
A Comparative Study of Deep Learning Methods for
Automating Road Condition Characterization

by

Zurana Mehrin Ruhi
20141049

Farahatul Aziz Sheetal
16101083

Farisha Hossain Prithu
16101259

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

April 2020

c© 2020. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Zurana Mehrin Ruhi
20141049

Farahatul Aziz Sheetal
16101083

Farisha Hossain Prithu
16101259

i

Approval

The thesis/project titled “A comparative study of Deep learning and Transfer learn-
ing methods for automating Road Condition Characterization in Bangladesh” sub-
mitted by

1. Zurana Mehrin Ruhi (20141049)

2. Farahatul Aziz Sheetal (16101083)

3. Farisha Hossain Prithu (16101259)

Of Spring, 2020 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science.

Examining Committee:

Supervisor:
(Member)

Hossain Arif
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Md. Saiful Islam
Lecturer

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Mahbubul Alam Majumdar
Chairperson

Department of Computer Science and Engineering
Brac University

ii

Abstract

Roads in Bangladesh provide infrastructural facilities to both agricultural as well as
industrial sectors of the country. Distressed roads can cause fatal accidents as well
as largely decelerate sector progress. This makes swift road inspection and repairs
one of the most important aspects of our country’s holistic growth. As much as it
affects the general public, tackling this is as big a problem for the government as
well. Currently, the problem for road repair is a multi-stage problem, which involves
getting a complaint from a resident, physical road inspection by some official, identi-
fying the type of damage and then comes the process of actually repairing it. Here,
we intend to make this cumbersome process simpler, by automating the problem
identification stage. We developed a method leveraging the Machine Learning and
Deep Learning capabilities that can potentially detect a damaged road and identify
the type of damage viz. pothole and crack. We self-captured data from the roads
and streets, thus emulating the data we expect when this method is used in real-life
by installing cameras on the city corporation’s garbage trucks. We reviewed various
models ranging from conventional machine learning to complex deep learning algo-
rithms and ultimately shortlisted three models: CNN, CNN-XGboost, and ResNet.
These three models were then optimized for our problem, and then extensive testing
was performed to determine the one that outperforms the rest. ResNet-34 emerged
as a clear winner, with an accuracy of 87.8 % on the test data. Here, we’ll do an
in-depth study of the efficacy of these models on our problem statement.

Keywords: CNN; Residual Network; Machine Learning; XGboost; Road
Inspection; Potholes; Cracks

iii

Acknowledgement

Firstly we would like to express our sincere gratitude to our advisor Hossain Arif sir
and our co-advisor Md. Saiful Islam sir for their continuous support and guidance.
his kind support and advice in our work. He helped us whenever we needed help.
Finally to our parents without their throughout support it may not be possible.
With their kind support and prayer, we are now on the verge of our graduation.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Overview . 1
1.2 Importance of Road Inspection . 1
1.3 Motivation . 2
1.4 Objective . 2
1.5 Challenges faced . 2
1.6 Thesis outline . 2

2 Related Work 4

3 Background Analysis 8
3.1 Neural Networks . 8
3.2 Convolutionl Neural Network . 9
3.3 Residual Network . 12
3.4 Extreme Gradient Boosting . 13

4 Model Implementation and Optimization 15
4.1 Overview . 15
4.2 Dataset collection . 17
4.3 Pre-processing . 17
4.4 Design and training . 18

4.4.1 CNN . 18
4.4.2 ResNet34 . 22
4.4.3 CNN-XGboost . 26

v

5 Results and Analysis 28
5.1 Results . 28
5.2 Final model analysis . 30

6 Conclusion and Future work 34

Bibliography 37

vi

List of Figures

3.1 Two layer Neural Network Model . 8
3.2 Convolutional layer calculation . 10
3.3 Maxpooling and Average pooling . 11
3.4 CNN model overview . 12
3.5 ResNet block . 12
3.6 Evaluation of XGboost . 13

4.1 Work Flow . 16
4.2 Processed Images . 17
4.3 VGG16 inspired architecture . 18
4.4 Epoch vs Accuracy curve for CNN training 22
4.5 ResNet34 Architecture of our model 23
4.6 Transfer learning overview of our model 25
4.7 Epoch vs Loss curve for ResNet34 training 25
4.8 CNN and XGboost combined architecture 26

5.1 Confusion matrix of CNN model . 28
5.2 Confusion matrix of ResNet34 model 29
5.3 Confusion matrix of CNN+XGboost model 29
5.4 Accuracy, Precision and Recall of three models 30
5.5 Comparison with existing method . 31
5.6 ResNet34 Ground truth vs Predictions 32
5.7 Predictions vs Actual vs Loss vs Probability 33

vii

List of Tables

4.1 CNN architecture summary . 20
4.2 CNN training results . 20
4.3 CNN hyperparameters details . 21
4.4 ResNet34 architecture details . 24
4.5 XGboost hyperparameters details . 27

5.1 ResNet34 training details . 31

viii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ε Epsilon

γ Gamma

CNN Convolutional Neural Network

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

ix

Chapter 1

Introduction

1.1 Overview

We wanted to create something that would contribute to the welfare of our country.
The quality of the road infrastructure is crucial for people who drive. Potholes
have been proven to cause catastrophes, especially during rainy seasons, so the
drivers need to be cautious. Detecting potholes would highly contribute in order to
minimize impact, make the ride smooth, and allow the vehicles to issue warnings to
the drivers to slow down or avoid them. It would also contribute to updating the city
corporation about potholes and cracks and help them to repair the damaged roads at
the earliest using the data. Studies and research are still relatively few. Traditional
approaches use sensors and expensive types of equipment with high computational
costs and complexity of data along with manual inspection which highly demands
on specialist’s knowledge and experience, which leads to a labor-intensive, time-
consuming process. For fast and reliable detection, automatic detection is expected
to develop instead of a subjective and slower human inspection and sensor-based
approach. There was no open-source data for our use case and specifically nothing
that would fit the road structure of Bangladesh. So we collected and labeled the
data on our own. Instead of making the system real-time, we thought of collecting
video data by installing cameras on the city corporation’s garbage trucks. This
initiative would have a low installation cost and we will be able to collect more
data as the trucks traverse around almost every corner of the city. In our study, we
applied deep neural networks to extract information about the road and understand
the environment surrounding the vehicle. The three models were made compatible
with both image and video input.

1.2 Importance of Road Inspection

Z. kamal stated in his article [22] that the death toll due to road accidents in the
last half of a single year was 2,297 while the number of injure people crossed five
thousand. Senior Correspondent of BDNews24 [31] reported death of over seven
thousand people due to road accidents across the country in 2018. Throughout
the year over 5000 crashes were reported.In a country like Bangladesh monitoring
road conditions is very important. Road maintenance and detection of road surface
defects, such as cracks and potholes is a prolonged process, yet a very important
part of development. The government needs accurate information to improve road

1

conditions and schedule maintenance at regular intervals. A driver finds it difficult
to control the vehicles due to sudden potholes, bumps, and cracks. Thus, road image
analysis is a very important aspect of the analysis of the road condition.

