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Abstract

Internet of Things (IoT) is hugely dependent on Cloud Computing. Cloud comput-
ing uses a high degree of polymerization calculation mode and so it cannot ensure
effective use of resources like computing, storage, etc. FOG computing is a devel-
oping paradigm that broadens computation, communication and storage facilities
towards the edge of a network. It is used to improve efficiency along with the re-
duction of transmitted data for processing to the cloud. Although the primary aim
of FOG computing is to improve the processing speed of cloud computation, it has
many challenges such as task scheduling, resource allocation, security, etc. Among
these challenges handling incoming requests to improve latency and throughput is
one of the crucial factors. As a solution, the proposed model uses a multi-layered
FOG model in which tasks are scheduled on the basis of priority based on the re-
quest type to increase the efficiency of the current FOG model. Firstly, the proposed
model creates a rule list based on the user’s request priority. While creating the rule
list the model will use advance caching mechanism based on the request type in
the different layers to improve latency and throughput. When a user sends data to
the FOG, it finds its configured layer of the FOG cloud on which the data will be
processed. Stored data will be loaded in the corresponding layer based on packets’
priority to make the computation faster. The proposed model has been simulated
using Microsoft Azure. In the simulation, the inbound data after caching was more
than 70 MB per 30 seconds wherein the traditional cloud, the inbound data rate
was around 30 MB per 30 seconds. Therefore, after caching the data, the model
performed twice faster than the traditional cloud.

Keywords: FOG computation, Task Scheduling, Caching mechanism.
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Chapter 1

Introduction

1.1 Overview of cloud computing and Fog com-

puting on IoT

IoT devices have introduced a new paradigm in the field of technology. Billions of
physical devices are collecting and sharing data via the connection of the Internet
which is the main concept of IoT. The real success of IoT lies in the utilizing of
gathered information from the environment provided to the cloud by the connected
devices rather than connecting billions of physical devices. Hence, the IoT infras-
tructures must have the capability to deal with a large amounts of things that are
distributed in different geographical position and the produced data may require
real-time analytics and data aggregation at different levels with the lowest possi-
ble latency [1]. Connectivity provided by cloud services helps devices by reaching
out and acting on the world to provide valuable information. The devices associ-
ated are not restricted to specific devices that any organizations possess, however,
these devices can range from individual devices each individual uses to the enor-
mous ones through Internet cloud services. Cloud computing uses remote servers
and computers across the Internet in replace of local servers and computers to store
and manage data along with performing data operation. It offers delivery services
directly over the Internet by providing storage, databases, software, applications,
network, servers, etc. to its clients. At present, the improvement and implemen-
tation of scalable Internet of Things applications and business model have created
a revolution around the world that has been possible for the huge uses of IoT in
the cloud. Cloud computing and IoT have emerged as very intently affiliated future
Internet technologies with one providing the alternative a platform for success. Con-
verging IoT and Cloud computing have created a platform where a huge number of
benefits are found. Due to the convenience of IoT devices, usages and the number
of IoT devices are increasing exponentially which results in the market worth of 19
trillion pro-t and 50 billion IoT devices by 2020 [2]. To support this huge market,
it is quite difficult to rely on only cloud computing. In order to overcome the chal-
lenge, a new model called the FOG communication model has been incorporating
with cloud computing. With the rising of FOG communication, the challenges of
implementing FOG are increasing rapidly. Fog computing allows for the distribu-
tion of critical core functions like storage, communication, control, decision making
and application services closer to the origination of data. FOG computing spans
the continuum between the cloud and everything else. It makes fog computing, a
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standard design and a necessary one for eventualities wherever latency, privacy, and
alternative data-intensive issues a cause for concern.

1.2 Thought Behind Working on Fog Computing

The fog nodes can be deployed in any environment with a network connection. To
process the services of the fog nodes, it has additional storage and processing system
at the edges. In addition, the fog computing model is still a new one and does not
have a proper structure. Hence, the maintenance process encounters some issues like
privacy, security network management, placement of fog servers, delay in computing
and energy consumption [3]. As a result, there is a huge scope for researchers to work
on. Therefore, we set up our mind to work on the delay in computing to increase
the throughput by reducing latency. Delays in computing generally occur due to
data aggregation, resource over-usage reduces the effectiveness of services provided
by the fog servers, causing delays in computing data [3]. Thus, task scheduling can
provide an effective way of overcoming the delays to make the fog computing faster.

1.3 Problem Statement

As FOG computing is totally new to overcome the challenges of cloud computing
is facing, different approaches and models of fog computing are being proposed.
Several layers of FOG has been proposed to improve the communication model
by efficient load model [4]. Moreover, IoT sensors are divided into different types
based on the impact of data loss of different sensors on the total system [5]. FOG
computation covers and supports the applications that require low and predictable
latency which can not be achieved in cloud computation [6]. Furthermore, a huge
data centre with cloud computing can be still used for deep analytics with the help
of the FOG model [7]. In the report, the proposed model has utilized the hierarchy
and packet classification based on request type to ensure load balancing in the
communication model by scheduling tasks. In the model, the FOG communication
model will balance the computation load by scheduling tasks in the different layers.
The Fog computation model has divided into four different layers where layer 1 will
be end-user, layer 2 will be lower middleware, layer 3 will be upper middleware and
layer 4 will be the cloud. Figure 1 will illustrate the distribution of the layers in
the system. The task scheduling approach will be applied on layer 2, layer 3 and
layer 4. Packet classification has been used to identify the data type and based
on that request type the tasks are scheduled on the mentioned layers. To do the
packet classification, rules will be set on considering two parameters which are the
impact of data loss in the system which means TCP type packets and the necessity
of real-time data transfer for the best outcome of the system which denotes UDP
type packets.

1.4 Research Contribution

We have proposed the model to design a futuristic system that will be able to handle
the upcoming challenges in the huge IoT market in terms of efficient communication.
To fulfill the motive, layers will be configured according to the algorithm which is

2



made of considering the two parameters which are UDP type request and TCP type
request. Therefore, this proposed model will increase the efficiency of the traditional
fog computing model by reducing the latency and increasing the throughput.

1.5 Research Objectives

The main objective of this research is to increase the efficiency of the IoT based FOG
model by improving the FOG communication model. Thus, some of the proposed
model objectives are given below:

• To develop a task scheduling algorithm for the FOG server.

• To decrease the latency of any request.

• To increase the throughput of the FOG server.

• To develop a more efficient caching mechanism for request handling.

