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Abstract

Transfer learning techniques in deep learning is nowadays a raising and promising
field of research and a tool for Artificial Intelligence with a lot of prospects. Our
goal is to predict Glaucoma from fundus images to help the diagnosis procedure of
Glaucoma, a public health hazard, at an early stage. In this research, we propose
a transfer leaning methodology, creating four models with four pre-trained CNNs
implemented separately in each of the models, trained and tested for detecting
Glaucoma from fundus images. We have used VGG19, ResNet50, DenseNet121 and
InceptionV3 for our transfer learning models, with the fine-tuning approach to ensure
better learning performance on our dataset of labelled fundus images. Fine-tuning
is done keeping all the layers of pre-trained CNN trainable on the fundus image
dataset, and applying the classic method of adding a customized classifier. All the
four transfer leaning models are Deep Neural Networks carrying deep hidden layers
as the pre-trained CNN implemented. Deep learning application on Biomedical
field is itself a challenge to work with due to shortage of labeled data. Thus transfer
learning is found very effective in working with a small image data set to predict
Glaucoma. Our proposed models built with VGG19, ResNet50, DenseNet121 and
InceptionV3 deliver test accuracy of 94.75%, 96.5%, 92.5%, 91.75%. In order to
achieve such accuracy in biomedical application, transfer of knowledge of features
learned of pre-trained CNNs gave a competitive edge on initialization of parameters.
We present comparison amongst the models proposed and the ResNet50 built model
gives the best performance.

Keywords: Glaucoma; Artificial Intelligence ; Fundus images; CNN; Transfer lean-
ing; Prediction; Deep learning; VGG19; ResNetb0; DenseNet121; InceptionV3; Fine-
tuning



Table of Contents

Declaration
Approval
Acknowledgment
Abstract

Table of Contents
List of Figures
List of Tables
Nomenclature

1 Introduction
1.1 Motivation . . . . . . . . ...
1.2 Literature review . . . . . . . . . . .
1.3 Overview . . . . . . .

2 Glaucoma and its diagnosis
2.1 Glaucoma . . . . . ..
2.1.1  Glaucoma categories . . . . . . . .. ..
2.1.2 Risk Factors . . . . . . ..o
2.2 Diagnosis of Glaucoma . . . . . .. ...
2.3 Detection of Glaucoma by Fundus Image . . . . . ... ... ... ..
2.3.1 What is Fundus Image? . . . . . ... ... .. ... .....
2.3.2 How Fundus images are used to detect Glaucoma . . . . . ..

3 Acquisition of dataset

4 Fundamentals of Deep Learning and Transfer Learning
4.1 Deep Neural Networks or DNN . . . . . . ... ... ... ......
4.2  Convolutional Neural Networks or CNNs . . . . .. .. ... .. ...
4.2.1 Segments of CNN architecture . . . . . .. .. ... ... ...
4.2.2  Layers and Operations of CNN . . . . .. .. ... ... ...
4.3 Transfer Learning . . . . . . . . . . . ... Lo
4.3.1 Transfer learning techniques . . . . . . . . .. ... ... ...
4.3.2  Architectures of CNN models used . . . . .. ... ... ...

vi

ii

iv

vi

viii

xi



5 Methodology

5.1 The libraries, tools and software used . . . . . . . .. ... ... ...
5.2  Implementation of Transfer Learning . . . . . . ... ... ... ..
5.2.1 Dataset reorganization . . . . . .. . ...
5.2.2  Architecture of the proposed model . . . . . . ... ... ...
5.2.3 Previously trained CNN . . . . ... .. ... .. .......
5.2.4 Classifier block . . . . ... ... oo
5.2.5 Compilation . . . . . . ... Lo

5.2.6 Data preprocessing
5.2.7 Training the model

5.2.8 Savingmodels . . . . ... Lo
6 Result and analysis
6.1 Train and validation: Learning and Gaining accuracy . . . . .. . ..
6.1.1 VGGI19 . . . ..
6.1.2 ResNetb0 . . . . . . . . .
6.1.3 DenseNet121 . . . . . . .. oo
6.1.4 InceptionV3 . . . . . . . ..o
6.2 Test . . . .
6.3 Prediction . . . . .. ..
6.3.1 VGGI19 . . . ..
6.3.2 ResNetbO . . . . . .. ..
6.3.3 DenseNet121 . . . . . . . . . . ...
6.3.4 InceptionV3 . . . . . . . ..o
6.4 Outcome Evaluation . . . . .. ... ... ... ... ... ... ...

7 Future scope and Conclusion

7.1 Future Scope . ... ...
7.2 Conclusion . . . ... ...
Bibliography

vil

31
31
32
32
32
33
35
36
36
37
37

38
38
38
40
41
43
44
46
46
46
48
48
49

51
51
ol

55



List of Figures

2.1
2.2
2.3
24
2.5

2.6

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

4.21
4.22

4.23
4.24

Glaucoma [38] . . . . . . .. 3
Normal and glaucoma affected eyes. [43] . . . ... ... ... .. .. 4
open-angle glaucoma and angle-closure glaucoma [18] . . . . . . . .. 4
Fundus image. Source: dataset . . . . ... .. ... ... ... ... 7
Changes inside an eye from normal condition to glaucoma affected
condition. [29] . . . . .. 7
Changes inside an eye from normal condition to glaucoma affected
condition. [29] . . . . ... 7
sample data from LAG-Database [33] . . . ... ... ... ... ... 9
Non Glaucoma . . . . . . . .. .. 10
Glaucoma affected . . . . . . . ..o 10
A unit or neuron in an artificial neural network(ANN) . . . . .. .. 12
Two hidden layers confined in between input and output layers . . . . 12
A unit or neuron in neural network . . . . ... ... L. 13
Neural network with parameters shown . . . . . . . ... .. ... .. 13
The flow of action in a neural network throughout the learning process 14
Images are numbers [36] . . . . ... ... 15
A CNN architechture [22] . . . ... ... ... .. .. .. 15
Features of from an object in an image [36] . . . . . .. ... ... .. 16
Hierarchy of features are demonstrated for an image [36] . . . . . . . 16
Classifier demonstrated . . . . . . . ... ... ..o 17
A kernel is applied on input tensor, generating a feature map [24] . . 18
Each plane shown is a feature map [1] . . . . . ... ... ... .. .. 18
Max pooling with a filter of size 22 with a strideof 2 . . . . . . . .. 18
Types of pooling [22] . . . . . . . . ... 19
matrix to vector flattening [22] . . . . . .. ... 19
Fully connected layers of a CNN leads to classify between classes [22] 20
Graphical depiction of ReLU . . . . . . ... ... ... ... ..... 21
Adam is compared to other optimizers [7] . . . . . . . ... ... .. 22
Traditional machine learning vs Transfer learning [23] . . . . . . . .. 22
Freeze the segment of feature extraction of the CNN implemented,

and a new classification segment is added . . . . . ... .00 23
Fine-tuning through keeping in the last layers of the feature extractor
trainable . . . . .. . 24
Number of parameters and ConvNet configuration [8] . . . . . . . . . 26
Architecture of VGG-19 [25] . . . . . . . ..o 26
Training error for deep networks compared between plain and ResNet [14] 27

viil



4.25
4.26

4.27
4.28
4.29
4.30
4.31
4.32

5.1
5.2
2.3
0.4
2.5
2.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

Residual learning: a building block [14] . . . . . .. ... ... .. .. 27
Resnet architecture is compared to a plain one with same number of

layers [14] . . . . . 27
Resnet networks described [14] . . . . . . .. ..o oL 28
A five layer dense block [17] . . . . . .. ... oL 28
A densenet architecture containing three dense blocks [17] . . . . . . 28
DenseNet architectures for ImageNet [17] . . . . . . .. ... ... .. 29
The three inception modules [15] . . . . . ... ... ... ... ... 29
Module to reduce filter grid size [15] . . . . . . .. ... ... ... 30
The Architecture of the Transfer learning model proposed . . . . . . 33
Summary of the Model(with VGG19) architecture . . . . . . . . . .. 34
Taking the transfer layer for VGG19 . . .. .. ... ... ... ... 34
Taking the transfer layer for ResNet50 . . . . .. .. ... ... ... 35
Taking the transfer layer for DenseNet121 . . . . . . . .. .. .. .. 35
Taking the transfer layer for InceptionV3 . . . . . . . ... ... ... 35
Loss vs Number of Epochs . . . . . . .. ... ... ... ... ... 38
Accuracy vs Number of Epochs . . . . . .. ... ... ... ..... 39
Validation Loss and validation accuracy . . . . . . . .. ... .. ... 39
The validation loss and validation accuracy at initial epoch . . . . . . 40
The validation loss and validation accuracy at final epoch . . . . . . . 40
Loss vs Number of Epochs (using ResNet50) . . . . . .. .. ... .. 40
Accuracy vs Number of Epochs (using ResNet50) . . . . . . ... .. 41
Validation loss and Validation accuracy . . . . . . . . . .. ... ... 41
Loss vs Number of Epochs (using densenet121) . . . . . ... .. .. 42
Accuracy vs Number of Epochs . . . . . ... .. ... ... ... .. 42
Validation Loss and validation accuracy . . . . . . .. .. ... .. .. 43
Loss vs Number of Epochs(using InceptionV3) . . . . . ... ... .. 43
Accuracy vs Number of Epochs(using InceptionV3) . . . ... .. .. 44
Validation Loss and validation accuracy compared ober number of

