terms of cost function
optimization. Adam makes use of AdaGrad and RMSProp algorithms which
are also variants of SGD by combining the best of both their properties and
thus it is an optimization algorithm that is computationally efficient, has faster
training time and better accuracy scores compared to the other optimization
algorithm mentioned, suitable for problems that have very noisy/or sparse
gradients and also are large in terms of data and/or parameter [35]. Also,
since clients store huge amounts of data in a data/file storage system, Adam
optimizer is preferable.

5.2.5 Federated model training with blockchain

Every client on the Ethereum network has an account. The cloud servers broadcast
the weights of the global MLP model to all the edge servers and a local MLP model
created for each client. Using each client’s data stored in their local blockchain, we
train their respective local models and place its updated weights on the blockchain
after encrypting it using its AES-256 key. The AES-256 key itself is also encrypted
using the public key generated from the RSA-1024 algorithm implemented on the
recipient cloud server and stored in the blockchain. The local blockchain data is
uploaded to the global blockchain and in the cloud servers, the AES-256 key for
each client is retrieved from the blockchain and decrypted using the RSA private
key, and the local model weights obtained from training are retrieved from the
blockchain and then decrypted using the AES-256 key for model aggregation via
federated averaging. We use the following equation for federated averaging:

f(w) =
K∑
k=1

nk

n
Fk(w) where Fk(w) =

1

nk

∑
i∈Pk

fi(w) (5.5)

The equation on the right-hand side estimates the model weights for each client based
on the loss values found across every data point they trained with. On the other

25

hand, the equation on the left-hand side involves scaling each of those parameters
and summing them all component-wise. The updated weights obtained from training
the local model are in fact the scaled model weights and in the central/cloud server,
we obtain the average weight/gradient over all the local models by summing the
scaled weights of all clients. This average weight is then used by each local model
for the next training round.

(a) Loss of Local Model for client-1 (b) Loss of Local Model for client-2

(c) Loss of Local Model for client-3 (d) Loss of Local Model for client-4

(e) Loss of Local Model for client-5 (f) Loss of Local Model for client-6

(g) Loss of Local Model for client-7 (h) Loss of Local Model for client-8

(i) Loss of Local Model for client-9 (j) Loss of Local Model for client-10

Figure 5.6: Loss of each client’s local model using training data

26

(a) Accuracy of Local Model for
client-1

(b) Accuracy of Local Model for
client-2

(c) Accuracy of Local Model for
client-3

(d) Accuracy of Local Model for
client-4

(e) Accuracy of Local Model for
client-5

(f) Accuracy of Local Model for client-
6

(g) Accuracy of Local Model for
client-7

(h) Accuracy of Local Model for
client-8

(i) Accuracy of Local Model for client-
9

(j) Accuracy of Local Model for client-
10

Figure 5.7: Accuracy of each client’s local model using training data

27

5.2.6 Evaluating performance

The following graphs shows how the performance of our global model varied in terms
of binary cross-entropy loss and accuracy over each round. We have also compared
this model to a standard ML model which uses the same MLP model as the FL
model and uses the same number of rounds/epochs.

Figure 5.8: Loss of Global Model over 100 rounds

Figure 5.9: Accuracy of Global Model over 100 rounds

Model type Loss Accuracy (in %)
Federated model 0.485 94.737

Standard ML model 0.498 91.813

Table 5.1: Comparison between models

28

In our graph for the loss of the global model, we can see that the fall in binary
cross-entropy loss reduces after each round, eventually converging at a loss of 0.485
at about the 90th round. Also, the rise in accuracy of the global model reduces after
each round, eventually converging at an accuracy of 94.737% past the 90th round.
Our global/federated model yields a better performance too in comparison to the
standard ML model which is indicated by the loss and accuracy values found.
In addition, to the previous graphs, we have constructed confusion matrices of the
global model and each local model at the end of training to see their performance
on test data.

