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Abstract

In recent years, mobile Brain Computer Interface (BCI) has gained much popularity
in the design of navigation aids. This opens up the platform to build navigation aids
based on the level of stress imposed on visually impaired people (VIPs). The goal
is to build a bridge between different environments and the cognitive load on VIP
navigating through those environments. In order to do that, the first step is to label
the cognitive load each possible type of environment imposes on the VIPs. For the
purposes of this study the stimuli have been narrowed down to indoor environments.
Cognitive psychology defines cognitive load as the used amount of working memory
resources. Working memory performance is measured by the spectral changes in the
alpha frequency band in an Electroencephalography (EEG) report. This correlation
provides a measurable quantity to determine the overall cognitive load associated
with a task. Besides alpha bands, beta activity has also been linked to psychological
and physiological stress, which in effect is imposed on cognition. The oscillations in
another frequency band, gamma have also been observed to increase with memory
load. Putting the above together, the bio signals in the alpha, beta and gamma
frequency ranges are useful for detecting the cognitive load of the subject. The
data set used in this study has been obtained from the European Union from one
of their experiments for VIP. It constitutes of EEG signals taken from 9 visually
impaired people as they navigated through various indoor environments. Features
are extracted using Welch’s Power Spectral Density (WPSD) from the relevant bands
of the EEG signals. A Machine Learning algorithm is used for classification. The
features are mapped onto different cognitive levels as labels and a Support Vector
Machine (SVM) trained to classify the stress levels of the VIPs. The AUROC is

around 90% for each environment analysed in this research.

Keywords:EEG, BCI, VIP, Cognitive Load, Machine Learning, SVM,
WPSD
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Chapter 1

Introduction

Common existing mobility aids for the visually impaired include canes, service dogs
and electronic mobility aids [41]. While all of these are effective aids to locate ob-
stacles and help the visually impaired people (VIPs) with navigation, none of these
take the user’s mental state into consideration [43]. At first glance, visual impair-
ment seems to be a small percentage of the population, but eye sight is observed to
deteriorate with age [13]. Many of the elderly people tend to stay at home most of
the time because they find outdoor environments stressful. Eyesight generally plays
a factor in that stress. The aim of this study is to provide individual assessment of
VIPs. However, different navigation techniques can also be compared by analysing
EEG signals of individuals. Although user feedback can easily be used to compare
different techniques, user or customer feedback is not always reliable. A quantita-
tive comparison will be useful for companies when designing new navigation aids.
A similar study can include analysing the EEG bands from a group with a different
type of impairment, such as hearing impairment. The mapping of task to stress
is also very relevant beyond impairment. For instance, a healthy subject will have
a standard stress level during activities heavy on cognition such as interviews and
exams. A stress level beyond that standard will indicate an extra factor in play.
Probable factors can be depression or anxiety.

Invasive and partially invasive techniques, such as Electrocorticographic (ECoG),
lead to complications of brain tissue depletion causing signals to recede with time.
As a non-invasive measure, Electroencephalography (EEG) provides a safer and more

efficient procedure to conduct experiments. Other non-invasive methods such as



fMRI (functional Magnetic Resonance Imaging), MRI (Magnetic Resonance Imag-
ing) provide higher resolution and better understanding of the brain. However, these
methods call for machines that are not portable and require the subject to be in a
specific posture. This means that both fMRI and MRI are not suitable for mobile
experiments that are necessary for our study. Hence, we have chosen EEG to collect

brain signals for analysing, classifying and labelling cognitive load.

1.1 Thesis Overview

A Brain Computer Interface (BCI), sometimes called a neural-control interface
(NCI), or brain-machine interface (BMI), is a direct communication pathway be-
tween an enhanced or wired brain and an external device. BCI is often directed
at researching, mapping, assisting, augmenting, or repairing human cognitive or
sensory-motor functions [34]. Based on what has been found, noninvasive BCI tech-
niques have helped pave a safe path for VIPs to perform regular tasks [49]. These
help us perceive the issue tackling the physical disadvantage of the blind people
more clearly.

Researches have suggested that technology has had great success in aiding VIPs
[11]. In [46] the relevance of EEG to measure cognitive load is explained. EEG
signals have been shown to be stable indicators of cognitive load in a variety of
tasks performed in controlled laboratory settings such as learning to carry out tasks
to navigate using hypertext and multimedia data [14][9], or learning to use complex
navigating tools using hypermedia navigation [38].

A good measure for the user’s state of mind at a given time is the cognitive load
of the user obtained in real time. In cognitive psychology, the implication of cog-
nitive load is the amount of working memory resources used in given time. The
capacity and performance of the neural circuitry that implements working memory
plays a vital role in cognitive activities and varies from person to person. In order
to understand working memory better, it is useful to distinguish between working
memory performance and task performance. Task performance is typified by a par-
ticipant’s external performance of a task; for example, the time it takes to complete

the task or the ratio of incorrect responses to correct ones. As opposed to that,



working memory performance is measured by the spectral changes in the alpha,
beta and gamma frequency bands in the EEG bio signal [36][8][60]. This provides a
connection between the task and the resultant cognitive load.

The mental instability and the challenges of visual orientation the VIPs face have
been studied in cognitive load theory (CLT) by John Sweller in [56]. It is the basis
of what we want to achieve in the forthcoming future.

Research done by Saitis et al. in [48] and [47] with Machine Learning use Fast Fourier
Transform (FFT) for feature extraction and Random Forest classifier algorithm for

classification.

1.2 Thesis Contribution

Building on the above, we have based our work on helping the visually impaired to
navigate in unfamiliar indoor environments. Some research has been done to analyse
the mental state of the VIPs using EEG as they navigate through various environ-
ments [48][47]. We want to carry out similar research using a different approach and
see if the results still hold and agree with the work done in existing studies. We use
Welch'’s Power Spectral Density (WPSD) for feature extraction and Support Vector
Machine (SVM) for classification. Collecting EEG signals, we assess the resulting

cognitive load label for each participant in different indoor environments.

1.3 Thesis Orientation

The consequent chapters of the paper have been covered in the following order.
Chapter 2 discusses similar work in the field corresponding to our work and existing
methodologies with their limitations. Chapter 3 gives an in depth study and analysis
of the topics preceding data and information associated with our work. Chapter 4
presents the proposed model in detail. Chapter 5 give the test results, analysis of
the results and the interrelated discussions. The last chapter, Chapter 6 closes and

outlines our study with future plans.



Chapter 2

Literature Review

The use of BCI to provide communication and control capabilities to people with
severe motor disabilities has become more common in the last decade [50]. So a
gradual rise in interest in this field can be expected in the future. Studies have been
done to measure cognitive load using fMRI or MRI, for example by Callicot J. in
[16]. This study finds that the prefrontal cortical signal decreases at highest working
memory load which is also coincident with a significant decrement in performance.
The paper also talks about a relationship between the pericingulate or the posterior
cingulate region, and capacity-unconstrained response. This is because activation of
this region is observed to be related to attention and effort related processes. The
cingulate cortex is a part of the brain situated in the medial aspect of the cerebral
cortex. All of this leads us to draw a strong connection between the level of stress
and results obtained from BCI reports.

Previous work in extracting features from EEG uses different approaches, for in-
stance, in [55] the ACSP (Adaptive Common Spatial Pattern) is conducted for fea-
ture extraction of EEG signals, which is validated of its efficacy and superiority over
the SCSP (Stationary Common Spatial Pattern) and WCSP (Windowed Common
Spatial Pattern) methods through classification experiments on multiple recordings

sessions of three subjects.

The analysis of EEG signals have been gaining more popularity recently in dif-
ferent sectors including neuromarketing [63], for the detection of various diseases

including epilepsy [5], Alzheimer’s disease [19] and Parkinson’s disease[40]. These



various journals carry out feature extraction in different ways. Yadava et al in [63]
uses Discrete Wavelet Transform (DWT). The wide range of various wavelets avail-
able when using DWT leads to unreliability if the wrong wavelet is chosen for a

particular application.

Machine Learning is observed to be a common tool for classification among the
existing biosignal analysing journals. U. R. Acharya et al in [5] uses the Gaussian
Mixture Model (GMM) and support vector machine (SVM) to investigate the per-
formance of the features they extract. Another journal in the biomedical disease
detection field, Oh et al in [40] uses Convolutional Neural Network(CNN) as the
classification algorithm. The Deep Learning algorithm has shown remarkable out-

come in conjunction with the Artificial Neural Network to classify dataset accurately.

Using EDA (Electrodermal Activity) instead of EEG means that there is no way
to differentiate between cognitive load and cognitive stress. Cognitive load does
not always correspond to stress as shown by the recovery stage as stated by Setz
et al in [51]. This is why it is important to analyse specific bands which do corre-
spond to stress. The paper has laid the idea of concatenating the signals from the
MIST (Montreal Imaging Stress Test) stress experiment and MIST cognitive load
experiment. MIST is a standardized test which involves putting the subjects under
arithmetic and social stress. Adding or concatenating signals from the time period
when stress is applied with the signals from the time when the subjects are recover-
ing (i.e. not facing any stress or relaxing) means that any noise which persists due
to basic cognitive load which is not brought about from stress is not considered in

the final feature. This makes it easier to analyse the curve only for stress indicators.

A study by Anderson et al. in [21] uses an alternative approach to visualization
techniques evaluation using signals from EEG. Advanced studies have shown a con-
nection between neural networks and human cognition. Posner et al [44] has co-
gently revived the notion that neural network models of attention can provide a
common, unifying approach to theory and research on many aspects of human cog-

nitive and emotional development. The study has drawn attention that a neural



network like PDP (Parallel and Distributed Processing) model helps us to under-
stand commonalities among developmental processes associated with social learning,
symbolic thinking, social cognition and social motivation. Using Deep Learning in
order to classify cognitive load shows promising outcomes with good accuracy over

the data set.

Kumar et al. in [35] explains the importance of detecting and analysing frequency
bands in EEG signals. Some waves are based on their shape, head distribution and
symmetry property [8]. The familiar classification of such wave forms include the
gamma, alpha, beta, theta, delta. The continuous rhythms of the brain or brain
waves are categorized by frequency bands where brain wave frequency differs in cor-

respondence to different behavior and mental state of the brain [12][23][32].

Abo-Zahhad et al in [4] talk about the relevance of signals obtained in different
frequency bands or ranges. EEG waveform is classified into five different frequency
bands. The slowest waves usually found in an EEG report are delta waves (up to
4Hz) which correspond to deep and unconscious sleep. At a slightly higher pitch are
theta waves (4-8Hz) involved with quiet focus and light sleep. The next frequency
band (8-14Hz), commonly known as alpha waves are observed during relaxation
with eyes closed but the subject still awake. Beta (14-30Hz) arises during normal
consciousness and active concentration. And the highest frequency band, gamma
waves (over 30Hz) are known to be stronger electrical signals in response to visual

stimulation [4][35].