• To decrease the IoT device’s communication time and improve the response
time for any request.

• Design the FOG layer to cache different types of data.

• To get a good idea about how the FOG communication model is going to be
established in the future.

• Implement the proposed model in a simulated environment to compare the
mechanism with the existing cloud computing model.
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Chapter 2

Related Work

2.1 Literature Review:

Because of being emerging technology field, researchers are putting great effort in
the FOG communication model to derive a suitable model. There is no standard
architecture for the FOG computation model which creates a huge opportunity to
explore different approaches [8]. Task scheduling on FOG servers is one of the great
challenges among the challenges in implementing the FOG communication model.
Different approaches considering different scenarios are being analyzed and simu-
lated.

Authors focused on layered FOG communication models where FOG servers’ are
divided into two upper middleware and lower middleware between the end devices
and cloud [9] [10] [11]. The main idea is that the lower middleware will be close to
the end device and the upper middleware will be close to the cloud. The data will
be searched starting from lower middleware and if not found it will search on upper
middleware. If not found in upper middleware, it will search nearest upper middle-
ware and then to the cloud. After that, the packet will be saved in lower middleware.

In another model, the authors focused on implementing a data mining approach for
task scheduling algorithms [12]. The execution of the main algorithm consists of
two consecutive algorithms which are the I-Apriori algorithm and the output of this
algorithm works as the input of the TSFC (Task Scheduling in FOG Computing).
Besides, another model has proposed a task scheduling algorithm where after receiv-
ing a task, the task is composed in different subtask in fog node and an algorithm
is used to find out the optimal task sequence [13]. The main objective of finding
this sequence is to ensure minimum use of resources and cost. Another model has
adapted the approach of Greedy Knapsack-based Scheduling (GKS) [14]. The main
idea is to dividing the task into equal sub-tasks and putting weight on the individ-
ual tasks. Then the author handles the problem as a knapsack problem’s greedy
approach. Besides, one model has divided the tasks of IoT into two categories which
are near real-time and delay-tolerant [15]. Between these two types, near real-time
is handled faster and real-time. This is done based on the activity different algo-
rithms such as FCFS, Concurrent Strategy and Delay-priority are used. Another
group of researchers’ have proposed a model in which different clusters are used
for performing any task [16]. The task is divided into multiple sub-tasks and then
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distributed into appropriate clusters. This clustering and division of sub tasking
is done considering parameters such as latency, power consumption, and cost. In
another proposed model, the FOG servers are divided into three containers which
are request evaluator, task scheduler and resource manager [17]. Request evaluator
evaluates whether the request can be managed, task scheduler schedules the task
and resource manager provides appropriate resources. In addition, for implementing
optimal scheduling, another model has proposed heuristic-based algorithm for im-
plementing task scheduling in FOG servers [18]. This method produces two Directed
Acyclic Graphs which are Task Graph and Process Graph. Considering these two
graphs, they determine appropriate task schedule. For determining the appropriate
task schedule, they considered determining task priority and selecting the appropri-
ate nodes for performing a task.

Moreover, FOG uses two types of communication models which are request-reply and
publish subscriber [19]. Among these, request-reply model is based on client-server
architecture which is one of the basic. On the other hand, the publish-subscribe
model has a subscriber (client), broker (Middleware) and publisher (Cloud). We
have followed the request-reply approach where there is the scope of publish-subscribe
introduction in the future. Another approach for optimizing task scheduling is a
joint optimization technique [20]. The authors focused on addressing 3 issues which
are how to balance the workload on a client device and computation server, how to
place the task to the storage device and how to balance I/O interrupt request. They
used 2 types of servers which are storage server and computation server. Besides,
interconnection among FOG nodes has also been proposed [21]. Here, the fog nodes
are distributed based on different regions and a request can be handled either one
or multiple regions based on the request. In another approach, the authors used
a priority task scheduling algorithm [22]. This is an improved version of Efficient
Resource Allocation (ERA). At first, the request is assigned to the nearest FOG
server and then the FOG server sends the request to a priority queue. Moreover, a
group of researchers has proposed MOSSO (Multi-Objective Simplified Swarm Op-
timization) for task scheduling [23]. Their main focus was on finding the relation
between processing rate and cost per unit time of the processor.

Among these models, we have focused on enhancing the layered model architecture
by utilizing packet classification. Our proposed model will utilize packet classifica-
tion to search and store expected requests in a certain layer. As a result, it will
increase the latency of any request and also decrease the throughput of requests
by utilizing computational capabilities. In addition, our proposed model does not
search for the specific requests among upper middleware. Therefore, our model re-
quires less computational time for searching the packet in FOG layers before going to
the cloud. For swapping stored values, our model has the used Least Time between
Access algorithm with a lazy population caching mechanism.
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2.2 Layered Architecture:

The proposed model follows request-reply model which is based on client-server
architecture. Despite following request-reply model, there are scopes for upgrading
this model to publish-subscribe model by modifying the FOG middlewares.

2.2.1 Layer 1 (End Device):

This layer consists of the end devices of various types. In IoT based model, most of
the End Devices are different types of sensors and other smart IoT devices. Data
packet will be requested from Layer 1 to Layer 2. Reply always will be received
to Layer 1 from Layer 2 for all the packet types. For communication protocol,
Layer 1 will use M2M (Machine to Machine) protocol. M2M protocol is suitable
for devices to devices communication. Key applications for M2M protocols are
connecting device to device and connecting device to service centers [8]. In our
proposed architecture initially, communication is done using request-reply model
but in Layer 2 and Layer 3 there is scope to develop publish-subscribe model. The
M2M communication protocol is suitable for both cases. Besides, Layer 1 will deal
with mostly SaaS and few PaaS services. The reason is that in Layer 1 most of the
IoT Devices will use built-in software and some advance IoT devices will have the
option to choose software and constrain on data sending properties. This layer will
work as a client for request-reply model.

2.2.2 Layer 2 (Lower Middleware):

This layer is connected with Layer 1 and Layer 3. This layer is considered as Lower
Middleware of FOG. The objective of Layer 2 is to receive a request from Layer 1
and check whether it can process the request or not. If it can process the request
then it will send the reply to Layer 1 otherwise send the reply to Layer 3. This layer
will consist of servers that will cache data and process data if it has the capability
of processing the request. In this model, it will work as both client and server in
client-server architecture. When Layer 2 receives any request from Layer 1 it works
as a server in client-server architecture. At the same time, if it needs to extract the
data from the upper layer, it sends a request to Layer 3 where it works as a client
in client-server architecture.