1.3 Motivation

Khandoker Maniruzzaman in his paper ”Road Accidents in Bangladesh” [3] stated
that the accident rate rose by 43% between 1982 and 200, however, the most alarm-
ing fact is that the accident fatalities increased by 400%. One of the contributing
factors being road condition, as alarmed citizens it is our responsibility to help the
government tackle this overwhelming problem. We should provide an outline to the
government in order for them to take into account how bad the condition of the
road in Bangladesh is right now and which roads need immediate repair.

1.4 Objective

Most of the roads in our country are not built maintaining any standard structure.
The highways connecting the major divisions of the country are also poorly main-
tained and in dire need of repair. Most of the drivers often being inexperienced find
it harder to drive in these damaged roads causing even fatal head-on collision.
We are conducting this study in order to address the underlying issue of these
accidents. By automating the process of road inspection, our study will assist the
government to effectively schedule routined maintenance of the major roads as well
as identify the roads that need the firstmost attention. As no research has been
done in our country regarding this field, we will collect data on our own to feed our
machine learning models in order to accelerate the identification of damaged roads
by classifying potholes, cracks and good roads.

1.5 Challenges faced

Firstly, there was no prior research done in this field, hence there was no readily
available data or survey that would support our objective.
Secondly, the road infrastructure of our country does not follow the standard pro-
tocols.
Thirdly, the streets in the capital are so crowded that it is harder to find empty
roads to collect images without any interference.

To tackle these challenges, we conducted a survey from all age group of people who
travel on a regular basis to identify the majorly affected roads of Bangladesh.

1.6 Thesis outline

The aim of this paper was to construct a model capable of detecting potholes and
cracks and determine is the road in a good or bad condition based on image pro-
cessing. The aim of the authors was to formulate the best model for achieving the
maximum accuracy and provide an accurate output. To begin with, in the first

2

chapter (Chapter 1), an overview of the system and its importance in Bangladesh’s
perspective are discussed. The Problem Statement was to develop and introduce a
road inspection system in context to our country, thereby help avoid road accidents.
Secondly, in (Chapter 2) related work in this field that identified cracks and potholes
using various primitive methods are discussed along with their limitations. Outlining
significant results achieved by researchers. As well as the lackings in the existing
methods were overviewed.
Next, in (Chapter 3) background analysis of various supervised algorithms is dis-
cussed along with their implementation details. These algorithms are used in the
research pipeline later on.
In (Chapter 4) the Research Methodology and workflows are proposed. Details
about data collection, pre-processing, feature selection, project work-flow, and train
and test data conducted in the research are elaborated.
Furthermore, in (Chapter 5) selected models are optimized, workflow overview and
flow chart of the various models are provided along with the proposed model’s
overview (CNN, ResNet34, CNN-XGBoost) and training architecture details are
elaborated.
In (Chapter 6) Experimental results and analysis are conducted. Comparison, con-
fusion matrix, runtime evaluation, and final model evaluation are discussed. Visual
comparisons of the models are provided. Accuracy metrics are tabulated.
Conclusions and further work were drawn in the last chapter (chapter 7)

3

Chapter 2

Related Work

Mednis et al. [6] proposed an automated system to detect potholes in real-time with
little or no human interaction which will be based on Smartphones with Accelerom-
eters and is implemented on the Android Operating System. They tried to avoid
using expensive equipment by only using smartphones only. As they wanted little or
no human interaction, they did not prefer collecting manual collections of pictures of
roads with potholes. An automated survey approach carried out by smart-phones.
Automated embedded sensing systems, including smartphones, have two general
classes of sensors which are microphone and accelerometers to be used for pothole
detection. The author focused on accelerometer data processing for pothole which
is implemented on Android so that the system will be portable with less hardware
complexity. The system running on a smart-phone should be able to detect while
driving in different vehicles. Firstly using LynxNet collar devices, data from the
accelerometer sensors were collected on an urban road. MansOS based software was
used for the collection of raw acceleration data. Z THRESH which the simplest event
detection algorithm was first tested on the data set. This algorithm identifies the
types of potholes. After that, a bit advanced algorithm (Z-DIFF) was tested, which
detected the fast changes in vertical acceleration data. Both the algorithm needs to
know the Z-axis position. As the device is not using complex hardware resources
standard deviation of vertical axis acceleration was used which was implemented
in algorithm STDEV. For evaluating these algorithms the authors firstly made a
ground rule for the test track using the Walking GPS approach and then run test
drive sessions with 4 different smartphones (Samsung i5, Samsung Galaxy S, HTC
Desire, HTC HD2). After using the event detection algorithms on collected data,
statistical analysis was made in terms of previously marked ground truths which
were performed using EGNOS. Moreover, tuning of the collected data with an ap-
propriate threshold level for all algorithms was needed. Threshold values between
0.1g to 0.8g were used for tuning the Z-DIFF algorithm. For this value, 92% of all
ground truth items were true positive 77% of all detected events were true hits. The
test drive sessions detected irregularities 83-90% of potholes clusters. We can see
7% were not detected by any of the algorithms and 8% of the gapes escaped from
the algorithms. Although they had an accuracy of 90% detection, the system is
not enriched with self-calibration functionality. Moreover, using only smartphones
limits the collection of data as it cannot handle huge amounts of data and it does
not have such high computational power.
Madli et al.[18] The paper proposes a solution to track potholes and bumps of roads

4

within a low cost which gives timely alert to drivers about the presence of potholes
and bumps. The author proposed a system that will identify potholes as well as
bumps using ultrasonic sensors. It will not only calculate the depth and height
of the potholes and bumps but also measure the geographical location coordinates
of the irregularities of the roads using a GPS receiver. Capturing all the factors
the system will alert the drivers so that they can take precautionary steps to avoid
accidents. Peripheral Interface Control (PIC 16F887A) microcontroller is used in
this system because it is cheap, available and it supports a high application. This
microcontroller processes all the sensor inputs and alerts the drivers. Moreover, the
HC-SR04 ultrasonic sensor is used which captures the distance using the reflection
of sound waves. Again, the GPS Receiver uses a satellite navigation system to iden-
tify geographic position as well as time and weather conditions. In addition to that,
GSM SIM 900 is used for mobile communication by which calls and text messages
can be sent or received. Using all these components the systems divided it’s architec-
ture into 3 parts. Firstly, the microcontroller module is used to gather information
about potholes and send the information to the server. Secondly, the server module
acts like an intermediary layer microcontroller module and the mobile application
processes and stores the information into a database by using an android device.
Finally, a mobile application module is installed in the driver’s android phone which
gives timely alert to the drivers using the stored information in the database. They
run an experimental setup in two phases, firstly they stored information about pot-
holes in the server then generate alerts based on the information in the database.
The microcontroller module was tested on a toy car with a threshold value of 5cm
and worked as expected but the whole system is only based on sending text messages
to drivers if there is any pothole or uneven bump. It did not employ any machine
learning or image processing approach to solve the problem thus they were not able
to show any percentage of accuracy level. Moreover, the information stored on a
mobile server database will not be effective for a huge amount of data and if there
is any network error the system will fail to alert the drivers in real-time.
Kawasaki et al. [23] The study approaches a system of shadow reduction to detect
cracks with higher accuracy based on the percolation theory. Taking images from
roads as input and then propose an algorithm for crack detection using a diagnos-
tic analysis system so that cracks can be detected accurately and fast. To avoid
manpower analysis in detecting and repairing cracks of road standardization and
automation road diagnostic methods are required within low cost. In the study, at
the first stage, they investigated the principles of cracks, potholes, and ruts. They
found that repetitive construction, temperature and weather change, heavy load
and vibration, increased traffic volume causes cracks where due to surface layer and
underlying base layer weakness, sometimes tire pressure peel of the surface layer
and creates potholes. On the other hand, passing through on the same point re-
peatedly causes ruts. So, to detect all these problems the defected road images are
collected through stereo camera and areas are captured by a stereo machine and
U-V disparity. The detected region is subjected to image processing. A pothole
is detected by the inertial measurement unit (IMU) where a hole is identified by
the data obtained from laser range finder (LRF) and then GPS mapping is done.
The input images contain shadows of trees and other objects and due to camera
conditions, a photo was taken time and weather also affect the image. All these rea-
sons lead to the misdetection of cracks. For that, to detect cracks more accurately