A study conducted by Subasi et al in [54] uses and compares the three algorithms
of feature extraction methods to classify if an individual is epileptic or not. The
publicly available data as described by Andrzejack et al. in [7] is used. A versatile
signal processing and analysis framework of EEG is suggested, where the features
were decomposed into sub bands using DWT. The features are then extracted us-
ing PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis) and
ICA (Independant Component Analysis) to reduce dimensionality to increase the

performance of the classifier. The classification process is carried out using a SVM



kernel. The training process is carried out using RBF (Radial Basis Function) kernel
to PCA+SVM, ICA+SVM and LDA+SVM which are then cross compared to the
in terms of their accuracy relative to the observed epileptic/normal patterns. Scaler
performance measures, sensitivity and specificity, are derived from the confusion
matrix. The results show that SVM by feature extraction using PCA, ICA and
LDA always perform better than that without feature extraction (98%). According
to this result, the application of nonlinear feature extraction and SVMs can serve

as a potential alternative for intelligent diagnosis systems.

The data set used in this study has been obtained from [27], research done by Kale-
mari et al. later used in [48] and [47]. This particular data set focuses on the electric
potentials of signals obtained from the brains of visually impaired people via EEG.
Using the data set we collect signals from fourteen channels in nine participants
experiencing indoor challenges. Saitis et al. in [48] further labels frequency bands
with different kinds of activity and level of stress in a the brain. This paper says that
beta activity is associated with psychological and physical stress, whereas theta and
alpha-1 (i.e. lower alpha) frequencies reflect response inhibition and attentional de-
mands such as phasic alertness. Degutis in [20] defines phasic alertness as the rapid
change in attention due to a brief event and says that it is the basis for operations
such as orienting and selective attention, which leads to the possibility of relating
lower alpha waves to extra attention required for orientation by the subjects in the
experiment. Alpha-2 (i.e. higher alpha) is related to task performance in terms of
speed, relevance, and difficulty [48][30]. This group of frequency ranges or bands
therefore correspond to the difficulty level presented to the VIP as they navigate
through the different circumstances. Gamma waves are involved in more complex
cognitive functions such as multimodal processing or object representation[48][29].
So even though interpretation from visual stimulation is not a factor, gamma waves
are still relevant to this study because interpretation from the other senses (touch,
smell) might be involved in the navigation process.

The journal in [48] is based on data collected by the European Union in a University
in Iceland. The ten VIPs of the experiment are made to navigate through circum-

stances with various levels of stress. They use the EMOTIV+ EPOC headset with



16 dry electrodes placed according to the 10-20 system with sampling rate 128Hz.
The participants are familiarized with the route prior to the experiment. Unneces-
sary head movements and hand gestures as well as talking to their O&M instructor
are avoided with the exception of emergency. Annotations (which circumstance cor-
responds to which brain wave) are made with the help of video and audio besides
using GPS.

Any missing data resulting from connectivity issues are made up for using inter-
polation in the time domain using FFT. All signals are baseline-normalized by
subtracting for each participant and for each channel the mean of resting state
registrations.These are obtained during a series of laboratory studies with the same
participants.

Features related to signal power and complexity are extracted using the PyEEG
open source Python module. For each of the 14 EEG channels, they compute the
Relative Intensity Ratio as an indicator of relative spectral power in each of the six
frequency bands, namely delta (0.5-4 Hz), theta (4-7 Hz), alpha-1 (7-10 Hz),alpha-
2 (10-13 Hz), beta (13-30 Hz), and gamma (30-60 Hz).

Next they estimate the event-related (de-)synchronization (ERD/ERS) index, a
well-established measure of band power change in EEG originally proposed by
Pfurtscheller and Aranibar in [42]. Slightly modifying the model, this paper [48]
calculates ERD/ERS every second, where every time point expresses the synchro-
nization or desynchronization according to the same baseline. The drawback for
this paper is that the data set is made up of a small set of people, which makes the
study susceptible to overfitting. The participants are also of various levels of visual
impairment. Another limitation include the EMOTIV+ headset which recedes the

quality of signal generated that has been recorded.



Chapter 3

Background Analysis

In this chapter, we give an in depth study and analysis of the topics preceding data
and information associated with our work that includes cognition, CLT, EEG, the
different methods for band extraction and the different classification algorithms used

for such cases.

3.1 Working Memory

The working memory is a part of primary memory often referred to as short-term
memory and has limited capacity. It holds the information temporarily required for
processing instantaneous activities. It is responsible for logical analysis and for the
decision making aspects of activities. As a result, it impacts behavior. For instance,
it is responsible for instantaneous perception through the different senses and for

the processes required for deciphering language.

3.2 CLT

Cognitive psychology defines cognitive load as the used amount of working memory
resources. CLT divides cognitive load into three types: intrinsic, extraneous, and

germane[58].



3.2.1 Intrinsic Cognitive Load

Intrinsic cognitive load is the load on working memory due to the complexity of the
knowledge that is being gained as opposed to how that knowledge is gained. It can
only be altered by changing what is learned or by changing the knowledge levels of
learners. One of the key features of intrinsic cognitive load is that it is unchangeable

for given information to be processed by learners with given levels of expertise[48].

3.2.2 Extraneous Cognitive Load

Some information imposes a heavy cognitive load not because of its intrinsic nature
but rather because of the way it is presented. That load is referred to as extrancous
cognitive load. Tt can be reduced by modifying the instructional procedures [57].

Element interactivity affects both intrinsic as well as extraneous cognitive load.
Simultaneous processing imposes a heavy working memory load, while successive
processing does not. Low element interactivity materials allow individual elements
to be learned with minimal reference to other elements and so imposes a low working
memory load. Whether information can be processed simultaneously or successively

depends on element interactivity [57].

3.2.3 Germane Cognitive Load

Germane cognitive load does not depend on any one source of cognitive load. In-
stead, it refers to the working memory resources available to deal with the element
interactivity associated with intrinsic cognitive load. If more working memory re-
sources are used up in dealing with extraneous cognitive load, less will be available
to deal with intrinsic cognitive load and so less will be devoted to germane cognitive

load. [21]

3.3 Measuring Cognitive Load

Early stages of CLT using indirect methods such as error rates, time on task and
computational method provide evidence that various instructional effects can be

explained by fluctuations in cognitive load. Paas (1992) in [59] proposes a single-

10



scale subjective measure of mental effort, which in effect made a significant move
away from the early proposals. In most instances, the subjective measures have
evidently provides collaborating support of all CLT effects. However, subjective
rating scales do not provide real time concurrent data. An alternative measure that
is able to provide concurrent data is the use of a secondary task. The method is seen
to be easy and efficient in learning the cognitive load, and is also very unobtrusive. It
has the most use and has been most successfully employed. Other methods include
the eye tracking and physiological methods such as the use of EEG data have started

to emerge as potential measures on ongoing research on CLT [8].

3.4 Different Parts Of Brain

The human brain is a complex organ. It is divided into three parts; the cerebrum,
the cerebellum and the brain stem (which leads into the spinal cord). The cerebrum
is the largest part of the brain. It is the principal and most anterior part of the brain
in vertebrates, located in the front arca of the skull. It is divided into two parts
by a fissure- the right hemisphere and the left hemisphere. The right hemisphere
controls the left side of the body, and the left hemisphere controls the right side of
the body. The left hemisphere is also responsible for actions that require logic such
as science and mathematics while the right is responsible for actions that have to do
with creativity and art. The cerebrum controls the integration of complex sensory
and neural functions, and hence the fine control of movement and the initiation and
coordination of voluntary activity in the body. It also controls the performance of
higher functions like the interpretation of touch, vision, hearing. Figure 3.1 shows
the different parts of the brain.

The cerebellum receives information from the sensory systems, the spinal cord, and
other parts of the brain and then regulates motor movements. The cerebellum co-
ordinates voluntary movements such as posture, balance, coordination, and speech,
resulting in smooth and balanced muscular activity.

Activities based on regions in the cerebrum:

Frontal - The front part of the brain which is responsible for motor function, self

awareness,writing and speech, intelligence, problem solving.

11



Frontal Lobe Parietal Lobe

Temporal Lobe Cerebellum

Figure 3.1: Different regions of Brain [2]

Temporal - Positioned on the side of the brain. Responsible for auditory processing,
memory, learning/processing new language.

Occipital - Located at the back of the cerebrum. Plays a role in the processing of
visual information. The information is processed to make decisions of color, depth
and perception.

Parietal- Situated just behind the frontal lobe. It has somatosensory cortex and
deals with processing sensory information to determine touch, sense of pain and

temperature.

3.5 BCI

Human brain controls body function, such as heart activity, movement, speech, but
also thinking itself. These activities are measured using the EEG which fundamen-
tally captures the electrical potential in the brain. What BCI provides is a means of
communication and independence, for instance if an individual has suffered damage
in the Central Nervous System (CNS) causing blindness, BCI can used to give them
artificial vision. Figure 3.2 depicts a simple model of BCI workflow.

Recent developments in BCI technology may see such hands-free control methods
come into use. A BCI is a communication and control system in which the thoughts
of the human mind are translated into real-world interaction without the use of the
usual neural pathways and muscles. For example, utilising BCI, people with no limbs

or damaged limbs or damaged sensors in the skin, can use artificial limbs which are
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Figure 3.2: BCI workflow [§]

directly controlled by signals from their brain, thus allowing them to carry out their
regular activities. Recent advances in the human brain and BCI research reveal that
BCl-based devices and technologies can play a significant role in medicine [53] and
can create an impact in future studies. There are three parts of BCls. Invasive,
Non-invasive and Partially invasive [32].

Invasive BCI- Requires surgery to position the sensors or stimulators in the cor-
tical tissue. Complications may rise since the surgery may be prone to scar-tissue
build up. Scar-tissue causes weak signal, which can even be lost.

Partially invasive BCI- Partially Invasive BCIs are implanted into the skull,
but outside the brain. It uses a technology called the ECoG where electrodes are
embedded in a thin plastic pad that is placed above the cortex, beneath the dura
mater [32]. Tt produces good signal but is weaker than that of invasive BCI.
Non-invasive BCI- Non-Invasive BCI means electrodes are placed on the surface

of the skull to record changes in EEG state. It is the easiest and safest way to record

EEG.
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3.6 Non-invasive BCls

3.6.1 MRI

MRI provides a map of the brain in real time. The structural map helps to determine
the location of any anomaly (for instance, tumours) that might be present in the

brain or compare the sizes of the brain.

3.6.2 fMRI

tMRI provides a more detailed structure of the map. It shows the presence of oxygen
in the brain due to different activities. The area with the more oxygenated blood

in the brain becomes accentuated than the others and also the most active.

3.6.3 EEG

Electroencephalogram (EEG)

Electrodes

EEG reading

Figure 3.3: Acquiring EEG signals [22]

EEG is a non invasive technology used to record brain activity. Using EEG is the
most prevalent method of signal acquisition for BCI. It is more accessible, can easily
look in the brain activity, cost efficient and most optimum for research purposes.
Metal electrodes are placed on the scalp according to standardized measurement
systems and the relative electrical activity [54] recorded and analysed. A simple
illustration is shown in Figure 3.3. In order to place the electrodes, a standard

method used is the 10-20 method. The 10-20 system is an internationally recognized
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method to describe and apply the location of scalp electrodes in the context of an
EEG exam. The measurements used in this system are explained as follows. The
Nasion is the bridge of the nose and the Inion is the bony prominence at the back
of the head. The two preauricular points are the points just anterior to each ear.
The first measurement is made from nasion to inion. This is now divided into
10% and 20% increments. The next measurement is made from one preauricular
point to the other. This is again divided into 10% and 20% increments. The next
measurement made is the circumference of the head which is also divided into 10%
increments. Parasagittal measurements are made, separated by 25% increments.
Finally, transverse measurements are made. The intersections of these last two lines
give the last electrode placement points. Electrode placement points are named in a
manner that odd numbers are on the left and even numbers are on the right. Lower
numbers are generally electrodes closer to the midline. Midline is represented by z
which stands for zero. The letters are indicators of the position of the head. The F
stands for frontal, C for Central, P for Parietal and O for Occipital [1]. Figure 4.1
illustrates the 10-20 system.

