What i1s Relevant in a Text Document
a Machine Learning Based Approach

by

Abdullah Al Mahmud
17301033
Jannat-E-Noor
17101021
Sadman Alam Reshad
17101403
Syed Nafis Fuad
17101250

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
June 2021

(©) 2021. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Abdullah Al Mahmud Jannat - E - Noor
Abdullah Al Mahmud Jannat-E-Noor
17301033 17101021
Sadman Alam Reshad Syed Nafis Fuad
Sadman Alam Reshad Syed Nafis Fuad

17101403 17101250

Approval

The thesis/project titled “What is Relevant in a Text Document a Machine Learning
Based Approach” submitted by

1. Abdullah Al Mahmud (17301033)
2. Jannat-E-Noor (17101021)

3. Sadman Alam Reshad (17101403)
4. Syed Nafis Fuad (17101250)

Of Summer, 2020 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on June 6, 2021.

i

Examining Committee:

Supervisor:
(Member)

Thesis Coordinator:
(Member)

Head of Department:
(Chair)

Alemrarz

Amitabha Chakrabarty, Ph.D
Associate Professor
Department of Computer Science and Engineering

BRAC University

Md. Golam Rabiul Alam, Ph.D
Associate Professor
Department of Computer Science and Engineering

BRAC University

Sadia Hamid Kazi, Ph.D
Associate Professor
Department of Computer Science and Engineering
BRAC University

il

skazi@bracu.ac.bd
Signature

Abstract

Text Documents often contain valuable data. But not all data is relevant. That is
why extracting relevant data from text documents is an essential task. Extracting
relevant data from text documents refers to the study of classifying text documents
into such groups that describe the contents of documents. There are many methods
to find out relevant data from a cluster of text or a text document. Classifying
extensive textual data helps to organize the records better, make the search easier
and relevant and simplify navigation. That makes this task still an open research
issue. This paper uses three techniques of classifying text documents: convolution
neural networks (CNN) with deep learning, Gaussian Naive Bayes and support vec-
tor machines (SVM). With these three algorithms, the text we want to classify goes
through three layers of checks. So, it gives us more reliability.

Keywords: CNN; SVM; Gaussian Naive Bayes; text classification

v

Acknowledgement

This research has been supervised by Dr. Amitabha Chakrabarty, Associate Profes-
sor, Department of Computer Science and Engineering, BRAC University. We are
thankful to all the faculty members of BRAC University who have motivated and
inspired us throughout the entire undergraduate program.

Table of Contents

Declaration
Approval
Abstract
Acknowledgment
Table of Contents
List of Figures
Nomenclature

1 Introduction
1.1 Problem Statement
1.2 Research Objective

2 Related Work

3 Data Description
3.1 Data Preprocessing o

4 Methodology
4.1 Convolution Neural Network
4.1.1 Embedding Layer
4.1.2 Convolution 1D Layer
4.1.3 MaxPool Layer
4.1.4 Drop Out Layer
4.1.5 Dense Layer o
4.2 Support Vector Machine
4.3 Gaussian Naive Bayes

5 Result Analysis
6 Future Work
7 Conclusion

Bibliography

vi

ii

iv

vi

viii

ix

10
11
11
11
11
12

14

18

19

21

A Appendix
A.1 Feedback

vil

List of Figures

3.1 Distribution of Categories)
3.2 Vectorized form of Visualization 6
4.1 CNN . . 8
4.2 Summary of CNN oo 9
4.3 Word embedding Lo 10
4.4 Flowchart of our Model 13
5.1 True values vs Predicted values 14
5.2 Results of precision and fl-score 15
5.3 True values vs Predicted values 15
5.4 Train Accuracy of CNN 16
5.5 Test Accuracy of CNN 16
5.6 Prediction 1 16
5.7 Prediction 2 16
5.8 Prediction 3 16
5.9 Training Result Graph 0. 17
5.10 Test Result Graph, 17

viil

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CNN Convolutional Neural Network
GNB Gaussian Naive Bayes

IDF Inverse Document Frequency
LDA Linear Discriminant Analysis
LRP Layer wise Relevance Propagation
LST Latent Semantic Indexing

ML Machine Learning

SFS Sequential Feature Selection

SV M Support Vector Machine

TF Term Frequency

1X

Chapter 1

Introduction

The measure of textual information is expanding largely each day. So, the need for
efficient handling of these data is immense. Recognizing significant content from
text documents has additionally become vital. So, importance recognition of data
is one of the significant characteristics of academic study to recognize apposite data
from various sources. If we can use the composition of any document, we can differ-
entiate the related subjects related to that particular document. A few documents
have unsurprising structures in which the different parts ought to be anything but
difficult to recognize, while a few documents are essential and smooth.