5

firstly linear transformation is applied. Secondly, closing processing (morphological
processing) is applied to eliminating depletion. Thirdly, a smoothing filter named
Gaussian filter is used for removing noise by using Gaussian function. The next
step is shadow removal where a Gaussian filter is applied. Here, a boundary is set
between the shadow area and the non-shadow area. After that, the discriminant
analysis is used to binarize images which calculate threshold automatically. After
that, an anisotropic smoothing filter’s equation is used to smooth the detected areas.
Finally, the percolation theory is applied in 4 steps to image processing. The com-
parison of coincidence between the output images and ground truth images is used
to find the crack detection rate. All the equations used to remove noise and shadow
for detecting crack more accurately. If no noise is considered then the detection rate
is 47.9% which is very low then the threshold value is changed and the problem is
solved but the author said that still, noise appears which is again a problem.
Ajit et al.[7] Indian rural and suburban roads have faded lanes, irregular potholes,
improper and invisible road signs, etc which causes many accidents. To unravel
this acute problem, the study is undertaken with the objectives to create a survey
of Indian roads, to suggest the tactic to detect lanes, potholes and road sign, and
their classification and to suggest automated driver guidance mechanisms. During
this case, Color Segmentation and Shape Modeling with Thin Spline Transforma-
tion (TPS) is used with the nearest neighbor classifier for road sign detection and
Classification. Further, K-means Clustering-based algorithm is adopted for pothole
detection. Road Image analysis is an extremely important aspect of automated
driver networks. There are phases of algorithms to solve the issues. Firstly, ROI
Segmentation with Image thresholding is employed to detect sign-color information.
Then, Thinning and Edge Detection, Identifying the Region and Clustering, Thin
Plate Spline (TPS) and Recognition, Path hole detection and lane detection thor-
ough Hough transformation (HT) maps. Real-Time Road Images with real traffic
conditions present many challenges for that image processing and analysis is re-
quired.
Jin at el. [5] proposes a histogram-based texture measure to extract the features of
an image and identify potholes using a nonlinear support vector machine (SVM).
Longitudinal cracks, transversal cracks, alligator cracks, and pothole are basically
addressed as pavement defects. The pavement defect detection gives important in-
formation about the road network conditions. This defect detection system is a
combination of acquisition and pre-processing of images, detection, and classifica-
tion of defects and doing necessary measurements. The defect classification is based
on image segmentation. Wavelet transform-based road crack extraction algorithm
was proposed by the authors which extract linear features effectively. Image seg-
mentation using the Otsu method, collected information of a selected area, contour
tracking principle to calculate the perimeter of the defected region, helped to obtain
the crack region. To discriminate against the defected targets, grey variance-based
projection and correlation coefficients were used by the authors. The author of this
paper mainly focuses on identifying potholes and cracks and distinguishing between
them using partial differential equations (PDE) models. This method uses a nonlin-
ear support vector machine to identify whether the area is a pothole or not. Image
segmentation method based on partial differential equations is important because it
uses the local boundary information of the image, image region statistics and char-
acteristics to get closed one-pixel width edges to get satisfactory results that could

6

not be obtained from traditional boundary-based detection method.
Observing road images with cracks and potholes, it is found that they have different
granular sections from other normal road images. So, the method targets to detect
the difference in the granular section and then find out potholes. The authors used
80 pieces of sample images for the experiment where 50 images were for training and
the remaining 30 images were for testing. The 50 sample images were transformed
into grey-scale images. After that, for each image Eigenvalues were calculated and
using image texture features including the average greyscale, contrast, 3-order mo-
ments, consistency and entropy as an eigenvector for the target region. After that,
the values were normalized by SVM and then the model recognized 30 test images
correctly. Despite all these, the model will not be effective for some complicated
cases such as if the pothole is covered with mud or dust then the depression value
becomes relatively flat with no grainy section. So, in case of the defect classes,
the training model cannot correctly identify them and thus the number of training
samples should increase for correct reorganization.

7

Chapter 3

Background Analysis

3.1 Neural Networks

The neural network forms the base of deep learning, a subfield of machine learning
where the algorithms are inspired by human brain’s structure. Neural networks take
in data to train themselves to recognize the patterns in this data and predict the
outputs for a new set of similar data. They decipher tangible information through a
sort of machine recognition, marking or grouping crude info. The examples they per-
ceive can be numerical, contained in vectors, into which all certifiable information,
can be pictures, sound, content or time arrangement. Neural systems are comprised
of layers of neurons.[14] The neuron is the core processing unit of the network. The
first layer which receives the input is called the input layer and the output layer
predicts the final output. The layers between this input and output layers are the
hidden layers that perform the most the computations required by the network.

Figure 3.1: Two layer Neural Network Model

8

The neuron of one layer is connected to the next layer’s neuron through channels
having a weight value. A node combines input from the information with a hard and
fast of coefficients, or weights, that either expand or hose down that input, thereby
assigning importance to inputs in regards to the undertaking the algorithm is trying
to learn; for example, identifying input with less error. These enter-weight products
are summed after which the sum is passed through a node’s activation function, to
decide whether and to what quantity that signal should progress similarly through
the network to affect the ultimate outcome. If the alerts pass via, the neuron has
been activated. A node layer is a column of those neuron-like switches that switch
on or off as the information is taken care of through the net. Each layer’s output
is simultaneously the following layer’s enter, starting from a preliminary input layer
receiving statistics. Pairing the model’s adjustable weights with input features is how
we assign significance to those capabilities in regards to how the neural community
classifies and clusters enter.

