Research on Generative Sign Language using Neural
Networks

by

Bushra Binte Selim
21141052
Maliha Igbal
21141050
Asif Shahriar
16301040
Fauzia Faria
17141007
Rafid Mostafa
16101069

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science and Engineering (16301040, 16101069) and
B.Sc. in Computer Science (17141007, 21141052, 21141050)

Brac University
Department of Computer Science and Engineering
The School of Data Sciences
June 2021

(©) 2021. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Bushra Binte Selim Maliha Igbal
21141052 21141050

ﬂﬁ&” '!nuzran

Asif Shahriar Fauzia Faria
16301040 17141007

Rafid Mostafa
16101069

Approval

The thesis titled “Research on Generative Sign Language using Neural Networks”
submitted by

1. Bushra Binte Selim (21141052)
2. Maliha Igbal (21141050)

3. Asif Shahriar (16301040)

4. Fauzia Faria (17141007)

5. Rafid Mostafa (16101069)

Of Spring, 2021 has been accepted as satisfactory in partial fulfillment of the re-
quirements for the degree of B.Sc. in Computer Science and Engineering (16301040,
16101069) and B.Sc. in Computer Science (17141007, 21141052, 21141050) on June
06, 2021.

Examining Committee:

Supervisor: 0 Zﬁ ﬂt
(Member) ﬂ“’"’ ™

Moin Mostakim
Lecturer
Department of Computer Science and Engineering
Brac University

Co- Supervisor: %\
% %

(Member)

Arif Shakil
Lecturer
Department of Computer Science and Engineering
Brac University

i

Thesis Coordinator:
(Member)

Head of Department:
(Chair)

Dr. Md. Golam Rabiul Alam
Associate Professor
Department of Computer Science and Engineering
Brac University

Sadia Hamid Kazi
Associate Professor and Chairperson
Department of Computer Science and Engineering
Brac University

il

skazi@bracu.ac.bd
Signature

Ethics Statement

We, the members, hereby and sincerely declare that this thesis has been done based
on the findings of our extensive research. All the materials, which have been used
are properly noted and cited in this report. This research work, neither in full nor
any part has never been submitted by any other person to another university or any
institution for the award of any degree or any other purpose.

v

Abstract

Sign gesture, which is one type of non-audible specialized strategy is the medium
to correspond with individuals having auditory and talking incompetency. There
are numerous computerized methods of creating gesture-based communication to
provide aid among the hearing impaired. Particularly, for Bengali sign dialect, quite
a few measures have been taken for generation of automated Bangla sign gestures.
With an authentic dataset and approach, an apparent communication mode to assist
this non-privileged community can be attained. Our method proposes a convolu-
tional neural network (CNN) to derive a picture of the appropriate sign gesture of
a particular Bangla alphabet. After our examinations and multiple experiments,
we have come up with the simplest and most striking methodology to perform the
mentioned task. Our model worked promptly and provided remarkable accuracy.
Needless to mention that, communication through gestures aided by artificial means
is another corner that needs to be explored more. Henceforth, our work can have
an added value to this ongoing inspection.

Keywords: Sign Language Generation, Neural Network, Neural Networks for Sign
Language, Generative Sign, CNN, Inceptionv3

Acknowledgement

Firstly, all praise to the Great Almighty for whom our thesis has been completed
without any major interruption in this pandemic situation.

Secondly, to our supervisor Moin Mostakim and our co-supervisor Arif Shakil for
their kind support and advice in our work. They helped us whenever we needed
help.

Thirdly, we want to take a moment to thank our supportive friends who have been
there to give us mental support in the hard times.

Finally, to our parents; without their love and support it may not be possible. With
their kind support and prayer, we are now on the verge of completing our graduation.

vi

Table of Contents

Declaration

Approval

Ethics Statement

Abstract

Acknowledgment

Table of Contents

List of Figures

List of Tables

Nomenclature
1 Introduction
1.1 Background
1.2 Problem Statement
1.3 Motivation
1.4 Research Objective
2 Literature Review and Related Work
2.1 Convolutional Neural Network
2.2 Layers
2.2.1 Convolutional layer
2.2.2 Pooling layer
2.2.3 Fully connected layer
2.3 Activation Functions
2.3.1 Sigmoid Function
2.3.2 Hyperbolic Tangent (TanH) .
2.3.3 Rectified Linear Unit (ReLU)
234 Leaky ReLU
2.3.5 Softmax
2.4 Existing Deep Learning Models . . .
24.1 VGG16
242 RESNETH50..........
2.4.3 Inceptionv3d

vil

ii

iv

vi

vii

ix

xi

2.5 Loss Function
2.5.1 Cross Entropy Loss

2.6 Optimization Algorithm .
26.1 AdaM
2.7 Related Works
3 Dataset
3.1 Dataset Labelling
3.2 Working with the dataset
3.3 Data Availability
4 Implementation
4.1 Data preprocessing
4.2 Data augmentation
4.3 Normalization
4.4 Trainingset
4.5 Model Training
5 Challenges
5.1 Data Dependency
5.2 Overfitting
5.3 Data Leakage
5.4 Excessive training time . .
5.5 Gradient Vanishing
6 Experimental Setup
6.1 Model Testing
6.2 Results and analysis . . .
7 Conclusion and Future Work
7.1 Conclusion
7.2 Future Work
Bibliography

viil

17
18
19
22

23
23
24
24
24
25

27
27
27
27
27
28

29
29
30

40
40
40

44

List of Figures

1.1 Workflow of the proposed method 2
2.1 Basic CNN Architecture 01 5
2.2 Basic CNN Architecture 02 6
2.3 Fully connected layero 7
2.4 VGGI16 Basic Architecture 10
2.5 Resnetb0 Architecture 11
2.6 Inception v3 Architecture L. 12
2.7 Workflow of each model 12
3.1 Bangla Handwritten Alphabet Dataset (Sample) 17
3.2 Bangla Sign Alphabet Dataset (Sample) 18
3.3 Bangla Sign language alphabet chart 18
3.4 Test results on English alphabet dataset 19
3.5 Test results on Typed Bangla Alphabet Dataset 20
3.6 Test results on OnkoGan 20
3.7 Test image and Array Location of the test image 21
3.8 Generated sign gestureo 22
4.1 Dataset splitting 23
4.2 Data augmentation oL 24
4.3 Visual Representation of CNN model 25
4.4 Workflow of the CNN model 26
6.1 Complete workflow 29
6.2 Accuracy of VGG16 for 10 epochs 31
6.3 Accuracy of Inceptionv3 for 10 epochs 32
6.4 Accuracy of CNN for 10 epochs 33
6.5 Accuracy of Resnet50 for 10 epochs 34
6.6 Test accuracy of different modelo 35
6.7 Loss function of different model 35
6.8 Accuracy of VGG16 36
6.9 Accuracy of Inceptionv3d 37
6.10 Accuracy of CNN 37
6.11 Accuracy of Resnetb0 38

1X

List of Tables

6.1 Accuracy of VGGI16 classifying image 30
6.2 Accuracy of Inceptionv3 classifying image 31
6.3 Accuracy of general CNN classifying image 32
6.4 Accuracy of Resnetb0 classifying image 33
6.5 Test accuracy and Loss function of all the models 34
6.6 Accuracy of VGG16 36
6.7 Accuracy of Inceptionv3do 36
6.8 Accuracy of CNN 37
6.9 Accuracy of Resnetb0 38
6.10 Accuracy of different models 38

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ANN Artificial Neural Network

ASL American Sign Language

BdSL Bangladeshi Sign Language
CNN Convolutional Neural Network
ConvNet Convolutional Neural Network
GAN Generative Adversarial Networks
KNN K Nearest Neighbor

NM'T Neural Machine Translation
ReLU Rectified Linear Unit

ResNet Residual Neural Network

RM Sprop Root mean square prop
SGD Stochastic Gradient Descent
SLP Sign Language Production

SLR Sign Language Recognition
SPF Serial Particle Filter

SV M Support Vector Machine

x1

Chapter 1

Introduction

Communication is demonstrated utilizing symbols, signs, and semiotic norms, both
sender and recipient are mutually aware of the transmission of meanings or mes-
sages from an individual or group to another. One of the most crucial life skills is
the ability to interact effectively. This enables us to communicate with others and
comprehend information that is conveyed to us. Natives utilize their mother tongue
everywhere as tools for communication. Hearing deprived populations, however,
are communicating via Sign Language that is not generally used by individuals.
As a consequence, there is still a communication gap. Some disabilities exist in
approximately 1 billion people worldwide. The second greatest of these is hearing
impairment [1]. Sign language implies how individuals with hearing impairments
communicate their feelings, contribute to a discussion, educate and live as normal
as possible in general. The Government of Bangladesh determined that the second
most prevalent sort of disability in Bangladesh is hearing impairment [2]. As of
November 2003, Bangladesh has over 7.6 million deaf people [3].

1.1 Background

Sign Language involves various forms of gestures in order to communicate, espe-
cially of the hands and arms, when it is impossible or undesirable to continue verbal
communication. The practice of the language is perhaps older than speech. Each
sign language is a discrete natural language with its own syntax and dictionaries,
which is unique to the nation. Sign language is the combination of coded manual
signs, reinforced by facial expression and conceivably augmented by words spelled
out in a manual alphabet [4]. This can be used to keep the head above water when
vocal communication is impossible. For instance, when one or more would-be com-
municators has speech or hearing disabilities.

As sign languages are the most used means of communication right after verbal
communication, research on sign language has gained massive popularity over the
past decade in the recognition field. However, even after successfully recognizing
the gestures, there are not enough models that generate sign language to help the
impaired population convey and comprehend other languages.

Hands can communicate. That too in a language that potentially has the most com-

ponents when weighed to any other spoken language of the globe. In this language,
fingers spell, the face talks, and the body transmits a person’s inward musings to
the communicators.

Sign Language is a perceptible language that consolidates facial impressions, looks,
head movements, non-verbal communication, and surprisingly the space around the
speaker. Hand gestures are the basis of sign language. Numerous signs are iconic,
which means the gestures use a visual picture that looks like the idea it addresses.
For example, to communicate the idea of "window” in BASL, one would situate your
palms in front and move it front and back to address the opening and shutting of
a window. Actions are regularly communicated through hand signals that copy the
addressed concept - if one wished to sign the idea ”eat,” he would bring your fingers
and thumb of the dominant hand together as though holding food and afterward
push the hand toward the mouth.