epochs . . . . . 44
Test accuracy and loss for VGG19 built model . . . . . . . . ... .. 45
Test accuracy and loss for ResNet50 built model . . . . . . . . . . .. 45
Test accuracy and loss for DenseNet121 built model . . . . . . . . .. 45
Test accuracy and loss for InceptionV3 built model . . . . . . . . .. 45
Predictions from transfer learning model with VGG19 . . . . . . . .. 46
Corresponding labels of the images in figure 6.19 . . . . . .. .. .. 47
Predictions from transfer learning model with ResNet50 . . . . . . . . A7
Corresponding labels of the images in figure 6.21 . . . .. .. .. .. 47
Predictions from transfer learning model with DenseNet121 . . . . . 48
Corresponding labels of the images in figure 6.23 . . . . ... . ... 48
Predictions from transfer learning model with InceptionV3 . . . . . . 49
Corresponding labels of the images in figure 6.25 . . . .. .. .. .. 49

1X



List of Tables

3.1
4.1

5.1

5.2
2.3
5.4

6.1
6.2

Distribution of image data with labels in LAG-database[33] . . . . . . 10
Outline of the InceptionV3 architecture [15] . . . . .. ... ... .. 30
Distribution of labeled fundus images into train, validation and test

SebS . . 32
Dropout used for the corresponding CNN . . . . . . ... .. .. ... 36
Learning rate with corresponding CNN . . . . .. .. ... ... ... 36
Number of Epochs with corresponding CNNs used in the model . . . 37
Comparison on Test accuracy and validation accuracy . . . . . . . .. 46
Our proposed model of highest accuracy is compared . . . . . . . .. 50



Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

(C/D)ratio Cup to Disk ratio: ratio of the distance between optic disc center and
optic nerve head to diameter of the optic disk

ANN Artificial Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

ILSV RC ImageNet Large Scale Visual Recognition Challenge
IOP Intraocular pressure

NN Neural Network

ReLU Rectified Linear Units
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Chapter 1

Introduction

1.1 Motivation

Among all the eye diseases glaucoma is a leading cause of blindness due to damage
of the optic nerve at the back of the eyeball. If Glaucoma is detected at a primary
stage, then it might be prevented from causing severe damage to the eyes and also
the loss of vision can be slowed down or prevented. Our eyesight is one of the most
important senses that help us perceive 80% of the things around us. Glaucoma is a
disease, that can occur at any age but most commonly it is found among the elderly
people. Moreover, glaucoma is a chronic disease that develops slowly which might
not come to our notice and is usually identified when the condition gets severe.
Therefore keeping in mind, the importance of eye health, we have come up with the
idea of eye diagnosis that would help the medical practitioners to detect glaucoma
at a primary stage. After a lot of research we found out that a few remarkable re-
search works have been done based on this glaucoma detection. Our main aim was
to try some different methods with effective results that would prove to be useful for
the doctors. Hence, with the promising method of transfer learning in deep learn-
ing, we have developed deep neural network models that will detect Glaucoma and
tried comparing all the results in order to find out which model gives the best result.

1.2 Literature review

L. Li etal.(2019) worked on Attention Based Glaucoma Detection by using a CNN
model. They have proposed AG-CNN, a new deep learning method, for automatic
glaucoma detection and pathological area localization upon fundus images and at-
tention maps. Furthusmore, they Large-scale attention based glaucoma (LAG)
database, with sizeable number of fundus images and corresponding labes atten-
tiona maps. Each of the fundus image was diagnosed by qualified glaucoma special-
ists. They then designed a new AG-CNN structure which included an attention-
prediction, a pathological area localisation and glaucoma classification subnets.
They further conducted another experiment to capture the attention regions of the
ophthalmologists in glaucoma diagnosis. After conducting all the experiments they
got result of accuracy around 95.3% with their AG-CNN approach [33].



Similarly, Guangzhou etal. (2019) also worked on glaucoma detection with Machine
learning based on three-dimensional optical coherence tomography (OCT) data and
fundus images. For their study, they collected their data from 208 glaucomatous
and 149 healthy eyes enrolled. However, they used the fundus images, acquired as
colored, in grayscale format. On top of that, the number of sample they were using
is significantly small. In their research, they adopted the CNN architecture VGG19.
They did transfer learning of CNN with fine tuning using input images as described
before. Performing data augmentation and dropout they built 5 classification mod-
els with VGG19 for each kind of images, one for the fundus images input and rest
four of them developed with four different type of OCT data. They found 0.940 or
94.0% accuracy for the CNN taking fundus images input, and similar for the rest of
the OCT input models. [26].

Perdomo etal.(2018) proposed a multi-stage deep learning model for glaucoma di-
agnosis with strategy of curriculum learning, where model is sequentially trained in
solving tasks off gaining complexity. Such technique helps out when the data is small
in number, which is almost always the case in biomedical research. They performed
stages of optic disc segmentation, morphometric features prediction from segmenta-
tions, and disease level prediction. They acheived an accuracy of 89.4% [21].

1.3 Overview

This paper consists of in total 7 chapters where chapter 2 discusses the Glaucoma
and the traditional procedures of diagnosis of Glaucoma. Chapter 3 contains the
acquisition of dataset. Then, chapter 4 discusses the fundamentals of deep learning
and transfer learning and their procedure. After that chapter 5 contains the pro-
posed methodology of our research. Then chapter 6 discusses the results found out
and analysis of our result and proposed models. Furthermore, chapter 7 contains
the scope for future works and concluding remarks.



Chapter 2

Glaucoma and its diagnosis

2.1 Glaucoma

Glaucoma is a chronic eye disease which may lead to permenant loss of vision. It
is believed that about 4.5 million individuals worldwide have lost their vision being
affected by glaucoma [38]. Glaucoma damages optic nerve inside the eyes. For good
vision it is important to have healthy optic nerve. An abnormally high pressure on
eyes known as intraocular pressure(pressure of fluid within the eyeball) may cause
optic nerve to be damaged [39]. When the damage worsens, people may suffer loss
of vision. This whole scenario is known as glaucoma.

; HIGH PRESSURE
. DAMAGES OPTIC NERVE

DRAINAGE CANAL BLOCKED
TOO MUCH FLUID STAYS IN THE EYE
THIS INCREASES PRESSURE

Figure 2.1: Glaucoma [38]

Glaucoma counts as one of the major causes of vision loss for people relatively older,
however, it may affect young individuals as well [19]. Usual forms of glaucoma gen-
erally do not display signs at early stages, and it does not cause any pain either.
The condition inside of an eye gets worsen gradually and the optic nerve gradually
damages. Hence, regular eye diagnosis is needed so that the changes of an eye can
be noticed at an early stage. There are usually some changes that are noticeable
between a healthy eye and an eye affected by glaucoma. In normal eye the optic
nerve is seen to be thin and straight but inside of a glaucoma affected eye, some
differences are noticed. The optic nerve gets swollen and it displaces from its initial



position and it does not remain as straight as before.

Normal Glaucoma

“Cupping”
optic nerve

(a) (b)

Figure 2.2: Normal and glaucoma affected eyes. [43]

2.1.1 Glaucoma categories

Among many, there are mainly two categories of glaucomal[34]:

Open-angle glaucoma:

This category of glaucoma is the most usual one. In this type, the fluid inside our
eyes flows abnormally.

Angle-closure glaucoma:

Such type of glaucoma is usually found in Asia region. Here, the drain space in
between the iris of the eye and the cornea of the eye gets narrower. This type of
glaucoma causes sudden buildup of pressure in our eyes.