3.2 Convolutionl Neural Network

The first convolutional neural system was proposed by Hubel and Wiesel[1] dur-
ing the 1960s through investigations of neurons in monkey cortexes identified with
neighborhood affectability and course determination. The concept of the convolu-
tional neural network is the result of the well-known algorithms of artificial neural
networks plus a set of operations that we will call convolution by combining these
two kinds of ideas here we get the convolutional neural network or simply CNN.
Neural networks are composed of artificial neurons that simulate biological neurons
in a limited way. CNN is a Deep Learning calculation that can take in an info
picture, allocate significance such as weight and bias to different viewpoints in the
picture and have the option to separate one from the other. CNN’s are primarily
made out of a convolutional layer, a pooled layer, and a fully connected layer. The
first layer of CNN is composed of one or more layers of convolution after this we
can apply one or more steps of pooling after that we design what we call a fully
connected layer. Firstly, the key convolution layer whose main work is to extricate
highlights from input pictures or include maps. Each convolutional layer can have
different convolution kernels, which is utilized to get numerous feature maps. The
convolution layer’s calculation is explained in the next page.

9

Figure 3.2: Convolutional layer calculation

Considering the figure 3.2, we have a set of elements that are represented by a
set of inputs x1, x2, x3 up to xN which are connected to activation function f
but the connection between input and the activation function is drawn by a set of
weight which is represented by Ω1, Ω2 up to ΩN . Moreover we have a bias which is
represented by b and the output of the activation function is Z.

z = f(
N∑
i=1

xiwi + b) (3.1)

Where, X = (x1, x2, x3........,xN) and Ω = (w1, w2,w3........,wN)

z is output of the function applied to the input weighted by all the weights that are
inside Ω after adding the bias. So here we connect some input and have a single
output.
After a convolution layer, once we get the feature maps, we generally include a
pooling or a sub-inspecting layer in CNN layers. Like the convolutional Layer,
the pooling layer is liable for diminishing the spatial size of the convolved feature
map. This is to diminish the computational requirement to process the information
through dimensionality decrease. Besides, it is required so as to make our model
rotational and positional invariant, in this way keeping up the procedure of viably
preparing the model. Pooling reduced the training time and complexity, while re-
ducing the over-fitting. There are two types of pooling. One is max pooling and
another is average pooling.

10

Figure 3.3: Maxpooling and Average pooling

Max Pooling restores the highest value from the part of the picture secured by the
Kernel and it also acts as a noise suppressant and preserves the texture of the image
well. Whereas, the average pooling restores the mean value from the part of the
picture secured by the Kernel. Basically it simply performs dimensionality reduction
as a noise suppressing mechanism.

After the convolution and pooling layer, the final output is flattened and feed it
to a regular Neural Network for classification purposes. The capacity of the fully
connected layer is to incorporate the numerous picture maps got after the picture
is gone through various convolution layers and pooling layers to acquire the high-
layer semantic highlights of the picture for consequent image classification. After
converting the input image into a suitable form, the image is flattened into a column
vector. After that, the flattened output is taken care of to a feed-forward neural
system and backpropagation applied to each training iteration. After a number of
epochs, the model can recognize ruling and low-level features in pictures and arrange
them utilizing the Softmax Classification system.

11

Figure 3.4: CNN model overview

3.3 Residual Network

ResNet, short for Residual Networks is a classic neural network used for an image
classification task. For solving the problem in training very deep networks, residual
neural networks were introduced.ResNets solve is the vanishing gradient problem
for a deep network. Using ResNet[24], the gradients can flow directly through the
skip connections backward from later layers to initial filters.

Figure 3.5: ResNet block

Residual functions formulate the layers having a reference to the input through
identity or ‘skip connection’ such that theoretically if it required to push the layer

12

down to zero it could easily do it. This identity mapping having no parameters,
adds the output from the previous layer to the next layer. Sometimes, the input
function (x) and the output function (F(x)) will not have an identical dimension.
The operation of convolution shrinks down the spatial resolution of an image. For
example, a 3x3 convolution on a 32x32 image leads a 30x30 image. Moreover, the
identity mapping is multiplied by a linear projection in order to expand the channels
of shortcuts to match the residual. We can use these identity shortcuts (x) directly
and for changing dimensions, x performs identity mapping with extra zero entries
padded with the increased dimension and then to match the dimension projection
shortcut is used.

3.4 Extreme Gradient Boosting

XGBoost stands for eXtreme Gradient Boosting. XGBoost is an enhanced dis-
persed gradient boosting library intended to be exceptionally proficient, adaptable
and versatile. It actualizes machine learning calculations under the Gradient Boost-
ing structure. It is an implementation of gradient boosted based on decision trees
designed for better speed and performance [16]. The following figure below shows
the evaluation of XgBoost from tree-based algorithms over the years.

Figure 3.6: Evaluation of XGboost

The main two reasons for using XGBoost are to improve the execution speed and
model Performance[10] especially engineered to exploit each bit of memory and re-
sources of hardware. Artificial neural networks are known to perform better for
images, videos but XgBoost is the king when it comes to small or medium structure
data and it performs really well in classification, regression, ranking, user-defined
prediction problems e.t.c. XgBoost algorithm was first developed as a research
project at the University of Washington. It portable because it runs smoothly on
Windows, Linux and OS X. It supports all major programming languages including
C++, Python, Java, Scala, Julia e.t.c. Moreover, it supports cloud integration such
as AWS, Azure, and Yarn Clusters. XG Boost targets to give a scalable, portable

13

and Distributed Gradient Boosting Library. There are some features such as clever
penalization of trees, a proportional shrinking of leaf nodes, Newton Boosting, ex-
tra randomization parameter makes it different from other gradient boosting algo-
rithms[2]. Tianqi Chen[19], the developer of XGBoost, believes this algorithm makes
use of a greater regularized model formalization for you to manipulate over-fitting,
leading to higher performance.

14

Chapter 4

Model Implementation and
Optimization

4.1 Overview

Our primary focus was to build deep learning models while exploring the arena of
convolutional and residual learning. So we focused on two neural network models:
CNN and Resnet34. This section provides an overview of how we approached the
designing and setup of the models’ architecture to optimize and find the best match
for our problem statement.

• The dataset is divided into training and test set with a split ratio of 80:20.
This test set is not used anywhere in the training and kept out to perform the
true evaluation for various models.

• The training set is further split into training and validation set, with an 80:20
ratio again. This brings our train, validation and test ratio as 64:16:20.

• Various models are developed and trained over this dataset. Model hyperpa-
rameters are tuned using the validation dataset to get the best results from
that particular model.

• Finally all the models are evaluated and juxtaposed for analysis. Comparative
results are obtained for all the models, and the best model is identified among
those.