The alphabets are a significant series of signs [5] Some hand gestures for letters take
after the composed type of the individual letter. It is called finger spelling when
one uses gestures of letters in order to spell out a word. Finger spelling is helpful to
pass on names or to ask somebody the sign for a specific idea. Though some sign
languages use two hands, BASL utilizes single-hand signals for each of the alpha-
bets. Numerous individuals find finger spelling the most strenuous when grasping
sign language, as refined speakers are exceptionally quick finger spellers.

Our proposed method will not only help the deaf and mute people but also help un-
derstand the tough finger spelling style of sign language. Previously many researches
were done that recognized Bangla language from sign gestures. Architectures like
Convolutional Neural Network,VGG19 and Artificial Neural Network (ANN) were
used. Also, some animated works were also done using NMT, GAN etc.

The method that we came up with uses the feature that neural networks offer and
generate appropriate sign language of the given input (Bangla alphabet). The main
architecture that we are going to use is CNN (Convolutional Neural Network). At
first, the classifier will be trained with Bangla Alphabetic Dataset. After that, while
testing the image input would be given. Subsequently, mapping of Bangla alphabet
to sign gesture will be done. The model will retrieve the corresponding sign gesture
of the test alphabet as shown in Figure 1.1.

i . Sign Gesture
h‘ Image Classification Detection Result

Test Alphabet Test Output

Figure 1.1: Workflow of the proposed method

Since our model will predict sign gestures from Bangla Alphabets, the higher ac-
curacy will determine the usability of the model. To ensure this, we will be using
various models to calculate the accuracy in order to compare it with the accuracy

level of our model. Models like: Inception-V3, VGG16 and ResNet50 will be used
for accuracy calculation and comparison.

1.2 Problem Statement

Our primary focus is the Generative Bangla Sign Language. Due to many techno-
logical advancements, dedicated scientists, and researchers, there are many research
pieces regarding Sign Language technology. The research communities are currently
working primarily on Sign Language Recognition. This may help us understand
sign languages but will not help the deaf and mute community in a more significant
margin. There is a considerable lack of resources when it comes to generative sign
language. As our study is focused on accurately generating sign language alpha-
bets, it is mandatory to have accurately trained our dataset accordingly. A learning
model gets ideal effectiveness when it is fed with enough training data. Neverthe-
less, because of computational resource limitation, small sets of data have to be
trained first to check the working model. Overfitting [6] happens when the neural
network familiarizes itself with the training set so closely that it loses the capability
to speculate and make a prognosis for new, obscure data. Hence, the network gets
biased. Gradient vanishing problem is the derivatives [7] which were to be mul-
tiplied with the same amount of hidden layer, are smaller than usual; while back
propagating the gradients will decrease gradually, and after a while, they will vanish.

1.3 Motivation

More than 7.6 million deaf people reside in Bangladesh. Their primary mode of
communication is Bangla Sign Language. Rather than verbal correspondence, deaf
individuals utilize signs to communicate and impart to other people. Among the
language-based minorities, Bangla sign language users’ society is in Bangladesh [§]
Unfortunately, it is alarming that not many of us care to be acquainted with this
communication mode, even though a large portion of our population uses it. Con-
sequently, it leads to the suffering of the deaf-mute. Since most of the population
are not accustomed to their mode of communication, they face immense difficulties
communicating with the rest of their peers. Just because a portion of the population
cannot hear or speak does not mean that their form of communication should not
advance along with the rest of the world.

1.4 Research Objective

As stated in the problem statement, our primary focus of this study is to develop
a new model that will take test alphabets and classify them with the help of our
neural network model. Finally, it will generate the reciprocal sign gesture output of
the given alphabet. As it is a generator of alphabets, the accuracy will have to be
high enough for peak performance without suffering from much data leakage.

Therefore, in this research, we have focused on feeding our model with a big enough
dataset to make it efficient while predicting the outcome. Meanwhile, we shall be
using various models to calculate the accuracy for comparison purposes. The signif-
icant contributions of this thesis are stated as follows:

e Novelty: As mentioned, there is very little research on sign language gener-
ation. We have proposed a new method, first in our country, that generates
Bangla Sign Gestures when the input is Bangla Alphabets.

e Accuracy: Our model has achieved 97.46% accuracy, which was acquired from
the generic CNN model that we employed.

The rest of the report has been organized in the following manner. Chapter 2
discusses the literature reviews and related work on Sign Language. Chapter 3 de-
scribes the implemented dataset. Subsequently, in Chapter 4, we have articulated
the implementation of the existing model, and our proposed method has been nar-
rated in Chapter 5. After that, our experimental setup has been stated in Chapter
6. Finally, Chapter 7 concludes our thesis.

Chapter 2

Literature Review and Related
Work

2.1 Convolutional Neural Network

A convolutional neural network is an arrangement of convolutional and pooling layers
which allow removing the significant highlights from the pictures and accumulate
them to form a feature map [9]. Convolutional neural networks collect data and
transform it using a series of hidden layers. Initially, each concealed layer contains a
large number of neurons, with each neuron being totally associated with all neurons
in the previous layer, and neurons in a singular layer working transparently and
sharing no affiliations. The hidden layer is the last linked layer, and both of the
settings affect the course scores. Convolutional Neural Structures take advantage
of the fact that the data contains pictures to make the preparation more sensible.
The layers of a ConvNet have neurons masterminded in three assessments: width,
stature, and importance, in contrast to a typical Neural Set up. There are three types
of layers in CNN. Convolutional layers, pooling layers, and fully connected layers are
the three types. CNN will transform the first input layer by layer using convolutional
and down sampling procedures to produce course scores for classification and relapse
purposes using this specific technique [10]. The preview of a basic diagram of CNN
is given in Figure 2.1.

Convolution 1 Sampling 1 Convolution 2 Sampling 2

Qutput Layer
Input Layer

"""" ll uﬁ
Data é 100 : ‘- u
| B |

Data

Figure 2.1: Basic CNN Architecture 01

2.2 Layers

2.2.1 Convolutional layer

The convolutional layer will determine the yield of neurons bound to neighboring in-
put locales by measuring the scalar product of their weights and the input volume’s
locale. The corrected straight unit points to apply Introduction to Convolutional
Neural System enactment work such as sigmoid to the yield of the activation de-
livered by the past layer [11]. Convolution is a specialized sort of straightforward
operation utilized to include extraction, where a little cluster of numbers, called a
part, is connected over the input, which is a cluster of numbers, called a tensor. As a
result, the kernels have a low spatial dimensionality and are distributed throughout
the entire depth of the input. As the data reaches a convolutional layer, it convolves
each channel over the input’s spatial dimensionality to create a 2D actuation outline
[9].

Kernel convolution isn’t just for CNN anymore; it’s a crucial part of a variety of
other computer vision calculations. It is a setup in which we take a small network
of numbers, transfer it over our picture, and adjust it depending on the channel’s
values. The subsequent include outline values are determined using the following
equation, where the input picture is denoted by f and our bit by h. The consequence
network’s line and column lists are verified with m and n, respectively. Which is
shown in Equation 2.1

Glm,n] = (f +W)m,n] = 3> hlj,K)fm — jn — K] (2.1)

We take each estimation from bit and duplicate them in sets of corresponding values
from the image after placing our channel over a chosen pixel. Finally, we totalled ev-
erything and placed the outcome in the appropriate place inside the yield, including
the outline [12].

FILTER

CONVOLUTION BLOCK

OUTPUT
Figure 2.2: Basic CNN Architecture 02

In the above Figure 2.2, a basic internal architecture of CNN has been shown.

2.2.2 Pooling layer

Pooling is best thought of as down-sampling, which reduces the difficulty of promot-
ing layers. Within the image processing space, it can be considered as comparative
to reducing the determination. In a ConvNet architecture, intermittently embed-
ding a Pooling layer in the middle progressive Conv layers is not uncommon. It
should theoretically reduce the spatial scale of the representation in order to reduce
the number of borders and calculations in the entity and, as a result, manage over-
fitting. Using the Maximum operation, the Pooling Layer acts independently on
each profundity cut of the information and resizes it spatially. The most well-known
arrangement is a pooling layer of channels of size 2 x 2 added with 2 downsampled,
each profundity cut in the contribution by 2 along both width and stature, and each
profundity cut in the contribution by 2 along both width and stature, removing 75
percent of the enactments [13]. The depth measurement remains unchanged.

2.2.3 Fully connected layer

Fully connected layer is just a feed-forward neural network. These layer structure
the last couple of layers in the network. The contribution to the completely asso-
ciated layer is the yield from the last. A convolutional neural arrangement is an
arrangement of convolutional and pooling layers that allow removing the foremost
highline fully-connected layer that is comparable to how neurons are organized in a
conventional neural arrangement [11]. In this manner, each node in a fully connected
layer is straightforwardly associated to every node in the past and also associated
with the later ones. After the highlights are extracted by the convolution layers and
downsampled by the pooling layers, they are mapped to the ultimate yields of the
final layer of fully connected layer [13]. The number of yield nodes in the ultimate
fully connected layer is usually equal to the number of groups. As seen in Figure
2.3 [14], each fully connected layer is followed by a nonlinear work, such as ReL.U.

Input layer hidden Layer hidden Layer

Figure 2.3: Fully connected layer

2.3 Activation Functions

The primary function of the activation function is to calculate weights with bias of
the hidden layers and then determine the activation of neurons. It defines how input
weight sum converts into outputs in the neurons of the layers. These functions are
used to control gradient and learning rate in a network model. Basically, activation
functions are classified into three parts: Binary, Linear, and Non-Linear activation
function. In our case, we used Linear activation functions. Some basic activations
are demonstrated below:

2.3.1 Sigmoid Function

This particular function is used [15] mainly in basic neural network application and
logistic regression. But for more complex and leading-edge neural models, the sig-
moid function is avoided. The equation for sigmoid function is provided in Equation
2.2

1
Sigmoid(xr) = ——— 2.2
gmoid(z) = aper (2.2)
This function exists [16] between (0,1). So, sigmoid will be used if the prognosis
of probability is in between the range of 0 and 1. It has a S-shaped differentiable
curve. This function is monotonic. The main disadvantage of this function is data
loss; the deeper the network, the more loss it gains.

2.3.2 Hyperbolic Tangent (TanH)

The [16] TanH function is in the range of -1 to 1. It is also a sigmoidal (S-shaped)
function, the only difference is the range is mapped in a way that negative points
are mapped at the negative axis and zeros are mapped very close to zero.

y=20(2x) — 1 (2.3)

In the above Equation 2.3, we can see the depiction of the activation function. TanH
is used basically in allocation of classes. This function is zero centered [17] but has
a Vanishing Gradient issue.