2.2.3 Layer 3 (Upper Middleware):

This layer is situated between Layer 2 and Layer 4. This layer is considered as
Upper Middleware of FOG. This layer receives a request from Layer 2 and sends a
reply to Layer 2 if the request can be handled in this layer. If the request cannot
be handled then this layer sends the request to Layer 4. Then it receives the reply
from the cloud and sends it to Layer 2. Layer 3 also works as both client and server
in a client-server architecture. To illustrate, when Layer 3 receives a request from
Layer 2, it works as a server but when it sends a request to Layer 4 it works as a
client.
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2.2.4 Layer 4 (Cloud):

This layer is a traditional cloud service. The requests that have not been processed
by Layer 2 and Layer 3 will be sent to the cloud. The request will come to cloud via
Layer 3 and reply will also send to the Layer 3 from Cloud. Layer 4 is situated at the
top of this hierarchical model. Layer 4 works as the only server in this architecture.

Figure 2.1: Comparison of Cloud and FOG model

2.3 Application of FOG for IoT:

Cloud is the upper layer and it stores all the information of a fog node and the
cloud can store all the data in it. Thus the network congestion increases and thus
the quality of the network service is also effected and latency is also increased.
Fog computing provides an intermediary between these IoT devices and the cloud
computing infrastructure that they connect to. The FOG is also able to analyze
and process data closer to where the data is coming. The users can fetch the data
from the fog nodes through the Internet Communication. Instead of hosting and
working from a central cloud, the FOG system computes are each end device that is
dealing with IoT [2]. The theory of FOG computation suggests the FOG provides
more scalability and gives a clear concept of the network as multiple data points
feed data into it [24]. There is too much data to handle in the cloud thus FOG
reduces the need for bandwidth by not sending all the information to the cloud.
Fog computing environment has broadly covered deployment to provide QoS for
phones and motionless end devices [25]. The FOG computing can provide a better
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quality of services in terms of delay, power consumption, and reduced data traffic
over the Internet [2]. Moreover, FOG computing also provides better security by
protecting fog nodes with the same policy and procedure areas of IT environments
[25]. FOG computing can produce low-latency network connections between end
devices. FOG computing is in the preliminary stages of being rolled out in formal
deployments but various cases have been identified as potential scenarios for fog
computing, for example, connected semi-autonomous cars, smart cities and smart
grids [26]. Terabytes of data are created and sending all these to the cloud for storage
and analysis thus, fog becomes a solution of inefficiency [27]. FOG computing also
improves business activity since according to customers the FOG node supports
flexibility as the nodes can join and leave the network at any time [26]. FOG
computing is the perfect partner for IoT devices and cloud because it can help them
in different functions of which they perform. This extends from an individual person
to large firms only because of real-time analysis and monitoring [27].
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Chapter 3

Proposed Model and
Experimental Setup

3.1 Proposed Model:

To develop a task-scheduling algorithm for the FOG server, the main purpose is
to decrease latency time and increase throughput. As mentioned earlier, the pro-
posed model has focused on developing FOG architecture in 2 layers which are lower
middleware (Layer 2) and upper middleware (Layer 3). In order to ensure effective
communication and low latency data transfer with high throughput; we have in-
corporated packet classification with layered FOG communication model. On the
Internet, while transferring the data, it has to be smashed into small pieces and each
of the small pieces is sent solely. Those tiny portions of data are known as packets.
Exchange of information among IP networks takes place in the form of packets.
Packets are constructed by following a particular structure. In that structure, every
protocol has a layer for a specific connection that is wrapped over the packets. On
the other hand, packet classification is used for the pigeonholing packets. Therefore,
we have used the concept to our layered architecture. The packets that belong to the
same flow have to adhere to the rules that are defined earlier and actions are taken
accordingly. There are multiple fields in the packets where packet classification can
be done and also it can be done in a single field [28]. Here, the packet classification
is needed in a single field. Based on the packet type, the packets are classified. we
have mainly focused on two types of packets which are:

1. UDP: User Datagram Protocol is not a trustworthy transport system that is
used to exchange data. The sent data is not guaranteed to be reached on the
receiver’s end but it only assures that the data is sent out on the medium.
It is a connectionless protocol where the error-checking process along with
recovery services are not necessary. Rather, it constantly sends datagrams to
the receiver’s end even if the receiver receives those or not. As a result, it is
used to the information that is not sensitive but has to be transferred within
the shortest possible time.
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2. TCP: Transmission Control Protocol is a connection-oriented protocol that
the networking nodes use while exchanging data. It is a reliable transport
system. TCP provides an error-checking process and if the data corrupted it
sends the particular portion of data again. Moreover, this protocol guarantees
delivery of data by ensuring each packet is received on the receiver’s end. In ad-
dition, the packets are sent using this protocol delivers maintaining the proper
order. As a result, it is used to the information that is very sensitive and has
to be transferred without any data loss where the time is not the main concern.

As lower middleware is placed closer to end devices (Layer 1), it will be able to com-
municate with lower middleware in less time. As a result, the latency will be less
and throughput will be more between layer 1 and layer 2 comparing layer 1 with
other layers. As the UDP type packet requires faster communication comparing
TCP type packets, UDP type packets will have priority in Layer 1. After the Layer
1, Layer 2 comes and so TCP type packets will have priority in Layer 2. By packet
classification, packet types will be determined and will assign to its corresponding
layer. This will ensure less time for processing a response when a request is sent.

Figure 3.1: Block Diagram of Proposed Model’s Infrastructural Setup
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Figure 3.1 shows step by step process of configuring each layer of our proposed FOG
server and how data will process to provide a faster response. Here, at first the dif-
ferent layers will be configured to handle or pass corresponded requests accordingly.

Figure 3.2: Layered Architecture

Figure 3.2 explains the model of Layered Architecture.

When a request is sent from Layer 1 to Layer 2, it will first check whether the packet
is UDP type or TCP type. Therefore, when a request is sent, we can assume two
cases:
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1. Case I: The Requested packet is UDP Type
If the packet is UDP type then the request will send to Layer 2 and search
for the related packet in that layer. Then it will take necessary actions and
respond back to the end device or layer 1. If the requested packet is not found,
the request will forward to layer 3. Then Layer 3 will check if it is TCP type
or not and as the requested packet type is UDP, it will be forwarded to layer
4 which is the main cloud. Here, layer 3 will only work as a transport medium
for requested packets. After that, the request will be extracted from the cloud
and serve to the user through layer 3 and layer 2. As layer 1 prioritizes UDP
type packets, it will store that the requested packets in the server which will
be resulted in faster response for the next request.