Drainage

Canals Drainage Canals

Angle

Lens Iris.

Cornea /
Fluid Flow [

Drainage
Canals "‘_/

Drainage Canals.

Figure 2.3: open-angle glaucoma and angle-closure glaucoma [18]

There are some other categories of glaucoma as well. A regular diagnosis is impor-
tant so that early detection of glaucoma is possible and Loss in vision can be slowed

4



down, or stopped.

2.1.2 Risk Factors

Glaucoma is such a disease which does not show some major symptoms in its earlier

stage.

Later on when the condition gets worse than before then it shows some

symptoms. There are some characteristics for any human which can increase the
chance of being affected by glaucoma. These are the risks factors which are mostly
responsible for the development of glaucoma [40]:

Age: People who are over 60 years old are at high risk for getting affected
by glaucoma. On the other hand, African Americans are at high risk when
they are over 40 years old. Actually, when any person gets old the risk also
increases with the increase of his age.

Family history of glaucoma: A man will have a high risk of getting affected
by glaucoma if any of his family members were affected by it.

Other diseases: Medical studies has shown that the risk of being affected by
glaucoma is higher for the people having diabetes or high blood pressure or
heart conditions.

Physical injuries of eyes: If someone gets hit in the eye then that may cause
severe pressure inside the eye which may lead to the development of glaucoma.
Internal damage inside the eye can also increase such pressure and can cause
glaucoma development.

Corticosteroid: Using corticosteroids (a class of drug that lowers inflammation
in the body) for a long period of time may create risk of being glaucoma af-
fected which may turn into serious condition later on.

Other eye related risk factors: There may have some particular eye features
like a thinner cornea or sensitivity in optic nerve can also lead to glaucoma
development inside one’s eye. Some others conditions like retinal detachment,
eye tumors and eye inflammations can also increase the chance of glaucoma
development and these can trigger it very fast.

2.2 Diagnosis of Glaucoma

A regular diagnosis is needed to know about the affection of glaucoma because when
an eye gets affected by glaucoma, changes occurs internally inside an eye. For de-
tecting glaucoma different approaches are used.



One approach is the measurement of intraocular pressure (IOP) [27]. This test is
known as tonometry. During this test sometimes eye drops are used to make the
cornea less sensitive. IOP readings that is normal is typically less than 21 mmHg
(millimeters mercury). This is measured of force exerted on a defined area. When
the IOP readings gets higher, the risk of getting affected by glaucoma increases.

There is another approach that include the use of advanced imaging to establish
reference images and measurement of the optic nerves of the eyes and other orders
inside the eyes. The images are taken repeatedly and the measurement of the optic
nerve are observed. If changes are observed then there is a possibility of glaucoma
affection.

Nowadays, all the above mentioned approaches are used for the detection of glau-
coma.

2.3 Detection of Glaucoma by Fundus Image

The most recent approach for glaucoma detection is done by using fundus images.
In this section, we will discuss about what fundus images are and how it is used to
figure out glaucoma with all the features that we get from fundus images.

2.3.1 What is Fundus Image?

Fundus images are photographs taken by color fundus camera. In order to track
the existence of conditions and control their improvement over time, fundus camera
takes color photographs of the state of the eye’s interior surface. Fundus camera
is eqquiped with sophisticated microscope where the power is low, and it can take
images of retina documenting several features, for example diabetic retinopathy;,
macular degeneration[37] etc.

2.3.2 How Fundus images are used to detect Glaucoma

When glaucoma starts to grow inside an eye, the changes are so slow that it does not
show any major changes suddenly. Moreover, the internal structure of an eye is com-
plicated. So, the changes are too acute to observe manually. There develops some
changes in a glaucoma affected eye and it creates some differences from a normal eye.

Fundus images show the internal condition of an eye acutely. It is easy to notice
the changes from the fundus images of a glaucoma affected eye. When the recent
fundus images of an affected eye are compared with the fundus images of that eye
which were captured at normal condition, the changes are observed depending on
some features. Some of these features are like (C/D) ratio[4] etc. Such features in a
glaucoma affected eye and in a normal eye vary from each other.



Figure 2.5: Changes inside an eye from normal condition to glaucoma affected con-
dition. [29]

Some glaucoma affected fundus images with their corresponding normal condition
are shown below. These fundus images are captured from very close to one’s eye.
From these images, it is seen clearly that the changes are explicit.

Normal +
Images

Glaucoma
Images

Figure 2.6: Changes inside an eye from normal condition to glaucoma affected con-
dition. [29]



When glaucoma starts to develop inside the eye then these ratios changes from
the previous condition. Hence, these changes of features are considered to find out
glaucoma by using various machine learning models. Nowadays, image processing
is widely used in different arenas of our life. In deep learning, these features are
extracted automatically.



Chapter 3

Acquisition of dataset

Data is the first and foremost ingredient for any deep learning application. The
problem comes when the data is real time. Creating and labeled data in real life is
enormously time consuming, effort demanding and expensive as well. Especially, in
biomedical applications getting labeled data is even more difficult, thus resulting in
datasets of relatively short amount of data to work with, if compared to other fields
of data. Which indeed justifies the necessity of transfer learning.

In this experiment LAG-database [33] has been used for detecting Glaucoma using
transfer learning method of deep learning.

EQ EEn
(b)

Figure 3.1: sample data from LAG-Database [33]

The acquisition of LAG-Database [33] is done on academic ground, that contain
4854 fundus images along with corresponding labels as well as attention maps be-
longing to two classes, where one of them named as ” Suspicious Glaucoma” and the
other one as "Non Glaucoma”. The fundus image data from the class ”Suspicious
Glaucoma” carry labels 1 and the class "Non Glaucoma” carry labels 0. Demon-
strated in table 3.1 below:

The attention maps provided in the dataset, however, haven’t been used in our work,
rather we used the labeled fundus images only.

Glaucoma and non-glaucoma fundus Images



‘ Class ‘ Label ‘ Fundus images ‘ Attention maps

Suspicious Glaucoma | 1 1711 1711
Non Glaucoma 0 3143 3143

Table 3.1: Distribution of image data with labels in LAG-database[33]

@ 0001 @ 0002 @ 0003 @ 0006

@ 0015 @ 0016 @ om7 @ 0023
@ 0033 @ 0034 @ 0036

Figure 3.2: Non Glaucoma

Figure 3.2 represents fundus images from the ”"Non Glaucoma” class. They are
captured from healthy eyes. Whereas, the figure 3.3 represents fundus images from
class ”Suspicious Glaucoma” captured from Glaucoma affected eyes.

@ 0005 @ 0011 @ 0012 @ 0018

@ 0035 @ 0039 @ 0041

@ 0052

Figure 3.3: Glaucoma affected
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Chapter 4

Fundamentals of Deep Learning
and Transfer Learning

Deep learning is generally referred as a section of machine learning, that deals with
algorithms, which was developed in inspiration from functionality and layout of
human brain, known as artificial neural networks [28]. For deep learning, the neural
network is called as deep neural network.

Learning theory for deep learning are generally recognized as two categories and
they are -

e Supervised: Where the data contain its corresponding label.
e Unsupervised: Where the data doesn’t contain its corresponding label.

Supervised learning are such kind of learning where the all the data fed into the
algorithm is labeled, whereas the unsupervised learning does not require a labeled
dataset.

4.1 Deep Neural Networks or DNN

An usual neural network is made up with several basic units, which are also known
as neurons, connected to each other in a particular design and able generate and
hold sequential activation that are real-valued [12]. The neurons in such artificial
neural network are also called as units, shown in figure 4.1 are organized in layers.

The input layer is the first layer that takes input from the data given into the
neural network. Similarly the layer provides output is known as the output layer.
Both the input and output layers may contain number of units, however, the output
layer generally gets as many units as there are output classes. Deep Neural Network
has got input layer, output layer and number of hidden layers confined in between
them, demonstrated in figure 4.2.

Constructing a neuron or unit in deep neural network is done with some parameters
known as weights and biases, which indeed are the basic working principle for a
deep neural network.The assigned weights of the connection is multiplied to its
corresponding input and then added up resulting into a weighted sum, on which
the activation function implies and produces the activation for that neuron, which

11



—

.

—

Inputs —

.‘F/ \‘/
— Unit \
a [ Outputs

el
.