Text documents can be classified by different concepts. For example, classification
based on semantic meaning and classification based on sentimental meaning. This
paper aims to classify text documents using convolution neural networks (CNN),
Gaussian Naive Bayes, and support vector machines (SVM).

Text classification is very useful in many fields, including academia and industry.
In our paper, we aim to find more useful use of the techniques mentioned above to
classify text documents. Our main objective is to acquire as most efficient results
possible and dive even deeper.

1.1 Problem Statement

Text classification, overall, is a rising field of study. Fields, for example, Marketing,
Product Management, Academia, and Governance, are now utilizing the way toward
analyzing and extracting data from textual information. But with the ever-growing
world of information, finding relevant data from text documents is a very difficult
task. Especially when it comes to search for millions of documents. Despite being
such an important issue, there are still open research areas in this field.

This paper uses three techniques for the classification of text documents CNN, SVM,
and Gaussian Naive Bayes. Our goal is to classify text documents that explain the
contents of the documents. Herewith Gaussian Naive Bayes and SVM, we focus on
classification based on word count, and with CNN, we focus on classification based
on semantic meaning.

1.2 Research Objective

This research aims to find more systematic uses of Machine Learning to find relevant
information from text documents. We have quite a few options to choose from when
it comes to deep learning. The ML model of a trained CNN or Convolutional Neural
Network, the Bag of Words SVM classifier model, and Gaussian Naive Bayes. Our
proposed model categorizes the text by using these methods. By the end of our
research, we hope to achieve a more constructive system for filtering relevant text.
This research will certainly allow us to understand text classification in detail and
further will help us in finding out solutions to the same type of problems and also
updating our model.

Multi-layered data in hierarchical order presents different patterns in them, which
can be implemented in deep learning. We are proposing to firstly identify the specific
words that help to categorize the document into separate categories or genres with
which the text is associated.

Chapter 2

Related Work

In this chapter, we have included all previous work related to our topic of text clas-
sification done by previous researchers.

E. Agichtein, L. Gravano, compared snowball with DIPRE, which needs less train-
ing data. In this paper, tuples were extracted using Snowball, and not all relevant
information was extracted. Given some tuple, Snowball inspects the text that con-
nects ‘o’ and ‘I’ to create a pattern [1].

R. W. White discussed the evaluation of two techniques that are related to a web
search. The first one is the summarization technique which is after a search engine
has found results, the top 30 websites are summarized based on words contain, their
position, proportion of query terms. And the second one is implicit feedback, where
context information is used; the idea of context is based on whether the user spends
more time to read relevant material than less time to read less relevant material [2].

In the paper of L. M. Abualigah, A. T. Khader, E. S. Hanandeh, two basic KH al-
gorithms are used (KHA) to find the solution to text document clustering problem.
The first one is KHA, where two genetic operators are also used. And the other one
is without genetic operators. They proposed three unique versions of the hybrid KH
algorithm (HKHASs), which are HKHA1, HKHA2, and HKHA3. Furthermore, they
also proposed a combination of objective functions [3].

A. Dhar, N. Dash, and K. Roy, in their paper, used cosine similarity and FEuclidean
distance to measure the vector space model. This model was based on the TF-IDF
feature. Bangla text documents were taken as input which was tokenized. Then a
vector space model was created, and cosine similarity and Euclidean distance were
used separately [4].

Pattern deploying and pattern evolving techniques have been used to retrieve rel-
evant documents [5]. Bucket models for mining text documents are a well-known
method. A bucket is created using vectors, where each vector is a binary vector
representation of a document.