2.3.3 Rectified Linear Unit (ReLU)

ReLU is a piecewise linear function which gives direct output of the given input.
It has a range of (0, o0). ReLu is the most famous activation function in the deep
learning era which can be briefly depicted in the following Equation 2.4:

y = max(0, z) (2.4)

The main advantage [15] of using ReLU is it solves the vanishing gradient prob-
lem, it is one sided unlike TanH, has sparse activation (50%), it does not have back

propagation error. This function and its derivatives are monotonic. The drawbacks
are that this function is non-zero centered and non-differentiable by zero. Another
drawback is the dying ReLU problem because half of its outputs remain inactive
(returned as 0) for non-zero centered action.

2.3.4 Leaky ReLU

For solving the dying ReLU problem, this Leaky ReLU appeared in the neural
network field. It defines [18] an extremely small linear numerical component to
overcome the non-zero input issue.

y = max(0.01 x x, x) (2.5)

The above equation (Equation 2.5), briefly defines the activation function. For any
negative input, it returns the x multiplied with 0.01 so that negative output also
can be gained. The range [16] is (—oo, co) and both function and derivatives are
monotonic.

2.3.5 Softmax
This function gives [15] us probability distribution output. It maps the input as the
total summation becomes 1. The following Equation 2.6 defines this function:

e

N Zizl ek

It is used for multi-classification in a logistic regression model, used in output layers
for those networks that classify the inputs into multiple groups.

o(2); o forj=1,2,3,.... k (2.6)

2.4 Existing Deep Learning Models
2.4.1 VGGI16

VGG16 is a convolutional neural mastermind. Educators K. Simonyan and A.,
in their paper ”Significant Convolutional Frameworks for Huge Scope Picture Ac-
knowledgement”, set up the show for VGG16. The show achieves 92.7% top-5 test
precision [19] in ImageNet, that could be a dataset consisting over 14 million images
that have a spot to 1000 classes. It rolls out the refinement over AlexNet by replac-
ing gigantic portion computed channels (11 and 5 inside the 15 two convolutional
layers, independently) with various 3x3 bit approximated channels in a stable pro-
gression. Using NVIDIA Titan Dual GPU, VGG16 was organized for quite a while
[20].

- — || g ™o i R Al Roe B P ‘—Nﬂm 5
—|—| E | 2 = = | = | = T ow

= 2l 2|lE]| [B|EB|S D [=| S = =125 wlo 2 S AR o

€L cicla o l=|=z]|e E|E| E|5 sz |E|T S|zl 5

z 880— S22 EIE|E| & Slals|d ol @ |2 8“353

—] QSSD' [SRLEN N oo oo (m L]

Figure 2.4: VGG16 Basic Architecture

In this figure 2.4, The obligation to the covl layer is of settled gauge 224 x 224 RGB
picture[21]. The image has been undergone a number of convolutional layers. In
which, 3 x 3 estimated narrow channels were used. It also occupies 1 x 1 convolution
channel, and this is viewed as a linear modification of the information channels
(followed by non-linearity). The convolution step is settled to 1 pixel; the spatial
cushioning of Conv layer input is with the end target that the spatial goal is obtained
after convolution, for outline the cushioning is 1-pixel for 3 x 3 Conv layers [22]. Five
max-pooling layers are used to finish spatial pooling, which take after a package of
the Conv. layers. Three fully connected layers take after a number of convolutional
layers (which wires an assorted significance in multiple models): the crucial two
have 4096 channels each, the third carries out 1000-way ILSVRC [19] mastermind
and in such way holds 1000 channels (one for each course). All covered layers are
set up with the modification (ReLU) non-linearity. It is also notable that none of
the frameworks (in any case for one) contain Local Response Normalization (LRN);
such kind of normalization does not ground the execution on the ILSVRC dataset,
anyway prompts extended memory use and computation time.

2.4.2 RESNET 50

ResNet50 could be a variety of ResNet models with 48 Convolution layers in addi-
tion to 1 MaxPool and 1 Typical Pool layer. It also has 3.8 x 10° Drifting centers
tasks [23]. It very well is a comprehensively employed ResNet show, and we have in-
spected ResNet50 designing significance. In 2012 at the ILSVRC2012 order challenge
AlexNet [24] won the essential expense; afterwards, ResNet was the first inquisitive
aspect which happened to the PC vision and the 13 significant learning world. Due
to the framework showed by ResNets, it got possible to plan ultra-significant neural
frameworks, and through that, we are remorseless that we can sort out big-amount
of layers and still gain excellent execution. The ResNets were first applied to the pic-
ture acknowledgment task, but since it is indicated inside the paper, the framework
can too be employed for non-PC vision works besides achieving better precision. In
the Figure 2.5, a basic architecture of Resnet50 is shown.

10

G4-d

3X3

3X3

relu

Figure 2.5: Resnet50 Architecture

In the wake of starting with a solitary [23] Convolutional layer and Max Pooling,
there are 4 similar layers with reasonable changing channel sizes — every one of them
using 3 X 3 convolution activity. As well, after every 2 convolutions, we are bypass-
ing/skirting the layer in the middle. These skipped affiliations are called ’character
backup way to go associations’, and livelihoods are called extra squares.

2.4.3 Inception v3

The inception [25] engineering is highly tunable, meaning that there are several con-
ceivable changes to the number of channels within the various layers that do not
influence the qualityof the completely prepared network. Initiation v3 remained as
the main sprinter up of ILSVRC-2015 [26]. In the meantime, it had been pronounced
with finishing 12 million tasks. Commencement v3’s building view holds significant
differential enhancement in channel sizes. As a model, Initiation v1 has a convolu-
tion channel estimated around 5 x 5, which is supplanted in v3 with two 3 x 3 filters
as shown in Figure 12.1.4 In beginning v3, a proficient matrix size decrease is pro-
posed, highlight maps are finished by convolutions and by pooling independently. In
both arrangements of highlight, maps are linked and sent to the following beginning
module. Inception v3 is joined with 42 layers. Notably, each channel is factored
in. Amazingly, it is rumored with 78.8% accuracy [27] obtained as indicated by Top
1 accuracy ImageNet—inception module with factorization of n x n convolutions.
At the beginning of v3, as convolutions are factored to more modest and into devi-
ated convolutions, another origin module can be formed. With 42 profound layers,
the calculation expense is around 2.5 more than the beginning and significantly
more productive compared to VGGNet. The inception-v3 model got symmetric and
asymmetric building blocks in addition to convolutions, max-pooling layers, average
pooling, dropouts, and fully connected layers. Its architecture is shown in figure 2.6.

11

Conv Conv Conv Padded Pool
Patch: 3x3 » Patch: 3x3 » Patch: 3x3 Patch: 3x3
Stride: 2 Stride: 1 Stride: 1 Stride: 2

¥
2 Ineention Conv Conv Conv
Mod eFI' 1 < Patch: 3x3 < Patch: 3x3 < Patch: 3x3
Stride: 1 Stride: 2 Stride: 1
¥
: ' Pool :
5 x Inception 2 % Inception Patch: 8x8 Linear
Model 2 Model 3 Stride: 0 Logits

Figure 2.6: Inception v3 Architecture

The following Figure 2.7 depicts the workflow of each of the models we employed to
train our dataset and find its accuracy over different models.

h 4

Dataset Input » Image preprocessing Image Augmentation

Trai h of th Setup VGG16,
Evaluate Accuracy |« el et or e - 1e Inceptionv3
models with dataset Resnet50 '

Figure 2.7: Workflow of each model

12

2.5 Loss Function

2.5.1 Cross Entropy Loss

Cross-entropy loss [28], which is also known as log loss, is a method which amounts
to the pursuance of a codification model which gives a probabilistic output between
0 and 1. Where the predicted probability differs from the real mark, cross-entropy
loss increases. The cross-entropy loss is defined below in Equation 2.7:

CE = — Z li log(s;) (27)

In Equation 2.7, t; and s; are the ground truth and the score for each CNN class i
in C. SoftMax loss, also known as categorical cross entropy loss, is a combination of
SoftMax activation and a cross entropy loss, which is shown below in Equation 2.8:

5 C

6 K3

f(8)i = == +CE ==Y i 1g(f(s1) (2.8)

> i tesi -

J 7
Binary cross entropy loss, also known as Sigmoid loss, is a combination of the
Sigmoid activation function and cross entropy loss. Unlike Softmax loss, it acts

sovereign for each vector component. In the Equation 2.9 given below, we can see
its mathematical depiction:

C'=2
CE = — Z tilog(f(si)) = —tilog(f(s1))—(1—t1)log(1—f(s1)) (2.9)

Cross-entropy [29] is a capacity from the field of information theory, gaining on en-
tropy and commonly measuring the difference among probability distributions. It
measures the number of bits required to serve or broadcast an average event from
one dissemination to another.

2.6 Optimization Algorithm

In case of deep learning, optimization algorithm is used for training purposes, it
upgrades the cost function. The generic equation (Equation 2.10) of this algorithm
is given below:

J(W,b) = % > L) (2.10)

In our model, we used Adam optimizer which is explained below:

13

2.6.1 AdaM

AdaM is a very famous algorithm known for its quick performance. It stands
for Adaptive Momentum. AdaM associates the propulsion RMSprop in at once.
This makes AdaM a very strong and fast algorithm. This method [30] has a very
forthright implementation, very efficient in estimation, and takes up very less mem-
ory. It is more efficient for larger problems with data/parameters. The below Equa-
tions 2.11 and 2.12 define the optimizer:

il (2.11)

= . —m—

1 -4
@t — @t—l — Q. My (foy+¢) (212)

As we faced gradient descent issues, we used an AdaM optimizer to overcome the
issue as it gives us advantages to store exponentially disintegrating averages of pre-
vious similar gradients.

2.7 Related Works

To ensure open and direct contact between the hearing impaired and mute com-
munities, it is critical to develop comprehensive programs that can convert spoken
languages into sign languages. This can be accomplished by Sign Language Recog-
nition and Production (SLR/SLP). We are attempting to develop a device that can
understand text and translate it into Bangla Sign Language, as previously men-
tioned. We want to strive on SLP because most deaf people find reading spoken
language difficult. As a result, conversion into sign language is a necessity.