The following page includes a flowchart of our workflow:

15

Figure 4.1: Work Flow

16

4.2 Dataset collection

There was no open-source data for our use case and specifically nothing that would
fit the road structure of Bangladesh. We needed a dataset with images that contain
all scenarios posing a challenge to our problem statement. The dataset must cover
variations such as: size of potholes, width and length of cracks, brightness and so on
while taking all corner cases into account. The manual method of taking pictures
and videos seemed the best method to ensure variety and also economical feasibility
for our study. The main components of the data collection process were:

• Going to various locations for taking pictures at different times, light and
weather conditions

• Conducting surveys to find out which local roads are mostly damaged

• Using google street view to locate the most damaged parts in the highways

4.3 Pre-processing

First step of pre-processing was to extract frames from the videos that were recorded
at 30fps. We extracted 2 frames per second to reduce redundancy in our training
data by removing similar images, thus preventing our deep learning network model
from overfitting. All images were then processed using PIL (Python image library)
and resized to 128x128, thus minimizing the information loss from the image. Since
we will be training our models in the RGB space, we also converted single-channel
also known as grayscale images into 3 channeled (RGB) images by placing the same
channel for all the three channels for the resultant RGB image.

Figure 4.2: Processed Images

17

In order to further diversify our data synthetically, we have also applied augmenta-
tion techniques which will be broadly discussed in (section 4.4.2). Then we labeled
all images with relevant tags (Potholes, cracks and good roads) manually by making
observations and judgments.

4.4 Design and training

CNNs and ResNets are well-known models that are previously used many times
to classify images. Comparatively, integration of gradient boosting[25] with neural
network models are new to the field and require more research. As our dataset
contains a lot of variation, it provides a lot of space to learn. Hence, we have
incorporated XGBoost model with our CNN feature extractor to expand the scope
of our study. The following sections provide implementation and architectural details
of these three models respectively.

4.4.1 CNN

CNN (Convolution Neural Network) model includes several layers like the input
layer, convolution layers, pooling layers, non-linear activation layer and others.
There are many standard architectures proposed that help solving complex clas-
sification problems. One of those is a VGG16 architecture that inspires our model.

Architecture

VGG architecture was first introduced by K. Simonyan and A. Zisserman in their
paper “Very Deep Convolutional Networks for Large-Scale Image Recognition” [13].
The substitution of large kernel-size filters with consecutive 3x3 ones improved the
performance of the model significantly. A traditional VGG16 architecture has 16
layers consisting of the above-mentioned layers. However, our developed architecture
is a modified version of VGG16, such that it fits to our needs.
The architecture for our proposed model is given below in figure 4.3:

Figure 4.3: VGG16 inspired architecture

The input layer is fed 128x128 resized RGB images and 1x1 sized paddings are
added. These two things are done to avoid overhead calculations while at the same
time retain more information. Zero paddings add zero pixels (black frame) around
the images that allow the kernel to cover more space. The network comprises of two

18

primary modules:

Feature Extraction: This module has 4 convolutional layer blocks with Rectified
Linear Unit (ReLU) as the activation function. The convolutional layer performs
the necessary calculations by determining the extraction of specific patterns amongst
the images. We used a 3x3 kernel-size filter as it was the appropriate for our input
data size. As for the number of filters, they are set in the power of 2. We tried out
different combinations to find out the suitable numbers and ultimately set it as 64
and 128 accordingly. Given an input vector of dxd, padding size p, filter size k, and
stride s, the output size of each convolution layer is determined as:

S =
(d− k + 2p)

s
+ 1 (4.1)

As we have set s=1, p = 1 and filter size 3, the equation for our model becomes:

S = d (4.2)

The reason for using the kernel size of 3x3 is that it allows the convolutional layers
to generate a feature map while using only minimal parameters. The values of the
feature map are then calculated using the following formula where m and n denote
the rows and column of the resultant matrix:

Conv[m,n] = (d ∗ k)[m,n] =
∑
i

∑
j

k[i, j]d[m− i, n− j] (4.3)

This map is then passed through a non-linear activation function named ReLU that
transforms all the negative inputs to zero. This function allows the neurons to be
activated sparsely[28]:

ReLU(x) = max(x, 0) (4.4)

The initial convolutional layers identify the simpler features, as we go into the deeper
layers, more complex features are extracted. Maxpooling is applied to these feature
maps to reduce overfitting and avoid slow convergence on validation data. The
output size of this layer is given by S’, Where pool size is denoted as P:

S ′ =
(d− P) + 2p

s
+ 1 (4.5)

In our case, Pool size is 2, stride s =2 and padding is 1. So the formula becomes:

S ′ =
d

2
+ 1 (4.6)

These pooling layers downsize the samples by reducing the parameters making it
less complex. We have used maxpooling layers with window size 2 and default stride
to make the model more efficient.

Classification module: The output of the final maxpooling layer is first flattened
resulting in a one-dimensional array of length 10368, that data is then passed onto
the fully connected layers. These Dense (fully connected) layers are stacked together
with the last layer using Softmax activation function. The main goal of these layers
is to use the extracted high-level features to classify the inputs into defined labels.

19

Here, within the final layer, there are three labels: Potholes, Cracks and Good roads.
Softmax function is used in this layer specifically to get probabilistic values for each
label to classify the input images into the above-mentioned classes. The function is
defined as:

Softmax(x)i =
exp(xi)∑
j exp(xj))

(4.7)

where exp(xi) is the total weighted sum of inputs for each output unit j.
Below is a summary of our architecture:

Layer Layer content Tensor Size
0 input Image 3x128x128
1 zeropadding(1x1) 3x130x130
2 conv(3x3, 64 maps) 64x128x128
3 zeropadding(1x1) 64x130x130
4 maxpooling(2x2, stride 1) 64x65x65
5 zeropadding(1x1) 64x67x67
6 conv(3x3, 64 maps) 64x65x65
7 zeropadding(1x1) 64x67x67
8 maxpooling(2x2, stride 1) 64x33x33
9 zeropadding(1x1) 128x35x35
10 conv(3x3, 64 maps) 128x33x33
11 zeropadding(1x1) 128x35x35
12 maxpooling(2x2, stride 1) 64x17x17
13 zeropadding(1x1) 128x19x19
14 conv(3x3, 64 maps) 128x17x17
15 zeropadding(1x1) 128x19x19
16 maxpooling(2x2, stride 1) 128x9x9
17 flatten 10368x1x1
18 dense 4096x1x1
19 dense 4096x1x1
20 dense+softmax 3x1x1

Table 4.1: CNN architecture summary

Training

Preliminary training was performed on a smaller dataset with just 1315 images
and later, more data was captured that increased the dataset to 2762 images. The
validation accuracy improved by 22.84% in doing so. The comparison between two
datasets and is given below:

Old Dataset (1315) New Dataset (2762)
Number of epochs 100 100
Training accuracy 91.6% 97.28%

Validation accuracy 63.89% 78.48%

Table 4.2: CNN training results

20

The training process comprises of two parts: Forward pass and backward pass.
Initially, random weights are allotted to all the trainable parameters (weights and

biases). During the forward pass, the training input data is fed to the network and
predictions (label probabilities for each class) are computed. Using these predictions
and the ground truths, we use categorical cross-entropy cost function to compute
the model’s loss. The loss function is defined as:

J(W) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (4.8)

Then backward pass takes the computed loss into account and updates all the param-
eters with the right proportion so the model learns to make correct predictions i.e.
the predicted output comes closer to the actual output. We start with a learning
rate of 0.001, which is continuously optimized during the run using Adam opti-
mizer[11]. Adam incorporates two other well-known optimizers RMSprop and SGD
with momentum [9], making this an adaptive learning rate method. It incorporated
momentum and moving averages(m̂t,v̂t) while updating weights denoted with wt

using the following function:

wt = wt − 1η
m̂t√
v̂t + ε

(4.9)

Here, η is the learning rate which is initially set to 0.001.