It is assuming that positive documents are drawn from a solitary fundamental distri-

bution, a compact support help to bind them together across all buckets. Negatives
show a huge variety. Mining each container to track down the frequent item sets
that fulfill a given support level. Each subsequent item set is a bunch of words. The
consequence of this interaction is an assortment of sets of item sets, recovering the
archives that help the item sets that are frequent in buckets [6].

K. Torkkola, in his paper, pointed out insufficiency in class inequality of two fa-
mous methods, LSI and SF'S, according to some relevant criterion. He suggested the
transformation of features on the basis of LDA. He suggested a systematic dimen-
sion reduction step by using LSI. [7].

F. Horn. L. Arras, G. Montavon, K. R. Muller, and W. Samek proposed a model
that will find out relevant words from a document and also visualize them in word
clouds. This model compared three methods of bringing out relevant words. This
model used raw TF-IDF features, LRP, which breaks down the classification score.
The relevancy score was computed by comparing the frequency of one class com-
pared to other classes [8].

Deep learning has been another method to predict document classification. A pro-
posed approach uses CNN with deep learning to predict classes of text. In addition,
MNB was used [9].

In another paper by L. Arras, F. Horn, K. R. Muller used two machine learning
models which were word-based, a CNN and an SVM classifier. This model used the
LRP method. Reason behind it is to decompose the predictions of these models.
And a CNN model. This CNN model had already been trained. So that it could map
documents accurately to their actual category. Four steps were done to compute
an input representation, forward- propagate the input representation through the
CNN, backward-propagate the output through the network where LRP was used,
pool the relevance scores associated to each input variable of the network [10].

Vector space model used by T. Xia and Y. Du in their paper used VSM text clas-
sification. They used VSM to represent documents with vectors. A collection of
documents was indexed rather than individual documents to make it easier to cat-
egorize the documents. Terms in document titles and not in the titles were given
different treatments [11].

Chapter 3

Data Description

Thousands of text data is available for research purpose. For our work, we chose
“20 Newsgroup data”. It is a collection of news articles of 20 different categories.
For our work, we used ten categories. The categories that we used are as follows:
Atheism, Religion (miscellaneous), Computer Graphics, Space (Science), Microsoft
Windows (miscellaneous), For sale (miscellaneous), Automobile vehicles, Sports
(Baseball), Electronics Politics. 20 Newsgroup data is commonly used data that
is used most often for text-related research. Here is the distribution of all different
categories of this dataset:

Distribution of Categories

600

500

o
o
=}

300

Count of Data
N
o
o

=
o
S

o

comp.sys.mac.hardware
sci.electronics
talk.politics.guns
rec.autos
rec.sport.baseball
misc.forsale
soc.religion.christian
alt.atheism

sci.space

rec.motorcycles
comp.graphics
comp.sys.ibm.pc.hardware
rec.sport.hockey
comp.os.ms-windows.misc
talk.politics.misc

sci.crypt

comp.windows.x
talk.religion.misc

sci.med
talk.politics.mideast

Categories
Figure 3.1: Distribution of Categories

As we can see in Figure 5.1, there are 20 different categories in this dataset. Almost
all the categories have around 600 data. Again, let us take a look at this data after
we have turn the text data into vectors.

p.sys.mac.hardware

ctronics

litics.guns
rec.autos
rec.sport.baseball
misc.forsale
soc.religion.christian
alt.atheism
sci.space
rec.motorcycles
comp.graphics
comp.sys.ibm.pc.hardware
rec.sport.hockey
comp.0s.ms-windows. misc
talk.politics.misc
sci.crypt
comp.windows.x
talk.religion.misc
sci.med
talk.pelitics.mideast

axis 1

Figure 3.2: Vectorized form of Visualization

3.1 Data Preprocessing

In our model data preprocessing involves five steps.
1. Load sentences from raw data files.