Many previous studies have been performed on detecting Bangla sign language and
classifying hand gestures using SVM, ANN, and KNN. Despite this, we have been
unable to locate study that uses CNN to classify Bangla sign language hand signals
(Convolutional Neural Network). However, the usage of CNN to recognize sign lan-
guage is nothing new. In a recent work [31] on recognition of Bangla sign language,
the authors used CNN architecture to recognize numerical numbers and alphabets
separately. For this, they have used a dataset of 30916 samples which contained
23864 alphabets and 7052 numerical samples. For data pre-processing, they nor-
malized the greyscale images by dividing with highest grey level (255) and resized
the gestures into 64 x 64 pixels. Their proposed network contained 6 convolutional
layers, 3 pooling layers and a kernel size of 5 x 5 and 3 x 3. For training, they did
not use any separate sets; they divided the total data randomly into K = 10 folds,
where 9 folds for training and the remaining one for testing. They trained their
model with 0.001 learning rate, 200 epochs, batch size of 128 and steps per epoch of
64. Using this training method, they have got 100% testing accuracy on numerical
numbers and 99.83% testing accuracy for recognition of Bangla sign gestures.

In another recent similar work [32] on recognition of Bangla sign gestures, the au-

thors used a pre-trained VGG19 model of CNN architecture then modified that
model into recognizing gestures. For the dataset, they used a total of 320 samples

14

of each character. They resized their images into 224 x 224 for data preprocessing.
They modified the VGG-19 architecture by taking frozen outputs from the interme-
diate layer to prevent updating during backpropagation and the last MaxPool layer
was left out by the authors from VGG-19; dropout was used for reducing overfitting
and on the final dense layer, a Softmax activation is added. The authors trained the
model by splitting the dataset into training and testing parts. They used an SGD
optimizer with a learning rate of le — 3. They used 100 epochs for training. Using
the highest confirmation accuracy’s weight, they achieved their testing accuracy at
89.6% for recognition of Bangla sign gestures.

As per our research, we found out that there is no research available on gener-
ating Bangla sign language from text (Bangla alphabet), but there are some papers
on generating sign language from text in different languages. In this paper [33] on
English speech to American sign language transformation, the authors used auto-
matic speech recognition block for recognizing speech from a video, Neural Machine
Translation (NMT) module for transforming that speech into ASL, a video generator
which generates animated puppet with ASL gestures. For training purposes, they
used ASLG-PC12 corpus as their dataset and split it into three sections: training,
development and testing. Then they trained their model for an epoch of 50, batch
size 64, Adam Optimizer with 3; = 0.9, 82 = 0.98 and € = 107?. They did not speak
clearly of their accuracy in their journal.

There was a research not so long ago in India [34]. where they generated anima-
tion based Indian sign gestures where the authors chose a different approach using
HamNoSys notation. The generated HamNoSys based on Indian sign language and
then generated SiGML corresponding to the HamNoSys notations created earlier.
As the model has been tested on only 100 words, the testing accuracy was 100%.

In another recent work [35] on sign language production, the authors used Neural
Machine Translation (NMT) and Generative Adversarial Networks (GAN) architec-
ture. The authors used NMT for translation purposes (spoken language to sign gloss
sequence), then used OpenPose for mapping purpose between glosses and skeletal se-
quences, lastly used GAN for generating sign language video sequences. For training
purposes, the authors used PHOENIX 14TH and SMILE Sign Language Assessment
Dataset. For German to gloss transformation, they used four layers with 1000 GRUs
each. The authors used Luong et al.’s approach as an attention mechanism with
a learning rate of 1075, 30 epochs and 0.2 dropout. The input images enter into
5 convolutional layers with a 128x128x 10 binary heat map. For generating sign
language video, the authors trained their model with a learning rate of 2 x 1075.
The system generates a 4sec./frame video. The generated skeletal sequences are
passed down to the "LUT 4+ GAN” approach and then tested the system against
the dataset in the “FULL” approach.

In another work, Bangla sign language was implemented using SIFT feature ex-
traction and Convolutional Neural Network (CNN) [36]. The authors used SIFT
and CNN to remove scaling problems and to classify the hand gestures precisely.
The dataset includes 7600 images of Bangla signs and letters for testing and train-
ing. They used the skin masking technique to get only the Region of Interest for the

15

image of the hand. Feature extraction was done using SIF'T and k-means clustering
and Bag of Features to represent the features. Finally, they used CNN as histograms.
They obtained 88-90% accuracy with SIFT and 77-78% accuracy without SIFT in
the Bangla letters.

Another Indian sign language recognition research was done [37]: a combination
of Neural Network with Genetic Algorithm, Evolutionary algorithm (EA), and Par-
ticle Swarm Optimization (PSO). The researchers used a set of 22 ISL hand gestures
as a dataset, and 70% of the data was used to train the Neural Network. The accu-
racy achieved by them was 99.96% by NN-PSO.

One more research was done which developed a system that recognized speech and
generated the corresponding sign language in an animation form. They used a tech-
nique where data was read from a floppy disk and then transferred to a video RAM,
displayed on CRT display in an animation form. They used some Japanese sign
language and letters for the system. Kawai.H has created a system that can identify
speech in real time and make the associated animation in a personal computer like
a sign language sequence. It consists of three video RAMs (VRAM) and a speech
recognition board, which recognizes each individual speaker’s voice 22 who is reg-
istered. Currently, on two floppy disks there are 40 sign language patterns and 50
finger spelling stored [38].

A serial particle filter [39] was used for isolated sign language recognition for Amer-
ican sign language in more recent research. They used single gesture detection and
used a Serial Particle Filter (SPF) to feature a covariance matrix. They obtained
an accuracy of 87.33% to recognize the American Sign Language.

There was another research [40] done for recognition of sign language using Con-
volutional Neural Networks (CNN). They used CNN, Microsoft Kinect, and GPU
acceleration for the recognition system. They used the dataset from ChalLearn Look-
ing at People 2014, which includes 20 Italian gestures in different environments by
different performers. They used a total of 6600 gestures, where 4600 gestures are
for training and 2000 for testing. They achieve an accuracy of 91.7%.

16

Chapter 3

Dataset

We used two types of static datasets for our model.
e Bangla Handwritten alphabet dataset
e Bangla Sign Language alphabet dataset

Bangla Handwritten alphabet dataset consists of 98164 images. This is split into a
training dataset consisting of 78513 images and a testing dataset of 19651 images.
Our train to test ratio is 80:20. In Figure 3.1, few images from our dataset is shown.
We collected this dataset from BanglaLekha-Isolated and later on done our own
labelling and rescaling [41]

B EIER

Figure 3.1: Bangla Handwritten Alphabet Dataset (Sample)

Our aim was the generation of corresponding Bangla Sign images against their equiv-
alent Bangla Handwritten letter. We used a dataset from existing research from
Kaggle for this part of our work. The dataset consists of images of bare hands.
These were collected with the help of National Federation of the Deaf, 12581 dif-
ferent images in forms of hand gestures of 38 BASL alphabets [42]. Each of the
38 sub-sets consist of approximately 290-312 images. Some sample images in the
dataset are shown in Figure 3.2. The images were re-sized to 224 x 224 pixels.

17

7 o« 5 g 7 ¢

Figure 3.2: Bangla Sign Alphabet Dataset (Sample)

3.1 Dataset Labelling

The pre-existing dataset used numerical values to label the sign alphabets. For our
ease of work, we re -labelled them according to the Bangla letter they represent. We
used the sign language chart in Figure 3.3 to correctly label our sign gesture images
to their corresponding letter.

QL NN ALTS

(BENGALI MANUAL ALPHABET)

¥
AR 9| R B
q : 3 T
¢ wm | W |3mn | BRM] a/c | &/t
a7
ool ¥ 102 DI
) |
: q :
s,c1]9/a il F |w/=m] 2 9 ®
5 ¥ |=w/3| ¥ @ —B 3 ©
18| Rl @ |F
7 g/ | B/ 9 W Ll “ 7
L
| IV [
Bl B BT
3/® q ® |=/3/A] =T t 2 »
fis 73 MR Fara G (G @5 e IFE ANCWIACT A
517 F07 0bfB FerFe LI T3 T |

Figure 3.3: Bangla Sign language alphabet chart

18

3.2 Working with the dataset

We imported all the images in a sequential manner from the dataset image directory
using the command flow_from_directory, and processed them using ImageData-
Generator. We stated batch size, which represents the number of training examples
that will be used in each iteration, while keeping the target size of the photos propor-
tional to the input size. Because each of the datasets we used had numerous classes
on which our model will make predictions later, we set the class_mode to categorical.

A pre trained CNN model was tested with different datasets. Before training the
model with our Handwritten Bangla alphabets datasets, did some trial runs with
some various datasets we collected from studies done on sign language. An English-
Alphabets dataset was used to test the accuracy of the CNN model. After 100
epochs, We achieved training accuracy of over 97% after the model ran 100 epoch.
We had an acceptable visual of the training set from the dataset which is shown in
Figure 3.4.

filename = r'/content/delve/mOrive/THESIS (Enpllsh anvil typediTeating/a/fa2 png
test lmage = '.‘;;gt:.lc:-..‘_:';gzl.;lrnam;, ':a-'.g:ef_:.i.n - -:--.-.. 2y}

plt. ieyhow{Test_Image)

test Image = lnage, log to array(test lsige)

test_image = np_expand diss{test imsge, axis = 0

r

- I} & LH 5 %
Epoch 93/108
16/16 [==============================] - 35 188ms/step - loss: B.17586 - accuracy: @.956%
Epoch 99/186
16/16 [==============================] - 35 178ms/step - loss: B.8354 - accuracy: 8.9631
Epoch 18e/1e@
16/16 [==============================] - 35 176ms/step - loss: B.8577 - accuracy: @.9762

Figure 3.4: Test results on English alphabet dataset

While working with our Bangla handwritten datasets, we faced issues since our
dataset was huge, we also faced some data losses. As per the instruction of our
supervisor we created a smaller version of a digitally typed Bangla alphabet datasets
consisting of 2500 images, with each of the letters having 50 variants of images
(tilted, rotated, flipped). In our CNN model we had 97% accuracy for that particular
dataset. Which is shown in Figure 3.5.

19

fllenase = r°/content/drive/MyDrive/THESIS Bangla Typed Dataser
test_image = image.load img(filensme, target_size = (28,28))
plt.imshow({test_image)

test Image = laage. lag 1o Srrayi{teit labge)

test_image = np.expand disg(test image, axis = @)

Epoch 96/188

13/13 [=======================—==—==-] - 1s 8Gms/step - loss:
F L
igiig ?z;ifi::::=====================] - 1s 88ms/step - loss:
- 1
igﬁig ?E;ifi::::=====================] - 1s 9lms/step - loss:
E qQ /]
igﬁig ?;;igi::::=====================] - 1s 28Bms/step - loss:
zgﬁi; Eifiiif========================] - 1s 88ms/step - loss

@.0968 -

accuracy.

aCccuracy:

aCCuracy:

accuracy:

accuracy.

