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Abstract

Real-time character animation for gaming and film industries is challenging and
achieving production-ready quality is the hardest part. Managing time and re-
sources also plays a vital role here. Animation through marker-based motion cap-
ture is quite a tiresome process that requires costly motion-capture suits, multiple
cameras, and a large amount of storage space to store all the animation. In order
to make advancements in the field of animation, AI can help us manage our time
and resources as well as achieve high-quality animation. In this paper, we propose a
model that aims to generate real-time character animation for biped locomotion in
Unity ML agents using Reinforcement learning and Imitation learning algorithms.
We first evaluate the training with solely the state-of-the-art RL algorithm, PPO.
Then we analyze the combination of Imitation learning algorithms BC and GAIL in
conjunction with PPO. We further discuss the comparison between the two train-
ing datasets and show that our model is able to generate animations in real-time
avoiding all the tedious work and large databases. We demonstrate that this ap-
proach will result in a good amount of data compression making it effortless while
maintaining the quality.

Keywords: Animation; AI; Reinforcement Learning; Imitation Learning; PPO;
BC; GAIL; Unity ML agents
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Chapter 1

Introduction

In this ever so neoteric era of Information and Communication Technologies, where
AI and ML are being used every day starting from personalized assistants to medical
diagnosis, cyber security, digital devices and etc. the only progressive and sagacious
move would be to adapt to and get benefited by using this approach. The proposed
paper - “Character Animation Using Reinforcement Learning and Imitation Learn-
ing Algorithms” uses deep reinforcement learning and imitation learning, in here
targeted towards increasing the efficiency of the ever demanding, animation indus-
try that can be clearly comprehended from the size of animation market worldwide
from 2017-2020 [16].

1.1 Field of Character Animation

Character Animation in particular is replacing other techniques such as Animate
CC used for designing and publishing ads and games and also seen being used by
the special effects supervisor during film-making. Animating 3D Characters using
reinforcement learning will not only enhance the character quality providing a more
visually aesthetic appearance but also save a lot of time and energy spent in process-
ing as it can be performed in real-time resulting in overall efficiency of the system.
With the use of neural networks, it was possible to get new and unique motion data.
The neural network approaches can be divided into two learning approaches. They
are supervised learning and reinforcement learning. Many researchers applied the
supervised learning approach into various character animation and control projects
such as locomotion, kung fu motion and sports activities as well as for motion re-
targeting and interpolating keyframe postures[13]. There is a risk that these poses
might converge into average poses because of ambiguity. Later on, Holden et al.
introduced a special architecture. It was called the Phase-Functioned Neural Net-
works[13] for producing sharp movements. In recent times, there has been a surge in
work using deep RL (DRL) to train models for simulated character animation[12].
We further explore in this direction for character animation using deep RL (DRL)
and IL.
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1.2 Aims and Objectives

Our aim is to generate real time character animation using ML agent’s toolkit with
Reinforcement learning and Imitation learning algorithms. Our system will be cost
efficient, easy to implement, and it does not require huge datasets. The importance
of this research is both in its practical application i.e. generating an animated char-
acter using ML Agent tool kit, as well as, in advancing scholarly understanding of
the topic through experimental results of programming using the Deep RL(PPO)
and IL(BC GAIL) algorithms. As opposed to previously used marker-based mo-
tion capture techniques, this paper uses the Unity Machine Learning Agent Toolkit
cutting down time, resources and cost spent in the project. This paper proposes
to eliminate all of the tiresome processes used in the field of Character Animation
using this system. The idea here is to minimize the processing time using robust
algorithms in addition to making it affordable for widespread use by implementing
it in ML-Agent toolkits.

1.3 Thesis Overview

The thesis paper is presented as follows:
Chapter 1 is the Introduction of our work where an overview of the problem and
our aims and objectives are given
Chapter 2 states the Problem Statement and illustrates the Research Objectives
Chapter 3 narrates the Literature Review
Chapter 4 describes the Methodology
Chapter 5 shows the Results
Chapter 6 the analysis of the method and results are discussed
Chapter 7 lastly, concludes the paper followed by the References

2



Chapter 2

Problem Statement

In major animation studios and gaming industries, character animation is done
using a marker-based motion capture technique that requires a performer to wear
a motion-capture suit. Multiple cameras are required in the room to capture the
motion of the performer. After that, the motion capture data is applied to the 3D
virtual character through the rigging process. This process of character animation
requires a huge amount of time and resources.