3.7 Biosignals

Figure 3.4: Travelling of brain waves in neurons [39]

Brainwaves are the short electrical pulses in the CNS with repetitive cycles over the
period of time [32] (Figure- 3.4). These neural cycles are measured in Hertz. Pulses

are generated from a single neuron or due to interactions between two neurons in the
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CNS. The neurons in turn interchange information with the muscles via the nervous
system to perform motor function, sensory interaction or have virtual information.
The different functions of the brain emanates different frequencies of waves; for
instance, high frequency waves are observed when a person is ecstatic while the low
frequency waves can be seen when a person is bored or lazy. The different ranges can
be detected and observed using the EEG. The different brain waves can be classified

into five categories as the Figure 3.5 suggests.

Gamma
Problem solving,
concentration

0.0 0.2 04 0.6 0.8 10

Beta
Busy, active mind

0.0 0.2 04 0.6 08 10

Alpha \/\/\/\/\/\J\/\m
Reflective, restful L g, A -,

0.0 02 0.4 0.6 08 1.0

Theta /\’\’A/\/\A/\
Drowsiness

0.0 0.2 04 0.6 0.8 1.0

Delta ,\/\/\/

Sleep, dreaming o5 02 04 06 08 10

Figure 3.5: Brain samples for the five different waveforms [3]

3.7.1 Gamma

Gamma waves are important for learning, memory and information processing. This

infers the working memory is responsible for this high frequency brain wave.

3.7.2 Beta

Beta waves are active in a waking state. This frequency is visible in logical-analytical
reasoning. The cognitive tasks, problem solving, planning, sclf awareness can be

observed using beta wave since the wave is mostly generated in the frontal lobe.
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3.7.3 Alpha

Alpha waves connect the gap between our conscious thinking and subconscious mind.

It helps us to calm down or it promotes a feeling of relaxation.

3.7.4 Theta

Theta waves are involved in sleep or daydreaming. While in this range, humans tap

into their subconscious mind.

3.7.5 Delta

Delta waves occur during meditation, in a state of deep sleep or coma. Abnor-
mal delta activity may occur if the person has learning disabilities or difficulties

maintaining conscious awareness (such as in cases of brain injuries).

3.8 Feature Extraction

3.8.1 Fourier Transform

The Fourier Transform of an intensity versus time function like g(t) is a new function
which does not have time as an input but instead takes in frequency. The common
notation for this function is g(f). The output of this function, g(f) is a complex
number, some point in the 2D plane that corresponds to the strength of a given
frequency in the original function. As explained by Euler’s formula, exponentials
correspond to rotation. Multiplying that exponential by a function g(t) means
drawing a wound up version of the function, g(t). An integral of the complex valued
function can be interpreted in terms of a center of mass idea. Leading us to the final

Fourier Transform in equation 3.1.
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3.8.2 Wavelet Transform

Wavelet transform (WT) is suitable for analysis of sudden and transient signal
changes. This method can pick up impulses at different time instances. WT plays
an important role in the recognition and diagnostic field [28]; it compresses the time-
varying biomedical signal, which is composed of many data points, into a small few
parameters that represents the signal. As the EEG signal is non-stationary, a suit-
able way for feature extraction from the raw data is the use of the time-frequency
domain methods like WT which is a spectral estimation technique in which any
general function can be expressed as an infinite series of wavelets [6][49]. Real world
data or signals frequently exhibit slowly changing trends or oscillations punctuated
with transients. On the other hand images have smooth regions interrupted by edges
and abrupt changes. These abrupt changes usually contain useful information and

can be picked up by WT.

3.8.3 PCA

PCA is a dimensionality reduction technique used in feature extraction to find corre-
lation by maximizing variance. From the 'm’ independent variables in the dataset,
PCA extracts p<m new independent variables that explain the most variance of
the dataset, regardless of the dependent variable. The basic approach in principal
components is theoretically rather simple. Firstly the data is standardized. The
Eigenvectors and eigenvalues are obtained from the covariance matrix or correlation
matrix. The eigenvalues are sorted in descending order and the ‘k’ eigenvectors cor-
respond to the k largest eigenvalues, where k is the number of dimensions of the new
feature subspace (k<d). The projection matrix W is constructed from the selected k
eigenvectors. Finally the original dataset X is transformed to k-dimensional feature
subspace Y. A very high level of classification accuracy is obtained in the result
of classification, which is based on reducing the feature dimension using PCA and

deriving the support vectors using SVM [17].
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3.84 ICA

ICA is a feature extraction method that transforms multivariate random signals
into a signal having components that are mutually independent [54]. The ICA of
a random vector consists of searching for a linear transformation that minimizes
the statistical dependence between its components [18]. ICA finds independent
projections which are almost not mutually orthogonal or not at all. It is one method

used to identify temporally coherent networks [15].

3.8.5 LDA

The aim of LDA is to create a new variable that is a combination of the original
predictors [54]. This is accomplished by maximizing the differences between the
predefined groups, with respect to the new variable. The goal is to combine the
predictor scores in such a way that, a single new composite variable, the discriminant
score, is formed. LDA is used as a feature reduction technique for BCI systems in

signal processing where all classification methods shows small classification errors

33).

3.8.6 Welch’s method for finding Power Spectral Density

Welch’s method, originally published in his journal in 1967 is an approach for spec-
tral density estimation. It is an extension of the FFT. Signal nonstationarities make
signals difficult to interpret visually. Welch’s method is one of the solutions for
dealing with signal nonstationarities since it gives smoother results. This method
involves fewer computations and therefore is ideal for many non stationary tests
[61]. The transformations have to be carried out on shorter signals since the original
signal is split into segments. The segmentation is described in Figure 3.6. The FFT
is carried out on each individual segment and the results of each averaged to obtain
the final Welch’s Power Spectral Density (WPSD). This makes the method more
ideal for portable navigation aids with limited core storage. Mobile navigation aids
call for fast systems with accurate outputs. A reduced number of computations is

an essential part of that.
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Figure 3.6: Illustration of record segmentation [61]

In order to carry out Welch’s method, the Fourier Transform is calculated for each
snippet and the power spectrum obtained. Each snippet is modified before carrying
out the Fourier Transform on it. By having overlapping segments, attenuated data
resulting from modification in the Fourier Transform of one snippet is made up
for by the Fourier Transform of the next snippet. The final Welch’s transform is

obtained by averaging all the resulting power spectra together.

3.9 Classification Techniques

3.9.1 SVM

Generally speaking, SVM is a supervised machine learning model consisting of clas-
sification algorithms for binary division of data. Most real life data consists of too
much overlapping for clear classification using simple classifiers like linear regression
or logistic regression. The machine learning model, SVM has the ability to clas-
sify overlapping data with no clear linear classification by visualising the data in a
higher dimension and using a hyper plane in the higher dimension as the classifier
as mentioned in [37] and [54]. This hyper plane is referred to as the Support Vector
Classifier. The paper further explains how the method’s name, support vector ma-
chine is derived from the support vectors, which are data coordinates that lic closest
to the decision boundary separating the classes. The support vector classifier is
expressed in terms of the input vectors and dot products. Figure 3.7 illustrates how
an SVM operates. It should be noted that the data are not actually being moved

into a higher dimension but rather pictured in a higher dimension to come up with

20



a classifier [10] [24]. This is done by using the dot product to find how individual
points reflect in the feature subspace. The kernel function decides the dot product.
The distances between these reflections on the new higher-dimension subspace can
be calculated. It is also important to decide on a scale of impact for violating the
soft margin between the classes. Therefore, it can be said that the goal of SVM is
to find a hyper plane in an N-dimensional space, where N is the number of features,
that distinctly classifies the data points. The SVM chooses the classifier which sep-
arates the classes with maximal margin, referred to as the optimal separating hyper
plane in [10]. The margin is defined as the width of the largest ‘tube’ not containing
samples that can be drawn around the decision boundary i.e. the solution with the

highest generalization ability [54].

Optimal separating
perpane| °

Figure 3.7: Optimal separating hyperplane in 2D SVM

The Polynomial Kernel is used to calculate the relationships between the observa-
tions in a higher dimension. The dimension which does provide a hyper plane with
distinct classification is chosen.

Gaussian RBF can be considered as an extension of the Polynomial Kernel. In this
case, the new subspace consists of infinite dimensions and the algorithm finds the
hyper plane in the infinite dimension which can be used for binary classification.
The radial kernel behaves like a Weighted Nearest Neighbour model, that is, the
closest data points have the highest influence on how we classify the new data
point. A constant term determined by cross validation scales the influence. This
model is useful for training data set with a lot of overlap. The radial kernel finds

Support Vector Classifiers in infinite dimensions.

21



3.9.2 Random Forest Classifier

An ensemble learning method for classification that operates by creating multitude
decision trees at training time and outputs the class that is the mode of the classes
of the trees. The first algorithm for Random Forest was first developed by Tin Kam
Ho [26].

Random Forest Simplified

Instance
Random Fonest f,.,-f"' h““ﬁaxh_
m fi?» 2
b o g\?’b
Tree-2 Tree-n
Class-A Class-B Class-B

i Majority-Voting | |

(Final-Class

Figure 3.8: Random Forest based Classification [31]

The basic approach in Random Forest is theoretically rather simple. Firstly pick n’
data points from the training set randomly. Build the decision tree associated with
these n data points. Choose the number of Ntree you want to build and repeat the
first two steps. For a new data point, make each of the Ntree predict the value of Y
for the data point in question and assign the new data point the average across all
of the predicted Y values. Finally the accuracy of the Random Forest is estimated
from which ’out of the bag’ error is used to optimize the number of variables that

should be used in the classifier. Figure 3.8 illustrates a simplified random forest.

3.10 ERD/ERS calculation

The term ERD refers to an event related localized amplitude attenuation whereas
ERS refers to event-related localized amplitude enhancement within mu and beta

frequency bands [52].
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Figure 3.9: Calculation of ERD/ERS using Inter trial Variance method [62]

The common ERD/ERS detection can be processed in four steps, which contains
band pass filtering of the EEG signal, squaring of amplitude of the signal and aver-
aging of their power within all experiments in order to smooth the data [52]. Figure
3.9 depicts the several steps taken to calculate the ERD/ERS using the Intertrial
Variance method.