2. Removing stop words. Stop words are word that usually have no value in terms
of text classification. These word may occur multiple times in a document but
these words do not help to find any meaning. These words are used in a
language to maintain the rules of grammar. But in text classification these
words are not helpful. So by removing these words we can make the documents
easier to process. Example of stop word removal:

You were too busy so I came back

You busy I came back

3. Stemming and lemmatization. Stemming means transforming a word to its
root form. For example, if we apply stemming on the word ‘running’, it will
turn into ‘run’. Again, applying stemming on the word ‘cats’ turns it into
‘cat’. Example of stemming:

Word Stemmed Word
trouble troubl
dogs dog
programming program

Then comes lemmatizing words. Lemmatizing word means doing some pro-
cessing with the help of vocabulary and morphological analysis or words. After
lemmatizing a word, the token that we get is called a lemma. Some examples
of lemmatization are given below:

Word Lemma
studies study
caring care
stripes stripe

. Pad each sentence to the maximum sentence length. Padding is very important
for neural network models. Padding means adding some value at the end or at
the start of the sentence after it has been converted into vector form. Usually
all the sentences are padded in such a way so that length of all sentences
become same. So that is why each sentence is padded to the maximum sentence
length.

. The final step is creating a vocabulary index and after that mapping each word
to an integer between 0 and n (where n is the vocabulary size). As a result,
sentence is now a vector of integers.

Chapter 4

Methodology

The proposed model in this paper consists of three methods. CNN, SVM and
Gaussian Nalve bayes. The main objective of this model is to classify text from text
documents. Let us take a look at those three methods one by one.

4.1 Convolution Neural Network

The neural network model that we propose looks roughly as follows:

Embedding Convolution 1D Convolution Convolution MaxPool Dropout Dense
Layer (bigramy) 1D 1D Layer Layer Layer
(tigram) (fourgram)

Figure 4.1: CNN

Now let us take a look of how each layer is helping to classify text data. The
summary of this model looks as following:

Model: "dcnn®

Layer (type) Output Shape Param #
embedding (Embedding) multiple 31964800
convld (ConvlD) multiple 401600
convld_1 (Conv1D) multiple 601600
convld_2 (ConvlD) multiple 801600
global_max_poolingld (Global multiple 0

dense (Dense) multiple 77056
dropout (Dropout) multiple 0
dense_1 (Dense) multiple 2570

Total params: 32,224,726
Trainable params: 32,224,726
Non-trainable params: 0

Figure 4.2: Summary of CNN

4.1.1 Embedding Layer

The embedding layer converts a word into a word vector and uses these word vec-
tors to pass these to the next layer in the model. The word vector can have any
dimensional space. In this model, we have used 128 as the dimension of a single
word vector. And the number of vectors created is equal to the vocabulary size of
our training data which is 159824. For an explanation of how embedding is done in
this layer, let us take two sentences as an example. The first one is “Hope to see
you soon,” and the other one is “Nice to see you again.” Now first, these sentences
are encoded by assigning a unique integer number to each word.

hope to see vou again
0 1 2 3 3

nice to see you agam
5 1 2 3 6

Suppose we want the size of vectors to be 2. Then the above encoded sentences will

look like these:

Index Embedding
0 [1.2.31]
1 [0.1.4.2]
2 [1.0.41]
3 [03.21]
4 [2.2.1.4]
5 [0.7.1.7]
5 [14.2.0]

So finally the trained data will have a vector look like following;:

[[1.2, 3.1], [0.1, 4.2], [1.0, 4.1], [0.3, 2.1], [2.2, 1.4], [0.7, 1.7], [1.4, 2.0]]

This vector is then passed to the next layer.

4.1.2 Convolution 1D Layer

A convolution 1D layers creates a convolution kernel. This kernel is convolved with
the layer input over a single semantic dimension. This layer produces a tensor of
outputs. So this is basically a matrix of dimension (vocabulary size * dimension of
word vector). According to this, the model that we have used will have a convolution

1D of size (159824 * 128). Let us take a look at an example.

cat

sitting

there

dog

resting

here

Word embeddings

0.7 | 0.4 | 05

0.2 | -0.1 | 0.1 Convolutional filter

05]04 | 01 |\ 06| 04|05
0.2 | -0.1 | 0.2

06| 03 | 05

03 |-0.1| 0.2

05| 04 | 0.1

Figure 4.3: Word embedding

0.9

In the above figure size of the kernel is 2. The kernel iterates through the whole
matrix and keeps generating a convolution filter or tensor. As the kernel in the

10

figure uses a kernel of size 2, this is called a convolution 1D bigram. The difference
among convolution 1D bigram, trigram, and fourgram is the kernel size used. In
bigram kernel size is 2, in trigram kernel size is three, and in fourgram, kernel size
is 4.