2.1 Scholarly Literature and Limitations

Ashish Shingade and Archana Ghotkar[4] proposed a markerless motion capture
method using the Microsoft Kinect for character animation. This method, however,
faced many problems. By using a single depth camera on the Microsoft Kinect, they
saw the accuracy dropping for recognition which limits the usability of applications
when interaction with external objects is needed. Hubert P. H. Shum along with
Edmond S. L. Ho and two others[3] proposed a new method. This new method
could reconstruct valid movement from incomplete and noisy postures. Their work
improves the quality of posture recognition. However, all of these methods of ani-
mation require a lot of resources, cost and time. This is where AI can help us to
ease up the process and mitigate the need for huge resources, cost and time.

2.2 Our Proposal

We believe that the combination of RL and IL is the key to solving the charac-
ter animation problem. In reinforcement learning, the model learns the animation
through trial and error experience. This experience is utilized to maximize the re-
wards which encourage high-level behaviors making character animation easier to
generate. On the other hand, with imitation learning the model learns from expert
demonstrations which encourage behaviors to generate human-like animations. Go-
ing into this project, our aim is to provide a system that combines RL algorithm
and IL algorithms that generates real-time character animation. We intend to make
use of the Unity ML Agents Toolkit and its easy to implement features.
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2.3 Research Objectives

In order to reach the aim of this project, we intend to proceed through the following
steps:
1.Environment Setup: First, we need to set up our training environment in Unity
ML agents.
2.Developing Model: Then we need to import and configure our 3D character
model in the environment.
3.Training: We will train our model in two different training sessions to compare
the performance of our system.
4.Generating Results: Lastly, we will generate results and analyze the comparison
between the two result datas.
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Chapter 3

Literature Review

3.1 Character Animation and Motion Capture

In order to generate character animation, motion capture data is needed. Since
marker-based motion capture has many drawbacks like wearing a suit and having
multiple cameras in the room, we searched for studies that worked with markerless
motion capture data. International Journal of Computer Graphics & Animation
(IJCGA) published a paper on Animation of 3D Human Model Using Markerless
Motion Capture Applied To Sports[4].
The paper discusses a markerless motion capture method for 3D animation which
uses a Microsoft Kinect to get the motion capture data. They used the MS Kinect for
skeleton recognition and tracking which is essential for rigging the 3D human model.
Their dataset consists of some human gestures like sprinting, jumping, waving which
is captured through the MS Kinect. They used MakeHuman and Autodesk Maya to
create the 3D human model. Then the character is rigged using skeleton recognition
and tracking in order to apply the motion data. There was a mismatch of the size
of the skeleton of motion capture data and the rigged 3D human model. In order to
avoid that they needed to extract the rotations of the skeleton tracking phase. In
order to do that, motion data transformation’s concept was used.
They have found a good method for this using the MS Kinect. They showed how
the MS Kinect has depth cameras that make detecting skeleton joints and tracking
easier. Their method also takes less development and processing time. According
to the authors, if the method is further developed in the future, it can be widely
applied for game development and the film industry.
However, the single depth camera of Microsoft Kinect drops the accuracy of recog-
nition which limits the usability significantly. To solve this problem, IEEE TRANS-
ACTIONS ON CYBERNETICS published a paper on Real-Time Posture Recon-
struction for Microsoft Kinect[3].
Kinect is Microsoft’s motion capture system. The kinect uses an infrared sensor for
obtaining the depth information. Thus it is faced with a problem that is similar
to that of an optical motion capture. One of these problems are occlusions and
the other one is mixing up tracked body parts. In this paper, a new method is
introduced. This new method is used to measure the reliability of the tracked body
parts. There are significant advantages to this new method. One of the advantages
is that it depends on behavioral information. This makes it possible to apply the
method in various tracking frameworks. Even with the ones that have different types
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of source data. Instead of a boolean value, a degree of reliability is returned with the
new method. So the parts that are neither completely right nor wrong can be made
use of. Utilizing the dependability estimation, another strategy to address broken
postures with a movement information base is presented. It initially consolidates the
determined unwavering quality incentive as loads into a movement information base
inquiry to remove a bunch of comparable postures that are kinematically substantial.
At that point, utilizing these postures, a local idle space called the neural posture
space with nearby Principle Component Analysis (PCA) is built. In light of the
high comparability of the source information, the built regular posture space is low
dimensional and smooth. At that point a space for a posture that fits well with
the followed parts while fulfilling kinematic constraints is streamlined. At long last,
the outcome is passed to a simulated character for additional upholding kinematic
highlights, for example, segment length and the stability of movement.
The proposed framework can reproduce movement from fragmented and noisy mo-
tion information gained from the Microsoft Kinect. It is productive and accomplishes
real-time execution, helping the dense client to client interaction. The constraints
of the system are the computational costs, postures that are unavailable in the
database and have to be recreated from the natural postures may not be a hundred
percent correct, reconstruction of fast movements are also difficult causing motion
blur. Also, the system can hardly handle 45 degrees of rotation which results in vis-
ibility restriction. The writers accept their structure is general and can be applied
in various motion capture frameworks. Another path is to apply it for improving
the conventional optical motion capture system. Thus in conclusion this framework
may improvise the already existing Kinect system by some noticeable marks but not
entirely.