Figure 3.5: Test results on Typed Bangla Alphabet Dataset

L2481

.etad

L9495

L9765

L8746

We also obtained a digitized Bangla-alphabets dataset from OnkoGan [43], with
each image measuring 40 x 40 pixels. We used this dataset to train the model, and
after 100 epochs, we had an accuracy of almost 99 percent. The inference-image of
the input image reveals that the images in the dataset are quite perceptible for the

model (shown in Figure 3.6.)

filename = r'/content/drive/MyDrive/test/¥/¥ (18).png
test_image = image.load img(filename, target_size = (48,48))
plt.imshow(test_image)

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = @)

s====================] - 1285 189%9ms/step - loss: 6.8247 -

s====================] - 1355 1l4ms/step - loss: B6.8163 -

I
I
I
|
I
I
I
|
I
|
I
I
I
I
|
|
|
I
I
I
i
]

131s 111ms/step - loss: B8.8895 -
s====================] - 131s 11ims/step - loss: 8.8125 -

Figure 3.6: Test results on OnkoGan

20

accuracy:

accuracy:

accuracy:

accuracy:

8.9931

8.9951

8.996%

8.9961

Unfortunately, even with the promising results we could not proceed with the dataset
as we failed to obtain a complete dataset for all the alphabets as there had occurred
some data loss from where the dataset originated.

We proceeded with our original handwritten Bangla alphabet dataset. This time

we were satisfied with the results. Here in figure 3.7 is a visual of our sample data
in the code.

filename = P'fCCﬂteﬂde“iVGnyDFiUE;USlfi%f%? (1@82).jpg’

test_image = image.load_img(filename, target_size = (40,48))
plt.imshow(test_image)

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = @)

S

o

5

10

15

20

5

30

35

result = model.predict(test_image)

result

array([[®., ., ©., 8., ., 8., 1., 8., 8., 6., @., 8., 8., ., 8., 0.,
2., 8., 8., 8., @., @., 8., 8., 8., B., &., 8., 8., 8., 8., @.,
8., 8., 6., 8., 8., @&., 8., 8., 8., 8., ., 8., 8., 8., 8., 8.,
@., 8.]], dtype=~floati2)

Figure 3.7: Test image and Array Location of the test image
After training, our model could successfully identify the Bangla letter we fed into

for testing and produce corresponding sign gestures for said letter which is shown
in figure 3.8.

21

result = model.predict(test_image)
result = get result(result)
print (‘Predicted Alphabet is: {}'.format(result))

Predicted Alphabet is: 5

o 50 150 200

Figure 3.8: Generated sign gesture

3.3 Data Availability

The data used to support the findings of this study are available at -
e Bangla Handwritten dataset
e Bangla sign language dataset

e OnkoGan

22

https://drive.google.com/drive/u/0/folders/1KuH9704SjAcZp08WU3kWvwPVk9Sv-80h
https://www.kaggle.com/muntakimrafi/bengali-sign-language-dataset
https://github.com/ShahariarRabby/BanglaGan

Chapter 4

Implementation

4.1 Data preprocessing

We retrieved our dataset from Mendeley where the dataset is named as “BanglalLekha-
Isolated”. There are in total 98164 images in our dataset which we later on divided
into 80:20 ratio for training and testing purposes. It is essential to process the data
in particular manners prior to employing them to train a model and perform differ-
ent tasks. Before using that data for the purpose that we want, we need it to be as
organized and “clean” as possible [44]. We did batch resizing to the whole dataset
and set the dimension of each of the images as 40 x 40. As for training CNN with a
particular dataset, it is essential for the data to be labelled, we did a batch labelling
to the dataset as well. We kept the size of the input samples reasonably small,
which is 40 x 40, as we will be able to train it even with a thin network and by doing
that, we can avoid the possibility of overfitting as well. Besides, if we did not keep
the image size small, then we might have to face data loss while feeding them into
deeper layers. Hence, we tried to keep the size of the data as small as possible from
which we will get the maximum amount of image details and eventually train our
network for image classification. In Figure 4.1 we have shown our dataset splitting.

Original labelled dataset

2 v

Training set Testing set
(80%) (20%)

Figure 4.1: Dataset splitting

We used multiple models for training our dataset and finding out which one pro-
vides us with the highest accuracy. In each case, we followed the generic ways of
preprocessing data which is discussed below:

23

4.2 Data augmentation

With a view to avoid overfitting issues, we did data augmentation with our existing
dataset. We basically instigated variability on our dataset with accumulating no
new data. Data augmentation can be used to address both the requirements, the
diversity of the training data, and the amount of data [45]. Although, our neural
network thinks of them as distinct data, we altered a few things from our training
dataset:

rescaling- For rescaling, we took a value of 1/255 with which each of the training
data gets multiplied.

shear_range- This attribute shears the angle of each of the images counterclockwise
where the direction is in degrees. We applied .2 as the value for this attribute.
zoom_range- We used this attribute for zooming the images randomly. We set the
value as .2.

horizontal flip- We set the attribute as true, hence it randomly flips the images hor-
izontally.

rotation_range- This attribute is to degree range for random rotations of the images.
width_shift range- We set its value as .2. We used it for shifting each image to the
left or to the right, horizontally.

rescaling horizontal_flip

Y

Data —> shear_range rotation_range

Augmented Data » Dataset Training

zoom_range width_shift_range

Figure 4.2: Data augmentation

The above Figure 4.2 shows the way we augmented our data.

4.3 Normalization

For keeping the gradient of a model in a stable state and for training it, the data
has to be scaled in a particular way which is called normalization. It is basically
used right after performing each layer of convolution operation. There are mul-
tiple techniques of doing normalization, for instance, group norm, instance norm,
batch norm, layer norm etc. However, in our work we only used batch normalization.

4.4 'Training set

Data augmentation makes several views of the images other than just one view of
them, like, rotate, shift, flip them. This way the effect of overfitting gets minimized

24

and the dataset gets enlarged. Our training augmentation has been already stated
in the “Data Augmentation” section and for our test set, we kept the sample as it
is, only for normalization, we rescaled the image by 1/255.

4.5 Model Training

We split our collected dataset into training and testing sets. These two sets are kept
in two different directories. In the directory, where the training set is kept, it again
divided into 50 subsections. As we used our model to classify 50 Bangla alphabets,
each alphabet is kept in a different folder. In that very folder, there are hundreds
of images of the same alphabet in different orientations and fonts. We tried to keep
our inventory of images reasonably diversified so that the training of the model goes
right and it can classify the image while we run the testing phase and come up with
accurate prediction of the given input.

The figure 4.3 below portrays our implemented CNN model clearly with a visual
representation that is given below:

CNN

Back
Propagate

— voting on best output

Deep Stacking
Convolutional layer

Max pooling layer

conv

IIMAGE

HIAY T AFLIINNOD A1 N4

T feature
map
—'I_‘ ax

- - | pooling

S _,—» ReLU — feature
P

Figure 4.3: Visual Representation of CNN model

25

We trained our CNN model with the dataset and afterwards did a one-to-one map-
ping between the output that we get while testing phase, which is an alphabet and
its corresponding sign gesture. The workflow of the whole thing is provided below
in the figure 4.4:

Bangla alphabet Data analysis and
dataset acquisition labelling

v

Y

Feature construction
and weighting

Training of the model |«

Testing the model

Y

Model prediction

Bangla alphabet-
Bangla sign gesture
mapping

Generation of sign
gesture

A

Figure 4.4: Workflow of the CNN model

26

Chapter 5

Challenges

5.1 Data Dependency

A learning model gets optimum efficiency when it is fed with enough training data.
The sum of data is directly proportional to the performance; the more data, the
greater the performance. In our case, we faced some challenges while training our
model.

5.2 Overfitting

Overfitting [6] happens when the neural network familiarizes itself with the training
set so closely that it loses the capability to speculate and make prognosis for new,
obscure data. It naturally happens when the dataset is not enough with respect
to the network profundity. The network gets biased on the split training set and
cannot recognize the testing set accurately. In our case, the dataset was quite small
in the first phase of training the model. So, we faced some overfitting problems.
Later we were able to increase our dataset sample in order to reduce overfitting.

5.3 Data Leakage

Data leakage happens when [6] the dataset is not split properly for training and
testing purposes. It can also happen when the same data is split in both training
and testing sides. This problem hides the actual performance and the performance
degrades when it gets familiarized with new data. In our case, we split the dataset
into training (78,513 data) and testing (19,651 data), while training, some data got
lost in the process.

5.4 Excessive training time

We, the authors, did not have access to a high functioning computer with GPU so
that we had to train our model using Google Collaboratory. It took too much time

27

and some network issues increased our training complication.

5.5 Gradient Vanishing

Gradient vanishing problem is basically the derivatives [7] which were to be mul-
tiplied with the same amount of hidden layer, are smaller than usual; while back-
propagating the gradients will decrease gradually and after a while they will vanish.
In our case we faced this issue while training, while we tried to back propagate, the
loss function gets small enough so the model cannot differentiate between previous
and updated weight. While fetching the weights from the hidden layers, the model
fails to recognize the accurate weight to be fetched.

28

Chapter 6

Experimental Setup

6.1 Model Testing

The testing is done to detect the predicted output of the model. During the training
period, we have taught our model to identify different kinds of Bangla alphabets. For
that we used a labelled dataset, where each of the images of an alphabet is named
by the name of the alphabet itself. For testing the model, we take a directory of
a particular image from the test dataset. The image has been kept completely iso-
lated from the training dataset but due to extensive training of the model, it can
successfully predict the name of the alphabet visible on the test image. In figure
6.1, a complete workflow of our task is shown.

Data Labelling Data Pre-processing Feature Extraction

Max RelU | Deep Fully Connected

K Layer
Pooling Stacking 4
Layer

Convolutional
Layer

h.