2. Case II: The Requested packet is TCP Type
On the other hand, if the packet is TCP type then the request will send to
Layer 2 and layer 2 will check whether it is UDP type or not. As it is not UDP
type, the request will forward to layer 3. Then Layer 3 will check if it is TCP
type or not and as the requested packet type is TCP, it will search for the
related packet in that layer. Then it will take necessary actions and respond
back to the end device or layer 1 through layer 2. Here, layer 2 will only work
as a transport medium for requested packets. If the requested packet is not
found, it will be forwarded to layer 4 which is the main cloud. After that, the
request will be extracted from the cloud and serve to the user through layer
3 and layer 2. As layer 2 prioritizes TCP type packets, it will store that the
requested packets in the server which will be resulted in faster response for
the next request.
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Figure 3.3 explains how a sent request from Layer 1 is handled at the different layers.
When layer 1 sends request TCP type packets, layer 2 will not search for the packet
and send it to layer 3 directly. This cut off the search time in layer 2. The packet
will be searched in layer 3 and if the packet is not found then the request will be
sent to the cloud for processing. After that, the response will be sent to layer 1 via
layer 3 and layer 2. In the meantime, the packet will be saved in layer 3 which will
result in faster response for the next request. Thus, for the next user of that packet
will get the response in a faster way.

Figure 3.3: Flow chart of Processing Sent Request from End Device
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Figure 3.4: Flow Chart of Reply Sent from Cloud

Figure 3.4 explains the flow chart of handling reply sent from the cloud. When any
packet will be stored in any layer, it will search for available space in that specific
layer. If there is no space for the packet, it will run Least Time between Access
algorithm and replace the packet which has been used least recently. As a result,
the proposed infrastructure will ensure optimal use of the FOG server’s storage. To
implement Least Time between Access, every packet will be given a flag which will
be increased automatically over time. The maximum value of flag will be stored
so that swapping can be done efficiently. To find out the maximum valued flag,
selection sorting mechanism is preferable. Figure 4 explains how reply is sent and
handled from Layer 4.
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In the worst case scenario, any request for UDP type packet will be searched in layer
2. The request will not be found in the layer and so the packet must be extracted
from the cloud. Here one advantage is that the packet will not search in layer 3
which will reduce the time. On the other hand, if the request is a TCP type packet,
the packet will not search in layer 2 and go to layer 3. If the packet is not found
in layer 3, it will extract the packet from and save it to layer 3. After that, the
next request will be processed quickly and which will ensure less latency and more
throughput.

3.2 Caching Mechanism:

In the proposed infrastructure and mechanism, the UDP type packet will have a
faster response than the TCP type packet. The mechanism of packet classification
has done such a way so that to implement a secure system, packets that need faster
processing falls under the category of UDP type and packet which need compara-
tively less fast processing, falls under the category of TCP type. In order to improve
latency caching has many benefits [29]. Some benefits are:

• Predictable performance.

• Reduce the load on the back end.

• Increase read throughput.

In order to populate caching there are three main issues. These are:

• Populating cache.

• Keeping the cache and remote system sync.

• Managing cache size.

To populate cache, we are using the Lazy Population technique. This technique
checks whether the data is in cache or not. If the data is not in the cache then it
extracts data from the cloud. The benefits of the lazy population are given below
[29] [30]:

1. The system only cached the requested data.

2. No upfront cache delay in this system.

3. The system does not face any fatal error if any node failure occurs.
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Figure 3.5: Lazy Population of Caching Mechanism

The following Figure 3.5 explains the cache population of the lazy population caching
method.

For the second issue, which means keeping the cache and remote system sync, our
proposed model follows the Active Expiry method. It means the remote system will
update the cache directly if any change occurs in the cloud.

The advantages of Active Expiry Given below [29]:

• It ensures the fast change in caching.

• Unnecessary expiration of unchanged data does not occur in the cached data.

For managing cache size we have adapted the Least Time between Access method.
It means when a cached data is accessed it counts both time and access time of that
cached data. Then it takes the average time in between access time to calculate
the average time for access. Whenever the data is accessed counter of that data
is increased. During swapping any stored value, the layer first swap with the least
accessed data by checking the counter. If there are multiple data with the same
counter value, then it swaps with the highest average value of time accessed data.
The following figure shows the mechanism of calculation of hit count and average
time of access for any cached data stored in Layer 2 and Layer 3.
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Figure 3.6: Flowchart of Caching Mechanism

Figure 3.6 explains how the caching mechanism calculates hit count and average
access time. Initially, the hit count is set at 0. When hit count is 1 it means the
data has been requested for the first time and so the average time between access
calculation starts after this process. Each time the data is requested hit count
increases and corresponded average time is calculated. The reason for calculating
hit count and average access time to ensure effective swap of data when the cache
is full. The storing technique along with swapping in the cache is given below:
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Algorithm 1 Algorithm for swapping new data with stored data

begin
if any slot is available then

Save the data;
else

Assume first data in minimum hit count;
for every Data in cache do

if hit count < minimum hit count then
Update minimum hit count;

end

end
Count the minimum hit count
if Minimum hit count > 1 then

Find the maximum average time access among them;
Swap data with them;

end
else

Swap data with minimum hit count;
end

end

end

This algorithm explains how the FOG layer swaps and stores data. Here, if any slot
is available, then the FOG layer will save the data without any checking. Otherwise,
to swap data, it will first check the minimum hit count of any data. If there is a
multiple numbers of minimum hit count occurs, then it will check the average access
time and swap with the maximum average access time data among the minimum
hit count. The reason is that if there is already a single minimum hit count data,
then the system will not search for minimum average hit count and it will lessen the
time complexity of the swapping mechanism.