4.1.3 MaxPool Layer

In this model, we have used a one-dimensional MaxPool layer. A one-dimensional
MaxPool layer reduces the size of data, the number of parameters, amount of com-
putation, and also controls overfitting. A one-dimensional max pool block moves a
window over the input data with a specific stride. While doing this, it computes the
maximum value in each window. This layer helps the convolution layer to retrieve
information from a bigger portion of the original vector.

4.1.4 Drop Out Layer

When there are many layers in a neural network, there are many weights and many
bias parameters. This leads to overfitting problems. A way to fix this problem is to
add a dropout layer in the network. A dropout rate is passed to this layer. What
this layer does is deactivates some neurons in a layer on the basis of this value. In
each iteration, this is done randomly. This means neurons are deactivated randomly
based on the probabilistic value of the dropout rate. As a result of some neurons
being deactivated, the chances of overfitting the dataset are decreased.

4.1.5 Dense Layer

A dense layer connects each input to each output. Dense layer uses the following
operation to find out the output:

output = activation(dot(input, kernel) + bias) (4.1)

here element wise activation is performed by activation and the kernel is a weight
matrix. Kernel is created by the layer. Bias is a vector, also created by the layer.
The output generated by this layer is a vector. This layer basically changes the
dimension of the input vector.

4.2 Support Vector Machine

Support vector machine is a machine learning model that is based on the structural
risk reduction principle from computational learning theory [12]. Structural risk
minimization is basically the idea of finding a hypothesis h for which a lower true
error can be guaranteed. Here, h the probability of making a wrong assumption on
an unseen and randomly selected text example.

For SVM, we have used the TF-IDF method to vectorize words. TF-IDF evaluates
the relevancy of a word in a document. It is calculated by multiplying two metrics.
These two metrics are TF and IDF. There are many ways of measuring TF. One of
them is counting the number of times a word appears in a document. On the other

11

hand, IDF means how much relevant or irrelevant a word is in the entire document.
An IDF value of a word that is close to 0 describes that the word is more relevant
in the document [13].

4.3 Gaussian Naive Bayes

This is a classification technique that uses the Bayes’” Theorem. According to this
theorem, a classifier makes the assumption that the existence of a particular feature
in a class is not related to the presence of any other class. This theorem calculates
posterior probability.

Ple| v) = #05¢
Plc|X)=P(x1|c)x P(za]c) x...x P(x,|c)x P(c) (42)

In the above equation, P(c | x) is the posterior probability of class ¢ given that
predictor is x, P(c) is the prior probability of class ¢, P(x) is the prior probability
of predictor x, and finally, P(xz | ¢) is the probability of prediction given class.
Gaussian Naive Bayes follows a normal distribution, and it supports continuous data.
This means Gaussian Naive Bayes makes an assumption that the continuous values
related to each class are distributed according to normal distribution. Gaussian
Nailve Bayes is calculated with the following equation:

P(xi|y) = ! > exp (—M> (4.3)

2
2mo2 20 Y

The model we have proposed uses above mentioned three algorithms to classify text
data. The working of the model can be represented by the following flow chart:

12

Input
(Text Data)

Data
Preprocessing

N/ N/

Result_1 Result_2 Result_3

Is all results
are equal?

Show Result _

Check if any two
results are equal

Cannot Classify

Process
unseen data

Show Result h

Figure 4.4: Flowchart of our Model

13

Chapter 5

Result Analysis

In this chapter, we analyze the results extracted from training and testing the mod-
els. We trained three algorithms separately as in our model they classify input
independent of each other.