As study in [62] shows, short red light flashes of 10 ms duration were presented on
patients for visual stimulation at intervals of at least 2s using alpha power in the 7
to 13 Hz band. This stimulation resulted in an ERD followed by resynchronization.
Trials were controlled for artifacts, averaged offline, and the amount of ERD/ERS

was calculated.
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Chapter 4

Proposed Model

In this chapter, we present our proposed model, an overview of the steps carried out
in our study. EEG is the non-invasive BCI used for detecting the cognitive load in
VIPs. Initially signals have noise and gaps due to connectivity issues. Preprocessing
is done to reduce deviations, noises and inconsistent signals. The preprocessed
signals are then further refined and features extracted using WPSD. The features are
labelled with corresponding cognitive loads based on recordings and post experiment
interviews. Finally these features are fed into RBF SVM and classified accordingly.

Figure 4.2 represents our proposed model.

4.1 Data Description

The data used in our study has been obtained from an experiment conducted in the
indoor environments of the University of Iceland, Reykjavik [48].

The project was funded by the Furopean Union to aid VIP for their navigation.
The data set they collected [48] has been used in our study.

The EMOTIV EPOC+ EEG headset is used to collect EEG signals from 9 healthy
participants as they navigate through indoor environments [48]. EPOC+ is chosen
because it provides a good compromise between performance and usability with
respect to other wireless EEG recording devices available. Participants of various
levels of visual impairment (VI-2, VI-3, VI-4), have been described in Table 4.1.
Indoor environments are divided into 6 types (Door, Narrow Space, Open Space,

Elevator, Stairs, Moving Objects). The EEG signals from the subjects at each of
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these labels are recorded.

Table 4.1: Categories of Visual Impairment.

Category Description Participant Gender
VI-2 Vision less than 10% and more than 5% 2(F,M)
VI-3 Vision less than 5% 4 (F, F, M, F)
VI-4 Not being able to count fingers less than one meter away 3(F, M, F)

Electrodes Placement:
In order to place the electrodes, a standard method , the 10-20 system with probes
at AF3, F7, F3, FC5, T7, P3 , P7, O1, 02, P8, P4 , T8, FC6, F4, F8, and FC is

used as shown in the figure 4.1.

Figure 4.1: 10-20 Electrode Placement System [1]

Different bands such as Delta (up to 4 Hz), Theta (4-8 Hz), Alpha (8 -15 Hz), Beta
(15-32 Hz), and Gamma (above 32 Hz) can be extracted from EEG signals. The
ones relevant to our study are Alpha (8 -15 Hz), Beta (15-32 Hz) waves, and Gamma
(above 32 Hz) waves.

The cognitive tasks, problem solving, planning, self awareness can be observed using

beta waves [45]. The results conducted shows a relationship between cognitive load
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Figure 4.2: Workflow Of the Proposed Model

and beta frequency [36]. This leads to the conclusion that beta waves should be
taken into consideration for our research.

Similarly, gamma band activity participates in various cerebral functions, such as
perception, attention, memory, consciousness, and motor control [60]. Therefore, it
shows the significance of gamma frequency to detect cognitive load.

Cognition has shown association with alpha frequency when the frequency is de-
tected in the visual cortex of the brain. Repeated observations from experiments
show that signals in the alpha band tend to correspond to brain activity associated
with cognitive load, for instance, alpha activity is observed to fall in magnitude with

higher task difficulty [8].

The comprehensive sources contribute the indispensable information and data to
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conduct our research for navigation of VIPs.

4.2 Feature Extraction

In the dataset collected from the European Union, EEG signals are recorded using
the Emotiv EPOC+, a mobile headset with 16 dry electrodes registering over the
10-20 system locations. A sampling rate of 128 Hz is used. In this experiment there
are 9 participants each of whom are stimulated to 6 different indoor environments
and EEG signals are recorded from 14 different channels

When extracting features, three frequency bands are taken into consideration, afore-
mentioned in Section 4.1, namely, alpha (8 -15 Hz) waves, beta (15-32 Hz) waves,
and gamma (above 32 Hz) waves. The following passage demonstrates how feature

extraction is carried out on the relevant bands.

4.2.1 WPSD

Welch’s method is an approach for spectral density estimation. It uses FT to com-
pute a smoother signal. Welch had the idea to split the entire signal into segments
before carrying out the FT on each individual segment. This reduces computation
time and complexity and thus makes the process much more appropriate for devices
involving mobility [61]. Since we are trying to build a navigation aid which provides
real time classification, this is a useful property for the logic involved in our backend
computation. The FT of each separate segment are then averaged to obtain the final
WPSD. The segments are intentionally taken in a manner that they overlap with
each other. This is done so that any data attenuated as a result of modifying the
segments before FT are made up for by adjacent overlapping segments.The method

is ideal for portable navigation aids with limited core storage.

4.3 Cognitive Load Measurement

The definition used in our study to measure band power change in EEG is based
on the technique first developed by Pfurtscheller and Aranibar[42]. It is defined as

follows:
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baselinel BP — testI BP
ERDJERS(%) = baselinel BP (41)

, where IBP stands for interval band power. The baseline IBP refers to a prestimulus
time period without any task demands, which in our case is the resting state, while
the testIBP is the band power obtained during the time frames when the different
stimuli are presented to each participant.

The ERD/ERS is calculated using beta band. From the estimation of the ERD/ERS
the cognitive load is found. The value of the cognitive load represents the level of
mental difficulty a participant faces due to the combination of parameters that lead

to the cognitive label.

4.4 Cognition Classification

Our data, like most real life data, consists of too much overlapping for clear classifica-
tion using simple classifiers like linear regression or logistic regression. The machine
learning model, SVM has the ability to classify overlapping data with no clear lin-
ear classification by visualising the data in a higher dimension and estimating the
classifier better than any linear model.

The extracted features were fed into a SVM kernel for classification. The higher
dimension in a SVM is chosen based on which one provides a hyperplane for clear
classification [10]. RBF in particular maps the data points in the existing dimension
into an infinite dimensions subspace. SVM with 5 fold cross validation and grid
search is implemented. That is, the data set is divided into five parts. The first
section is used to train the algorithm and the remaining 4 sets are used for testing.
In its existing dimensions, our data is difficult to differentiate. So visualising it in
the infinite dimension subspace makes it easier to classify the data. Grid search is
used as an approach for hyper-parameter tuning to build the SVM model for each

combination of parameters specified in our data.
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Chapter 5

Results and Discussion

EEG signals are captured from 9 VIP as they navigate through the indoor environ-
ments in a university. Features are extracted per second with a sampling rate of
128 Hz. ERD/ERS is calculated using beta bands. From the calculation, the mea-
surement for the cognitive load is found and labelled accordingly. These labels are
used to train the RBF kernel of SVM using 5 fold cross-validation. In this section,
the results and its corresponding ROC (Receiver Operator Characteristics) curve is

described and analyzed.

5.1 Analysis Of Results

In medical diagnosis, test sensitivity is the ability of a test to correctly identify those
with the disease (true positive rate), whereas test specificity is the ability of the test
to correctly identify those without the disease (true negative rate)[54]. A graph of
the sensitivity by 1-specificity plotted at different cut off points for classification is
called the ROC curve. This curve is useful for analysing the efficiency of a model.
The ROC curve can be used to pick the cut off point that optimises sensitivity and
specificity for a given curve. Common criteria for picking the cut off point include
the point on ROC curve where the sensitivity and specificity of the test are equal,
or the point on the curve with minimum distance from the left-upper corner of the
unit square[25]. The area under the ROC curve gives the accuracy. This area under
the curve is commonly referred to as the AUC (Area Under Curve). The best test
is the one with the ROC curve that clusters up to the left.
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In our experiment, ROC curves are plotted with pairs of sensitivity and specificity
obtained at each hyper plane. The hyper planes are exponential functions discovered
by the RBF kernel of the SVM. As more iterations are carried out, the kernel
learns better and the hyper plane obtained provides a new value of sensitivity and
specificity, that is, the ratio of true positive and the ratio of true negative change
with respect to total predictions made. So each classifier gives a unique set of
sensitivity and specificity values.

The sensitivity, specificity, and accuracy are calculated from confusion matrix de-

fined as:

Sensitivity — —1 (5.1)
enst ZUZy—TP+FN .
. TN
Speczfzczty — '_ZW——l—j?P (52)
TP+ TN
Accuracy = i (5.3)

TP+ FN+TN+ FP

where TP is the number of true positive, TN is the number of true negative, FP is

the number of false positive,FN is the number of false negative.

In this paper, the cognitive load, labelled as stress, has been classified based on
features extracted from the EEG signals of nine healthy participants of various levels
of visual impairments in different indoor environments. Features were extracted from
three frequency bands alpha, beta and gamma for all 14 channels using the WPSD.
The environments can be divided into 6 different types, each subjecting the VIP
to a unique set of challenges. Environment A is the annotation for any door that
the subject faces in their route and the corresponding challenges they may face, for
instance a rotating door can be a potential obstacle for a physically disadvantaged
individual. The Table 5.1 shows corresponding challenges for each environment for

the VIPs.
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Table 5.1: Descriptions and corresponding challenges for each environment

ID  Environment Challenges

A Door Rotating door, Bumping into closed doors

B Narrow space People, Chairs, Table, Furniture, Walls, Shelves

C Open Space People, Crowd, Losing direction

D Elevator Finding button, Selecting floor, People, Elevator door close
E Stairs Steps starting, Steps ending, Finding railing, Slippery

F  Moving Object Avoiding people, Trolleys

5.2 Discussion

5 fold cross validation was carried out for each environment based on the features
extracted from alpha, beta and gamma bands and ROC curves were plotted to
analyze the classification for each environment, shown in Figure- 5.1. The ROC
curve for environment A has an AUC of 0.91, B of 0.89, C of 0.96, D of 0.86, E of
0.88 and F of 0.90. Table 5.2 shows this in details. From the AUC values, we can
see that the classification in environment C is done the most efficiently as it has the
highest AUC. On the other hand, environment D has the least effective classification.
However, the classification of stress for all environments using the RBF from SVM
is very valid because the AUC for all shows a significant improvement compared to

paper [27]. This proves that the algorithm picked is appropriate for this experiment.

Table 5.2: Sensitivity, Specificity and Accuracy table

Environment Sensitivity% Specificity%  Accuracy%
A 96.17 82.14 90.77
B 94.04 72.37 89.26
C 95.74 76.92 96.41
D 90.57 83.33 86.42
E 97.55 92.31 88.46
F 93.05 83.67 90.17

Aforementioned, the ROC curve can also be used to pick the hyper plane that
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The ROC curves of different indoor environments
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Figure 5.1: The ROC Curves

optimises sensitivity and specificity.

The ROC curves can be observed to find the point where the specificity and sensi-
tivity match. This is also the point at minimum distance from the left upper corner
of the unit square. Mapping this pair of sensitivity and specificity to the obtained
hyper plane at the iteration which provides us with this pair of specificity and sen-
sitivity values gives us the best classifier for that environment. The function of the
hyper plane divides the new test subjects into two categories- high cognitive load or

stressed, or low cognitive load or not stressed.
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Chapter 6

Conclusion

This paper highlights how real time cognitive load assessment is done as the VIPs
navigate their way through indoor environments. The main objective is to reflect
the viability of the challenging tasks and find their corresponding cognition level by
extracting features from the frequency bands. Our study describes the design of the
user study performed, the extraction of cognitive load measured from EEG signals,
and how those measures can be used to quantitatively evaluate the effectiveness of
navigation aids with the use of features extracted from certain frequency bands.
What we have achieved in this research is an effective way to label the cognitive
load using WPSD and RBF SVM with an AUROC of above or around 0.9 for each
environment.