~

Figure 4.1: A unit or neuron in an artificial neural network(ANN)
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Figure 4.2: Two hidden layers confined in between input and output layers

is indeed the output of the neuron denoted by y. A demonstration is given in the
figure 4.3. The activation of this neuron is,

a=f (Z Tw; + b) (4.1)

This activation a is the output y of this neuron. For a neural network as in figure 4.4
built up with units like figure 4.3, the equation 4.1 converts into matrix domain.

al wll wl2 wl3 zl bl
a2 | =f | | w2l w22 w23 | |(z2 |+ | b2 (4.2)
a3 w3l w32 w33 z3 b3

Taking the wight matrix as W, the input vector as X, the bias vector as B, and the
activation vector as A the equation 4.2 is as follows [35] ,

A= f(WX + B) (4.3)
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Figure 4.3: A unit or neuron in neural network

All other layers of units in neural networks are activated in such manner, where the
activation function f is generally Sigmoid.
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/ N, Neural network
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w33
Input hidden
layer layerl

Figure 4.4: Neural network with parameters shown

These weights are randomly initialized at the first place and then through a number
of iterations in the training process the weights are gradually updated and learned,
so that it can predict new data at a satisfactory level, which it had never seen be-
fore. The neural network is evaluated through a cost function. This function tells
us if the weights and biases are well chosen, or if they must change. The target
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is finding the global minimum for the cost function. To minimize cost, a method
called backpropagation is used combined with optimization algorithm. As the name
of the method suggests, the error is propagated backwards in the network, and it
simultaneously updates the biases and weights [42]. The figure 4.5 is showing the

[ Initialized |
inputs |:> weights |

and biases
N
Activations
generated
Update
weights Predictions
and biases

Cost function

Backpropagation
propas calculated

Figure 4.5: The flow of action in a neural network throughout the learning process

flowchart for the mechanism for a deep neural network to learn to classify data of
its target domain.

4.2 Convolutional Neural Networks or CNNs

In convolutional neural networks the convolution operation is performed by the lay-
ers hidden, on ground of which features are learnt by the neural network and the
necessity of manual extraction of features is relieved. CNN performs well for image
data. [16].

An image is a two dimensional matrix of its pixels, as in figure 4.6, and that is what
CNN takes care of as an input to process in image classifications.

CNN thus take in an image data as an array of numbers and performs number
of convolution operation using tools like filters that are relevant and continuously
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i.e., 1080x1080x3 for an RGB image

Figure 4.6: Images are numbers [36]

learnt with sophistication through the learning process [22].
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Y Y
FEATURE LEARNING CLASSIFICATION

Figure 4.7: A CNN architechture [22]

4.2.1 Segments of CNN architecture

The general architecture of a CNN can be assumed in two segments of action [24],
shown in figure 4.7, they are -

e Feature extraction or Feature learning
e (lassification or Classifier

Feature extraction or Feature learning

This larger segment of CNN, known as feature extraction or feature learning, is that
does the work of learning features present in the images of inputs. To demonstrate,
if the image in figure 4.8 represents a house then the doors, windows, steps will be
identifying features or if the image is a car then the wheels, the number plate will
be identifying features, on the basis of which the image can generally be classified
into a group of objects.

Through the training process it picks out hierarchy of features to accurately map
the input images in order to learn their features, as in figure 4.9, which eventually
leads up to the classifier to use those features maps so that it can predict the class

15



Wheels, Door,
License Plate, Windows,
Headlights Steps

Figure 4.8: Features of from an object in an image [36]

where the data of input belong to.

Low level features Mid level features High level features

Edges, dark spots Eyes, ears, nose Facial structure

Figure 4.9: Hierarchy of features are demonstrated for an image [36]

This complex work of mapping the features of the input images is done through
number of sets of convolutional layers and pooling layers stacked repeatedly [24].

Classification or Classifier

The classification or classifier segment does the actual job of classifying each image
or input data into its class of belonging. For example, in context of the figure 4.8,
the classifier segment will place the image into the class of either a car or a house
by generating a probability distribution of being that element of the corresponding
class. In order to generate this classification of data, the classifier segment takes the
feature maps, generated by the feature learning segment, as an input. The mecha-
nism shown in figure 4.10

The classifier is built up with dense layers or in other words fully connected lay-
ers [24].

4.2.2 Layers and Operations of CNN

The CNN architecture is consisted of three basic type of layers[16] :
e Convolutional
e Pooling
e Fully connected

All these layers of CNN does the essential operations as follows-
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Figure 4.10: Classifier demonstrated

Convolution operation

Pooling operation

Flattening

e Optimization operation

Non linear activation function imply

Convolutional layer: Convolution operation

The fundamental building block of CNN, the convolutionl layers are responsible for
convolution operations of CNN and produce feature maps, that learn the features of
the image taken as input, through convolving appropriately learnt filters or kernels
with the input arry or tensor, as shown in figure 4.11. A number of feature maps
are there in a convolution layer, as shown in figure 4.12, that capture new features
and respond to feature hierarchy throughout the neural network from the initial

layers to the far edging layers [16], [22], [24].

Pooling layer: Pooling operation

Pooling operation is performed on the feature maps to better extract features and
reduce its dimension [24]. Generally the pooling operation is performed as such:

e Max pooling: As output, it provides the maximum value of a patch of numbers

from the feature map taken as input [24], figure 4.13.

e Average pooling: As output, it provides the average value of a patch of num-

bers from the feature map taken as input [22].
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Figure 4.11: A kernel is applied on input tensor, generating a feature map [24]
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Figure 4.12: Each plane shown is a feature map [1]

Input tensor
(4xd)

Figure 4.13: Max pooling with a filter of size 22 with a stride of 2

Max pooling and Avarage pooling is compared in 4.14

Flattening layer

Apart from these three basic layers, there is this Flattening layer in CNN that flat-
tens the feature map for the fully connected layers to take as inputs. The flattening
operation performed is reshaping the feature maps into vector forms from their orig-
inal matrix formation, shown in figure 4.15. This operation is very essential because
it enables the fully connected layer ahead to work with the newly reshaped feature
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Figure 4.14: Types of pooling [22]

vector [32].

s
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Figure 4.15: matrix to vector flattening [22]

Fully connected layer

In a kind of layers where each units or neurons are connected to all other units or
neurons of the subsequent layers are called fully connected or dense layers. Such
kind of layers are found useful for all different types of neural networks including
CNNs, and constitutes the classifier segment in a CNN and generally becomes the
output layer as well [41], [16], as shown in figure 4.16.
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Figure 4.16: Fully connected layers of a CNN leads to classify between classes [22]

Fully connected layers or in other words dense layers take nonlinear activation func-
tions, however, the final output layer of the fully connected layers take Softmax
activation.

Activation functions

Activation functions help activate neurons in a layer, by passing the output of con-
volution operation through non linearity.

Mathematically this is called curve fitting. Three common activation functions are

e Sigmoid : It is like a step function but it is continuous and differential, which
makes it very interesting and important. It’s mathematical expression is [35]

1

- TTeors (4.4)

a(z)

e ReLU: Rectified Linear Units or ReLLU are linear for inputs greater than
zero [5].

Definition of ReLU is -

f(z) = max(0,x) (4.5)
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max(0, x)
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Figure 4.17: Graphical depiction of ReLU

e Softmax: Softmax picks up the maximum value amongst the probabilities and
thus is generally used for final classification purposes.

Cost function and Optimization operation

Cost or loss function evaluates the error of the prediction made by the neural net-
work with respect to the real value or label given for that data, so that the error
can be reduced gradually throughout the learning process [24].

This cost function defined error between the prediction of the CNN model and the
real label of the data, needs to be optimized to a acceptable point where the CNN
can produce classification of the data with utmost accuracy it may possibly achieve.
Thus, an optimization function optimizes the cost. Adam [7] optimizer is widely
used because of its cutting edge efficiency.

Figure 4.18, denotes that, the cost function is minimum for [7] with Adam optimizer
comparing other optimizers.

4.3 Transfer Learning

Artificial neural network is inspired from human brain. It is then essential to be
motivated from the human learning process and capabilities. Human brain can learn
a task in an area and then apply the knowledge into an another task of another area
to learn and do that task. For example, if someone learn to ride a bicycle then he or
she can easily ride a motorcycle only he or she understands the control mechanism.
Here, the knowledge of riding a bicycle is applied or we might say transferred to
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Figure 4.18: Adam is compared to other optimizers [7]

ride the motorcycle, like keeping balance on two wheeler, moving and maintaining
directions etc.