Support Vector Machine

With SVM we achieved,

Train accuracy score: 99.93%

Test accuracy score: 89.46%

350
alt.atheism

‘comp.graphics
p.grap | 66

‘comp.os.ms-windows.misc

250

misc forsale

rec autos

Tue label

rec_sport baseball

sci.electronics

sci.space

talk.politics. mideast

talk religion.misc

sci.space

E
g
]
=
£
]
=
®

comp.graphics
misc.forsale
rec_sport.baseball
sci.electronics
talk_politics. mideast
talk_religion.misc

‘omp.0s.ms-windows. misc

Predicted label

Figure 5.1: True values vs Predicted values

14

Here are the results of precision and fl-score:

precision recall fl-score support
0 0.865979 0.789969 0.826230 319.000000
1 0.759912 0©0.886889 0.818505 389.000000
2 0.947059 0.817259 0.877384 394.000000
3 0.873810 0.941026 0.906173 390.000000
4 0.890000 0.898990 0.894472 396.000000
5 0.954660 0.954660 0.954660 397.000000
5] 0.769892 0.910941 0.834499 393.000000
7 0.937500 ©0.875635 0.905512 394.000000
8 0.921875 0.761290 0.833922 310.000000
9 0.731405 ©.705179 ©0.718053 251.000000
accuracy 0.863474 0.863474 0.863474 0.863474
macro avg 0.865209 0.854184 0.856941 3633.000000
weighted avg 0.869399 0.863474 0.863680 3633.000000

Figure 5.2: Results of precision and fl-score

Gaussian Naive Bayes With GNB we achieved,
Train accuracy score: 99.77%
Test accuracy score: 75.62%

alt.atheism
350

comp.graphics

F 300
comp.os.ms-windows.misc

250

misc.forsale

rec.autos

True label

rec.sport.baseball

sci.electronics

sCl.space

talk.politics.misc

talk.religion.misc

0 o «» = w @ u 9

E)) % k=] © (%) [v) 0 @

a]

1] = £ 0 5 2 5 o £ £

= @] 2 T n 5]] c

E] 5 = J z "] =] o S
o a Bl @ 2 @ @ =] =

Figure 5.3: True values vs Predicted values

15

Convolutional Neural Network
With CNN we received,

Epoch 1/5
174/174 [=============cc=csozzmssmzonas] - 1931s 11s/step - loss: 1.667@ - sparse_categorical accuracy: 8.4581
Epoch 2/5
17447174 [] - 1864s lls/step - loss: B.2624 - sparse_categorical accuracy: 9.9316
Epoch 3/5
174/174 [====s=s===s==ss=s=ssssssssss=s] - 1981s 11s/step - loss: @.@288 - sparse_categorical_accuracy: 8.9%44
Epoch 4/5
174/174 [masssssssssssssssesssmssessnms 1 - 20445 12s/step - loss: @.€128 - sparse_categerical_accuracy: 9.9984
Epoch 5/5
174/174 [] - 208725 12s/step - loss: B.@@89 - sparse_categorical accuracy: 9.9988

Figure 5.4: Train Accuracy of CNN

Train accuracy score: 99.86%

116/118 [] - 298s 3s/step - loss: @,5880 - sparse_categorical_accuracy: @,8448
[©.5e84028840065602, @,8448229432106018)

Figure 5.5: Test Accuracy of CNN

Test accuracy score: 84.48%

So, the average accuracy of these three algorithms is 83.19% which is overall the
accuracy of our model. After building our model we used some random data from
the test data set as input and here are the results:

Actual Category: sport
Predicted Category: sport
Execution Time: 2.794 seconds

Figure 5.6: Prediction 1

Actual Category: graphics
Predicted Category: graphics
Execution Time: 2.771 seconds

Figure 5.7: Prediction 2

Actual Category: forsale
Predicted Category: forsale
Execution Time: 2.7&6 seconds

Figure 5.8: Prediction 3

16

Training Result Graph:

Metnod

s =)
Metnod Name

Figure 5.9: Training Result Graph

Test Result Graph:

Metnod

B En)
Metnod Name

Figure 5.10: Test Result Graph

17

Chapter 6

Future Work

There are still quite a few spaces for improvement in our research. According to the
flowchart of figure 6.4 (flowchart of our model), chapter 6, our model will not be
able to classify the text data if all the algorithms give different results. Again, if two
models give the same result and both are wrong, then our model will not be able
to classify correctly. Although our model provides reliability, there are still some
flaws present in the model. So we would like to improve on these flaws by using
better approaches. We would also like to make the process of predicting faster, so
it becomes more usable.