Test Image Prediction Classified Result

l

Corresponding Appopriate

I _to-

S?a:%lz;:u?:?::t t?n Sign Gesture Sign Gesture
9 pping retrieval generation

Figure 6.1: Complete workflow

29

6.2 Results and analysis

To evaluate the performance of a model, we have to rely on a few attributes namely
Testing Accuracy, Epoch and Loss Function. Testing accuracy per epoch defines
the correctness rate of a particular model and that of the loss function defines the
difference between our generated result and the accurate result. The latter one
is used for determining the error rate of the model. In our experiment, we tried
to extract results with least loss function and for that we employed high epoch,
and in the meantime, used a reasonably big dataset that assures the model to be
trained properly. For image classification, we took four approaches, as in, used for
models to figure out variations of accuracy in different models. For that, we used
a general CNN model, VGG16, Inceptionv3 and Resnet50. As mentioned before,
to achieve our goal, first we trained a classifier so that it can successfully recognize
a particular alphabet during the testing phase. Henceforth, our initial challenge
lies on predicting the alphabet accurately. Afterwards, we simply did a mapping
between the predicted alphabet and its corresponding sign gesture. So, here our
training and testing phase comprises all the experiments that we conducted on our
alphabet dataset.

epochs Training Accuracy

1 21.30

2 29.30 | 30.10

3 21.21 | 29.94 | 31.62

4 22.34 | 22.24 | 23.44 | 33.18

) 29.22 | 29.67 | 30.20 | 31.34 | 31.22

6 20.54 | 21.50 | 21.43 | 21.27 | 22.19 | 22.13

7 32.22 | 33.43 | 31.25 | 31.76 | 33.49 | 34.21 | 36.33

8 24.57 | 22.76 | 23.21 | 23.54 | 24.33 | 25.10 | 26.41 | 26.13

9 31.23 | 32.41 | 34.10 | 32.81 | 35.07 | 32.65 | 31.76 | 33.34 | 34.59
10 23.21 1 2499 | 25.23 | 32.82 | 35.31 | 35.64 | 34.02 | 34.59 | 36.17 | 35.11

Table 6.1: Accuracy of VGG16 classifying image

In the above table 6.1, we found that, while training the model with our dataset,
the accuracy differs based on the number of epochs set for each training. For this
experiment, we trained the model for 10 times and in course of time, we increased
the number of epochs. On the very first experiment, when the epoch is set as 1, the
accuracy happens to be pretty low, which is only 21.30%. It fluctuates through-out
the whole experiment and at the end of 10th experiment and on its last epoch, we
got the accuracy as 35.11%. Point to be noted, this is only the initial stage of train-
ing where the epoch is set as low. After training each of the models for a long time,
we eventually got decent accuracy for each of the models.

30

accuracy
B &F B &8 B B &5
L]
L]
]
L]

[
Pl
L

o 2 4 & B
epochs

Figure 6.2: Accuracy of VGG16 for 10 epochs

For plotting the above scattered diagram 6.2, we took the accuracy of the final epoch
of each experiment. Here we tried to portray the distribution of the accuracies in
terms of epoch-count. We can see that the 7th experiment provided us with the
highest accuracy in comparison to the others

epochs Training Accuracy

1 29.70

2 31.30 | 31.23

3 21.76 | 22.54 | 22.23

4 23.80 | 23.21 | 24.10 | 27.18

5 23.00 | 23.45 | 24.24 | 24.18 | 24.12

6 24.54 | 24.11 | 26.53 | 27.19 | 37.25 | 39.24

7 30.61 | 31.25 | 31.76 | 32.44 | 33.18 | 34.67 | 34.17

8 34.57 | 33.15 | 35.76 | 25.76 | 28.90 | 30.32 | 30.18 | 32.53

9 24.23 |1 35.25 | 36.26 | 36.78 | 29.12 | 30.53 | 30.34 | 31.86 | 32.87
10 22.21 | 22.34 | 22.65 | 23.46 | 34.51 | 25.33 | 24.18 | 23.42 | 34.57 | 35.38

Table 6.2: Accuracy of Inceptionv3 classifying image

In the above table 6.2, we see the accuracies of inceptionv3 in classifying the images.
We did 10 different experiments for this and in every case, we increased the number
of epochs by one, more than the previous one. Even though, the final accuracy
in each experiment somewhat fluctuates through-out the whole experiment, yet it’s
evident that the accuracy increases over time, provided that the epoch-count gets
increased. From the above experiment, we got the highest accuracy on the 6th ex-
periment, where its final accuracy happens to be 39.24%. Though after increasing
the number of epochs up to 10, we ended up having accuracy of 35.38%.

31

40.0

37.5 A

325 A * b

aoouracy

004 o

epochs

Figure 6.3: Accuracy of Inceptionv3 for 10 epochs

This figure 6.3 shows the training accuracy of inceptionv3 over 10 epochs. Here
we can see that, on the 6th experiment we got highest accuracy at the end of the
training, which is 39.24%. And the accuracy scored the lowest at the end of 3rd
experiment. We plotted the scattered diagram taking the final accuracy of each of
the experiments.

epochs Training Accuracy

1 28.32

2 30.25 | 31.43

3 31.41 | 32.51 | 32.03

4 22.23 | 23.46 | 35.80 | 26.48

5 24.22 | 23.55 | 24.29 | 24.21 | 24.43

6 23.54 | 24.36 | 33.26 | 35.19 | 37.44 | 38.34

7 23.20 | 21.47 | 31.77 | 32.44 | 33.78 | 34.17 | 34.44

8 26.57 | 27.25 | 27.53 | 29.16 | 28.10 | 30.12 | 30.40 | 32.61

9 31.23 | 36.15 | 36.46 | 36.98 | 28.99 | 31.43 | 32.46 | 31.80 | 32.29
10 22.94 | 31.24 | 30.44 | 31.20 | 32.55 | 33.88 | 33.35 | 34.42 | 35.50 | 35.61

Table 6.3: Accuracy of general CNN classifying image

The above table 6.3 defines different training accuracy of CNN for our dataset. After
training our general CNN model, which we eventually employed to complete our full
task, that is, generation of sign gesture, we found out variations in the accuracy.
We conducted 10 different experiments for it and increased the epochs over time.
In each experiment, though the accuracy fluctuated a little, in most cases, it got
increased over time. Here, the least accuracy marked is 21.47% and that of the
highest is 38.34%.

32

3 - .
®
.
e .
B3z . b
c *
g
B 3o 4
Pl
2 .
il . ° . .
o 2 4 B B
epochs

Figure 6.4: Accuracy of CNN for 10 epochs

The above graph 6.4 portrays the final accuracy of each of the experiments that
we performed on our CNN model with our dataset. In these experiments, the 6th
experiment scored the highest final accuracy among all the experiments performed.

epochs Training Accuracy

1 18.40
19.30 | 21.36
22.61 | 21.81 | 22.10
15.42 | 23.93 | 25.81 | 26.26
25.83 | 23.68 | 24.28 | 24.33 | 24.91
23.54 | 24.82 | 24.29 | 25.60 | 26.36 | 27.91
24.67 | 26.21 | 17.77 | 21.57 | 22.41 | 23.78 | 24.20
26.93 | 23.19 | 25.73 | 25.21 | 18.11 | 19.67 | 20.44 | 21.73
23.77 | 21.05 | 22.06 | 22.78 | 19.16 | 20.42 | 21.65 | 21.26 | 22.80
10 24.12 | 20.31 | 22.05 | 22.56 | 23.55 | 24.29 | 24.99 | 25.24 | 24.08 | 24.81

QOO0 | O U =] W[DD

Table 6.4: Accuracy of Resnet50 classifying image

The above table 6.4 shows the accuracy of Resnet50 after we trained it without our
dataset. We trained our dataset with the resnet50 classifier as well. For this, we
again performed 10 experiments with variations in the number of epochs. After per-
forming the experiments, we observed that the highest accuracy achieved is 27.91%
and that of the lowest accuracy is 15.42%.

33

25 1 L]
26 1 .
L []
L]
724 4
&
2 L]
H22- . *
L
20 1
L
158 1 T : T T
o 2 4 & B
epochs

Figure 6.5: Accuracy of Resnet50 for 10 epochs

In the scattered diagram 6.5, we plotted the final accuracy of each of the experi-
ments. In the first experiment, we got the lowest final accuracy and in the case of
the 6th one, the final accuracy happens to be the highest, which is 27.91%.

epochs Test Accuracy (%) Loss Function (%)
VGG16 | inceptionV3 | CNN | Resnet50 | VGG16 | InceptionV3 | CNN | Resnet50
1st 35.29 33.14 35.19 30.13 61.31 62.38 59.36 66.91
2nd 34.46 34.82 36.40 31.44 53.12 55.27 54.12 65.17
3rd 36.88 36.11 34.61 33.91 50.27 43.66 53.47 61.92
4th 37.91 33.65 36.99 33.99 49.19 39.10 51.21 59.10
5th 38.40 35.46 37.80 34.81 48.37 38.45 50.82 54.15

Table 6.5: Test accuracy and Loss function of all the models

The above table 6.5 shows the test accuracy and loss function of all the models
which we used for training our dataset. We trained each of the models with our
dataset. We set the epoch as 100 for training each model but for compiling them in
a table, we just retrieved the test accuracy and loss function of each model up to 5th
epoch. Here we can see, all the models show promising results in terms of accuracy
as they proceed further, as in, the accuracy increases with the increase of epoch.
For VGG 16, initially it is 35.29% but in course of time, on the 5thepoch it becomes
38.40%. As for Inceptionv3, the initial accuracy is 33.14% and at the end of 5th
epoch, it becomes 35.46%. We also trained our generic CNN model and found the
test accuracy on the 1st epoch as 35.19% and on the 5th epoch, it reached 37.80%.
But in the case 420f Resnet50, the accuracy is a little less than other models. On the
5th epoch, for this model, we achieved 34.81% accuracy. As the accuracy increases
in every epoch, the loss function of each of the models decreases accordingly. In case
of VGG16, the loss function decreases from 61.31% to 48.37%. For Inceptionv3 it’s
62.38% to 38.45%; 59.36% to 50.82% for CNN and lastly for Resnet50, it is 66.91%
to 54.15%.

34

28

kJ
o
L

accuracy

[%]
=
L

22 1

20 1

T
0.0 05 10 15 20 25 30 15 40
epochs

Figure 6.6: Test accuracy of different model

In the above figure 6.6, we made a graph that shows the differences between the
test accuracy of different models over variable epochs. Here the blue, green, in-
digo, brown lines depict VGG16, Inceptionv3, CNN and Resnet50 respectively. It’s
evident that the accuracy of VGGI16 is the highest, then comes CNN, and then
Inceptionv3 followed by Resnet50.

loss function

T
] 05 10 15 20 25 30 35 40
epochs

Figure 6.7: Loss function of different model

In this figure 6.7, blue, green, indigo, brown lines depict loss function of VGG16,
Inceptionv3d, CNN and Resnet50 respectively. Here, the loss function of Inceptionv3
decreases faster than any other models. And in the case of Resnet50, its loss func-
tion decreases the least.