Figure 5.10: Confusion matrix of Global Model

(a) Confusion matrix of Local Model
for client-1

(b) Confusion matrix of Local Model
for client-2

29

(c) Confusion matrix of Local Model
for client-3

(d) Confusion matrix of Local Model
for client-4

(e) Confusion matrix of Local Model
for client-5

(f) Confusion matrix of Local Model
for client-6

(g) Confusion matrix of Local Model
for client-7

(h) Confusion matrix of Local Model
for client-8

30

(i) Confusion matrix of Local Model
for client-9

(j) Confusion matrix of Local Model
for client-10

Figure 5.11: Confusion matrices of each client’s local model

From our confusion matrices of the global model and each local model, we can see
that local models of client-1 and client-2 have been able to achieve the same per-
formance as the global model while the other local models have not. The confusion
matrix for the local model of client-6 and client-7 has the closest performance among
the local models which do not have the same performance as the global model and
the performance of the local models for clients 8 and 10 are the same. Moreover,
the local model for client-9 has the worst performance among all the local models.

31

Chapter 6

Conclusion

Maintaining the privacy and security of people’s medical data is a matter of great
concern in today’s world. Information theft and cyber-attacks for medical data are
rising exponentially year after year because medical data is very valuable, espe-
cially on the black market, because it can contain a patient’s personally identifiable
information such as social security numbers and health insurance credentials. More-
over, there are a large number of interconnected devices involved in healthcare, and
healthcare organizations often need to share information across these devices. Ac-
cording to a Trustwave report, a medical record may fetch up to $250 per record
on the black market whereas, in comparison, a credit card is valued at $5.40 [36].
This is because if fraud or theft is detected, the credit card or the account can
get canceled but medical records may contain information that is very difficult or
not possible to change, and thus the demand for such information is increasing.
Therefore, people are looking for ways to upgrade their security and maintain the
privacy and integrity of medical data because this might end up putting someone’s
life at risk. If you solely rely on cloud storage, you might not be able to access your
data when outages or cloud server failure occurs. Through our proposed system,
we hope to provide fast, secure, and reliable data storage and processing using edge
computing and blockchain with federated learning so that data will not be stolen,
lost, or otherwise tampered with due to data breaches or cloud server failure. It is
going to be a challenge integrating edge computing and blockchain along with using
federated learning in such a way so that they can both contribute to preserving peo-
ple’s medical data. Nonetheless, through our research, we hope to help healthcare
organizations to keep their valuable medical data safe from being compromised or
stolen by those with malicious intent and allow them to store, access, and process
medical data using the Internet in a fast, efficient and reliable manner.

32

Bibliography

[1] LifeLock Official Site, “What Is Data Privacy and Why Is it Important?,” Jan.
18, 2021. [Online]. Available: https://www.lifelock.com/learn-identity-theft-
resources-what-is-data-privacy-and-why-is-it-important.html

[2] R. Geambasu, T. K. Kohno, A. A. Levy, and H. M. Levy, “Vanish: increasing
data privacy with self-destructing data,” in Proceedings of the 18th Conference
on USENIX Security Symposium, pp. 299–316, 2009.

[3] A. Irei, “Understand why edge computing technology mat-
ters,” SearchNetworking, Apr. 23, 2019. [Online]. Available:
https://searchnetworking.techtarget.com/feature/Understand-why-edge-
computing-technology-matters.

[4] K. Shaw, “What is edge computing and why it mat-
ters,” Network World, Nov. 13, 2019. [Online]. Available:
https://www.networkworld.com/article/3224893/what-is-edge-computing-
and-how-it-s-changing-the-network.html

[5] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer, vol. 50,
no. 1, pp. 30–39, 2017. DOI: 10.1109/MC.2017.9

[6] K. Gyarmathy, “The Benefits, Potential, and Future of Edge Computing,”
Data Centers and Colocation Services, blog, Apr. 29, 2021. [Online]. Available:
https://www.vxchnge.com/blog/the-5-best-benefits-of-edge-computing

[7] J. M. Acken and N. K. Sehgal, “Security Considerations for Edge Computing,”
presented at the 9th International Conference on Computer Science, Engi-
neering and Applications (CCSEA 2019), pp. 187–194, Jul. 13–14, 2019. DOI:
10.5121/csit.2019.90915