3.2 Reinforcement Learning for Character Ani-

mation

With the advancement of AI, more specifically with neural networks, it is possible
to make progress in the quality of animation. Many studies have shown that Re-
inforcement Learning algorithms are able to generate better realistic movements.
That is why we looked into the study of Reinforcement Learning.
Reinforcement Learning: A Survey[1] was published in a Journal of Artificial Intel-
ligence. The paper discusses the core issues of Reinforcement learning. Right off
the bat, they talk about exploitation versus exploration which is characterized as a
solitary state case. Here a significant distinction between supervised learning and
reinforcement learning is that a reinforcement learner should expressly investigate
the environment. The surroundings should be more efficiently explored because to
define a problem perfectly, exploration is mandatory for the best possible outcome.
One of the least difficult reinforcement learning problems is known as the k-armed
bandit which has a tremendous report in the field of measurements and applied
science. In this problem, we get to know about the fundamental difference between
exploitation and exploration. This paper also gives us an idea about delayed re-
ward. It portrays that the agent should have the option to realize which of the
actions are better dependent on the reward which can happen later on. Problems
identified with delayed reinforcement learning are all displayed as ”Markov decision
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processes”. Adding to that we get to know about the generalization case. It is
needed when the state is large and it is expected that a similar state should have
similar values and similar actions. So for this, it is needed to have a large dis-
crete state space. Through generalization, we can find out about huge spaces and
have the option to have the capacity of learned data and transfer of information
between ”comparative” states and action. Last they express that another procedure
of managing huge state spaces is to regard them as a hierarchy of learning problems.
The hierarchical solution presents a minor sub-optimality in execution. However,
in the case of execution time, learning time, and space it is very much efficient. In
the case of reinforcement learning techniques, there are lots of variety but all these
varieties work effectively for smaller problems. Among these very few of the tech-
niques works for large-scale problems. This is because it is very difficult in general
cases to solve arbitrary problems. To solve problems that are highly complex the
tabula rasa learning technique should not be used rather bias should be for getting
help in the learning process. From this paper, we can say that there is still a long
way to go. Some fascinating inquiries stay for learning strategies and techniques
for approximating, disintegrating, and joining bias into problems. In this way, with
precise biases upheld by human developers or teachers, difficult reinforcement learn-
ing problems will eventually get addressed and can be compelling later on also. In
another study, Algorithms for Reinforcement Learning [2], we get a better under-
standing of the Reinforcement Learning algorithms. The book gives an overview of
the Reinforcement Learning algorithms. The algorithms are expanded on the basis
of dynamic programming. The contents in the book are categorized into 3 sections
namely Markov Decision Process, Value Prediction Problems, and Control. In the
first section, they give a short overview on the Markov Decision Process. Then the
basics of dynamic programming algorithms is described. They present two examples
of MDPs and describe that MDPs are not finite one-dimensional state and action
spaces. Next, they talk about how they calculate optimal value function. Then
with the optimal value function, they determine optimal behavior for the state. Af-
ter that, they describe dynamic programming algorithms which are value and policy
iteration algorithms. In section 2 of the book, the problem of learning to predict
values associated with states is discussed. They clarify the essential thoughts for the
tabular case. TD() is the principal algorithm they clarified. This can be seen as the
learning process to value iteration and dynamic programming. At that point they
portray the new gradient based techniques (GTD2 and TDC), which can be seen
as improved forms of TD(). At last, the third area is added to algorithms that are
created for control learning. In the rest of section 3, direct methods for estimating
the optimal action-values and actor-critic methods are discussed.
The book aimed to provide a self-contained and relatively short overview of the
Reinforcement Learning algorithms with updated contents. They discussed various
problems and their solutions. They showed improved and better iterations of the
methods as they progressed throughout the discussions. As the book was a short but
precise overview of the algorithms, the authors had to make a few compromises. Due
to space constraints, the book inevitably missed a large portion of the reinforcement
learning literature. However, they concluded with links to various resources of the
field for further exploration.
Now that we have gathered a bit of knowledge on Reinforcement Learning and
the algorithms, we looked into some of the applications of this field for character
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animation. An interesting work caught our attention among many, DeepMimic:
Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills
[10]. The paper was published on ACM Transactions on Graphic Journal.
The authors showed that deep RL methods can be used to make the agent imitate a
good number of reference motion clips. Their method can be applied for extremely
dynamic actions as well. Keyframed motions can also be used in their method. They
combined the imitation of motion objectives along with a task objective. Their
method maintains the quality of motion capture methods while making it more
convenient to use. Their future exploration denotes using a number of clips in the
training process.