35

Batch Size | Accuracy
16 96.91
32 96.67
64 92.28
128 94.19
512 94.83

Table 6.6: Accuracy of VGG16

The above table 6.6 shows the accuracy of VGG16 for different batch size. We
trained our model, VGG16 with the dataset and set the epochs as 100. We intended
to observe the variations between the accuracies with variations in the batch size.
With the increase of batch size, the accuracy of the model decreases. When the
batch size is set 16, the accuracy is 96.91% and right after the batch size is in-
creased to 512, the accuracy comes down to 93.83%.

7 —8— Accuracy over batch size for 100 iterations
% <
957
m
5
(=]
'& M 4
93 A1
0 100 200 300 400 500

Batch Size

Figure 6.8: Accuracy of VGG16

In the figure 6.8, it shows how the accuracy of the model decreases over time, in
terms of the increment of the batch size

Batch Size | Accuracy
16 96.34
32 95.88
64 93.18
128 92.71
512 91.91

Table 6.7: Accuracy of Inceptionv3

The above table 6.7 defines the accuracy of Inceptionv3 for different batch size of
our dataset. In case this case, the accuracy after the training fell, once we started
to increase the batch size. With a smaller size of the batch, we got higher accuracy

36

of the overall model.

—&— Accuracy over batch size for 100 iterations
96
9%
fny
s
2 W
-
93
92
o 100 200 300 400 500

Batch Size
Figure 6.9: Accuracy of Inceptionv3
In this line diagram 6.9, we can see that the accuracy falls for the increased value

of the batch size. As we double the batch size in each experiment, the accuracy of
the model decreases accordingly.

Batch Size | Accuracy
16 97.79
32 97.59
64 97.46
128 93.90
512 93.55

Table 6.8: Accuracy of CNN

In this table 6.8, we can see the accuracy of the CNN model after training it while
setting different values of batch size. When the batch size is 16, the accuracy that
we achieved for the model is 97.79%.

Afterwards, we increased the batch size a few times and finally we set it as 512 and
for that the accuracy turns out to be 93.55% which is pretty less than the one that
we got for batch size 16. The accuracy is shown in Figure 6.10:

95
—&— Accuracy over batch size for 100 iterations
97
o %
m
5
o
£
95
94
o 100 200 300 400 500

Batch Size

Figure 6.10: Accuracy of CNN

37

We plotted the graph taking the accuracy and batch size of the model in account.
Just like mentioned above, the accuracy of the model got down as we increased the
batch size which we showed in our graph.

Batch Size | Accuracy
16 90.10
32 88.64
64 87.45
128 86.62
512 86.41

Table 6.9: Accuracy of Resnet50

The given table 6.9 shows the accuracy of Resnet50 for variation in batch size. Last,
we trained our Resnetb0 model with the dataset where for batch size 16, we got
accuracy which is 90.10%. We trained the model for five different batch sizes and
the accuracy decreased for increased value of batch size. Hence, for the batch size
of 512, we got an accuracy of 86.41%. The accuracy is shown in Figure 6.11:

90.0 4 —&— Accuracy over batch size for 100 iterations
B9.5 -
B9.0 A

88.5 1

Accuracy

85.0 1

B7.5 1

87.0 1

85.5 1 h

o 100 200 300 400 500
Batch Size

Figure 6.11: Accuracy of Resnet50

Model Epochs | Accuracy
VGG16 100 92.28
Inceptionv3 100 93.18
CNN 100 97.46
Resnet50 100 87.45

Table 6.10: Accuracy of different models

The above table 6.10 shows the final accuracy of different models. Finally, we got
the accuracy of all the models that were trained and tested with the same dataset
and the epoch count was set the same for each of them. As the batch size of 64
happens to be more feasible for us to run the codes, we considered the accuracy of

38

each of the models having a batch size of 64. That way, we found the accuracy of the
generic CNN model highest in terms of generating sign gestures, which is 97.46%.
As for VGG16 and Inceptionv3 it’s 92.28% and 93.18% respectively. In the case of
Resnet60, we got the lowest accuracy, which is 87.45%.

39

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Sign language is a way of conversing where one may communicate by visual move-
ments and signals. Usually, they send messages using their hands, finger gestures,
and facial expressions to convey the desired piece of information successfully. Gen-
erating sign language from text inputs using neural networks as an approach is
established as a one-of-a-kind milestone. Many pieces of research are conducted
in recognizing Bangla Sign Language but not in the generation sector. Our paper
mainly used Convolutional Neural Network as a classifier and trained it further with
the dataset by which we got the classified image. On top of that, we used one-to-one
mapping in order to retrieve the corresponding gesture to our input. We used various
pre-trained models like Inception-v3, VGG16, and ResNet50 to calculate and com-
pare the accuracy levels. Eventually, we have efficiently retrieved the appropriate
sign gestures after the model successfully classified the alphabets. The accuracy of
classification is 97.46%. We got from the generic CNN model that we have employed.

7.2 Future Work

Setting aside what we have effectively accomplished, there are a few impediments
that should be addressed. The major obstruction of this research is the scarcity of
computational resources, such as the limitations of the GPU. Since the dataset we
used is quite extensive, the training period took much longer because of the low
GPU. In addition, we faced complications in classification and prediction since we
used smaller datasets to train. We solved that by augmenting an improved dataset.
We could have avoided this situation by accessing a higher GPU. Also, we did one-
to-one mapping, which could be done automatically. Furthermore, in our research
paper, we used letters for generating sign gestures. Our future goal is to improve
this research to generate sign gestures by using sets of sentences—moreover, our
target is to retrieve animated gestures. We could not accomplish it in the current
research because of scarce time and resources. It can be done by using NMT (Neu-
ral Machine Translation) that will generate automated outputs. We will process it
with GAN (Generative Adversarial Network) to create the final output that is the
animated sign gesture of the given sentence.

40

Bibliography

[1] J. Silberner, Nearly 1 in 7 people on earth are disabled survey finds, vol. 1,
[Online]. Available: https://www.npr.org/sections/health-shots/2011/06/09/
137084239 /nearly-1-in-7-people-on-earth-are-disabled-survey-finds.

[2] “National strategy on prevention of deafness and hearing impairment in bangladesh:
2011-2016,” 2011.

[3] I. Research Directorate and C. Refugee Board, Bangladesh: Societal attitudes
towards handicapped people, including those who are deaf and mute, and the
treatment of those who promote their rights by the authorities and the jamaat-
e-islami (2000-2004), 2004. [Online]. Available: https: //www.refworld.org/
docid/41501beclc.html.

[4] The Editors of Encyclopaedia Britannica”, Sign language — communications,
Nov. 2020. [Online]. Available: https://www.britannica.com /topic /sign-
language.

[5] J. Strickland, How Sign Language Works, Apr. 2021. [Online|. Available: https:
//people.howstuffworks.com/sign-language.htm.

[6] A. Munappy, J. Bosch, H. H. Olsson, A. Arpteg, and B. Brinne, “Data man-
agement challenges for deep learning,” in 2019 /5th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), 2019, pp. 140-147.
Dor: 10.1109/SEAA.2019.00030.

[7] R. Dagli, Vanishing/ Exploding Gradients in Deep Neural Nets and solving
them, Apr. 2020. [Online]. Available: https://medium.com /swlh /vanishing-
exploding-gradients-in-deep-neural-nets-and-solving-them-9d6070f28b29.

[8] National Activities - Bangladesh - Bangladesh Sign language Day, Feb. 2014.
[Online]. Available: http://www.dpiap.org/national /article.php?countryid=
017&1d=0000029& country=Bangladesh.

9] Arc, “Convolutional neural network,” Medium, 2018. [Online]. Available: https:
/ /towardsdatascience.com/convolutional-neural-network-17fb77e76c05.

[10] CS231n Convolutional Neural Networks for Visual Recognition. [Online]. Avail-
able: https://cs231n.github.io/convolutional-networks/.

[11] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,”
ArXiv e-prints, Nov. 2015.

[12] P. Skalski, Gentle Dive into Math Behind Convolutional Neural Networks, Apr.
2019. [Online]. Available: https://towardsdatascience.com /gentle-dive-into-
math-behind-convolutional-neural-networks-79a07dd44cf9.

41

https://www.npr.org/sections/health-shots/2011/06/09/137084239/nearly-1-in-7-people-on-earth-are-disabled-survey-finds
https://www.npr.org/sections/health-shots/2011/06/09/137084239/nearly-1-in-7-people-on-earth-are-disabled-survey-finds
https://www.refworld.org/docid/41501bec1c.html
https://www.refworld.org/docid/41501bec1c.html
https://www.britannica.com/topic/sign-language
https://www.britannica.com/topic/sign-language
https://people.howstuffworks.com/sign-language.htm
https://people.howstuffworks.com/sign-language.htm
https://doi.org/10.1109/SEAA.2019.00030
https://medium.com/swlh/vanishing-exploding-gradients-in-deep-neural-nets-and-solving-them-9d6070f28b29
https://medium.com/swlh/vanishing-exploding-gradients-in-deep-neural-nets-and-solving-them-9d6070f28b29
http://www.dpiap.org/national/article.php?countryid=017&id=0000029&country=Bangladesh
http://www.dpiap.org/national/article.php?countryid=017&id=0000029&country=Bangladesh
https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05
https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05
https://cs231n.github.io/convolutional-networks/
https://towardsdatascience.com/gentle-dive-into-math-behind-convolutional-neural-networks-79a07dd44cf9
https://towardsdatascience.com/gentle-dive-into-math-behind-convolutional-neural-networks-79a07dd44cf9

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

[23]

S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolu-
tional neural network,” in 2017 International Conference on Engineering and
Technology (ICET), 2017, pp. 1-6. pDo1: 10.1109/ICEngTechnol.2017.8308186.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural
network for modelling sentences,” 52nd Annual Meeting of the Association for
Computational Linguistics, ACL 2014 - Proceedings of the Conference, vol. 1,
Apr. 2014. por: 10.3115/v1/P14-1062.

H. S, Activation Functions : Sigmoid, ReLU, Leaky ReLU and Softmazx basics
for Neural Networks and Deep Learning, Jan. 2020. [Online]. Available: https:
/ /medium.com /@himanshuxd /activation-functions-sigmoid-relu-leaky-relu-
and-softmax-basics-for-neural-networks-and-deep-8d9c¢70eed91e.