3.3 Experimental setup

3.3.1 General setup:

The proposed model consists of four layers that include an end device layer, a lower
middleware layer, an upper middleware layer and a cloud layer as Layer 1, Layer 2,
Layer 3 and Layer 4 respectively. We called each resource group as a layer hence
we created four individual resource groups for four layers. A resource group in-
cludes resources that we typically manage as a group. We can deploy resources to
resource groups based on what makes the most sense for our organization. When
creating a resource group, we are going to provide a location for that resource group.
This is because of the resource group stores metadata about the resources that are
hosted in it. When we are specifying a location for a resource group we are just
specifying where the metadata for the resource is stored. In each resource group,
we have deployed a virtual network, a network security group, and a virtual ma-
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chine. The Azure Virtual Networks allow many types of Azure resources including
Azure Virtual Machines to securely communicate with one another. It allows us
to communicate with the Internet and communicate on prime networks. The ad-
dress range for any subnet that is defined within a virtual network must fall within
the address space of the virtual network itself so in this case, we have assigned a
different range of IP address to each resource group. Besides, a network security
group contains security rules that are used to allow or deny inbound network traffic
to or outbound network traffic from many different types of Azure resources. This
helps us to manage our virtual machines once it is deployed to a network security
group. The Virtual Machine is the common resource that people deploy in Azure
to simulate or run a machine in a remote location. All the end devices will be at
Layer 1 which is called the end devices layer.

Figure 3.7: Four Layers combined as resource group

Thus, in Layer 1, each end device consists of a virtual machine, a virtual network,
a network security group and storage. In a virtual network, we have assigned an
IP-address range of 172.17.0.0/16 and a subnet of 172.17.0.0/24 so that the VM can
use this to connect with the server. We have located the resource group and as well
each resource in the central US. In a virtual machine, we have associated the subnet
created with the virtual network, also we have selected a platform of windows 10
pro version with 4GB of RAM and a default HDD storage provided with the Virtual
Machine. In addition to that we have deployed a network security group to the end
device layer, this resource group is very important because it provides security to
the layer. It also allows inbound and outbound traffic for this layer. In the network
security group, we can assign in which port do we want to send the data or to receive
data thus we have used it in Layer 2 and Layer 3 which will be discussed in detail
in the Layer 2 and Layer 3 description.
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Figure 3.8: Resources of End Devices

Similarly, in the lower middleware, we have also deployed resources such as virtual
network, a virtual machine and a network security group. We have assigned an IP
address of 172.18.0.0/16 and a subnet of 172.18.0.0/24. All the resources are also
located in the central US region just like the end devices layer. It ensures that the
Layer 2 is closer to Layer 1 which can also be written as we have placed the lower
middleware closer to the end device. Then we deployed a virtual machine assigning
it with the subnet and a platform of windows 10 pro version with 4GB RAM and
a default HDD storage. In this layer, the network security group is very important
because it gives security and we have given a protocol in the particular port. In
this case, we have fixed the Layer 2 port with UDP type packets. Therefore, the
layer can accept only UDP type packets request and replies the packet by taking
necessary actions and if any other packet type is requested then Layer 2 will fetch
the data from the Layer 3 and then give it to the end device. Thus, we have fixed
the Layer 2 with the UDP type protocol with the help of a network security group.
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Figure 3.9: Resources of Lower middleware

Apart from that, in upper middleware, we have deployed resources including virtual
network, a virtual machine, and a network security group. We have given an IP
address of 172.19.0.0/16 and a subnet of 172.19.0.0/24. Similar to Layer 1 and
Layer 2 we have deployed all the resources in the central US region. Similarly, it
also denotes the Layer 2 of the proposed FOG model is placed nearer to the end
devices to make sure to minimize the latency. In this VM, we have given a windows
platform of version 10 with 4GB RAM and with a default HDD storage. Since this
layer only accepts TCP packet requests thus with the help of the network security
group, we assigned the port which only accepts TCP type packets.

21



Figure 3.10: Resources of Upper middleware

Finally, we have deployed the same resources as we used in other layers. This layer-4
is considered as a cloud and we have assigned the port so that it can accept all types
of packet requests. The cloud is placed to the Japan west considering a long distance
from the end device. Generally, clouds are not situated closer to end devices as a
single cloud gives services to various regions.

Figure 3.11: Resources of Cloud
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3.3.2 Layer Configuration:

To make communication between virtual machines we have used java socket pro-
gramming. Socket programming is a process of communication and transformation
of information by connecting network nodes. This connection between the nodes
occurs when one node starts listening to the other node. This connection can be
within the same network or different network.

Different Java runtime environment is used to build up that communication process
of java socket programming.

There are two types of java socket programming and they are:

1. Connection-oriented socket programming:
The most important part of the connection-oriented socket programming is
the Socket class and ServerSocket class. The Socket class denotes the socket
that helps both server and client to start the communication and ServerSocket
class helps the server to get a port and then it starts listening for the clients to
connect. To establish a TCP type connection between the networking nodes,
connection-oriented socket programming is used.

2. Connection-less socket programming:
On the other hand, the prime component of connection-less socket program-
ming is DtatagramSocket and DatagramPacket. DatagramSocket class is re-
sponsible for sending and receiving data that is individually addressed and it
also denotes the data it sends does not have any order to follow. Likewise,
the DatagramPacket class denotes that the data can be routed from different
devices. Besides, it indicates that the information it sends or receives might
lose. To establish a UDP type connection between the networking nodes,
connection-less socket programming is used.

Therefore, it is clear now that one of the network nodes acts as a server and another
one acts as a client. To start the connection between the server and the client, the
client must have the proper information about the server. That information includes:

1. Server’s IP Address

2. Server’s port number

23



Here, two-way client and server communication has been built. In this model, the
client sends a request to the server. Then the server starts reading the request and
responds immediately by sending the requested file. In this request sending and
receiving process, Socket and ServerSocket classes are responsible. Here the Socket
class makes the communication between the client and the server. In addition, this
class helps to read and write requests or send and receive data. On the server-side,
the ServerSocket class takes the action. The ServerSocket class has an accept()
method that blocks the console as far as the client establishes the connection. At
the server-side, an instance of Socket is returned when a client successfully makes a
connection.

3.3.3 Client-Side Programming:

At first, a client application needs to be created by forging an instance of the Socket
class. As a parameter, we passed the server’s IP address and the allocated port
number of the server which is 12345.

In order to initiate a client request, we have followed the below-mentioned steps:

1. Establish a Connection

2. Communication

3. Closing the connection

3.3.4 Server-Side Programming:

On the other hand, a server application needs to be created by forging an instance
of the ServerSocket class. To make the connection, we have fixed the port to 12345.
The accept() method blocks the console as far as the client establishes the connec-
tion. An instance of Socket is returned when a client successfully makes a connection
on that fixed port number.