3.3 Reinforcement Learning and Imitation Learn-

ing

This study shows the use of imitation learning in conjunction with reinforcement
learning. The paper Self-Imitation Learning of Locomotion Movements through Ter-
mination Curriculum [11], is the closest research to our proposed system. In their
work, the authors propose a self-imitation learning system that enables the stable
locomotion controllers for rapid learning. Their approach mainly combines the two
recent works of continuous control which are FDI-MCTS and DeepMimic. However,
their work aims to overcome the limitations of these two methods. These limita-
tions include high run-time cost of the FDI-MCTS method and data dependency
and sample complexity of the DeepMimic method. In their proposed system, they
first generate reference motion using an online tree search method which allows them
to use reinforcement learning with RSI to find a neural network controller in order
to imitate the reference motion. The following description will help us to under-
stand the research of imitation learning. In today’s modern era Imitation learning
approach aims to imitate human interaction for a certain work. Imitation learning
uses observations and actions from a human demonstration to learn a policy. About
Imitation learning we can say that the idea to teach through it has been throughout
the world for a long time. However, the field is gaining more popularity in recent
times because of its advances in computing and sensing adding to that the more
upgrowing demand for intellect implementation. The pattern for seeking through
imitation learning is achieving more acceptance due to it becoming easier to learn
complex tasks without having that much explicit knowledge about the tasks [6]. In
“Imitation learning” an agent learns from demonstrations of specific actions, which
are usually done by a human (Expert) and then proceeds to imitate the actions.
Imitation learning aims to master a policy that results in a desired trajectory. Here
the desired trajectory are basically an expert’s demonstrations [9].

8



Chapter 4

Methodology

4.1 Overview

Our system uses the Unity ML Agents Toolkit for training an agent in a simulated
environment. We were able to train our model using reinforcement learning and
imitation learning with the help of a simple-to-use Python API. The ML agents
workflow can be divided into three steps. Creating the environment, training the
neural network and then embedding the neural network in a different environment[8].
At first, we created the environment and the character model with the help of the
walker example environment provided by the Unity ML agents. In ML agents, the
environment consists of an academy, brain and agents. The academy is what lets us
use other training networks using Unity’s python API[8]. The training was done in
two different sessions. The first one was done with the state of the art reinforcement
learning algorithm, PPO. In the second training session we used imitation learning
algorithms(GAIL and BC) in conjunction with PPO. In order to better visualize the
results in graphs, we used Tensorboard. After that, we analyzed the results of the
two training runs. Our proposed system is shown in Figure 4.1.

4.2 Algorithms

With the use of ML agents toolkit we have access to two state of the art Rein-
forcement Learning algorithms and two Imitation Learning algorithms. After much
research we have decided to use the Reinforcement Learning algorithm, PPO in
conjunction with the two Imitation Learning algorithms, GAIL and BC. In the next
sections, we further explain our reasoning for choosing these algorithms and how
they work.

4.2.1 Reinforcement Learning

Reinforcement Learning is a subdivision of Machine Learning. Through “Reinforce-
ment Learning” an agent faces different challenges and in the process learns a variety
of behavior by interacting with a vigorous environment. The main difference be-
tween Reinforcement Learning and Supervised Learning is that it gives the agent
slight assessment throughout the agent’s learning process and this assessment also
has an indissoluble impact afterwards. Thus through more time the agent learns
to perform better. With Reinforcement learning more coherent algorithms can be

9



Figure 4.1: Proposed System
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built which can be applied to various important fields. In a practical RL setting an
agent in a system receives the systems state and reward that is related to its latest
change in the systems environment. After that the agent computes an activity and
sends it back to the system. Lastly the system makes changes in its state and the
process is repeated again. In order to increase total rewards a better way to control
the system is needed. In the framework of Markovian Decision Processes (MDPs)
it uses dynamic programming to find an efficient value function instead of finding
an efficient controller. RL algorithms are realistic versions of dynamic program-
ming methods, they use robust function approximation methods to present value
functions. This helps working with huge magnitude systems. So, in reinforcement
learning, the agent discovers a policy that maximizes the reward. Among numerous
RL algorithms, Proximal Policy Optimization(PPO) has proven to be more stable
and more general purpose. Hence, we decided to use PPO as our RL algorithm.