Usually, deep learning models are created to learn and perform a specific task. They
learn from a dataset of target and performs that task of target. The concept of trans-
fer learning comes into being to transfer the knowledge of such a model into another
model building and learning process on another data and task of target,, so that the
new model doesn’t require the necessity to develop and learn from scratch [23].

Traditional ML Vs Transfer Learning
e Isolated, single task learning: e Learning of a new tasks relies on
Knowledge is not retained or

the previous learned tasks:

accumulated. Learning is performed Learning process can be faster, more

w.0. considering past learned

accurate and/or need less training data
knowledge in other tasks
Ve - T PN
— Ve N
\‘. Leaming N Leaming
| Dataset1 | ==p| sSystem Dataset 1 | ==| System
X / Task 1 / Task 1
7 7 ~— e =
_ [l
== =
- “‘\ _ ; o
Leaming /" Y Leaming
Dotaset 2 J' > 51“““2 ) Task 2
at
g 1 A 4

Figure 4.19: Traditional machine learning vs Transfer learning [23]

In figure 4.19, the concept of transfer learning is demonstrated, where knowledge
is generally referred to the feature maps, weights and biases etc or in other words
all the parameters that has been learned through training process of that model
previously trained or usually called a pre-trained model.

Such learnt learnt parameters from a pre-trained model provides a favourable ini-

tialization for the new model to learn the data of the target and do the target tasks.
This process helps substantially to save time and valuable resources, especially if
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there are a relatively small dataset available for the target task to learn on. Prag-
matically, most of the sophisticated real world problems do not provide opportunity
for a very large amount of labeled data to build and train a complex model. On
top of that, creating labelled data is expensive in the real world problems. On the
other hand, the task dataset where the model is transferring the knowledge from,
may contain a lot of labelled data, for example to say, millions of labelled data.
Therefore, leveraging the knowledge from source to kickstart the model for target
task dataset is the key [20], [30].

Definition of Transfer Learning Given a source domain Dg and learning task Ty,
a target domain D7 and learning task 77 , transfer learning aims to help improve
the learning of the target predictive function f7(.) in Dy using the knowledge in Dg
and Tg, where Dg # Dy , or Ts # Tr [6].

4.3.1 Transfer learning techniques

Two popular techniques of transfer learning with CNNs are [46] -

e Feature extraction

e Fine tuning
Feature Extraction:

In this technique, the feature extraction segment of the pre-trained model are not
trained on the target data but made to freeze. All the parameters it contain, that
was trained on the source dataset, are hence not trainable for the target dataset but
only extract features from the data of target task utilizing their knowledge previ-
ously learnt and forward them to the trainable classifier that is newly added in most
cases to classify the target data for target task [46].

Input
layer

Feature extraction
freeze

Classifier k________+
Trainable

Prediction

classes

Figure 4.20: Freeze the segment of feature extraction of the CNN implemented, and
a new classification segment is added

Therefore, as shown in figure 4.20, a new and specific to target dataset and task
classifier segment is added to the CNN’s frozen feature extractor. That classifier is
trainable to the target dataset for the target task, while the feature extractor from
the pretrained CNN is transferring the knowledge from the previous task that it did.
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Thus, with the feature extraction technique, the frozen feature extractor and the
new domain specific custom built trainable classifier are building the transfer learn-
ing CNN model.

Fine-Tuning:

For this technique, however, the last layers of the feature extraction segment of the
pre-trained model are made to unfreeze and the learnt parameters contained in them
are thereby trainable for the target dataset and thus allow better adaptation on the
target dataset for the target task. The classifier is generally added new and trained
on the target dataset together with the last layer trainable parameters [46].

Freeze Unfreeze
— S
Input Feature Classification Prediction
. Classes
layer extraction

Figure 4.21: Fine-tuning through keeping in the last layers of the feature extractor
trainable

For the fine-tuning approach of transfer learning, the feature extracor is not com-
pletely frozen but some of its last layers are kept trainable for the new target dataset
and task, as shown in figure 4.21.

This is of a great significance that, the feature maps developed from the feature
extractors, which are key factors for a successful model, are customized and learned
too on the target dataset and task, along with their classifier. In this manner, the
knowledge from a previous task is transferred with the feature extractor the CNN
implemented, then that knowledge is customized through training on the target
data and with the help of new and domain specific classifier the target task is done.
The customization of the feature extraction layers can be done at any level as per
required, for example, it is possible to unfreeze some of the last layers of the feature
extractor or may be half of the layers of it, or even more of the layers.

Thus, with the fine-tuning technique, the partially unfrozen and trainable feature

extractor and its new domain specific custom built trainable classifier are building
the transfer learning CNN model.
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4.3.2 Architectures of CNN models used

For transfer learning to be successful in such a target task of medical image pro-
cessing and detecting Glaucoma, CNN models trained on a tremendous amount of
images are required, so that the larger exposure to features of images might be ef-
fective.

Some of the CNN models that have been used in this work are-
e VGG
e ResNet
e DenseNet
e Inception

The CNNs mentioned have weights pre-trained on ImageNet and are available in
keras as applications and have been loaded as such. ImageNet dataset has nearly
15 million high resolution images in 22,000 categories. ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), where all of them performed outstanding, uses
a subset of this gigantic dataset containing 1.2 million images in 1000 classes. A
CNN trained on ImageNet means that it is extremely powerful and capable, since
it is trained on 14 million images and thus has seen a tremendous number of fea-
tures [44] [11] [47].

VGG

VGG [8] Convolutional Neural Network developed by Visual Geometry Group, Uni-
versity of Oxford have achebved admirable success with 16-19 layers of weights with
small convolution filters of (3x3).

The figure 4.22 states the parameters number in millions and the deepest config-
uration has 19 weight layers in the column E. Convolutional layer notations are
described as “conv(filter size)-(number of channels)”. ReLU non-linearity is used
here for all hidden layers [8].

In our proposed transfer learning model, we have used the 19 weight layer configu-
ration of VGG commonly denoted as VGG19. The VGG19 architecture is depicted
in figure 4.23.

ResNet

ResNet [14] or Residual Network won ILSVRC 2015, with outstanding performance
carrying more than 150 layers which was way deeper than any model used before.
ResNet makes such deeper models possible to train and perform outstandingly while
neural networks who very deep used to have vanishing gradient problem and were

difficult to work train well [14] [31].
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Figure 4.22: Number of parameters and ConvNet configuration [8]
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Figure 4.23: Architecture of VGG-19 [25]

In imagenet dataset, figure 4.24, for plain deep networks have higher error than shal-
low networks, while for ResNet deep network have lower error than shallow network.

ResNet avoids training error in deep networks by a concept of skip connections,
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Figure 4.24: Training error for deep networks compared between plain and
ResNet [14]

demonstrated in figure 4.25.
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Figure 4.25: Residual learning: a building block [14]

34 -layer residual

[emmziz | -

1}
]
]
]
]

. _
i 5« (3l el (sl i [s] o [g] ] (3 12| 8 AEEEEEEE R i |

—_— Bt bl bl bl bl b > * L !
H— e R EE L

Figure 4.26: Resnet architecture is compared to a plain one with same number of
layers [14]

A 34-layer ResNet architecture is demonstrated and compared with a 34-layer plain
network, in figure 4.26, and the skip connections of the resnet is also showed.

ResNet architechtures for ImageNet is demonstrated in figure 4.27. The 50-layer
architecture of ResNet, commonly denoted as ResNet50, is used in our proposed
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Figure 4.27: Resnet networks described [14]

transffer learning model.

DenselNet

DenseNet or Dense Convolutional Network [17] architecture is made up of several
dense blocks, where each layer is connected with all its preceding layers and take
input from them and passes the output on to all the subsequent layers, within a

dense block. [17].

Figure 4.28: A five layer dense block [17]

Figure 4.28 demonstrating a dense block of five layers.

densenet architecture as shown in figure 4.29.
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Figure 4.29: A densenet architecture containing three dense blocks [17]
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Figure 4.30: DenseNet architectures for ImageNet [17]

InceptionV3

Inception [13] architecture is made up, through piling up several inception mod-
ules together, as a neural network of significant depth, where the inception modules
provide the opportunity not to choose between filter sizes of convolution or even con-
volution and pooling themselves but to operate them all in parallel and concatenate
their outputs into a single output vector for being input to the module afterwards.

Module 3

Figure 4.31: The three inception modules [15]

InceptionV3, a new variant of inception architecture, is used in our transfer learning
model proposed [15]. The outline of the InceptionV3 network architecture, table 4.1.
The output size of each module is the input size of the next one.