18

Chapter 7

Conclusion

The main purpose of this paper is to develop a model to classify any text data.
We used 20 newsgroup datasets to train our model. Our model consists of three
algorithms. Convolutional Neural Network, Support Vector Machine, and Gaussian
Naive Bayes. These three algorithms predict results independently of each other
after that; all the results are compared to find out the correct classification. This
provides much reliability to the outcome. But there are still some flaws in this
model. So there are places for improvement. We would like to use the knowledge
that we gained while conducting this research to improve this model and make this
model more reliable, efficient, accurate, and usable.

19

Bibliography

[10]

[11]

Eugene Agichtein and Luis Gravano. “Snowball: Extracting relations from
large plain-text collections”. In: Proceedings of the fifth ACM conference on
Digital libraries. 2000, pp. 85-94.

Ryen W White, Ian Ruthven, and Joemon M Jose. “Finding relevant docu-
ments using top ranking sentences: an evaluation of two alternative schemes”.
In: Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval. 2002, pp. 57-64.

Laith Mohammad Abualigah, Ahamad Tajudin Khader, and Essam Said Hanan-
deh. “A combination of objective functions and hybrid krill herd algorithm for
text document clustering analysis”. In: Engineering Applications of Artificial
Intelligence 73 (2018), pp. 111-125.

Ankita Dhar, NiladriSekhar Dash, and Kaushik Roy. “Classification of text
documents through distance measurement: An experiment with multi-domain
Bangla text documents”. In: 2017 3rd International Conference on Advances
in Computing, Communication & Automation (ICACCA)(Fall). IEEE. 2017,
pp. 1-6.

Shivani D Gupta and BP Vasgi. “Implementation of pattern discovery to re-
trieve relevant document using text mining”. In: 2015 International Confer-
ence on Green Computing and Internet of Things (ICGCIloT). IEEE. 2015,
pp- 327-332.

Daniel Barbard, Carlotta Domeniconi, and Ning Kang. “Mining relevant text
from unlabelled documents”. In: Third IEEE International Conference on
Data Mining. IEEE. 2003, pp. 489-492.

Kari Torkkola. “Discriminative features for text document classification”. In:
Formal Pattern Analysis € Applications 6.4 (2004), pp. 301-308.

Franziska Horn et al. “Exploring text datasets by visualizing relevant words”.
In: arXiv preprint arXiv:1707.05261 (2017).

P Parvathi and TS Jyothis. “Identifying Relevant Text from Text Document
Using Deep Learning”. In: 2018 International Conference on Circuits and Sys-
tems in Digital Enterprise Technology (ICCSDET). IEEE. 2018, pp. 1-4.

Leila Arras et al. “” What is relevant in a text document?”: An interpretable
machine learning approach”. In: PloS one 12.8 (2017), e0181142.

Tian Xia and Yi Du. “Improve VSM text classification by title vector based
document representation method”. In: 2011 6th International Conference on
Computer Science & Education (ICCSE). IEEE. 2011, pp. 210-213.

20

[12] Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 2013.

[13] B Stecanella. What is tf-idf. 2019.

21

Appendix A

Appendix

A.1 Feedback

In this section, we will add the feedback we had received from the panel members
at the defense session. The criticisms were about:

e Improper Wording in Abstract.

e Lacking Chapter Description.
We have accepted the feedback and improved our paper according to the crit-
icisms by reviewing our choice for words in the Abstract and adding short
descriptions to the beginning of each chapter.

We have accepted the feedback and improved our paper according to the criticisms
by reviewing our choice for words in the Abstract and adding short descriptions to
the beginning of each chapter.

22

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Problem Statement
	Research Objective

	Related Work
	Data Description
	Data Preprocessing

	Methodology
	Convolution Neural Network
	Embedding Layer
	Convolution 1D Layer
	MaxPool Layer
	Drop Out Layer
	Dense Layer

	Support Vector Machine
	Gaussian Naïve Bayes

	Result Analysis
	Future Work
	Conclusion
	Bibliography
	Appendix
	Feedback