4.2.2 Proximal Policy Optimization (PPO)

According to OpenAI, Proximal Policy Optimization (PPO) performs comparatively
better than other state of the art algorithms[14]. Aside from this fact, one of the
other reasons why we chose this algorithm is that it is much simpler to implement
and tune making it ease-of use while maintaining good performance. PPO is what
made it possible for us to train the agent in a challenging environment where the
agent tries to move to the destination (target object). In this process it learns to
walk and run. Even turn, and face toward the target. In other RL algorithms, a
substantial amount of effort is put into tuning the hyperparameters to get a good
result. This is where PPO makes it easy to implement. Tuning the hyperparameters
couldn’t be any easier than in PPO[14].

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (4.1)

Here, in this algorithm [7], is a hyperparameter where =0.2, is the policy parameter,
Eˆ t is the empirical expectation over timesteps, rt is the ratio of the probability
under the new and old policies, Aˆ t is the estimated advantage at time t. In order to
do a Trust Region update, the objective finds a way to implement it. It is compatible
with Stochastic Gradient Descent. Furthermore, by removing the KL penalty, the
algorithm is simplified[14]. In various tests, the algorithm has performed quite well.

Algorithm 1 PPO, Actor-Critic Style

1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , N do
3: Run policy πθold in environment for T time steps

4: Compute advantage estimates Â1, . . . , ÂT
5: end for
6: Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

It is proved that, with this PPO algorithm [7], the agent develops flexible movement
policies. This helps them to make turns while it moves towards the destination[14].
This is why PPO was the perfect choice for our implementation.
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4.2.3 Imitation Learning

Training an agent merely with reinforcement learning to make it learn via trial-and-
error could result in non-human-like behavior. Hence, it is more intuitive to show
the agent how to perform the task in a human-like-behavior. With the help of ML
agents toolkit, imitation learning can be used solely or in conjunction with rein-
forcement learning [19]. We have researched and found out that the performance
of the agent could increase drastically when imitation learning is used in conjunc-
tion with reinforcement learning. So, we have decided to use the two imitation
learning algorithms Behavioral Cloning(BC) and Generative Adversarial Imitation
Learning(GAIL) in conjunction with the reinforcement learning algorithm, PPO.

4.2.4 Behavioral Cloning (BC)

In imitation learning it is presumed that a set of expert dataset is obtainable. The
dataset contains a set of trajectories and factors. By implementing these datasets
a policy can be learned by direct mapping of the factor to trajectory. This process
to form a policy can be put together by using an algorithm called BC (Behavioral
Cloning) [9]. Behavioral Cloning is the most straightforward and easiest form of
imitation learning. In this algorithm it gathers a set of demonstrations done by an
expert, which is D. This is presented as a set of trajectory. Thus for application a
policy presentation is needed. To compare the resemblance between the demon-
strated action and the agent’s own policy - objective function L has to be selected.
Lastly the policy parameters has to be returned [9]. This algorithm [9] is considered
efficient as it is capable of imitating the expert without having direct contact with
the environment. It also takes a short amount of time.

Algorithm 2 Abstract of behavioral cloning

Collect a set of trajectories demonstratd by the expert D
2: Select a policy representation πθ

Select an objective function L
4: Optimize L w.r.t. the policy parameter θ using D

return optimized policy parameters θ

4.2.5 Generative Adversarial Imitation Learning (GAIL)

Generative Adversarial Imitation Learning algorithm (GAIL) is a fast and direct
approach to drawing an analogy between generative adversarial networks imita-
tion learning (IL) targeted towards boosting performance over imitating complex
behaviors in large, high-dimensional environments [5]. In the GAIL framework, a
secondary neural network called the discriminator is used which distinguishes the
observations/actions between the demonstration and the agent. The discriminator
rewards the agent if the observations/actions of the agent get closer to the demon-
stration. With each training step, the agent tries to maximize the reward and the
discriminator gets better at distinguishing between agent and demonstration [19].
In this way, the agent learns a policy that performs states and actions similarly to
the demonstration resulting in human-like behavior. In this regard, the IL algorithm
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[5]:

minimizeπ ψ
∗
GA(ρπ − ρπE)− λH(π) = DJS(ρπ, ρπE)− λH(π) (4.2)

Here, this equation builds a bridge between IL generative adversarial networks
resulting in training a generative model G in the presence of a discriminative classifier
D. Now, the above equation’s practical version, which in fact is the GAIL algorithm
[5], is:

Eπ[log (D(s, a))] + EπE[log 1−D(s, a)] − λH(π) (4.3)

Algorithm 3 Generative adversarial imitation learning

1:

2: for iteration = 1, 2, . . . do
3: Sample trajectories ti πθ

4:5: Update the discriminator parameters from ωi to ωi+1 with the gradient

Êti [∇ω log (Dω(s,a))] + ÊtE [∇ω log (1−Dω(s, a))] (4.4)

6: Take a policy step from θi to θi+ 1, using TRPO rule with the cost function
log (Dωi+1

(s, a)). Specially, take a KL-constrained natural gradient step with
7:

Êτi [∇θ log πθ(a|s)Q(s, a)]− λ∇θH(πθ)

(4.5)

where Q(s̃, ã) = Êti [log (Dωi+1(s, a))|s0 = s̃, a0 = ã]
8: end for

4.3 ML Agents Toolkit

A new module for the game engine, which is Unity ML-Agents, permits us to estab-
lish or utilise pre-made conditions to train the agents. The toolkit is totally free to
use for the researchers and developers. While building the simulated environments,
researchers and developers make the best use of the Unity Editor with the help of
Python API. The toolkit has ML Agents SDK. It has all usefulness imperative to
portray conditions inside the Unity Editor close by the middle C scripts to build
a learning pipeline [8]. A set of example environments is one of the main features
of the toolkit. Several algorithms are also included in the features of the toolkit.
For instance, RL and IL algorithms, PPO, BC, ICM, LSTM[8]. There are three key
components in the ML-Agents SDK. They are: the Brains, Agents and an Academy.
The Agent component is basically the Characters that are used in a scene. An agent
has several features. It can collect observations, take actions and receive rewards.
The agent will collect observations with required sensors. A policy with a behavior
name is a component of an agent[8].
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Figure 4.2: Block Diagram of ML Agent Toolkit [19]

The agents with the same behavior name will execute the same policy and share
experience data during training. Not only there can be multiple agents in the same
scenario, but also there can be multiple behavior names within a scene with multiple
agents or single agents executing many different behavior types[8]. Block diagram
of ML Agent Toolkit is shown in 4.2
The reward function is used to provide a learning signal to the agent. It can be
defined or modified at any time during the simulation using the Unity scripting
system. The Academy is used to keep track of the steps of the simulation and manage
the agents. Using the Academy, environment parameters can be defined. That will
help to change the configuration of the environment at runtime[8]. Currently, real-
time character animation is done using a marker-based motion capture technique.
It requires countless preparations which kills a lot of time and money. A performer
needs to wear a motion-capture suit, multiple cameras in the room, special hardware
and special software are required to obtain and process all the data for the real-time
character animation which turns out to be a big hassle. On the other hand, using
the Unity ML-Agent Toolkit and with the help of deep reinforcement learning and
imitation learning algorithms, we can easily generate character motions without
the hassle of motion-capture. It reduces a lot of expenses. The environment can
be redefined using the ML-Agent Toolkit. It is much simpler to implement and
test[8]. The Unity ML-Agents Toolkit does not only have the core functionalities.
It contains a number of example environments too. These environments contain
examples of single and multi-agent scenarios, with agents using either vector or
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visual observations, taking either discrete or continuous actions and receiving either
dense or sparse rewards[8]. For building our model, we have followed the Walker
example environment. It is a physics-based biped character. The character can
freely move 26 parts of it’s joints. The objective of the agent is to move towards the
target without falling over[8].

4.4 Reward

ML agents toolkit defines the reward signals in a modular way. It provides two
types of reward signals. The extrinsic reward type represents the rewards that are
defined by the environment and corresponds to reaching a goal. On the other hand,
intrinsic reward signals are defined outside of the environment to encourage agent
behavior in certain ways and help the learning of the extrinsic reward[19].

4.4.1 Extrinsic Reward Signal

The extrinsic reward represents the task objective reward for the agent. Here the
agent receives positive rewards when it matches the target speed and looks towards
the goal direction or touches the goal object and receives negative rewards for touch-
ing the ground. The reward signal is expressed by the following flow chart in 4.3
and 4.4.

4.4.2 Intrinsic Reward Signal

The intrinsic reward represents the imitation objective reward. For the intrinsic
reward, we have used GAIL intrinsic reward. The GAIL reward introduces a survivor
bias to the learning process with the method of Discriminator-Actor-Critic [19]. Now
let us show the flow chart for the discriminator of the GAIL reward signal. Now let
us show the flow chart for the discriminator of the GAIL reward signal in 4.5.