To initiate a server response, we have followed the below-mentioned steps:

1. Communication

2. Send the output through the socket

3. Close the Connection
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Figure 3.12: Working principle of socket API

In order to do the socket programming, the IP address and the port has to be fixed
otherwise the connection cannot be established. For that reason, we have done port
forwarding /port fixing first. In Microsoft Azure, we can do it using the network
security group. In the network security group, we have used static IP for the VMs
and also, we have fixed the inbound port for the VMs.
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3.3.5 Layer 1 configuration:

In the network security group of layer 1, we have used static IP address which is
13.67.140.6 for the VM named End Devices and we have fixed the inbound port to
12345 for the VM.

Algorithm 2 Layer 1(UDP)

input : DATATORECEIVE the data name that will be requested
output: Receives response of that requested data
begin

for each request do
Create a socket connection with Layer 2 on a fixed port for UDP type packets;
Sends output to the socket;
DATATORECEIVE stores requested name by input stream of bytes;
Make a blank file named after the DATATORECEIVE;
Request the file to the layer;
Receives the file as a byte array;
for each Byte Reads > − 1 do

Reads the byte array;

end
Write the byes into the created file named after DATATORECEIVE;
Print the received data size along with data name;

end
Close connection;

end
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Algorithm 3 Layer 1(TCP type)

input : DATATORECEIVE the data name that will be requested
output: Receives response of that requested data
begin

for each request do
Create a socket connection with Layer 2 on a fixed port for TCP type packets;
Sends output to the socket;
DATATORECEIVE stores requested name by input stream of bytes;
Make a blank file named after the DATATORECEIVE;
Request the file to the layer;
Receives the file as a byte array;
for each Byte Reads > − 1 do

Reads the byte array;

end
Write the byes into the created file named after DATATORECEIVE;
Print the received data size along with data name;

end
Close connection;

end

3.3.6 Layer 2 configuration:

Similarly, in the network security group of layer 2, we have used static IP ad-
dress which is 40.113.228.189 for the VM named lmwVM and we have fixed the
inbound port to 12345 for the VM. Microsoft Azure has a built-in packet identifica-
tion method in the network security group that means we do not need to do packet
classification manually for layer 2. We have used that built-in procedure for our
setup to accept UDP type packets.
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Algorithm 4 Algorithm for Layer 2(Lower Middleware)

input : DATATORECEIVE the data name that will be send in response
output: Sends response of that requested data
begin

Create object of socket server using fixed port;
while true do

Accepting connectivity of socket server;
DATATOSEND stores the requested data name from the client;
Call fileSend method and send DATATOSEND as parameter;
Close connection;

end
@Method
Void fileSend takes socket and File name as parameter;
begin

Create file object;
if file exists then

Convert it to byte array;
Send the byte array;
Print the file send confirmation message;

end
else

Print the requested is not found and request has been forwarded to
upper layer;

Call FileClient methodand sends DATATOSEND as parameter;

end

end
@Method
Void FileClient receives file name as parameter;
begin

Saves file name to FILETORECEIVED;
Create a socket connection with Layer 3;
Sends output to the socket;
Request the file to the layer 3;
if file type is UDP then

Receives the file as a byte array;
for each Byte Reads > −1 do

Reads the byte array;

end
Write the byes into the created file named after FILETORECEIVED;
Print the received data size along with data name;

end

end

end
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3.3.7 Layer 3 configuration:

To configure the layer 3, we have used 52.165.155.84 static IP address in the network
security group. Also, we have fixed the port to 12345 for the VM named lwmVM.
Microsoft Azure has a built-in packet identification method in the network security
group that means we do not need to add packet classification manually for layer 3.
We have used that built-in procedure for our setup to accept TCP type packets.
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Algorithm 5 Algorithm for Layer 3(Upper Middleware)

input : DATATOSEND the data name that will be send in response
output: Sends response of that requested data
begin

Create object of a socket server using fixed port with the requested client;
while true do

Accepting connectivity of socket server;
DATATOSEND stores the requested data name from the client;
Call fileSend method and send DATATOSEND as parameter;
Close connection;

end
@Method
Void fileSend takes socket and File name as parameter;
begin

Create file object;
if file exists then

Convert it to byte array;
Send the byte array;
Print the file send confirmation message;

end
else

Print the requested is not found and request has been forwarded to
upper layer;

Call FileClient methodand sends DATATOSEND as parameter;

end

end
@Method
Void FileClient receives file name as parameter;
begin

Saves file name to FILETORECEIVED;
Create a socket connection with Layer 4;
Sends output to the socket;
Request the file to the layer 4;
if file type is UDP then

Receives the file as a byte array;
for each Byte Reads > −1 do

Reads the byte array;

end
Write the byes into the created file named after FILETORECEIVED;
Print the received data size along with data name;

end
else

Forward the file to layer 2;

end

end
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3.3.8 Layer 4 configuration:

Similarly, we have configured the layer by giving 40.74.118.158 static IP address in
the network security group of the VM named lwmVM. Also, we have fixed the port
to 12345 for the VM. Microsoft Azure has a built-in packet identification method in
the network security group that means we do not need to add packet classification
manually for the layer 4. We have used that built-in procedure for our setup to
accept all types of packets.

Algorithm 6 Algorithm for Layer 4(Cloud)

input : DATATOSEND the data name that will be send in response
output: Sends response of that requested data
begin

Create object of a socket server using fixed port;
while true do

Accepting connectivity of socket server;
DATATOSEND stores the requested data name from the client;
Call fileSend method and send DATATOSEND as parameter;
Close connection;

end
@Method
Void fileSend takes socket and File name as parameter;
begin

Create file object;
if file exists then

Convert it to byte array;
Send the byte array;
Print the file send confirmation message;

end
else

Print the requested is not found;

end

end

end
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Chapter 4

Result and Analysis

4.1 Result

4.1.1 UDP Type Data Transfer:

As mentioned earlier, FOG communication model does not have any standard model
yet, we have compared our result with traditional cloud computing using Microsoft
Azure. The setup of the experimental environment has mentioned earlier. We have
experimented with our model at first UDP type request from Layer 1. The Inbound
Graph of Virtual Machine that has been used as End Device is given below.