Since our work agrees with papers[27][48] to say that EEG signals are a stable visu-
alisation technique for cognitive load, further work can include using EEG signals
to compare the effectiveness of different visual aids as opposed to individual assess-
ment of people. So research can be done to decide which mobility aids are the most
comfortable for impaired users. The work done in this paper opens opportunities
for research in a variety of fields. The usability of EEG to detect stress can be ap-
plied on non impaired participants during tasks with probable high cognitive loads.
Anyone facing cognitive load beyond normal levels can have extra factors like stress,

anxiety or illness into play.
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Chapter 1

Introduction

Common existing mobility aids for the visually impaired include canes, service dogs
and electronic mobility aids [41]. While all of these are effective aids to locate ob-
stacles and help the visually impaired people (VIPs) with navigation, none of these
take the user’s mental state into consideration [43]. At first glance, visual impair-
ment seems to be a small percentage of the population, but eye sight is observed to
deteriorate with age [13]. Many of the elderly people tend to stay at home most of
the time because they find outdoor environments stressful. Eyesight generally plays
a factor in that stress. The aim of this study is to provide individual assessment of
VIPs. However, different navigation techniques can also be compared by analysing
EEG signals of individuals. Although user feedback can easily be used to compare
different techniques, user or customer feedback is not always reliable. A quantita-
tive comparison will be useful for companies when designing new navigation aids.
A similar study can include analysing the EEG bands from a group with a different
type of impairment, such as hearing impairment. The mapping of task to stress
is also very relevant beyond impairment. For instance, a healthy subject will have
a standard stress level during activities heavy on cognition such as interviews and
exams. A stress level beyond that standard will indicate an extra factor in play.
Probable factors can be depression or anxiety.

Invasive and partially invasive techniques, such as Electrocorticographic (ECoG),
lead to complications of brain tissue depletion causing signals to recede with time.
As a non-invasive measure, Electroencephalography (EEG) provides a safer and more

efficient procedure to conduct experiments. Other non-invasive methods such as



fMRI (functional Magnetic Resonance Imaging), MRI (Magnetic Resonance Imag-
ing) provide higher resolution and better understanding of the brain. However, these
methods call for machines that are not portable and require the subject to be in a
specific posture. This means that both fMRI and MRI are not suitable for mobile
experiments that are necessary for our study. Hence, we have chosen EEG to collect

brain signals for analysing, classifying and labelling cognitive load.

1.1 Thesis Overview

A Brain Computer Interface (BCI), sometimes called a neural-control interface
(NCI), or brain-machine interface (BMI), is a direct communication pathway be-
tween an enhanced or wired brain and an external device. BCI is often directed
at researching, mapping, assisting, augmenting, or repairing human cognitive or
sensory-motor functions [34]. Based on what has been found, noninvasive BCI tech-
niques have helped pave a safe path for VIPs to perform regular tasks [49]. These
help us perceive the issue tackling the physical disadvantage of the blind people
more clearly.

Researches have suggested that technology has had great success in aiding VIPs
[11]. In [46] the relevance of EEG to measure cognitive load is explained. EEG
signals have been shown to be stable indicators of cognitive load in a variety of
tasks performed in controlled laboratory settings such as learning to carry out tasks
to navigate using hypertext and multimedia data [14][9], or learning to use complex
navigating tools using hypermedia navigation [38].

A good measure for the user’s state of mind at a given time is the cognitive load
of the user obtained in real time. In cognitive psychology, the implication of cog-
nitive load is the amount of working memory resources used in given time. The
capacity and performance of the neural circuitry that implements working memory
plays a vital role in cognitive activities and varies from person to person. In order
to understand working memory better, it is useful to distinguish between working
memory performance and task performance. Task performance is typified by a par-
ticipant’s external performance of a task; for example, the time it takes to complete

the task or the ratio of incorrect responses to correct ones. As opposed to that,



working memory performance is measured by the spectral changes in the alpha,
beta and gamma frequency bands in the EEG bio signal [36][8][60]. This provides a
connection between the task and the resultant cognitive load.

The mental instability and the challenges of visual orientation the VIPs face have
been studied in cognitive load theory (CLT) by John Sweller in [56]. It is the basis
of what we want to achieve in the forthcoming future.

Research done by Saitis et al. in [48] and [47] with Machine Learning use Fast Fourier
Transform (FFT) for feature extraction and Random Forest classifier algorithm for

classification.

1.2 Thesis Contribution

Building on the above, we have based our work on helping the visually impaired to
navigate in unfamiliar indoor environments. Some research has been done to analyse
the mental state of the VIPs using EEG as they navigate through various environ-
ments [48][47]. We want to carry out similar research using a different approach and
see if the results still hold and agree with the work done in existing studies. We use
Welch'’s Power Spectral Density (WPSD) for feature extraction and Support Vector
Machine (SVM) for classification. Collecting EEG signals, we assess the resulting

cognitive load label for each participant in different indoor environments.

1.3 Thesis Orientation

The consequent chapters of the paper have been covered in the following order.
Chapter 2 discusses similar work in the field corresponding to our work and existing
methodologies with their limitations. Chapter 3 gives an in depth study and analysis
of the topics preceding data and information associated with our work. Chapter 4
presents the proposed model in detail. Chapter 5 give the test results, analysis of
the results and the interrelated discussions. The last chapter, Chapter 6 closes and

outlines our study with future plans.



Chapter 2

Literature Review

The use of BCI to provide communication and control capabilities to people with
severe motor disabilities has become more common in the last decade [50]. So a
gradual rise in interest in this field can be expected in the future. Studies have been
done to measure cognitive load using fMRI or MRI, for example by Callicot J. in
[16]. This study finds that the prefrontal cortical signal decreases at highest working
memory load which is also coincident with a significant decrement in performance.
The paper also talks about a relationship between the pericingulate or the posterior
cingulate region, and capacity-unconstrained response. This is because activation of
this region is observed to be related to attention and effort related processes. The
cingulate cortex is a part of the brain situated in the medial aspect of the cerebral
cortex. All of this leads us to draw a strong connection between the level of stress
and results obtained from BCI reports.

Previous work in extracting features from EEG uses different approaches, for in-
stance, in [55] the ACSP (Adaptive Common Spatial Pattern) is conducted for fea-
ture extraction of EEG signals, which is validated of its efficacy and superiority over
the SCSP (Stationary Common Spatial Pattern) and WCSP (Windowed Common
Spatial Pattern) methods through classification experiments on multiple recordings

sessions of three subjects.

The analysis of EEG signals have been gaining more popularity recently in dif-
ferent sectors including neuromarketing [63], for the detection of various diseases

including epilepsy [5], Alzheimer’s disease [19] and Parkinson’s disease[40]. These



various journals carry out feature extraction in different ways. Yadava et al in [63]
uses Discrete Wavelet Transform (DWT). The wide range of various wavelets avail-
able when using DWT leads to unreliability if the wrong wavelet is chosen for a

particular application.

Machine Learning is observed to be a common tool for classification among the
existing biosignal analysing journals. U. R. Acharya et al in [5] uses the Gaussian
Mixture Model (GMM) and support vector machine (SVM) to investigate the per-
formance of the features they extract. Another journal in the biomedical disease
detection field, Oh et al in [40] uses Convolutional Neural Network(CNN) as the
classification algorithm. The Deep Learning algorithm has shown remarkable out-

come in conjunction with the Artificial Neural Network to classify dataset accurately.

Using EDA (Electrodermal Activity) instead of EEG means that there is no way
to differentiate between cognitive load and cognitive stress. Cognitive load does
not always correspond to stress as shown by the recovery stage as stated by Setz
et al in [51]. This is why it is important to analyse specific bands which do corre-
spond to stress. The paper has laid the idea of concatenating the signals from the
MIST (Montreal Imaging Stress Test) stress experiment and MIST cognitive load
experiment. MIST is a standardized test which involves putting the subjects under
arithmetic and social stress. Adding or concatenating signals from the time period
when stress is applied with the signals from the time when the subjects are recover-
ing (i.e. not facing any stress or relaxing) means that any noise which persists due
to basic cognitive load which is not brought about from stress is not considered in

the final feature. This makes it easier to analyse the curve only for stress indicators.

A study by Anderson et al. in [21] uses an alternative approach to visualization
techniques evaluation using signals from EEG. Advanced studies have shown a con-
nection between neural networks and human cognition. Posner et al [44] has co-
gently revived the notion that neural network models of attention can provide a
common, unifying approach to theory and research on many aspects of human cog-

nitive and emotional development. The study has drawn attention that a neural



network like PDP (Parallel and Distributed Processing) model helps us to under-
stand commonalities among developmental processes associated with social learning,
symbolic thinking, social cognition and social motivation. Using Deep Learning in
order to classify cognitive load shows promising outcomes with good accuracy over

the data set.

Kumar et al. in [35] explains the importance of detecting and analysing frequency
bands in EEG signals. Some waves are based on their shape, head distribution and
symmetry property [8]. The familiar classification of such wave forms include the
gamma, alpha, beta, theta, delta. The continuous rhythms of the brain or brain
waves are categorized by frequency bands where brain wave frequency differs in cor-

respondence to different behavior and mental state of the brain [12][23][32].

Abo-Zahhad et al in [4] talk about the relevance of signals obtained in different
frequency bands or ranges. EEG waveform is classified into five different frequency
bands. The slowest waves usually found in an EEG report are delta waves (up to
4Hz) which correspond to deep and unconscious sleep. At a slightly higher pitch are
theta waves (4-8Hz) involved with quiet focus and light sleep. The next frequency
band (8-14Hz), commonly known as alpha waves are observed during relaxation
with eyes closed but the subject still awake. Beta (14-30Hz) arises during normal
consciousness and active concentration. And the highest frequency band, gamma
waves (over 30Hz) are known to be stronger electrical signals in response to visual

stimulation [4][35].

A study conducted by Subasi et al in [54] uses and compares the three algorithms
of feature extraction methods to classify if an individual is epileptic or not. The
publicly available data as described by Andrzejack et al. in [7] is used. A versatile
signal processing and analysis framework of EEG is suggested, where the features
were decomposed into sub bands using DWT. The features are then extracted us-
ing PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis) and
ICA (Independant Component Analysis) to reduce dimensionality to increase the

performance of the classifier. The classification process is carried out using a SVM



kernel. The training process is carried out using RBF (Radial Basis Function) kernel
to PCA+SVM, ICA+SVM and LDA+SVM which are then cross compared to the
in terms of their accuracy relative to the observed epileptic/normal patterns. Scaler
performance measures, sensitivity and specificity, are derived from the confusion
matrix. The results show that SVM by feature extraction using PCA, ICA and
LDA always perform better than that without feature extraction (98%). According
to this result, the application of nonlinear feature extraction and SVMs can serve

as a potential alternative for intelligent diagnosis systems.