4.5 Training

In order to train our model in Unity ML agents, we first needed to set up ML agents
and all its components. First, we installed ML agents in Unity. Next, we installed
python version 3.7(recommended 3.6 or 3.7). We used the ml agents release 8 for
our project. ML agent installaion is shown in 4.6.
4.7 shows the importing process. We followed the unity documentation[25] provided
in the reference. After that, we needed to set up a virtual environment and install
pytorch. To set up virtual environment following commands were used in the com-
mand line[15]:

‘md python-envs’
‘python -m venv python-envs-env’
‘python-envs-env’
‘pip install –upgrade pip’
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Figure 4.3: Extrinsic Reward Signal(I)
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Figure 4.4: Extrinsic Reward Signal(II)
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Figure 4.5: Intrinsic Reward Signal
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Figure 4.6: ML Agent Installation(I)

Figure 4.7: ML Agent Installation(II)

19



Next we installed pytorch using the following command line[17]:
‘pip3 install torch==1.7.0 -f’
‘https://download.pytorch.org/whl/torchstable.html

′

And lastly we install mlagents python package to finish the installation process[17].

‘pip3 install mlagents’

After that, we tested the training process using the example environment: walker
which is shown in 4.8. For this, the following command line was used in the com-
mand prompt within the virtual environment[24]:

‘mlagents-learn config/ppo/WalkerDynamic.yaml –run-id=firstWalkerRun’
In order to resume training the following command line was used[24]:

‘mlagents-learn config/ppo/WalkerDynamic.yaml –run-id=firstWalkerRun –resume’

Figure 4.8: Walker Example Environment

After we finished the test run, we could now start training our own model which is
shown in 4.9. Our character model was imported from Mixamo[20]. We used the
Ybot and we could use any of the models as well.
With the model being imported now we needed to configure the ragdoll. The ragdoll
was set up similarly to the walker example model. Then we set up the agent script
and used the following training configuration file for our first training session shown
in 4.10.
As we can see from the hyperparameters, only PPO(RL) was used for this training
session. We trained the model up to the max steps. After we generated the results
we moved on to session 2 which was training using both RL and IL. For this we first
needed a demonstration for the IL algorithms. So, we set up the animator component
for our model with walking animations imported from Mixamo[20]. After that, we
set up the heuristic function in order to control the character movements. Then
with Unity’s demonstration recorder[19] we recorded our demonstration shown in
4.11.
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Figure 4.9: Character Model

Figure 4.10: Hyperparameters for Training Session(I)
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Figure 4.11: Demonstration Data

It shows the data from the demonstration which we could see in the Unity editor.
Now with the demonstrations set up, we could start our training session 2 with the
following training configurations.
As we can see in 4.12, IL algorithms GAIL and BC have been used for this training
session. After max steps were completed we generated the results and that concluded
our whole training process.

4.6 Analysis

We analyzed our training results in TensorBoard, a visualization toolkit of tensor-
flow. It is basically a suite of web applications for inspecting and understanding
the training runs and graphs. TensorBoard is designed to run entirely offline on
the local machine, without the need for the Internet[23]. TensorBoard provided us
with the visualization and tooling needed for our training results. We could track
and visualize the model graphs of cumulative reward, episode length, policy loss,
value loss and all policy graphs[21]. First we installed tensorboard in the virtual
environment with the following command line[22]:
‘pip install tensorboard’
After saving the trained model, we analyzed the result graphs in tensorboard with
this command[24]:
‘tensorboard –logdir results’
Let us discuss these results in the following chapter.
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Figure 4.12: Hyperparameters for Training Session(II)
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Chapter 5

Results

In the proposed system, Unity ML-Agent toolkit has been used for the training
simulation. As discussed before, there were two training sessions. So, we will be
looking at two result datas to compare between them. In order to visualize all the
results in graphs TensorBoard was used.

Figure 5.1: Character Model Performing Task

In 5.1, we can see the trained character model performing the task which is walking
towards the goal target. The following figures show the results of our first training
session where only PPO(RL) is used.