[8] A. Patel, “The Top Advantages Of Blockchain For Busi-
nesses,” SmartData Collective, Jul. 08, 2021. [Online]. Available:
https://www.smartdatacollective.com/top-advantages-blockchain-for-
businesses/

33

[9] O. Rowe, “The pros and cons of blockchain adoption,” FM
Magazine, Dec. 01, 2019. [Online]. Available: https://www.fm-
magazine.com/issues/2019/dec/blockchain-pros-and-cons.htm

[10] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A Blockchain-Based
Decentralized Federated Learning Framework with Committee Consensus,”
IEEE Network, vol. 35, no. 1, pp. 234–241, 2021. DOI: 10.1109/mnet.011.2000263

[11] Binance Academy, “Blockchain Advantages and Disadvan-
tages,” Binance Academy, Oct. 21, 2020. [Online]. Available:
https://academy.binance.com/en/articles/positives-and-negatives-of-blockchain

[12] L. Mearian, “Blockchain Techology What is blockchain? The com-
plete guide,” Computerworld, Jan. 30, 2019. [Online]. Available:
https://www.shirebiz.net.au/nrsite/wp-content/uploads/2020/09/Block-Chain-
Technology-Explained.pdf

[13] Y. Ren, Y. Leng, Y. Chang, and J. Wang, “Secure data storage based on
blockchain and coding in edge computing,” Mathematical Biosciences and En-
gineering, vol. 16, no. 4, pp. 1874–1892, Mar. 2019. DOI: 10.3934/mbe.2019091

[14] B. Brode, “What Is Blockchain and How Does It Work?,” Hashed
Out by The SSL Store™, blog, Mar. 11, 2021. [Online]. Available:
https://www.thesslstore.com/blog/what-is-blockchain-how-does-blockchain-
work/

[15] R. Sheldon, “6 steps to how blockchain storage works,” SearchStorage, Jan.
10, 2019. [Online]. Available: https://searchstorage.techtarget.com/tip/6-steps-
to-how-blockchain-storage-works

[16] M. B. Zahid, M. B. Rasheed, and N. B. Javaid, “Balancing Electricity Demand
and Supply in Smart Grids using Blockchain,” M.S. thesis, Dept. of CS, CUI,
Islamabad, Pakistan, 2019

[17] B. W. Nyamtiga, J. C. S. Sicato, S. Rathore, Y. Sung, and J. H. Park,
“Blockchain-Based Secure Storage Management with Edge Computing for IoT,”
Electronics, vol. 8, no. 8, p. 828, Jul. 2019. DOI: 10.3390/electronics8080828

[18] V. K. C. Ramesh, “Storing IOT Data Securely in a Private Ethereum
Blockchain,” M.S. thesis, Dept. of CS, UNLV, Nevada, USA, 2019

34

[19] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[20] Z. Kartit, A. Azougaghe, H. K. Idrissi, M. E. Marraki, M. Hedabou, M.
Belkasmi, and A. Kartit, “Applying Encryption Algorithm for Data Security in
Cloud Storage,” Lecture Notes in Electrical Engineering Advances in Ubiquitous
Networking, vol. 366, pp. 141–154, 2016. DOI: 10.1007/978-981-287-990-5 12

[21] K. Ziechmann, S. Richards, C. Jones, P. Wackerow, D. Awad, W. Entriken,
and R. Cordell, “Introduction to smart contracts,” ethereum.org, Mar. 30, 2021.
[Online]. Available: https://ethereum.org/en/developers/docs/smart-contracts/

[22] J. Parms, “Symmetric vs. Asymmetric Encryption - What are differences?,”
SSL2BUY Wiki - Get Solution for SSL Certificate Queries, Nov. 30, 2020.
[Online]. Available: https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-
encryption-what-are-differences

[23] U. Jayasinghe, G. M. Lee, Á. Macdermott, and W. S. Rhee, “TrustChain:
A Privacy Preserving Blockchain with Edge Computing,” Wireless Com-
munications and Mobile Computing, vol. 2019, pp. 1–17, Jul. 2019. DOI:
10.1155/2019/2014697