< ———- Time(Min) ———->

<
—

—
—

-D
at

a
R

ec
ei

ve
d
(M

B
)—

—
—

-
>

Figure 4.1: Inbound Data graph for UDP type request (End Device)
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In the graph of Figure 4.1, X-axis shows the time and Y-axis shows the incoming
data per minute. Here we can see that initially, the inbound data rate was very low.
The incoming data was less than 5 MB in the first minute. For the next 3 minutes,
the inbound data was around 40 MB to 60 MB. After that the incoming data speed
becomes very fast as we can see that it was most of the time more than 140 MB
per minute. However, we can see that between 11.25 and 11.30 there was a drop
in incoming data speed. After that, the rate is more than 140 MB per minute for
the rest of the time. Here initially the speed was less because of caching the data
from cloud to Layer 2. As we are using the lazy population for caching technique,
initially there was no cached data in Layer 2. As Layer 2 started receiving requests,
it searched the data and did not find so the request was sent to the cloud via Layer
3. After caching the data for first 3 minutes, all the requests from Layer 1 was
handled in Layer 2. As a result, the inbound data rate for End Device increased
very high. However, after 11.25 the caching capacity was full so Layer 2 needed to
run a caching algorithm to swap and store new data. For this reason, the speed
decreases around 50 MB per minute. After the caching, the speed increases again to
around 150 MB per minute. Here, 2.6 GB data is transferred in around 20 minutes.
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Figure 4.2: Outbound Data Graph of Layer 2 server
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The graph of Figure 4.2 X-axis shows the time and Y-axis show the data sending
per minute. Here we can see the corresponded UDP server’s outbound graph for the
incoming request from Layer 1. In the graph, initially, data-sending rate was very
low. In the beginning, it was less than 10 MB per minute. Then it increases to more
than 40 MB in the next minute. Then the speed becomes more than 140 MB per
minute. Between 11.25 to 11.30, there is a drop in speed and then the speed rises
again. Here the reason in initially Layer 2 was caching data from the cloud server.
As the caching process was the lazy population, initially the outbound data rate was
slow due to generate cache. Once the cache is generated, the speed increases very
high and continues to send data at high speed. However, between 11.25 to 11.30 the
caching space was full and so that to swap new data with stored data, the caching
technique took some time which results in the decrease of data transfer. Here from
both graphs, we can see that the server sent 2.7 GB data around 20 minutes where
2.6 GB data was sent to End Device and the rest of the data was sent for requesting
the missing data from cloud via layer 3. For UDP type data transfer the data speed
was up to the mark.

4.1.2 TCP Type Data Transfer:

For TCP type data transfer, Layer 3 or upper middleware of FOG has been used as
a cache server. Data request from Layer 1 has been passed to Layer 3 via Layer 2.
If the data is not present in Layer 3, then Layer 3 extracts the data from the cloud
and sends the reply to Layer 1 via Layer 2. We have sent TCP type request from
END Device to extract data and the resulted graph is given below:
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Figure 4.3: Inbound Data graph for TCP type Request (End Device)

Figure 4.3 shows the graph where X-axis represents the time and Y-axis represents
the incoming data per minute. Here, incoming data initially was very slow which
was less than 10 MB and then around 40 MB. After that, the data-incoming rate
increases and becomes more than 140 MB per minute. Between 12:03 to 12:07,
there is a drop in the rate, which is very around 40 MB per minute to 10 MB per
minute. After that, the rate increases again to more than 140 MB per minute. Here
the reason that, initially the rate was very low due to not having the data in Layer
3. As our proposed model has used the lazy population for caching mechanism, it
caches the data initially. After data caching, the inbound rate has increased a lot.
As a result, more than 140 MB of data per minute was received. Even though the
data transfer rate falls drastically between 12:03 to 12:07, it begins to rise more
than 140 MB per minute again. The reason for the fall is that in that time cached
capacity was full and so to extract new data from the cloud and store it using the
caching mechanism, the inbound data transfer rate decreased. End Device of Layer
1 received 2.5 GB of data around 25 minutes.
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Figure 4.4: Outbound Data Graph of Layer 3 server

In Figure 4.4, X-axis represents the time and Y-axis represents the data sent over
time. This graph is the corresponded inbound graph of the Layer 1 End Device. As
similar to the inbound graph of the End Device, initially data-sending rate was very
low which increased and maintained more than 140 MB per minute. The reason is
that initially, the requested type data was not present in the Layer 3 server. As a
result, it requested data from the cloud. While replying to the requested data the
server cached the data and next time it replied from its layer. Therefore, the speed
increased very high which is more than 140 MB per minute. This rate is kept for a
time being until the capacity of the cached server is filled. After the cached server
is being full, it ran the caching mechanism for swapping old data and restoring new
data. As a result, the outbound data rate decreased. Data sending rate increased
again after caching new data and the rate stays around 140 MB per minute. The
server in Layer 3 sent 2.4 GB data around 25 minutes.
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4.1.3 Cloud Server Data Transfer:

To compare our model with the traditional model we simulated the traditional cloud
systems using our Virtual Machines. There we sent data requests directly to the
cloud and received a reply to End Device. Middle wares of FOG were absent in that
scenario. The inbound graph of End Device is given below:
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Figure 4.5: Inbound graph of End Device for the traditional cloud model

In the graph shown in Figure 4.5, X-axis represents time and Y-axis represents the
received data per minute. As we can see, the data transfer rate at first minute
was around 15 MB as it established connection. After that, the data transfer rate
becomes 60 MB per minute. The rate stays constant as there is no need for caching
and all the data is present in the server. On the other hand, the rate is low com-
paratively with FOG model, as data need to extract from the distant cloud server.
The End Device had received 2.2 GB data for around 30 minutes.
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Figure 4.6: Outbound Data graph for traditional cloud server

In the graph shown in Figure 4.6, X-axis represents time and Y-axis represents
sending data per minute. As we have found a constant graph for the End Device,
the outbound graph is also constant in Cloud server. There is no need for caching
the data so the server immediately sent data to the end device without using FOG
middlewares. The rate is also similar to the End Device’s inbound graph, which is
close to 60 MB per minute.The Cloud server sent 2.1 GB data around 30 minutes.
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4.2 Analysis:

To analysis our proposed model with the traditional cloud. We have created a
table showing the inbound data for TCP and UDP type requests for our model and
traditional cloud model. The table shows inbound data of every half minutes in
megabytes.