Steps Cumulative Reward Episode Length
15000000 395.3 148.5
30000000 488.3 169.4

Table 5.1: Training Session(I) Results Data

Here in 5.1, we can see that for max steps 30000000, the mean cumulative reward is
488.3 and episode length is 169.4. Now let us look at the results of our 2nd training
session where GAIL and BC were used in conjunction with PPO.
In 5.2, we can see the training data. After 30000000 max steps the mean cumulative
reward is 678.8 and episode length is 235.5. Now let us look at the difference between
the two training sessions with the help of the tensorboard graphs.
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Steps Cumulative Reward Episode Length
15000000 445.7 185.3
30000000 678.8 235.5

Table 5.2: Training Session(II) Results Data

Figure 5.2: Environment Cumulative Reward

Figure 5.3: Environment Episode Length
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5.3 shows the graphical representations of the mean cumulative reward and episode
length. Here, the Cumulative Reward graph represents the mean cumulative episode
reward of the two training sessions. The first training session(PPO) is color coded
with red and the second training session(PPO + GAIL + BC) is color coded with
blue. During a successful training session, the graph should be increasing[18]. From
the Cumulative reward graph, it can be seen that the second training session gener-
ates more mean rewards as it is more increasing. In 5.4, the Episode Length graph
represents the mean length of each episode[18]. And here we can see that the episode
length is also longer for the second training session.

Figure 5.4: Losses GAIL Loss

Figure 5.5: Losses Policy Loss

5.4, 5.5, 5.6 and 5.7 illustrates the graphs for loss functions. The GAIL loss graph is
generated only for the second training session as it was not used for the first training
session. This graph shows the mean value loss for the GAIL discriminator which
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Figure 5.6: Losses Pretraining Loss

Figure 5.7: Losses Value Loss
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tells us the performance of the model in imitating the demonstration data[18]. The
mean magnitude of policy loss function is represented by the policy loss graph which
shows us how frequently the policy is changing. On a successful training session it
should be decreasing at the end and we can see that the 2nd training session is
decreasing[18]. The pretraining loss graph is generated for BC which represents the
mean magnitude loss for behavioral cloning. And similarly to GAIL loss, this graph
shows us the performance of the model in imitating of the demonstration data[18].
Lastly, the value loss graph representing the mean magnitude of the value function
update loss, should be increasing during learning and it should decrease when the
reward becomes more stabilized. The graph portrays the performance of the model
in predicting the value of each state[18].

Figure 5.8: Policy Beta

Figure 5.9: Policy Entropy

Now, let us consider the Policy statistics graphs for the two training sessions shown
in 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18. Entropy represents
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Figure 5.10: Policy Epsilon

Figure 5.11: Policy Entrinsic Reward
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Figure 5.12: Policy Extrinsic Value Estimate

Figure 5.13: Policy GAIL Expert Estimate
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Figure 5.14: Policy GAIL Grad Mag Loss

Figure 5.15: Policy GAIL Policy Estimate
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Figure 5.16: Policy GAIL Reward

Figure 5.17: Policy GAIL Value Estimate
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Figure 5.18: Policy Learning Rate

how randomly the model makes the decisions. This graph should decrease slowly
for a successful training session[18]. Learning rate corresponds to how large the
step will be in search for the optimal policy. Then extrinsic reward estimates how
much mean cumulative reward is achieved in each episode. The value estimate
graph should be increasing for a successful training session as it represents the mean
value estimate for all states[18].Now the GAIL reward and the GAIL value estimate
graphs represent the mean cumulative discriminator-based reward and the GAIL
reward value estimate respectively. Lastly, the GAIL policy estimate and expert
estimate represents the estimate of the discriminator for policy generated states and
actions and the expert demonstrations respectively [18].

33



Chapter 6

Discussion

We proposed an approach for character animation that combines Reinforcement
Learning and Imitation Learning algorithms. First, we have trained our model with
Reinforcement learning only. Though this training session was faster the results
were not human-like animation. Then we trained the model with the combination
of RL and IL algorithms. The results this time were far more human-like even
though the training time increased. Our method of character animation proves that
it is possible to get human-like character animation without the need for costly
motion-cap studios and large databases. However, we faced some challenges when
it comes to setting up the ragdoll. Our method seems to work with characters that
have similar humanoid bone structure and the ragdoll setup needs to be precisely
identical as well. Due to time limitations we also could not fix the arms to move
like humans. We believe that with further exploration with this method any sort of
animation can be made possible.
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Chapter 7

Conclusion

With the proper tuning of the RL algorithm PPO in combination with IL and
the use of ML agents toolkit, generating character animation in real-time will be
easier than ever reducing production time, cost and resources to a very minimum.
So far, we have used the ML agents toolkit to train agents with RL(PPO) and
IL(GAIL BC) algorithms. We have generated better training results by tuning the
default hyperparameters and modifying intrinsic rewards. For future work, we have a
modification for the extrinsic reward that is yet to be tested. We believe with further
research and development our method will perform even better animations. Finally,
we hope that with future developments our presented model would be comparable
or better than the state of the art methods.
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