The data set used in this study has been obtained from [27], research done by Kale-
mari et al. later used in [48] and [47]. This particular data set focuses on the electric
potentials of signals obtained from the brains of visually impaired people via EEG.
Using the data set we collect signals from fourteen channels in nine participants
experiencing indoor challenges. Saitis et al. in [48] further labels frequency bands
with different kinds of activity and level of stress in a the brain. This paper says that
beta activity is associated with psychological and physical stress, whereas theta and
alpha-1 (i.e. lower alpha) frequencies reflect response inhibition and attentional de-
mands such as phasic alertness. Degutis in [20] defines phasic alertness as the rapid
change in attention due to a brief event and says that it is the basis for operations
such as orienting and selective attention, which leads to the possibility of relating
lower alpha waves to extra attention required for orientation by the subjects in the
experiment. Alpha-2 (i.e. higher alpha) is related to task performance in terms of
speed, relevance, and difficulty [48][30]. This group of frequency ranges or bands
therefore correspond to the difficulty level presented to the VIP as they navigate
through the different circumstances. Gamma waves are involved in more complex
cognitive functions such as multimodal processing or object representation[48][29].
So even though interpretation from visual stimulation is not a factor, gamma waves
are still relevant to this study because interpretation from the other senses (touch,
smell) might be involved in the navigation process.

The journal in [48] is based on data collected by the European Union in a University
in Iceland. The ten VIPs of the experiment are made to navigate through circum-

stances with various levels of stress. They use the EMOTIV+ EPOC headset with



16 dry electrodes placed according to the 10-20 system with sampling rate 128Hz.
The participants are familiarized with the route prior to the experiment. Unneces-
sary head movements and hand gestures as well as talking to their O&M instructor
are avoided with the exception of emergency. Annotations (which circumstance cor-
responds to which brain wave) are made with the help of video and audio besides
using GPS.

Any missing data resulting from connectivity issues are made up for using inter-
polation in the time domain using FFT. All signals are baseline-normalized by
subtracting for each participant and for each channel the mean of resting state
registrations.These are obtained during a series of laboratory studies with the same
participants.

Features related to signal power and complexity are extracted using the PyEEG
open source Python module. For each of the 14 EEG channels, they compute the
Relative Intensity Ratio as an indicator of relative spectral power in each of the six
frequency bands, namely delta (0.5-4 Hz), theta (4-7 Hz), alpha-1 (7-10 Hz),alpha-
2 (10-13 Hz), beta (13-30 Hz), and gamma (30-60 Hz).

Next they estimate the event-related (de-)synchronization (ERD/ERS) index, a
well-established measure of band power change in EEG originally proposed by
Pfurtscheller and Aranibar in [42]. Slightly modifying the model, this paper [48]
calculates ERD/ERS every second, where every time point expresses the synchro-
nization or desynchronization according to the same baseline. The drawback for
this paper is that the data set is made up of a small set of people, which makes the
study susceptible to overfitting. The participants are also of various levels of visual
impairment. Another limitation include the EMOTIV+ headset which recedes the

quality of signal generated that has been recorded.



Chapter 3

Background Analysis

In this chapter, we give an in depth study and analysis of the topics preceding data
and information associated with our work that includes cognition, CLT, EEG, the
different methods for band extraction and the different classification algorithms used

for such cases.

3.1 Working Memory

The working memory is a part of primary memory often referred to as short-term
memory and has limited capacity. It holds the information temporarily required for
processing instantaneous activities. It is responsible for logical analysis and for the
decision making aspects of activities. As a result, it impacts behavior. For instance,
it is responsible for instantaneous perception through the different senses and for

the processes required for deciphering language.

3.2 CLT

Cognitive psychology defines cognitive load as the used amount of working memory
resources. CLT divides cognitive load into three types: intrinsic, extraneous, and

germane[58].



3.2.1 Intrinsic Cognitive Load

Intrinsic cognitive load is the load on working memory due to the complexity of the
knowledge that is being gained as opposed to how that knowledge is gained. It can
only be altered by changing what is learned or by changing the knowledge levels of
learners. One of the key features of intrinsic cognitive load is that it is unchangeable

for given information to be processed by learners with given levels of expertise[48].

3.2.2 Extraneous Cognitive Load

Some information imposes a heavy cognitive load not because of its intrinsic nature
but rather because of the way it is presented. That load is referred to as extrancous
cognitive load. Tt can be reduced by modifying the instructional procedures [57].

Element interactivity affects both intrinsic as well as extraneous cognitive load.
Simultaneous processing imposes a heavy working memory load, while successive
processing does not. Low element interactivity materials allow individual elements
to be learned with minimal reference to other elements and so imposes a low working
memory load. Whether information can be processed simultaneously or successively

depends on element interactivity [57].

3.2.3 Germane Cognitive Load

Germane cognitive load does not depend on any one source of cognitive load. In-
stead, it refers to the working memory resources available to deal with the element
interactivity associated with intrinsic cognitive load. If more working memory re-
sources are used up in dealing with extraneous cognitive load, less will be available
to deal with intrinsic cognitive load and so less will be devoted to germane cognitive

load. [21]

3.3 Measuring Cognitive Load

Early stages of CLT using indirect methods such as error rates, time on task and
computational method provide evidence that various instructional effects can be

explained by fluctuations in cognitive load. Paas (1992) in [59] proposes a single-

10



scale subjective measure of mental effort, which in effect made a significant move
away from the early proposals. In most instances, the subjective measures have
evidently provides collaborating support of all CLT effects. However, subjective
rating scales do not provide real time concurrent data. An alternative measure that
is able to provide concurrent data is the use of a secondary task. The method is seen
to be easy and efficient in learning the cognitive load, and is also very unobtrusive. It
has the most use and has been most successfully employed. Other methods include
the eye tracking and physiological methods such as the use of EEG data have started

to emerge as potential measures on ongoing research on CLT [8].

3.4 Different Parts Of Brain

The human brain is a complex organ. It is divided into three parts; the cerebrum,
the cerebellum and the brain stem (which leads into the spinal cord). The cerebrum
is the largest part of the brain. It is the principal and most anterior part of the brain
in vertebrates, located in the front arca of the skull. It is divided into two parts
by a fissure- the right hemisphere and the left hemisphere. The right hemisphere
controls the left side of the body, and the left hemisphere controls the right side of
the body. The left hemisphere is also responsible for actions that require logic such
as science and mathematics while the right is responsible for actions that have to do
with creativity and art. The cerebrum controls the integration of complex sensory
and neural functions, and hence the fine control of movement and the initiation and
coordination of voluntary activity in the body. It also controls the performance of
higher functions like the interpretation of touch, vision, hearing. Figure 3.1 shows
the different parts of the brain.

The cerebellum receives information from the sensory systems, the spinal cord, and
other parts of the brain and then regulates motor movements. The cerebellum co-
ordinates voluntary movements such as posture, balance, coordination, and speech,
resulting in smooth and balanced muscular activity.

Activities based on regions in the cerebrum:

Frontal - The front part of the brain which is responsible for motor function, self

awareness,writing and speech, intelligence, problem solving.
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Frontal Lobe Parietal Lobe

Temporal Lobe Cerebellum

Figure 3.1: Different regions of Brain [2]

Temporal - Positioned on the side of the brain. Responsible for auditory processing,
memory, learning/processing new language.

Occipital - Located at the back of the cerebrum. Plays a role in the processing of
visual information. The information is processed to make decisions of color, depth
and perception.

Parietal- Situated just behind the frontal lobe. It has somatosensory cortex and
deals with processing sensory information to determine touch, sense of pain and

temperature.

3.5 BCI

Human brain controls body function, such as heart activity, movement, speech, but
also thinking itself. These activities are measured using the EEG which fundamen-
tally captures the electrical potential in the brain. What BCI provides is a means of
communication and independence, for instance if an individual has suffered damage
in the Central Nervous System (CNS) causing blindness, BCI can used to give them
artificial vision. Figure 3.2 depicts a simple model of BCI workflow.

Recent developments in BCI technology may see such hands-free control methods
come into use. A BCI is a communication and control system in which the thoughts
of the human mind are translated into real-world interaction without the use of the
usual neural pathways and muscles. For example, utilising BCI, people with no limbs

or damaged limbs or damaged sensors in the skin, can use artificial limbs which are
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Figure 3.2: BCI workflow [§]

directly controlled by signals from their brain, thus allowing them to carry out their
regular activities. Recent advances in the human brain and BCI research reveal that
BCl-based devices and technologies can play a significant role in medicine [53] and
can create an impact in future studies. There are three parts of BCls. Invasive,
Non-invasive and Partially invasive [32].

Invasive BCI- Requires surgery to position the sensors or stimulators in the cor-
tical tissue. Complications may rise since the surgery may be prone to scar-tissue
build up. Scar-tissue causes weak signal, which can even be lost.

Partially invasive BCI- Partially Invasive BCIs are implanted into the skull,
but outside the brain. It uses a technology called the ECoG where electrodes are
embedded in a thin plastic pad that is placed above the cortex, beneath the dura
mater [32]. Tt produces good signal but is weaker than that of invasive BCI.
Non-invasive BCI- Non-Invasive BCI means electrodes are placed on the surface

of the skull to record changes in EEG state. It is the easiest and safest way to record

EEG.
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3.6 Non-invasive BCls

3.6.1 MRI

MRI provides a map of the brain in real time. The structural map helps to determine
the location of any anomaly (for instance, tumours) that might be present in the

brain or compare the sizes of the brain.

3.6.2 fMRI

tMRI provides a more detailed structure of the map. It shows the presence of oxygen
in the brain due to different activities. The area with the more oxygenated blood

in the brain becomes accentuated than the others and also the most active.

3.6.3 EEG

Electroencephalogram (EEG)

Electrodes

EEG reading

Figure 3.3: Acquiring EEG signals [22]

EEG is a non invasive technology used to record brain activity. Using EEG is the
most prevalent method of signal acquisition for BCI. It is more accessible, can easily
look in the brain activity, cost efficient and most optimum for research purposes.
Metal electrodes are placed on the scalp according to standardized measurement
systems and the relative electrical activity [54] recorded and analysed. A simple
illustration is shown in Figure 3.3. In order to place the electrodes, a standard

method used is the 10-20 method. The 10-20 system is an internationally recognized
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method to describe and apply the location of scalp electrodes in the context of an
EEG exam. The measurements used in this system are explained as follows. The
Nasion is the bridge of the nose and the Inion is the bony prominence at the back
of the head. The two preauricular points are the points just anterior to each ear.
The first measurement is made from nasion to inion. This is now divided into
10% and 20% increments. The next measurement is made from one preauricular
point to the other. This is again divided into 10% and 20% increments. The next
measurement made is the circumference of the head which is also divided into 10%
increments. Parasagittal measurements are made, separated by 25% increments.
Finally, transverse measurements are made. The intersections of these last two lines
give the last electrode placement points. Electrode placement points are named in a
manner that odd numbers are on the left and even numbers are on the right. Lower
numbers are generally electrodes closer to the midline. Midline is represented by z
which stands for zero. The letters are indicators of the position of the head. The F
stands for frontal, C for Central, P for Parietal and O for Occipital [1]. Figure 4.1
illustrates the 10-20 system.