Below is the list of hyperparameters that have been optimized to achieve the highest
performance.

Parameter Description Value
K Number of the kernels form convolution layer 64,128
f Filter Size of convolution layer (3,3)(3,3)
s Stride size of convolution layer Default
P Pool size of convolution layer (1,1)(1,1)

J(W) Loss function Categorical Cross-entropy
ReLU(x) Activation function ReLU

Softmax(x) Activation function Softmax
η Learning Rate 0.001
b Batch size 128

Table 4.3: CNN hyperparameters details

The following page contains our training accuracy curve:

21

Figure 4.4: Epoch vs Accuracy curve for CNN training

4.4.2 ResNet34

ResNet34 [20] introduces a solution to the performance degradation problem of
very deep networks due to accuracy saturation [10]. Very deep networks often face
the problem of vanishing gradient, thus loosing substantial valuable information for
deeper layer. ResNet successfully deals with this problem, by using skip connections
to pass the information from past layers to the deeper layers. As per the building
block discussed in (chapter 3.3) , we followed the below equation for our model:

Y = F(x, {Wi}) + x (4.10)

Where F(x, {Wi}) is the residual mapping that we have learned. Generally, a resid-
ual function F(x) is defined as following, denoting the underlying mapping as H(x):

F(x) = H(x)− x (4.11)

The addition operation between F and x, the inputs is performed by both shortcut
and element-wise connection. Finally, a linear projection Ws has been included in
the equation to ensure the dimensions are equal:

Y = F(x, {Wi}) +Wsx (4.12)

Data Augmentation

We added an augmentation module to the input pipeline in order to add more
variations to the training data. Data Augmentation is a method that increases
the number of images in a dataset by transforming the existing images [26] We
choose a few transformation techniques to expand our dataset to reduce overfitting

22

furthermore. We have applied horizontal flipping, brightness and contrast changes,
rotation and symmetrical warping.

Architecture

Our model uses the block given in figure 5.2 as its main component and starts with
one convolutional layer followed by a maxpool layer. The output sizes of these
layers were calculated using equations 5.1 and 5.4 respectively. These two steps
were followed by 4 identical layers stacked together which perform convolution with
a kernel-size of 3x3 and a restricted feature map dimension of 64, 128, 256 and 512
in order. The input is bypassed every two convolutional layers while the dimensions
of that entire layer are kept constant.
A brief representation of our model is given below:

Figure 4.5: ResNet34 Architecture of our model

In every block, convolution is followed by batch normalization [17] and ReLU[28]
activation, except the last convolution of the block. After these 4 layers are com-
puted, two average pooling[29] layer operation is done where the kernel-size and
stride are automatically adapted according to needs. Finally, a flattened feature map
is passed through the linear layers using softmax function for the desired outcome.

The following page contains a summary of our architecture:

23

Layer type Output Shape Parameters
Conv2d (64, 64, 64) 9,408

MaxPool2d (64, 32, 32) 0
Conv2d (64, 32, 32) 36,864
Conv2d (64, 32, 32) 36,864
Conv2d (64, 32, 32) 36,864
Conv2d (64, 32, 32) 36,864
Conv2d (64, 32, 32) 36,864
Conv2d (64, 32, 32) 36,864
Conv2d (128, 16, 16) 73,728
Conv2d (128, 16, 16) 147,456
Conv2d (128, 16, 16) 8,192
Conv2d (128, 16, 16) 147,456
Conv2d (128, 16, 16) 147,456
Conv2d (128, 16, 16) 147,456
Conv2d (128, 16, 16) 147,456
Conv2d (128, 16, 16) 147,456
Conv2d (128, 16, 16) 147,456
Conv2d (256, 8, 8) 294,912
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 32,768
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 589,824
Conv2d (256, 8, 8) 589,824
Conv2d (512, 4, 4) 1,179,648
Conv2d (512, 4, 4) 2,359,296
Conv2d (512, 4, 4) 131,072
Conv2d (512, 4, 4) 2,359,296
Conv2d (512, 4, 4) 2,359,296
Conv2d (512, 4, 4) 2,359,296
Conv2d (512, 4, 4) 2,359,296

AdaptiveAvgPool2d (512, 1, 1) 0
AdaptiveMaxPool2d (512, 1, 1) 0

Flatten (1024) 0
Dropout (1024) 0
Linear (512) 524,800

Dropout (512) 0
Linear (3) 1,539

Table 4.4: ResNet34 architecture details

24

Training

We used the transfer learning[12] approach here in which we transfer previously
learned information to train our dataset. This is done by taking the same pre-
trained neural network that has been trained on a larger dataset and the learned
information is preserved. This not only spares us from designing a very deep network
from scratch but also provides a performance boost without the need to accumulate
vast data. A visual representation of transfer learning used by is given below:

Figure 4.6: Transfer learning overview of our model

To achieve the transfer learning, we first loaded the parameters of a ResNet model
trained over the ImageNet[4] dataset. Fully connected layer of this pre-trained model
was removed and two fully connected layers had been added followed by adaptive
pooling layers. To reduce overfitting, we also added two dropout [15] layers that
randomly drops information units in order to prevent the network to memorize a
certain pattern and adapt accordingly. The last layer was accompanied by softmax
activation function in order to classify the inputs. Below is our training validation
loss curve:

Figure 4.7: Epoch vs Loss curve for ResNet34 training

25

4.4.3 CNN-XGboost

The process of integrating a Convolutional neural Network with extreme gradient
boosting starts with identifying the two main operations: feature extraction and
multi-label classification [30]. XGBoost being a member of the gradient boosting
family [8] accords the same principals that have been followed in our previous mod-
els. We have consolidated extreme gradient boosting as a classifier along with a
convolutional neural network extracting the features from our dataset.

Architecture

Similar to the described network in the section (4.4.1), the two main operations
needed to be done here are feature extraction and classification. The architecture
and parameters of the feature extraction module of this model are similar to our
previously built CNN model with XGBoost added at the end as a classifier to predict
the classes. A simplified architecture is given below:

Figure 4.8: CNN and XGboost combined architecture

Training

After training our respective CNN model, we extracted a feature vector from the
penultimate dense layer with 4096 features. Similar feature vector from across our
training data acts as a new training dataset that has to be fed into the XGboost
classifier. Denoting the inputs extracted from this feature map as xf we derived the
output as :

ŷi =
∑
j

WjXf (4.13)

Another representation of the output is:

ŷi =
t∑

t=1

ft(Xf) (4.14)

Where ft(Xf) represents the function performing necessary calculation related to
output scores of leaf nodes.