Table 4.1: Inbound Data of End Device in Different Simulation)

SL
Time
(Min)

Data1(End
Device Cloud

Inbound)(MB)

Data2(End
Device TCP

Inbound)(MB)

Data3(End
Device UDP

Inbound)(MB)

1 0.5 4.77 3 1.99
2 1 10 2.67 1
3 1.5 31.3 3 23
4 2 27 2.67 27.18
5 2.5 28 20.88 20.08
6 3 30.42 18 26
7 3.5 27 73.34 30
8 4 31.27 73 34.14
9 4.5 29 73 75
10 5 29.09 73.34 77.17
11 5.5 32 74.5 74
12 6 28.24 74 78.17
13 6.5 29 71 70
14 7 29.58 71.86 72.98
15 7.5 29.38 73.64 72.75
16 8 29 73 76
17 8.5 30.27 74.5 72
18 9 28 75 76.75
19 9.5 29.35 74.5 71.68
20 10 29 75 75
21 10.5 30 25.42 62.94
22 11 27.85 26 64
23 11.5 28 4.49 78
24 12 30.18 4 74.32
25 12.5 29 2.67 72.5
26 13 29.43 3 76
27 13.5 27 20 23.79
28 14 30.84 19 27
29 14.5 30 73.68 74.32
30 15 28.2 73 78
31 15.5 29.39 71.94 75.32
32 16 29 72 77
33 16.5 30 73.7 77
34 17 28 73 75.33
35 17.5 29.09 74.51 75.33
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SL
Time
(Min)

Data1(End
Device Cloud

Inbound)(MB)

Data2(End
Device TCP

Inbound)(MB)

Data3(End
Device UDP

Inbound)(MB)

36 18 29 75 77
37 18.5 29.51 73.68 78
38 19 29 73 74.35
39 19.5 30.56 73.68 75.32
40 20 28 73 77
41 20.5 29.34 74.52 74.41
42 21 29 75 78
43 21.5 30 73.7 72.5
44 22 28.33 73 76

In the table, we have taken data from 0 to 22 minutes for each simulation. The time
interval of each data is 30 seconds and so we have 44 data. Now if we plot all the
data in the graph, we get the following graph.
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Figure 4.7: Inbound Data Comparison Graph of End Device for Traditional Cloud
vs Proposed Model

In Figure 4.7, we can see that initially for both TCP and UDP model the rate is less
than the traditional cloud model. After 3 minutes, the graph for both the proposed
model’s TCP and UDP model has increased very high compared to the traditional
cloud model. The reason behind this is that due to our caching mechanism, all the
frequent requests have been handled very quickly. Therefore, from End Device’s,
latency for any request improved in a great margin. Although there is a drop off
rate in the middle part, it was occurred due to the swapping of data after being the
storage capacity full. After retrieving new data from the cloud and extracting it, the
data rate again becomes very high. It shows the improved latency of the proposed
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layered architecture FOG model.
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Figure 4.8: Inbound Comparison Graph for TCP vs UDP Request of Proposed
Model

Figure 4.8 represents the comparison of inbound data for TCP and UDP type re-
quests for the proposed FOG layered architecture. Here we can see that UDP type
data transfer rate increase faster than TCP type data transfer rate. The reason
behind this is Layer 2 handles UDP type data while Layer 3 handles TCP type
data. As a result, UDP type data transferred faster than TCP type data. If we
look between 2.5 to 3.5 minutes of the X-axis, we would see that the TCP type data
transfer rate is faster than the UDP type. This occurs because TCP type data is
stored the closer to cloud and UDP type data is stored closer to END Device. Be-
sides, if we analyze the missing part of both graphs, we will see that the UDP type
request requires less recovery time than the TCP type requests. The reason behind
this is that UDP type packet transfer does not require any three-way handshaking
while TCP type requests require three-way handshake. As a consequence, when
any miss occurs and the layer needs to run the caching algorithm for swapping and
storing values, Layer 2 requires less recovery time than Layer 3. Although, when
the caching is done and the connection is established, we can see that for both TCP
and UDP type frequent requests, the inbound data rate is almost the same which
ensures less latency. Therefore, for frequent requests of IoT devices, the proposed
FOG model can improve the latency by decreasing the response time.

The whole simulation was done by Microsoft Azure which is a cloud service provided
by Microsoft. Microsoft provides dedicated public IP addresses for each Virtual
Machine and a very fast Internet connection. For this reason, the incoming and
outgoing data from End Devices and different layer’s server is very high in this
simulated scenario.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions:

Communication has been a very important part of human civilization for ages. Com-
munication was mainly between people in the past but nowadays technology allows
us to communicate with machines, devices, and gadgets. These days, technologists
included advanced sensors with insights into the fundamental gadgets to make them
communicate without human input. Therefore, to meet the demand of these gad-
gets, a huge amount of data needs to be processed within the shortest possible time
to ensure faster communication. Cloud computing does the job of processing that
huge amount of data but cannot handle it efficiently. Thus, FOG computing comes
along with cloud computing to extend the traditional cloud computing process and
make the communication process actual faster but again it does not have any stan-
dard structure.

The proposed model is designed to develop the communication process of IoT devices
based on the FOG communication model to ensure effective communication between
IoT sensors and the cloud. The rate of increasing IoT devices in the present world
is very high for which only the traditional cloud-based solution approach will not be
efficient in the coming future. For this reason, the layered architecture of the FOG
communication model is introduced. The main focus of this model is to decrease
latency and increase the throughput of the IoT devices using layered FOG model.
For ensuring the objectives, the idea of packet classification has been used to identify
the packets with proper priority so that packet requests can be replied by maintain-
ing that. According to the priority, the close layer of end devices deals with UDP
type packets as UDP type packets require a faster response and on the other hand,
upper middleware of FOG deals with TCP type packets. Configuring layers of the
FOG model based on packet classification will ensure minimum computation time
and minimum latency along with improved throughput. In conclusion, the layered
FOG model with packet classification will improve the total data communication
for IoT devices.
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5.2 Future Work

In the middlewares, there is scope for introducing advance probability theorem to
switch between caching mechanism in order to ensure better and optimal perfor-
mance. In order to do this, the Poisson distribution of the probability theorem
is suitable for this. Poisson distribution is a special case of binomial distribution
where the number of trials n is very large and probability p is very small. Here
the request is considered as the number of trials and miss cases are considered as
probability p. Initially, the probability of miss will be high but as time passes, the
probability will decrease. Using Poisson distribution there can be set a threshold
to switch from different caching techniques about managing cache size such as least
access, LRU, time expiry, etc. In addition, in the middleware layers, there can be in-
troduced machine learning and neural network techniques for ensuring data security.

FOG is the future of cloud-based IoT communication. There is a huge opportunity
to contribute to this sector as it is still in an early stage of research. As there are
middlewares of FOG, there is huge scope for different types of improvements in order
to overcome the challenges of the FOG communication model.
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