The module in figure 4.32 helps reducing grid size of feature maps [15].
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Type patch size/stride or remarks | input size
conv 3 x3/2 299 %299 x 3
conv 3 x3/1 149 x149 x 32
conv padded | 3 x3/1 147 x147 x 32
pool 3 x3/2 147 x147 x 64
conv 3 x3/1 73 x73 x 64
conv 3 x3/2 71 x71 x 80
conv 3 x3/1 35 x35 x 192
3 xInception | module 1 35 x35 x 288
5 xInception | module 2 17 x17 x 768
2 xInception | module 3 8 x8 x 1280
pool 8 x8 8 x8 x 2048
linear logits 1 x1 x 2048
softmax classifier 1 x1 x 1000

Table 4.1: Outline of the InceptionV3 architecture [15]

Figure 4.32: Module to reduce filter grid size [15]
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Chapter 5

Methodology

A Transfer Learning approach is proposed in this research. The size and charac-
teristics of the data set create an ideal ground to implement a transfer learning
methodology so that a pre-trained CNN with all its weights can be used for building
up a new transfer learning model dedicated to the task of detecting Glaucoma with
a satisfactory level of accuracy.

Since, the data set is not very small either, the Feature Extraction approach is not
used rather the Fine-tuning approach is used.

5.1 The libraries, tools and software used

Python: Python is a high level programming language that is capable of object-
oriented programming and structured programming. The major strength of python
is its large standard library that provides tools for a vast variety of tasks, like Image
processing and Machine learning etc.

Ipython [3] interactive computing has been used, which provides a rich toolkit for
interactive usage of python, having components:

e A pyhton shell
e A Jupyter kernel for Jupyter notebook usaged

Jupyter Notebooks: Jupyter notebooks is used, that is an open source web ap-
plication. It facilitates live code, equations, visualizations and narrative text [45].

TensorFlow: TensorFlow [10] open source machine learning platform offering a
friendly ecosystem of tools, libraries and resources.

Keras: Keras [9] is a high-level neural networks API, with TensorFlow in its back-
end.

Matplotlib: Matplotlib [2] is used in our research, which is a inclusive library for
interactive visualizations in Python.
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5.2 Implementation of Transfer Learning

The Fine-tuning approach of Transfer learning is implemented by retraining the
whole previously trained CNN along with the customised classifier block added that
builds up the transfer learning model. We haven’t kept any of the layers from the
pre-trained CNN model in freeze rather made all of the layers with their parameters
to be trainable, utilizing the pre-trained weights and biases as an optimized initial-
ization for the intended task of detecting Glaucoma. The new model is organized
linearly with keras using the Sequential model type.

We propose four transfer learning models with the four pre-trained CNNs, and we
compare them in terms of methodology and outcome or result.

5.2.1 Dataset reorganization

The fundus images along with all their associated labels are further distributed
randomly into three distinct sets, as such:

e Train set
e Validation set

e Test set

The split of labeled fundus image data into these three sets is done to make the
effective use of the data.

Set of data Suspecious Glaucoma Non Glaucoma
fundus images percentage | fundus images percentage
Train set 1199 70% 2201 70%
Validation set 256 15% 471 15%
Test set 256 15% 471 15%

Table 5.1: Distribution of labeled fundus images into train, validation and test sets

Table 5.1 demonstrates the number of fundus images along with their labels from
each class and the corresponding percentage distributed into the train set, validation
set and the test set. The percentage of image data and their labels split into train,
validation and test sets are 70%, 15% and 15% respectively.

5.2.2 Architecture of the proposed model

The Transfer Learning models proposed are having an architecture shown in Fig. 5.1

The previously trained CNN models are imported and loaded from keras as appli-
cations in a form that their classifier blocks get dropped off. Thus the pre-trained
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Figure 5.1: The Architecture of the Transfer learning model proposed

CNN loaded contain only the feature extractor where all the knowledge from Im-
ageNet training is reside. The classifier block of a previously trained CNN model
does not help in our target dataset and task.

Thereby, the two segments of our proposed Transfer learning models are as such:

e Feature extraction: The feature extractor segment of our proposed model is
transferred from the pretrained CNN model. The pretrained CNN model is
loaded only with its feature extractor carrying all its learned features, which
is used as the feature extractor in our model.

e (lassifier: The classifier of our proposed transfer learning model is created
distinctly for our target dataset and task.

The model architecture is dedicated to the task of classifying fundus images for
suspicious Glaucoma. Once the training is done with all parameters set, a model
architecture summary is shown as Fig. 5.2

5.2.3 Previously trained CNN

From the classifier excluded pre-trained CNN, the last layer is taken, so that the full
feature extractor can be transferred into our transfer learning model, and termed
as transfer_layer. In order to create a transfer learning model, a model is created
defining the input of the loaded pre-trained CNN as its input and the output from
the transfer_layer as its output. Thus, a model is built to operate with. Using

.add()
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Model: “sequential™

Layer (type) Qutput Shape Param #
model (Model) (None, 7, 7, 512)  2ee2e384
flatten (Flatten) (Mone, 25@8B) 2

dense (Dense) (Mone, 1824) 25691138
dropout (Dropout) (None, 1824) 2

Total params: 45,717,578
Trainable params: 45,717,57@
Mon-trainable params: 8

dense_1 (Dense) (None, 2} 2858

Figure 5.2: Summary of the Model(with VGG19) architecture

method further layers are added to complete the desired transfer learning model.
The "transfer_layer”s of the four previously trained CNN models, that are being
used:

e VGG19: The last layer is block5_pool that is takes as transfer layer, as marked
Red in Fig. 5.3

............. e nemuany sy m ey sasy PR

block5_pool (MaxPooling2n) (None, 7, 7, 512) 5]

Total params: 28,824,384
Trainable params: 28,824,384
Mon-trainable params: 8

transfer_layer = model.get layer('blocks_pool')
conv_model = Model({imputs = model.input, outputs = transfer_layer.output)

Figure 5.3: Taking the transfer layer for VGG19

e ResNetb0 : The last layer taken is convb_block3_add as transfer layer, getting
the whole ResNet50 pre-trained CNN. Marked Red in fig 5.4

e DenseNet121: The last layer taken is bn excluding the activation layer, with
which the full DenseNet121 pre-trained CNN is taken. Marked Red in fig 5.5

e InceptionV3: layer activation_93 is used as transfer layer to get the full incep-

tionV3. Marked Red in fig 5.6
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convS_block3_add (Add) (None, 7, 7, 2848) @ convs_block?_out[@][@]
conv5_block3_3_bn[8][8]

conv5_block3_out (Activation) (None, 7, 7, 2848) a conv5_block3_add[@a][@]

Totsl params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120

In [9]: transfer_layer = model.get_laver('conv5S_block3_add")
conv_model = Model(inputs = model.input, outputs = transfer_layer.output)

Figure 5.4: Taking the transfer layer for ResNet50

bn {BatchNormalization) (None, 7, 7, 1824) 489 conv5_blockle_concat[@][@]

relu (Activation) (None, 7, 7, 1824) a bn[@][@]

Total params: 7,837,584
Trainable params: 6,953,856
Non-trainable params: 83,648

transfer_layer = model.get_layer('bn")
conv_model = Model(inputs = model.input, outputs = transfer_layer.output)

Figure 5.5: Taking the transfer layer for DenseNet121

activation_93 (Activation) (Nene, 5, 5, 192} a batch_normalization_93[@][@]

mixedl® (Concatenate) (None, 5, 5, 2848) a activation_85[@1[8]
mixedo_1[@][@]
concatenate_1[@][8]
activation_93[@][a]

Total params: 21,802,734
Trainable params: 21,788,352
Non-trainable params: 34,432

1: transfer_layer = model.get_layer('activation_93°)
conv_model = Model(inputs = model.input, outputs = transfer_layer.output)

Figure 5.6: Taking the transfer layer for InceptionV3

5.2.4 Classifier block

A resolute classifier block is added to the previously trained CNN with configurations
as such:

e A Flatten layer in order to flatten the output from the Convolutional layer.

e A Dense layer or a fully connected layer of 1024 units having Sigmoid activation
function. The Sigmoid activation is used to help the probability distribution
to be more accurate and polarized.

e A dropout layer to minimize over fitting. The dropout layer helps by dropping
a portion of connections and thus reduce over fitting to some extent. Dropouts
set as per Table 5.2
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Pre-trained CNN | Dropout
VGG19 0.25
ResNetb0 0.5
DenseNet121 0.5
InceptionV3 0.3

Table 5.2: Dropout used for the corresponding CNN

e Another Dense layer or a fully connected layer is added as the final classifica-
tion layer with units of 2 as per the number of classes. The activation function
used for this layer is Softmax activation function.