S. Sharma, Activation Functions in Neural Networks - Towards Data Science,
Dec. 2019. [Online]. Available: https://towardsdatascience.com /activation-
functions-neural-networks-1cbd9f8d91d6.

K. Srinivasan, A. K. Cherukuri, D. Vincent P M, A. Garg, and B.-Y. Chen,
“An efficient implementation of artificial neural networks with k-fold cross-
validation for process optimization,” Journal of Internet Technology, vol. 20,
pp. 1213-1225, Jun. 2019. por: 10.3966,/160792642019072004020.

H. Mujtaba, “What is Rectified Linear Unit (ReLU)? — Introduction to
ReLU Activation Function,” Dec. 2020. [Online]. Available: https://www.
mygreatlearning.com/blog/relu-activation-function/.

H. Qassim, A. Verma, and D. Feinzimer, “Compressed residual-vggl6 cnn
model for big data places image recognition,” in 2018 IEEFE 8th Annual Com-
puting and Communication Workshop and Conference (CCWC), 2018, pp. 169
175. por: 10.1109/CCWC.2018.8301729.

M. Hassan, VGG16 — Convolutional Network for Classification and Detection,
Feb. 2021. [Online]. Available: https://neurohive.io/en/popular-networks /

vgel6/.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

P. Huilgol, Top 4 Pre-Trained Models for Image Classification with Python
Code, Dec. 2020. [Online]. Available: https://www.analyticsvidhya.com/blog/
2020 /08 / top-4- pre- trained - models- for- image- classification - with- python-
code/.

E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and P. De Geus, “Mali-
cious software classification using transfer learning of resnet-50 deep neural
network,” in 2017 16th IEEFE International Conference on Machine Learning
and Applications (ICMLA), IEEE, 2017, pp. 1011-1014.

A. Kaushik, Understanding ResNet50 architecture, Jul. 2020. [Online]. Avail-
able: https://iq.opengenus.org/resnet50-architecture/.

L. D. Nguyen, D. Lin, Z. Lin, and J. Cao, “Deep cnns for microscopic image
classification by exploiting transfer learning and feature concatenation,” in
2018 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE,
2018, pp. 1-5.

42

https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.3115/v1/P14-1062
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://doi.org/10.3966/160792642019072004020
https://www.mygreatlearning.com/blog/relu-activation-function/
https://www.mygreatlearning.com/blog/relu-activation-function/
https://doi.org/10.1109/CCWC.2018.8301729
https://neurohive.io/en/popular-networks/vgg16/
https://neurohive.io/en/popular-networks/vgg16/
https://www.analyticsvidhya.com/blog/2020/08/top-4-pre-trained-models-for-image-classification-with-python-code/
https://www.analyticsvidhya.com/blog/2020/08/top-4-pre-trained-models-for-image-classification-with-python-code/
https://www.analyticsvidhya.com/blog/2020/08/top-4-pre-trained-models-for-image-classification-with-python-code/
https://iq.opengenus.org/resnet50-architecture/

2]

[27]

28]

[36]

[37]

3]

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2818-2826.

S. M. Sam, K. Kamardin, N. N. A. Sjarif, N. Mohamed, et al., “Offline sig-
nature verification using deep learning convolutional neural network (cnn)

architectures googlenet inception-vl and inception-v3,” Procedia Computer
Science, vol. 161, pp. 475483, 2019.

R. Gomez, “Understanding categorical cross-entropy loss, binary cross-entropy
loss, softmax loss, logistic loss, focal loss and all those confusing names,”
URL: https://gombru. github. i0/2018/05/23/cross_ entropy_loss/(visited on
29/03/2019), 2018.

J. Brownlee, “A gentle introduction to cross-entropy for machine learning,”
Machine Learning Mastery, vol. 20, 2019.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,’
preprint arXiv:1412.6980, 2014.

M. S. Islalm, M. M. Rahman, M. H. Rahman, M. Arifuzzaman, R. Sassi,
and M. Aktaruzzaman, “Recognition bangla sign language using convolutional
neural network,” in 2019 International Conference on Innovation and Intel-
ligence for Informatics, Computing, and Technologies (31CT), 2019, pp. 1-6.
DoI: 10.1109/31CT.2019.8910301.

A. M. Rafi, N. Nawal, N. S. N. Bayev, L. Nima, C. Shahnaz, and S. A. Fat-
tah, “Image-based bengali sign language alphabet recognition for deaf and
dumb community,” in 2019 IEEE Global Humanitarian Technology Confer-
ence (GHTC), 2019, pp. 1-7. por: 10.1109/GHTC46095.2019.9033031.

D. Manzano, “English to asl translator for speech2signs,” 2018.

9

arXiv

S. Kaur and M. Singh, “Indian sign language animation generation system,”
in 2015 1st International Conference on Next Generation Computing Tech-
nologies (NGCT), 2015, pp. 909-914. por: 10.1109/NGCT.2015.7375251.

S. Stoll, N. C. Camgoz, S. Hadfield, and R. Bowden, “Text2sign: Towards sign
language production using neural machine translation and generative adver-
sarial networks,” International Journal of Computer Vision, vol. 128, no. 4,
pp- 891-908, 2020.

S. S. Shanta, S. T. Anwar, and M. R. Kabir, “Bangla sign language detec-
tion using sift and cnn,” in 2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), 2018, pp. 1-6. DOI:
10.1109/ICCCNT.2018.8493915.

S Hore, S Chatterjee, V Santhi, N Dey, A. Ashour, V. Balas, and F Shi, “Indian
Sign Language Recognition Using Optimized Neural Networks,” Advances in
Intelligent Systems and Computing, pp. 553-563, 2016. por: 10.1007/978-3-
319-38771-0\{_}54.

H. Kawai and S. Tamura, “Deaf-and-mute sign language generation system,”
Pattern Recognition, vol. 18, no. 3, pp. 199-205, 1985, 1SsN: 0031-3203. DOI:
https://doi.org/10.1016 /0031-3203(85)90045-7. [Online]. Available: https:
//www.sciencedirect.com /science/article/pii/0031320385900457.

43

https://doi.org/10.1109/3ICT.2019.8910301
https://doi.org/10.1109/GHTC46095.2019.9033031
https://doi.org/10.1109/NGCT.2015.7375251
https://doi.org/10.1109/ICCCNT.2018.8493915
https://doi.org/10.1007/978-3-319-38771-0\{_}54
https://doi.org/10.1007/978-3-319-38771-0\{_}54
https://doi.org/https://doi.org/10.1016/0031-3203(85)90045-7
https://www.sciencedirect.com/science/article/pii/0031320385900457
https://www.sciencedirect.com/science/article/pii/0031320385900457

[39]

[40]

[41]

[42]

[43]

[44]

[45]

K. Lim, A. Tan, and S. Tan, “A feature covariance matrix with serial particle
filter for isolated sign language recognition,” Fxpert Systems with Applications,
vol. 54, Feb. 2016. Do1: 10.1016/j.eswa.2016.01.047.

L. Pigou, Sign Language Recognition Using Convolutional Neural Networks,
Sep. 2014. [Online]. Available: https://link.springer.com /chapter/10.1007/
978-3-319-16178-5_407error=cookies_not_supported & code=01146a37-d59¢c-
40e4-996d-c6d1aad13fas.

N Mohammed, S Momen, A Abedin, M Biswas, M. Shopon, G Shom, and R
Islam, BanglaLekha-Isolated, Feb. 2017. por: 10.17632 /hf6sf8zrke.2.

Bengali Sign Language dataset, Mar. 2020. [Online]. Available: https://www.
kaggle.com /muntakimrafi/bengali-sign-language-dataset.

S. Haque, S. Shahinoor, A. S. A. Rabby, S. Abujar, and S. Hossain, “Onkogan:
Bangla handwritten digit generation with deep convolutional generative ad-
versarial networks,” in. Jul. 2019, pp. 108-117, 1SBN: 978-981-13-9186-6. DOTI:
10.1007/978-981-13-9187-3_10.

R. Miller, Data Preprocessing: what is it and why is important, Dec. 2019.
[Online]. Available: https://ceoworld.biz/2019/12 /13 /data- preprocessing-
what-is-it-and-why-is-important,/.

Great Learning Team”, Understanding Data Augmentation — What is Data
Augmentation how it works? Aug. 2020. [Online]. Available: https://www.
mygreatlearning.com/blog/understanding-data-augmentation//.

44

https://doi.org/10.1016/j.eswa.2016.01.047
https://link.springer.com/chapter/10.1007/978-3-319-16178-5_40?error=cookies_not_supported&code=01146a37-d59c-40e4-996d-c6d1aa413fa8
https://link.springer.com/chapter/10.1007/978-3-319-16178-5_40?error=cookies_not_supported&code=01146a37-d59c-40e4-996d-c6d1aa413fa8
https://link.springer.com/chapter/10.1007/978-3-319-16178-5_40?error=cookies_not_supported&code=01146a37-d59c-40e4-996d-c6d1aa413fa8
https://doi.org/10.17632/hf6sf8zrkc.2
https://www.kaggle.com/muntakimrafi/bengali-sign-language-dataset
https://www.kaggle.com/muntakimrafi/bengali-sign-language-dataset
https://doi.org/10.1007/978-981-13-9187-3_10
https://ceoworld.biz/2019/12/13/data-preprocessing-what-is-it-and-why-is-important/
https://ceoworld.biz/2019/12/13/data-preprocessing-what-is-it-and-why-is-important/
https://www.mygreatlearning.com/blog/understanding-data-augmentation/
https://www.mygreatlearning.com/blog/understanding-data-augmentation/

	Declaration
	Approval
	Ethics Statement
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Problem Statement
	Motivation
	Research Objective

	Literature Review and Related Work
	Convolutional Neural Network
	Layers
	Convolutional layer
	Pooling layer
	Fully connected layer

	Activation Functions
	Sigmoid Function
	Hyperbolic Tangent (TanH)
	Rectified Linear Unit (ReLU)
	Leaky ReLU
	Softmax

	Existing Deep Learning Models
	VGG16
	RESNET 50
	 Inception v3

	Loss Function
	Cross Entropy Loss

	Optimization Algorithm
	AdaM

	Related Works

	Dataset
	Dataset Labelling
	Working with the dataset
	Data Availability

	Implementation
	Data preprocessing
	Data augmentation
	Normalization
	Training set
	Model Training

	Challenges
	Data Dependency
	Overfitting
	Data Leakage
	Excessive training time
	Gradient Vanishing

	Experimental Setup
	Model Testing
	Results and analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