26

As Extreme gradient boosting algorithm cannot be optimized [19] using conventional
methods, we have used an objective function to compute the loss during training:

Lx =
n∑

i=1

l(yi, ŷi + ft(Xf)) + Ω(ft) (4.15)

Ω(ft) = γT +
1

2
λ

T∑
j=1

w2
j (4.16)

Here, γ is the loss reduction value that controls the split of a node and T is the
number of leaves in the tree. The complexity of the tree has been limited by setting
the depth of trees as 7. This decreases the chances of overfitting and supports the
model to learn patterns related to a particular unit specifically. As the depth of
the tree is set to 7 the value of T is automatically set to 72. We have set objective
function as multiclass softmax in order to classify the inputs using the softmax
objective. Softmax is used here by the objective function to get the class that has
the maximum probability as an output.

The list of manually adjusted hyperparameters for optimizing the model is given
below:

Parameter Description Value
η Learning rate 0.1
Lx Loss function Objective(multi:softmax)

NBR Number of trees 120
MD Maximum depth of tree 7
T Number of leaf nodes 128

Softmax(x) Activation function Softmax

Table 4.5: XGboost hyperparameters details

27

Chapter 5

Results and Analysis

5.1 Results

The three models that showed the potential for giving the best results for our clas-
sification problem are built and trained after further model optimization and hyper
parameter tuning using the methodology described in (chapter 4). The models are
evaluated using confusion matrices and compared using the accuracy, precision and
recall scores.
We had 553 images in our test set that we fed to all three models and the results
are discussed in this chapter. Below is the confusion matrix of CNN model that we
have generated in order to visualize and further analyze the outcome.

Figure 5.1: Confusion matrix of CNN model

As we have a multi-class problem, so we had to modify the binary approach of
calculating Precision and Recall score using the below equations:

Precision =
1

3

3∑
c=1

Cc

Tc
(5.1)

28

Recall =
1

3

3∑
c=1

Cc

Ac

(5.2)

Where Cc denotes correctly predicted images of class ”c”, Tc denotes total predicted
images of class ”c” and Ac denotes number of actual images of class ”c”.
The confusion matrices for rest of the models’ is shown below. Precision and Recall
calculations were performed on this computed matrices in a similar fashion:

Figure 5.2: Confusion matrix of ResNet34 model

Figure 5.3: Confusion matrix of CNN+XGboost model

29

Training and evaluation for our model was performed on Google Colab service as
they provide a K80 GPU for the GPU runitme. This accelerates the complete process
by many-folds when compared to performing the same on normal CPU. Complete
data was moved to our google drive, which was then linked with our colab notebook
in order to access the data in our code. The training accuracy, precision and recall
scores of all three models are graphically compared below:

Figure 5.4: Accuracy, Precision and Recall of three models

The highest accuracy of 87.86% was achieved by ResNet34 model, while the other
two models, lagged behind with an accuracy of 76.49% (CNN) and 75.23% (XG-
boost).

5.2 Final model analysis

To analyze the ResNet34 model further, we looked into the training details. We can
see, in the beginning, the error rate was 21.12% at epoch 0 that reduced down to
11.59% at the end, which is nearly halved than the initial rate. Validation loss has
also been reduced by 28.55% . The details are given in the following page:

30

Epoch Training loss Validation loss Error rate Accuracy Time
0 1.249568 0.592242 0.211957 0.788043 04:35
1 0.846661 0.571916 0.199275 0.800725 00:13
2 0.585616 0.329725 0.134058 0.865942 00:11
3 0.425057 0.347088 0.139493 0.860507 00:11
4 0.306629 0.389954 0.148551 0.851449 00:11
5 0.240832 0.366185 0.117754 0.882246 00:11
6 0.187858 0.399993 0.125000 0.875000 00:11
7 0.153490 0.461374 0.125000 0.875000 00:11
8 0.118940 0.441579 0.115942 0.884058 00:11
9 0.097417 0.423106 0.115942 0.884058 00:11

Table 5.1: ResNet34 training details

For comparison, in our thesis, we use the algorithm proposed by Penghui Wang
[27] and Amila Akagic [21], further referred to as model 1 and model 2 respectively.
These two models are chosen, as they are the most recent works that target a sim-
ilar problem statement and give better results when compared with other previous
models. As per the accuracy, precision and recall given in figure 5.4, it is pretty ev-
ident that our model can detect potholes and cracks quite robustly even in varying
conditions of climate, light and road type. On the other hand, both [27] and [21]
try to deal only with the problem of pothole detection exclusively. So, to draw a
more uniform comparison between these models with the proposed model, we just
use the numbers for class potholes. As computed from the accuracy matrix shown
in figure 5.2, the accuracy for our proposed model for class Potholes is 88.92%, while
for model 1 and 2 it is claimed to be 86.7% and 82%. These results can be better
visualized in the bar charts shown below.

Figure 5.5: Comparison with existing method

Our model is able to differentiate between both pothole and cracks, along with
good roads with an overall accuracy of 87.8%. Though the CNN model provided
a 97.28% training accuracy, it failed to achieve a higher validation accuracy, thus
clearly showing that it faces a bad variance problem. The XGboost model, which

31

used CNN as a feature extractor module also performed poorly on validation data
with a precision score of 16.28% lower than the ResNet34 model. Thus, we conclude
that the CNN feature extractor network, when trained from scratch, was getting
overfitted due to limited training data available with us. That is where the prowess
of ResNet34 model, trained using transfer learning approach, makes it the most vi-
able and robust one for our problem statement.

Below are some visuals of our results.

Figure 5.6: ResNet34 Ground truth vs Predictions

32

Figure 5.7: Predictions vs Actual vs Loss vs Probability

33

Chapter 6

Conclusion and Future work

This paper proposes an architecture based on the Residual Neural Network algo-
rithms to detect the condition of roads. The model differentiates between good and
bad roads and further detects potholes and cracks in order to speed up the process
of road reconstruction and maintenance. After extensive shortlisting, we evaluated
three different algorithms: Convolution neural network, Residual Network (34 layer)
and Extreme Gradient Boosting algorithm to solve this problem. Moreover, the al-
gorithms were assessed on our own collected dataset. All these models’ performance
were comparatively close, but the Residual Network (ResNet34) model gives the
highest test accuracy around 87.8% for the given dataset. Although, currently we
are only focusing on classifying potholes and cracks of roads, there are other fac-
tors which affect the roads such as type of surface, surface conditions, road spillage,
shoulder drop-off and so on. In the future, we will work towards including these
features as well, in our study. The features that would be focused are width and
dimensions of the roads, surface conditions and shoulder drop-off as per our survey
analysis. Additionally, we intent to detect roads covered with mud in the rainy
seasons where detecting these features will be difficult, as mud can cause slippage
of vehicles. Most importantly, our future plan is to execute and test our project in
real world situation. As our topic is a broad and nearly unexplored one, we see huge
scope of research to improve our project. We wish to further work on this project
for the safety of our people as well as for the country.