5.2.5 Compilation

The model built with fine-tuning approach then needs to be complied. In order to
compile the model the Loss function and the Optimizer is defined:

e Loss function: Throughout the learning process the loss function calculates the
error of prediction from the label. The data set in its two classes are mutually
exclusive. The loss function used is categorical_crossentropy.

e Optimizer: The optimizer takes the loss into account and corrects it. Thus
the weights of the transfer learning model can be further adjusted. Optimizer
’Adam’ is used. The learning rates used as per Table 5.3 for the four different
CNN containing models.

Pre-trained CNN | learning rate
VGG19 le-5
ResNet50 0.0001
DenseNet121 0.0001
InceptionV3 0.0001

Table 5.3: Learning rate with corresponding CNN

5.2.6 Data preprocessing

Since we are working with image data in our target data set, the data preprocessing is
doen with I'mage DataGenerator() class, that provides real time data augmentation.

The images here in the target data set are colored. All the colors in an image are
made by colored pixels, each made up with 3 channels of colors Red, Green and Blue
or known as 'RGB’ in short. Each color channel, for 1 byte made up of 8 bits, is
valued from 00000000 to 11111111 in binary or 0 to 255 in decimal. The maximum
binary number for a byte or 8 bits, 11111111 translates 255 into decimal. Therefore,
a color pixel is defined with 3 channels of colors '/RGB’ each having values in a range
between 0 to 255.
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The images are rescaled so as to get the pixel values in the range between 0 to 1
instead of 0 to 255, through dividing all the pixels by 255.

5.2.7 Training the model

After being compiled the transfer learning model is ready to be trained on the in-
tended data set. The train set and validation set were used for training the model

as well as validating it simultaneously.

The training of the model is done with:

e Training data: The train set of the dataset, which contain 70% of the image

data, is assigned.

e Epoch: The number of epochs used to train and validate the models, is given

in the Table. 5.4

Pre-trained CNN used in the model

number of epochs

VGG19
ResNet50
DenseNet121
InceptionV3

40
40
40
30

Table 5.4: Number of Epochs with corresponding CNNs used in the model

e Steps per epoch: Number of steps or batches of data in each completed
epoch[9]. Thus 36.35 is used as the steps per epoch, calculated as number

of images in data divided by the batch size.

e Validation data: The validation set extracted from the data set, which carries
15% of the image data, is mounted as validation data here for validating the

training or learning process.

e Validation steps: It is calculated as same as the steps per epoch. Thus it is
set as 36.35 matching the steps per epoch value.

5.2.8 Saving models

When the training is complete, the model with all its trained parameters(adjusted

weights and biases), is then saved as a

.hb

file. The saved models in a form of .h5 file can be used for further testing and usage.
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Chapter 6

Result and analysis

6.1 Train and validation: Learning and (Gaining
accuracy

Accuracy of prediction is core of the outcome expected for deep learning. After
performing all the epochs of training process the model predicts the training set
with an optimal accuracy and a loss calculated, comparing the predictions from the
model with the true labels provided with the data. The training set predictions are
simultaneously validated with the validation set, providing a validation accuracy
and validation loss.

6.1.1 VGG19

The model built with VGG19 performs smoother to gain accuracy and reducing loss
during training process. The gradual decline of loss over epochs is showed in the
figure 6.1

train loss and validation loss

06
| — frain

1 validation

o

0.4 \

loss
=
w

02

" \_\//\u'

0o

—_—

— —

g

0 10 0 0 a0
number of epochs

Figure 6.1: Loss vs Number of Epochs

Figure 6.1 is showing that the validation loss is following the train loss mostly in
the same path. Although the train loss is a slightly lower than the validation loss,
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indicating a small and an almost negligible over-fitting.

On the other hand training accuracy is increasing over number of epochs and the
validation accuracy is following, shown in fig. 6.2.

— train
—— validation

Figure 6.2: Accuracy vs Number of Epochs

The graph of accuracy is reverse of the loss, shown in figure 6.3.

| — wvalidation loss
| — validation accuracy

Figure 6.3: Validation Loss and validation accuracy

The Validation loss gets close to 0.0 while the validation accuracy gets close to 1.0
On completion of 40 epochs the validation loss is 0.1080 and validation accuracy
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is 0.9574, while initially the validation loss was 0.4384 and the validation accuracy
was 0.7744, showing in fig 6.4 and fig 6.5

Train for 36.35 steps, validate for 36.35 steps

Epoch 1/48
37/36 [

1 categorical accuracy:

Epoch 2/4@
37/36 [

] - 13195 36s/step - loss:
@.7744

1 _categorical_accuracy:

Epoch 3/4@
37/36 [

] - 13895 35s/step - loss:
8.8514

1 _categorical_accuracy:

Figure 6.4:

] - 1364s 37s/step - loss:
©8.8996

The validation loss and

@.5812 - categorical accuracy: ©.6985 - val loss: ©.4384 -

8.3978 - categorical accuracy: @.8189 - val_loss: 8.3217 -

8.3874 - categorical accuracy: @.8676 - val loss: 8.2388 -

va

va

va

validation accuracy at initial epoch

Epoch 39/48
37/36 [
1_categorical _accuracy:
Epoch 4@/40

37/36 [
1_categorical_accuracy:

] - 14575 39s/step - loss: 8.8422 - categorical accuracy: ©.9851 - val loss: 8.1318 - va

9.9532

1 - 14335 39s/step - loss: @.8344 - categorical_accuracy: ©.9892 - val _loss: @.1@80 - va

@.9574

Figure 6.5: The validation loss and validation accuracy at final epoch

6.1.2 ResNet50

Using ResNet50 pre-trained CNN in the transfer learning model, the validation loss
initially showed a no reduction compared to the training loss. Which indeed caused
a no initial increase in validation accuracy compared to the training accuracy. How-
ever, after nearly half of the total epochs the validation loss started to decrease
rapidly and the validation accuracy did rise close to the training accuracy to match
the corresponding validation loss. Demonstrated in fig 6.6 and fig 6.7.

train loss and validation loss

— frain
l validation

loss

02

e e — —
a0 S —

T
20
number of epochs

Figure 6.6: Loss vs Number of Epochs (using ResNet50)

Fig 6.7 shows the validation accuracy was a consistent value of 0.65 or 65% during
the initial 17 epochs, and afterwards it increased up to more than 0.95 or 95% which
is very close to the training accuracy off 0.98 or 98%.
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Figure 6.7: Accuracy vs Number of Epochs (using ResNet50)

The validation accuracy is represented comparing the validation loss in fig 6.8.

16 validation loss and validation accuracy

— validation loss
1.4 | — wvalidation accuracy

o 5 10 15 20 25 30 35 40
number of epochs

Figure 6.8: Validation loss and Validation accuracy

6.1.3 DenseNetl121

The DenseNet121 model is a very dense architecture to work with and thus the
model built with DenseNet121 did not show a smoother graph. The reduction of
validation loss compared to reduction of training loss was consistent, however, it did
show steep increase twice throughout the training process with our data set around
epochs 4 to 5 and 19 to 20. After epoch 20 the curve remained nearly stable and
the validation loss finally reduced down to 0.2 at the final epoch, shown in fig 6.9
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Figure 6.9: Loss vs Number of Epochs (using densenet121)

The accuracy for both the training and validation, shown in fig 6.10, thus showed
outcome corresponding to the losses.

— train
— validation

Figure 6.10: Accuracy vs Number of Epochs

Validation accuracy is compared to the validation loss in fig 6.11.

The DenseNet121 did finally acheived a validation accuracy of 0.95 or 95%.
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Figure 6.11: Validation Loss and validation accuracy

6.1.4 InceptionV3

The model built using InceptionV3 is a well performing model. It showed a steeper
drop of loss both of training and validation within initial epochs and mostly main-
tained a consistent value of loss for the rest of the epochs, demonstrated in fig 6.12

train loss and validation loss

) — train
12 validation

number of epochs

Figure 6.12: Loss vs Number of Epochs(using InceptionV3)

The accuracy for both the training and validation did show the outcome correspond-
ing the losses, in fig 6.13

The Validation loss and accuracy are reverse of each other showed in fig 6.14

The model finally achieved a validation accuracy of 0.92 or 92%.