3.7 Biosignals

Figure 3.4: Travelling of brain waves in neurons [39]

Brainwaves are the short electrical pulses in the CNS with repetitive cycles over the
period of time [32] (Figure- 3.4). These neural cycles are measured in Hertz. Pulses

are generated from a single neuron or due to interactions between two neurons in the
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CNS. The neurons in turn interchange information with the muscles via the nervous
system to perform motor function, sensory interaction or have virtual information.
The different functions of the brain emanates different frequencies of waves; for
instance, high frequency waves are observed when a person is ecstatic while the low
frequency waves can be seen when a person is bored or lazy. The different ranges can
be detected and observed using the EEG. The different brain waves can be classified

into five categories as the Figure 3.5 suggests.

Gamma
Problem solving,
concentration

0.0 0.2 04 0.6 0.8 10

Beta
Busy, active mind

0.0 0.2 04 0.6 08 10

Alpha \/\/\/\/\/\J\/\m
Reflective, restful L g, A -,

0.0 02 0.4 0.6 08 1.0

Theta /\’\’A/\/\A/\
Drowsiness

0.0 0.2 04 0.6 0.8 1.0

Delta ,\/\/\/

Sleep, dreaming o5 02 04 06 08 10

Figure 3.5: Brain samples for the five different waveforms [3]

3.7.1 Gamma

Gamma waves are important for learning, memory and information processing. This

infers the working memory is responsible for this high frequency brain wave.

3.7.2 Beta

Beta waves are active in a waking state. This frequency is visible in logical-analytical
reasoning. The cognitive tasks, problem solving, planning, sclf awareness can be

observed using beta wave since the wave is mostly generated in the frontal lobe.
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3.7.3 Alpha

Alpha waves connect the gap between our conscious thinking and subconscious mind.

It helps us to calm down or it promotes a feeling of relaxation.

3.7.4 Theta

Theta waves are involved in sleep or daydreaming. While in this range, humans tap

into their subconscious mind.

3.7.5 Delta

Delta waves occur during meditation, in a state of deep sleep or coma. Abnor-
mal delta activity may occur if the person has learning disabilities or difficulties

maintaining conscious awareness (such as in cases of brain injuries).

3.8 Feature Extraction

3.8.1 Fourier Transform

The Fourier Transform of an intensity versus time function like g(t) is a new function
which does not have time as an input but instead takes in frequency. The common
notation for this function is g(f). The output of this function, g(f) is a complex
number, some point in the 2D plane that corresponds to the strength of a given
frequency in the original function. As explained by Euler’s formula, exponentials
correspond to rotation. Multiplying that exponential by a function g(t) means
drawing a wound up version of the function, g(t). An integral of the complex valued
function can be interpreted in terms of a center of mass idea. Leading us to the final

Fourier Transform in equation 3.1.
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3.8.2 Wavelet Transform

Wavelet transform (WT) is suitable for analysis of sudden and transient signal
changes. This method can pick up impulses at different time instances. WT plays
an important role in the recognition and diagnostic field [28]; it compresses the time-
varying biomedical signal, which is composed of many data points, into a small few
parameters that represents the signal. As the EEG signal is non-stationary, a suit-
able way for feature extraction from the raw data is the use of the time-frequency
domain methods like WT which is a spectral estimation technique in which any
general function can be expressed as an infinite series of wavelets [6][49]. Real world
data or signals frequently exhibit slowly changing trends or oscillations punctuated
with transients. On the other hand images have smooth regions interrupted by edges
and abrupt changes. These abrupt changes usually contain useful information and

can be picked up by WT.

3.8.3 PCA

PCA is a dimensionality reduction technique used in feature extraction to find corre-
lation by maximizing variance. From the 'm’ independent variables in the dataset,
PCA extracts p<m new independent variables that explain the most variance of
the dataset, regardless of the dependent variable. The basic approach in principal
components is theoretically rather simple. Firstly the data is standardized. The
Eigenvectors and eigenvalues are obtained from the covariance matrix or correlation
matrix. The eigenvalues are sorted in descending order and the ‘k’ eigenvectors cor-
respond to the k largest eigenvalues, where k is the number of dimensions of the new
feature subspace (k<d). The projection matrix W is constructed from the selected k
eigenvectors. Finally the original dataset X is transformed to k-dimensional feature
subspace Y. A very high level of classification accuracy is obtained in the result
of classification, which is based on reducing the feature dimension using PCA and

deriving the support vectors using SVM [17].
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3.84 ICA

ICA is a feature extraction method that transforms multivariate random signals
into a signal having components that are mutually independent [54]. The ICA of
a random vector consists of searching for a linear transformation that minimizes
the statistical dependence between its components [18]. ICA finds independent
projections which are almost not mutually orthogonal or not at all. It is one method

used to identify temporally coherent networks [15].

3.8.5 LDA

The aim of LDA is to create a new variable that is a combination of the original
predictors [54]. This is accomplished by maximizing the differences between the
predefined groups, with respect to the new variable. The goal is to combine the
predictor scores in such a way that, a single new composite variable, the discriminant
score, is formed. LDA is used as a feature reduction technique for BCI systems in

signal processing where all classification methods shows small classification errors

33).

3.8.6 Welch’s method for finding Power Spectral Density

Welch’s method, originally published in his journal in 1967 is an approach for spec-
tral density estimation. It is an extension of the FFT. Signal nonstationarities make
signals difficult to interpret visually. Welch’s method is one of the solutions for
dealing with signal nonstationarities since it gives smoother results. This method
involves fewer computations and therefore is ideal for many non stationary tests
[61]. The transformations have to be carried out on shorter signals since the original
signal is split into segments. The segmentation is described in Figure 3.6. The FFT
is carried out on each individual segment and the results of each averaged to obtain
the final Welch’s Power Spectral Density (WPSD). This makes the method more
ideal for portable navigation aids with limited core storage. Mobile navigation aids
call for fast systems with accurate outputs. A reduced number of computations is

an essential part of that.
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Figure 3.6: Illustration of record segmentation [61]

In order to carry out Welch’s method, the Fourier Transform is calculated for each
snippet and the power spectrum obtained. Each snippet is modified before carrying
out the Fourier Transform on it. By having overlapping segments, attenuated data
resulting from modification in the Fourier Transform of one snippet is made up
for by the Fourier Transform of the next snippet. The final Welch’s transform is

obtained by averaging all the resulting power spectra together.

3.9 Classification Techniques

3.9.1 SVM

Generally speaking, SVM is a supervised machine learning model consisting of clas-
sification algorithms for binary division of data. Most real life data consists of too
much overlapping for clear classification using simple classifiers like linear regression
or logistic regression. The machine learning model, SVM has the ability to clas-
sify overlapping data with no clear linear classification by visualising the data in a
higher dimension and using a hyper plane in the higher dimension as the classifier
as mentioned in [37] and [54]. This hyper plane is referred to as the Support Vector
Classifier. The paper further explains how the method’s name, support vector ma-
chine is derived from the support vectors, which are data coordinates that lic closest
to the decision boundary separating the classes. The support vector classifier is
expressed in terms of the input vectors and dot products. Figure 3.7 illustrates how
an SVM operates. It should be noted that the data are not actually being moved

into a higher dimension but rather pictured in a higher dimension to come up with
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a classifier [10] [24]. This is done by using the dot product to find how individual
points reflect in the feature subspace. The kernel function decides the dot product.
The distances between these reflections on the new higher-dimension subspace can
be calculated. It is also important to decide on a scale of impact for violating the
soft margin between the classes. Therefore, it can be said that the goal of SVM is
to find a hyper plane in an N-dimensional space, where N is the number of features,
that distinctly classifies the data points. The SVM chooses the classifier which sep-
arates the classes with maximal margin, referred to as the optimal separating hyper
plane in [10]. The margin is defined as the width of the largest ‘tube’ not containing
samples that can be drawn around the decision boundary i.e. the solution with the

highest generalization ability [54].

Optimal separating
perpane| °

Figure 3.7: Optimal separating hyperplane in 2D SVM

The Polynomial Kernel is used to calculate the relationships between the observa-
tions in a higher dimension. The dimension which does provide a hyper plane with
distinct classification is chosen.

Gaussian RBF can be considered as an extension of the Polynomial Kernel. In this
case, the new subspace consists of infinite dimensions and the algorithm finds the
hyper plane in the infinite dimension which can be used for binary classification.
The radial kernel behaves like a Weighted Nearest Neighbour model, that is, the
closest data points have the highest influence on how we classify the new data
point. A constant term determined by cross validation scales the influence. This
model is useful for training data set with a lot of overlap. The radial kernel finds

Support Vector Classifiers in infinite dimensions.
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3.9.2 Random Forest Classifier

An ensemble learning method for classification that operates by creating multitude
decision trees at training time and outputs the class that is the mode of the classes
of the trees. The first algorithm for Random Forest was first developed by Tin Kam
Ho [26].

Random Forest Simplified
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Random Fonest f,.,-f"' h““ﬁaxh_
m fi?» 2
b o g\?’b
Tree-2 Tree-n
Class-A Class-B Class-B

i Majority-Voting | |
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Figure 3.8: Random Forest based Classification [31]

The basic approach in Random Forest is theoretically rather simple. Firstly pick n’
data points from the training set randomly. Build the decision tree associated with
these n data points. Choose the number of Ntree you want to build and repeat the
first two steps. For a new data point, make each of the Ntree predict the value of Y
for the data point in question and assign the new data point the average across all
of the predicted Y values. Finally the accuracy of the Random Forest is estimated
from which ’out of the bag’ error is used to optimize the number of variables that

should be used in the classifier. Figure 3.8 illustrates a simplified random forest.

3.10 ERD/ERS calculation

The term ERD refers to an event related localized amplitude attenuation whereas
ERS refers to event-related localized amplitude enhancement within mu and beta

frequency bands [52].
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Figure 3.9: Calculation of ERD/ERS using Inter trial Variance method [62]

The common ERD/ERS detection can be processed in four steps, which contains
band pass filtering of the EEG signal, squaring of amplitude of the signal and aver-
aging of their power within all experiments in order to smooth the data [52]. Figure
3.9 depicts the several steps taken to calculate the ERD/ERS using the Intertrial
Variance method.

As study in [62] shows, short red light flashes of 10 ms duration were presented on
patients for visual stimulation at intervals of at least 2s using alpha power in the 7
to 13 Hz band. This stimulation resulted in an ERD followed by resynchronization.
Trials were controlled for artifacts, averaged offline, and the amount of ERD/ERS

was calculated.
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Chapter 4

Proposed Model

In this chapter, we present our proposed model, an overview of the steps carried out
in our study. EEG is the non-invasive BCI used for detecting the cognitive load in
VIPs. Initially signals have noise and gaps due to connectivity issues. Preprocessing
is done to reduce deviations, noises and inconsistent signals. The preprocessed
signals are then further refined and features extracted using WPSD. The features are
labelled with corresponding cognitive loads based on recordings and post experiment
interviews. Finally these features are fed into RBF SVM and classified accordingly.

Figure 4.2 represents our proposed model.

4.1 Data Description

The data used in our study has been obtained from an experiment conducted in the
indoor environments of the University of Iceland, Reykjavik [48].

The project was funded by the Furopean Union to aid VIP for their navigation.
The data set they collected [48] has been used in our study.