[24] Z. Xu, W. Liu, J. Huang, C. Yang, J. Lu, and H. Tan, “Artificial Intelligence
for Securing IoT Services in Edge Computing: A Survey,” Security and Commu-
nication Networks, vol. 2020, pp. 1–13, Sep. 2020. DOI: 10.1155/2020/8872586

[25] K. Wright, M. Martinez, U. Chadha and B. Krishnamachari, ”SmartEdge: A
Smart Contract for Edge Computing,” 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), 2018, pp. 1685-1690. DOI: 10.1109/Cybermat-
ics 2018.2018.00281

[26] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When Mobile
Blockchain Meets Edge Computing,” IEEE Communications Magazine, vol. 56,
no. 8, pp. 33–39, 2018. DOI: 10.1109/mcom.2018.1701095

[27] C. Luo, L. Xu, D. Li, and W. Wu, “Edge Computing Integrated with
Blockchain Technologies,” Complexity and Approximation Lecture Notes in
Computer Science, pp. 268–288, 2020. DOI: 10.1007/978-3-030-41672-0 17

35

[28] M. A. Rahman, M. S. Hossain, G. Loukas, E. Hassanain, S. S. Rahman, M. F.
Alhamid, and M. Guizani, “Blockchain-Based Mobile Edge Computing Frame-
work for Secure Therapy Applications,” IEEE Access, vol. 6, pp. 72469–72478,
2018. DOI: 10.1109/access.2018.2881246

[29] F. Y. Rashid, “Why hackers want your health care data
most of all,” InfoWorld, Sep. 14, 2015. [Online]. Available:
https://www.infoworld.com/article/2983634/why-hackers-want-your-health-
care-data-breaches-most-of-all.html

[30] Z. Li, V. Sharma, and S. P. Mohanty, “Preserving Data Privacy via Federated
Learning: Challenges and Solutions,” IEEE Consumer Electronics Magazine,
vol. 9, no. 3, pp. 8–16, May 2020. DOI: 10.1109/mce.2019.2959108

[31] W. H. Wolberg, W. N. Street, and O. L. Mangasaria, Breast
Cancer Wisconsin (Diagnostic) Data Set, 2016. [Online]. Available:
https://www.kaggle.com/data/46091

[32] S. S. Haykin, “Multilayer Perceptrons,” in Neural Networks and Learning
Machines, 3rd ed., Upper Saddle River, New Jersey: Prentice Hall, 2009, pp.
122–229.

[33] D. Gupta, “Activation Functions: Fundamentals Of Deep Learn-
ing,” Analytics Vidhya, blog, Jan. 30, 2020. [Online]. Available:
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-
activation-functions-when-to-use-them/

[34] S. Saxena, “Binary Cross Entropy/Log Loss for Binary Classifica-
tion,” Analytics Vidhya, blog, Mar. 03, 2021. [Online]. Available:
https://www.analyticsvidhya.com/blog/2021/03/binary-cross-entropy-log-
loss-for-binary-classification/

[35] J. Brownlee, “Gentle Introduction to the Adam Optimization Algorithm for
Deep Learning,” Machine Learning Mastery, Jul. 03, 2017. [Online]. Available:
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-
learning/

[36] E. Neveux, “Healthcare Data Breaches & the Value of Health-
care Data,” SecureLink, blog, Feb. 05, 2020. [Online]. Available:
https://www.securelink.com/blog/healthcare-data-new-prize-hackers/

36

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Motivation
	Objectives
	Thesis Organization

	Literature Review
	Proposed blockchain-based edge computing framework
	Cloud layer
	Global blockchain network
	Edge server layer
	Local blockchain network
	IoT device layer

	Using Blockchain for Security & Data Preservation
	Within the Ethereum smart contract
	Account access
	Storing and retrieving files
	File sharing
	Storing local model weights for FL

	Analysis & Results
	Evaluating the application of blockchain in the proposed framework
	Federated learning with blockchain
	Data pre-processing and train-test split
	Creating clients
	Processing and batching clients’ and test data
	Creating the Multi-Layer Perceptron
	Federated model training with blockchain
	Evaluating performance

	Conclusion
	Bibliography