43



— train
{ — validation |

N

Figure 6.13: Accuracy vs Number of Epochs(using InceptionV3)

— validation loss
— validation accuracy |

Figure 6.14: Validation Loss and validation accuracy compared ober number of
epochs

6.2 Test

The transfer learning models built with pre-trained CNNs are retrained and val-
idated on the target data set with the train set and validation set. All the four
models that are saved as .hb models are further subject to test their performances.
Testing of the models are done with the test set extracted from the LAG data set,
and the test set is completely distinct from both the train set and validation set.

The .h5 models are loaded in a notebook using load-model() and the test set is
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mounted, being processed with ImgaeDataGenerator().

The models are evaluated on the test set.

e VGG19: For the model containing VGG19 the test set evaluation shows accu-
racy of 0.945 or 94.5%, as in fig 6.15

2e/2a [ === === ] - 191s 1@s/step - loss: @.1801 - categorical_accuracy: @.945@
Accuracy of myTLmodel VWGG19.h5 on test dataset: ©.945

Figure 6.15: Test accuracy and loss for VGG19 built model

e ResNetb0: For the model containing ResNet50 the test set evaluation shows
an accuracy of 0.96 or 96.0% and a loss of 0.08, as in fig 6.16

26}28 [ _ === ==== 1 - 23@s 12s/step - loss: @.8848 - categorical_accuracy: ©.962@
Accuracy of myTLmodel ResMet58.h5 on test dataset: 8.96

Figure 6.16: Test accuracy and loss for ResNet50 built model

e DenseNet121: For the model containing DenseNet121 the test set evaluation
shows an accuracy of 0.925 or 92.5% and a loss of 0.3862, as in fig 6.17

20/20 [ === === ] - 181s 9s/step - loss: @.3862 - categorical_ accuracy: ©.925@
Accuracy of myTLmodel DenseNetl2l.hS on test dataset: 8.925

Figure 6.17: Test accuracy and loss for DenseNet121 built model

e InceptionV3: For the model containing DenseNet121 the test set evaluation
shows an accuracy of 0.9175 or 91.75% and a loss of 0.3784, as in fig 6.18

20/28 [= = ] - 94s Ss/step - less: ©.3784 - categorical accuracy: @.9175
Accuracy of myTLmodel InceptionV3.hS on test dataset: @.9175

Figure 6.18: Test accuracy and loss for InceptionV3 built model

The accuracy of the models on test set profoundly matches that of the corresponding
validation accuracy, demonstrated in the table 6.1. Thus signifying that the models
are built and trained aptly on the target data set, and working as per expectation
to the target task of detecting Glaucoma from the Fundus images.
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Used pre-trained CNN | Test accuracy | Validation accuracy
VGG19 0.945 or 94.5% 0.9574 or 95.74%
ResNet50 0.96 or 96% 0.98 or 98.0%
DenseNet121 0.925 or 92.5% 0.95 or 95.0%
InceptionV3 0.9175 or 91.75% 0.92 or 92%

Table 6.1: Comparison on Test accuracy and validation accuracy

6.3 Prediction

Since the models are tested on the test set, they are subject to show some predic-
tions for Glaucoma on the fundus images belonging to the test set.

6.3.1 VGG19

o o 0 1 1
1] o 1 o 0
s R
] 0 0 0 1
b ¥
1 1 1 0

Figure 6.19: Predictions from transfer learning model with VGG19

[]

Figure 6.19 is showing the predictions for random 20 images from the test set, made
by the saved model of .h5 file developed with transfer learning that carries VGG19
and the figure 6.20 is showing the labels for the images. The label of an image is
denoted with the number in the right-hand side inside the parentheses.

6.3.2 ResNet50

Figure 6.21 is showing the predictions for random 20 images from the test set, made
by the saved model of .h5 file developed with transfer learning that carries ResNet50
and the figure 6.22 is showing the labels for the images.The label of an image is de-
noted with the number in the right-hand side inside the parentheses.

46



n.oj o] [0.11 fe.11 o1

o] o] 0.1] [.o] o]
o] Lo] Lol [1.0] o.1]

0.1] 0.1] [0.1] [1.0] 1no)

Figure 6.20: Corresponding labels of the images in figure 6.19
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Figure 6.21: Predictions from transfer learning model with ResNet50
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Figure 6.22: Corresponding labels of the images in figure 6.21
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Figure 6.23: Predictions from transfer learning model with DenseNet121

6.3.3 DenseNetl121

Figure 6.23 is showing the prediction for random 20 images from the test set, made by
the saved model of .5 file developed with transfer learning that carries DenseNet121
and the figure 6.24 is showing the labels for the images. The label of an image is
denoted with the number in the right-hand side inside the parentheses.
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Figure 6.24: Corresponding labels of the images in figure 6.23

6.3.4 InceptionV3

Figure 6.25 is showing the predictions for random 20 images from the test set made
by the saved model of .h5 file developed with transfer learning that carries Incep-
tionV3 and the figure 6.26 is showing the labels for the images. The label of an
image is denoted with the number in the right-hand side inside the parentheses.
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Figure 6.25: Predictions from transfer learning model with InceptionV3

[0.1]

DEEE

[0.1] oy [oj [01] noj

101 101} [01]

] [IX]

o] [0.1] [10] o] o]

Figure 6.26: Corresponding labels of the images in figure 6.25

6.4 Outcome Evaluation

We evaluated our models with respect to L. Li etal.(2019)[33], Guangzhou etal.

(2019)[26] and Perdomo etal.(2018)[21].

L. Li etal.(2019) [33] with their AG-CNN model achieved an accuracy of 95.3%
on their test set of the LAG database. Guangzhou etal. (2019)[26] had accuracy
evaluated for the CNNs were 0.940 or 94.0% for fundus images used in grayscale,
where their dataset was very small. Perdomo etal.(2018)[21] acheived an accuracy
of 89.4% using multi stage deep learning model. Having a small dataset may lead

to biased prediction such as over-fitting or under-fitting.

Our best performing transfer learning model is the Resnet50 built model which is
providing 96.5% accuracy on our test set of the LAG database, which is higher than
that achieved by [33], [26], [21], and the VGG19 built model of ours is providing
an accuracy of 94.75% on the test set of LAG database. The other two transfer
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learning models built with DenseNet121 and InceptionV3 is also comparable with
AG-CNN, achieving accuracy of 92.5% and 91.75% respectively. It is to mention
that, LAG database we used contain a comparatively large number of fundus image
data of 3400 images in two classes for train set, and 727 images in two classes for
validation set. Since, all of our proposed models having accuracy higher than 90%,
therefore, the dataset is well distributed and the predictions are fair. Thus, our pro-
posed transfer learning methodology, with CNNs VGG19, ResNet50, DenseNet121
and InceptionV3, has achieved a similar level of accuracy as [33], [26] and [21] has

achieved for detecting Glaucoma from fundus images. The comparison is demon-
strated in table 6.2

methodology accuracy
L. Li etal.(2019)[33] 95.3%°
Guangzhou etal. (2019)[26] 94.0%
Perdomo etal.(2018)[21] 89.4%
Proposed model with ResNet50 | 96.0%

Table 6.2: Our proposed model of highest accuracy is compared
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Chapter 7

Future scope and Conclusion

7.1 Future Scope

In future, this transfer learning research can be carried on from where we have left
and try to improve the accuracy for all the models.

Since the ResNet50 built transfer learning model has given the best result here, this
model may be used in a hardware system, which might help assisting diagnosis of
Glaucoma at an early stage before the condition get acute.

Nowadays, there are many IT companies, corporate offices or TV channels where
people have to work with computers all day long. Sometimes, people suffer from
different eye diseases and pain due to keeping eyes on the computer screens for a
long time. As we know, glaucoma does not show its symptoms at an early stage, a
regular eye diagnosis is important for everyone. In this case, any of the glaucoma
detector models can be used in these offices so that the employees can checkup their
eyes whenever they need.

7.2 Conclusion

In this paper, we worked with four different Convoluted Neural Network models.
We did a comparative study using these models. All the four models developed,
delivered spectacular performances on detecting Glaucoma on a fundus images from
test set, that they never saw before. Among all the four models, ResNet50 has
shown the highest accuracy of 96.75% on the test set images. In conclusion, it
can be said that this comparative study may play a significant role for developing
any new model to diagnose Glaucoma, and it can be a gateway for starting a new
approach or a research to carry on.
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