The EMOTIV EPOC+ EEG headset is used to collect EEG signals from 9 healthy
participants as they navigate through indoor environments [48]. EPOC+ is chosen
because it provides a good compromise between performance and usability with
respect to other wireless EEG recording devices available. Participants of various
levels of visual impairment (VI-2, VI-3, VI-4), have been described in Table 4.1.
Indoor environments are divided into 6 types (Door, Narrow Space, Open Space,

Elevator, Stairs, Moving Objects). The EEG signals from the subjects at each of
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these labels are recorded.

Table 4.1: Categories of Visual Impairment.

Category Description Participant Gender
VI-2 Vision less than 10% and more than 5% 2(F,M)
VI-3 Vision less than 5% 4 (F, F, M, F)
VI-4 Not being able to count fingers less than one meter away 3(F, M, F)

Electrodes Placement:
In order to place the electrodes, a standard method , the 10-20 system with probes
at AF3, F7, F3, FC5, T7, P3 , P7, O1, 02, P8, P4 , T8, FC6, F4, F8, and FC is

used as shown in the figure 4.1.

Figure 4.1: 10-20 Electrode Placement System [1]

Different bands such as Delta (up to 4 Hz), Theta (4-8 Hz), Alpha (8 -15 Hz), Beta
(15-32 Hz), and Gamma (above 32 Hz) can be extracted from EEG signals. The
ones relevant to our study are Alpha (8 -15 Hz), Beta (15-32 Hz) waves, and Gamma
(above 32 Hz) waves.

The cognitive tasks, problem solving, planning, self awareness can be observed using

beta waves [45]. The results conducted shows a relationship between cognitive load
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Figure 4.2: Workflow Of the Proposed Model

and beta frequency [36]. This leads to the conclusion that beta waves should be
taken into consideration for our research.

Similarly, gamma band activity participates in various cerebral functions, such as
perception, attention, memory, consciousness, and motor control [60]. Therefore, it
shows the significance of gamma frequency to detect cognitive load.

Cognition has shown association with alpha frequency when the frequency is de-
tected in the visual cortex of the brain. Repeated observations from experiments
show that signals in the alpha band tend to correspond to brain activity associated
with cognitive load, for instance, alpha activity is observed to fall in magnitude with

higher task difficulty [8].

The comprehensive sources contribute the indispensable information and data to
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conduct our research for navigation of VIPs.

4.2 Feature Extraction

In the dataset collected from the European Union, EEG signals are recorded using
the Emotiv EPOC+, a mobile headset with 16 dry electrodes registering over the
10-20 system locations. A sampling rate of 128 Hz is used. In this experiment there
are 9 participants each of whom are stimulated to 6 different indoor environments
and EEG signals are recorded from 14 different channels

When extracting features, three frequency bands are taken into consideration, afore-
mentioned in Section 4.1, namely, alpha (8 -15 Hz) waves, beta (15-32 Hz) waves,
and gamma (above 32 Hz) waves. The following passage demonstrates how feature

extraction is carried out on the relevant bands.

4.2.1 WPSD

Welch’s method is an approach for spectral density estimation. It uses FT to com-
pute a smoother signal. Welch had the idea to split the entire signal into segments
before carrying out the FT on each individual segment. This reduces computation
time and complexity and thus makes the process much more appropriate for devices
involving mobility [61]. Since we are trying to build a navigation aid which provides
real time classification, this is a useful property for the logic involved in our backend
computation. The FT of each separate segment are then averaged to obtain the final
WPSD. The segments are intentionally taken in a manner that they overlap with
each other. This is done so that any data attenuated as a result of modifying the
segments before FT are made up for by adjacent overlapping segments.The method

is ideal for portable navigation aids with limited core storage.

4.3 Cognitive Load Measurement

The definition used in our study to measure band power change in EEG is based
on the technique first developed by Pfurtscheller and Aranibar[42]. It is defined as

follows:
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baselinel BP — testI BP
ERDJERS(%) = baselinel BP (41)

, where IBP stands for interval band power. The baseline IBP refers to a prestimulus
time period without any task demands, which in our case is the resting state, while
the testIBP is the band power obtained during the time frames when the different
stimuli are presented to each participant.

The ERD/ERS is calculated using beta band. From the estimation of the ERD/ERS
the cognitive load is found. The value of the cognitive load represents the level of
mental difficulty a participant faces due to the combination of parameters that lead

to the cognitive label.

4.4 Cognition Classification

Our data, like most real life data, consists of too much overlapping for clear classifica-
tion using simple classifiers like linear regression or logistic regression. The machine
learning model, SVM has the ability to classify overlapping data with no clear lin-
ear classification by visualising the data in a higher dimension and estimating the
classifier better than any linear model.

The extracted features were fed into a SVM kernel for classification. The higher
dimension in a SVM is chosen based on which one provides a hyperplane for clear
classification [10]. RBF in particular maps the data points in the existing dimension
into an infinite dimensions subspace. SVM with 5 fold cross validation and grid
search is implemented. That is, the data set is divided into five parts. The first
section is used to train the algorithm and the remaining 4 sets are used for testing.
In its existing dimensions, our data is difficult to differentiate. So visualising it in
the infinite dimension subspace makes it easier to classify the data. Grid search is
used as an approach for hyper-parameter tuning to build the SVM model for each

combination of parameters specified in our data.
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Chapter 5

Results and Discussion

EEG signals are captured from 9 VIP as they navigate through the indoor environ-
ments in a university. Features are extracted per second with a sampling rate of
128 Hz. ERD/ERS is calculated using beta bands. From the calculation, the mea-
surement for the cognitive load is found and labelled accordingly. These labels are
used to train the RBF kernel of SVM using 5 fold cross-validation. In this section,
the results and its corresponding ROC (Receiver Operator Characteristics) curve is

described and analyzed.

5.1 Analysis Of Results

In medical diagnosis, test sensitivity is the ability of a test to correctly identify those
with the disease (true positive rate), whereas test specificity is the ability of the test
to correctly identify those without the disease (true negative rate)[54]. A graph of
the sensitivity by 1-specificity plotted at different cut off points for classification is
called the ROC curve. This curve is useful for analysing the efficiency of a model.
The ROC curve can be used to pick the cut off point that optimises sensitivity and
specificity for a given curve. Common criteria for picking the cut off point include
the point on ROC curve where the sensitivity and specificity of the test are equal,
or the point on the curve with minimum distance from the left-upper corner of the
unit square[25]. The area under the ROC curve gives the accuracy. This area under
the curve is commonly referred to as the AUC (Area Under Curve). The best test
is the one with the ROC curve that clusters up to the left.
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In our experiment, ROC curves are plotted with pairs of sensitivity and specificity
obtained at each hyper plane. The hyper planes are exponential functions discovered
by the RBF kernel of the SVM. As more iterations are carried out, the kernel
learns better and the hyper plane obtained provides a new value of sensitivity and
specificity, that is, the ratio of true positive and the ratio of true negative change
with respect to total predictions made. So each classifier gives a unique set of
sensitivity and specificity values.

The sensitivity, specificity, and accuracy are calculated from confusion matrix de-

fined as:

Sensitivity — —1 (5.1)
enst ZUZy—TP+FN .
. TN
Speczfzczty — '_ZW——l—j?P (52)
TP+ TN
Accuracy = i (5.3)

TP+ FN+TN+ FP

where TP is the number of true positive, TN is the number of true negative, FP is

the number of false positive,FN is the number of false negative.

In this paper, the cognitive load, labelled as stress, has been classified based on
features extracted from the EEG signals of nine healthy participants of various levels
of visual impairments in different indoor environments. Features were extracted from
three frequency bands alpha, beta and gamma for all 14 channels using the WPSD.
The environments can be divided into 6 different types, each subjecting the VIP
to a unique set of challenges. Environment A is the annotation for any door that
the subject faces in their route and the corresponding challenges they may face, for
instance a rotating door can be a potential obstacle for a physically disadvantaged
individual. The Table 5.1 shows corresponding challenges for each environment for

the VIPs.
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Table 5.1: Descriptions and corresponding challenges for each environment

ID  Environment Challenges

A Door Rotating door, Bumping into closed doors

B Narrow space People, Chairs, Table, Furniture, Walls, Shelves

C Open Space People, Crowd, Losing direction

D Elevator Finding button, Selecting floor, People, Elevator door close
E Stairs Steps starting, Steps ending, Finding railing, Slippery

F  Moving Object Avoiding people, Trolleys

5.2 Discussion

5 fold cross validation was carried out for each environment based on the features
extracted from alpha, beta and gamma bands and ROC curves were plotted to
analyze the classification for each environment, shown in Figure- 5.1. The ROC
curve for environment A has an AUC of 0.91, B of 0.89, C of 0.96, D of 0.86, E of
0.88 and F of 0.90. Table 5.2 shows this in details. From the AUC values, we can
see that the classification in environment C is done the most efficiently as it has the
highest AUC. On the other hand, environment D has the least effective classification.
However, the classification of stress for all environments using the RBF from SVM
is very valid because the AUC for all shows a significant improvement compared to

paper [27]. This proves that the algorithm picked is appropriate for this experiment.

Table 5.2: Sensitivity, Specificity and Accuracy table

Environment Sensitivity% Specificity%  Accuracy%
A 96.17 82.14 90.77
B 94.04 72.37 89.26
C 95.74 76.92 96.41
D 90.57 83.33 86.42
E 97.55 92.31 88.46
F 93.05 83.67 90.17

Aforementioned, the ROC curve can also be used to pick the hyper plane that
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The ROC curves of different indoor environments
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Figure 5.1: The ROC Curves

optimises sensitivity and specificity.

The ROC curves can be observed to find the point where the specificity and sensi-
tivity match. This is also the point at minimum distance from the left upper corner
of the unit square. Mapping this pair of sensitivity and specificity to the obtained
hyper plane at the iteration which provides us with this pair of specificity and sen-
sitivity values gives us the best classifier for that environment. The function of the
hyper plane divides the new test subjects into two categories- high cognitive load or

stressed, or low cognitive load or not stressed.
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Chapter 6

Conclusion

This paper highlights how real time cognitive load assessment is done as the VIPs
navigate their way through indoor environments. The main objective is to reflect
the viability of the challenging tasks and find their corresponding cognition level by
extracting features from the frequency bands. Our study describes the design of the
user study performed, the extraction of cognitive load measured from EEG signals,
and how those measures can be used to quantitatively evaluate the effectiveness of
navigation aids with the use of features extracted from certain frequency bands.
What we have achieved in this research is an effective way to label the cognitive
load using WPSD and RBF SVM with an AUROC of above or around 0.9 for each
environment.

Since our work agrees with papers[27][48] to say that EEG signals are a stable visu-
alisation technique for cognitive load, further work can include using EEG signals
to compare the effectiveness of different visual aids as opposed to individual assess-
ment of people. So research can be done to decide which mobility aids are the most
comfortable for impaired users. The work done in this paper opens opportunities
for research in a variety of fields. The usability of EEG to detect stress can be ap-
plied on non impaired participants during tasks with probable high cognitive loads.
Anyone facing cognitive load beyond normal levels can have extra factors like stress,

anxiety or illness into play.
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