34

Bibliography

[1] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture
of monkey striate cortex.”, The Journal of physiology, vol. 195 1, pp. 215–43,
1968.

[2] R. E. Schapire, “The boosting approach to machine learning: An overview”,
2003.

[3] K. Maniruzzaman and R. Mitra, “Road accidents in bangladesh”, IATSS Re-
search, vol. 29, Dec. 2005. doi: 10.1016/S0386-1112(14)60136-9.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database”, in CVPR09, 2009.

[5] J. Lin and Y. Liu, “Potholes detection based on svm in the pavement distress
image”, 2010 Ninth International Symposium on Distributed Computing and
Applications to Business, Engineering and Science, pp. 544–547, 2010.

[6] A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, and L. Selavo, “Real time
pothole detection using android smartphones with accelerometers”, Jun. 2011,
pp. 1–6. doi: 10.1109/DCOSS.2011.5982206.

[7] A. Danti, J. Kulkarni, and P. Hiremath, “An image processing approach to
detect lanes, pot holes and recognize road signs in indian roads”, International
Journal of Modeling and Optimization, vol. 2, pp. 658–662, Jan. 2012. doi:
10.7763/IJMO.2012.V2.204.

[8] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial”, Frontiers
in neurorobotics, vol. 7, p. 21, Dec. 2013. doi: 10.3389/fnbot.2013.00021.

[9] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning”, 30th International Conference
on Machine Learning, ICML 2013, pp. 1139–1147, Jan. 2013.

[10] K. He and J. Sun, “Convolutional neural networks at constrained time cost”,
Dec. 2014.

[11] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”, Inter-
national Conference on Learning Representations, Dec. 2014.

[12] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring mid-
level image representations using convolutional neural networks”, Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Jun. 2014. doi: 10.1109/CVPR.2014.222.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition”, arXiv 1409.1556, Sep. 2014.

35

https://doi.org/10.1016/S0386-1112(14)60136-9
https://doi.org/10.1109/DCOSS.2011.5982206
https://doi.org/10.7763/IJMO.2012.V2.204
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.1109/CVPR.2014.222

[14] Sonali, B. Maind, and P. Wankar, “Research paper on basic of artificial neural
network”, 2014.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting”, Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, Jun. 2014.

[16] T. Chen and C. Guestrin, “Xgboost : Reliable large-scale tree boosting sys-
tem”, 2015.

[17] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”, Feb. 2015.

[18] R. Madli, S. Hebbar, P. Pattar, and P. GV, “Automatic detection and notifi-
cation of potholes and humps on roads to aid drivers”, IEEE Sensors Journal,
vol. 15, pp. 1–1, Aug. 2015. doi: 10.1109/JSEN.2015.2417579.

[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system”, Aug.
2016, pp. 785–794. doi: 10.1145/2939672.2939785.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition”, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[21] A. Akagic, E. Buza, and S. Omanovic, “Pothole detection: An efficient vision
based method using rgb color space image segmentation”, May 2017. doi:
10.23919/MIPRO.2017.7973589.

[22] Z. Kamal. (Jul. 2017). At a glance: Bangladesh road accident fatalities on
the rise, [Online]. Available: https : //www.thedailystar .net/world/south -
asia/bangladesh/road-accident-in-bangladesh-2017-statistical-data-essay-at-
a-glance-1427245.

[23] Y. Kawasaki, K. Matsushima, and Z. Zhong, “Image-based pavement crack
detection by percolation theory”, Oct. 2017, pp. 1–6. doi: 10.1109/ICITEED.
2017.8250508.

[24] S. Li, J. Jiao, Y. Han, and T. Weissman, “Demystifying resnet”, ArXiv,
vol. abs/1611.01186, 2017.

[25] X. Ren, H. Guo, S. Li, S. Wang, and J. Li, “A novel image classification method
with cnn-xgboost model”, 2017, pp. 378–390. doi: 10.1007/978-3-319-64185-
0 28.

[26] C. Vasconcelos and B. Vasconcelos, “Increasing deep learning melanoma clas-
sification by classical and expert knowledge based image transforms”, Feb.
2017.

[27] P. Wang, Y. Hu, Y. Dai, and M. Tian, “Asphalt pavement pothole detection
and segmentation based on wavelet energy field”, 2017.

[28] A. F. Agarap, “Deep learning using rectified linear units (relu)”, Mar. 2018.

[29] B. Mcfee, J. Salamon, and J. Bello, “Adaptive pooling operators for weakly
labeled sound event detection”, IEEE Transactions on Audio Speech and Lan-
guage Processing, vol. 26, Aug. 2018. doi: 10.1109/TASLP.2018.2858559.

[30] A. Azhar, M. Khodra, and A. Sutiono, “Multi-label aspect categorization
with convolutional neural networks and extreme gradient boosting”, Jul. 2019,
pp. 35–40. doi: 10.1109/ICEEI47359.2019.8988898.

36

https://doi.org/10.1109/JSEN.2015.2417579
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.23919/MIPRO.2017.7973589
https://www.thedailystar.net/world/south-asia/bangladesh/road-accident-in-bangladesh-2017-statistical-data-essay-at-a-glance-1427245
https://www.thedailystar.net/world/south-asia/bangladesh/road-accident-in-bangladesh-2017-statistical-data-essay-at-a-glance-1427245
https://www.thedailystar.net/world/south-asia/bangladesh/road-accident-in-bangladesh-2017-statistical-data-essay-at-a-glance-1427245
https://doi.org/10.1109/ICITEED.2017.8250508
https://doi.org/10.1109/ICITEED.2017.8250508
https://doi.org/10.1007/978-3-319-64185-0_28
https://doi.org/10.1007/978-3-319-64185-0_28
https://doi.org/10.1109/TASLP.2018.2858559
https://doi.org/10.1109/ICEEI47359.2019.8988898

[31] Road accidents caused 7,221 deaths in 2018: Bangladesh passenger welfare
organisation, Accessed: 2020-02-25. [Online]. Available: https ://bdnews24 .
com/bangladesh/2019/01/25/road-accidents-caused-7221-deaths- in-2018-
bangladesh-passenger-welfare-organisation.

37

https://bdnews24.com/bangladesh/2019/01/25/road-accidents-caused-7221-deaths-in-2018-bangladesh-passenger-welfare-organisation
https://bdnews24.com/bangladesh/2019/01/25/road-accidents-caused-7221-deaths-in-2018-bangladesh-passenger-welfare-organisation
https://bdnews24.com/bangladesh/2019/01/25/road-accidents-caused-7221-deaths-in-2018-bangladesh-passenger-welfare-organisation

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Overview
	Importance of Road Inspection
	Motivation
	Objective
	Challenges faced
	Thesis outline

	Related Work
	Background Analysis
	Neural Networks
	Convolutionl Neural Network
	Residual Network
	Extreme Gradient Boosting

	Model Implementation and Optimization
	Overview
	Dataset collection
	Pre-processing
	Design and training
	CNN
	ResNet34
	CNN-XGboost

	Results and Analysis
	Results
	Final model analysis

	Conclusion and Future work
	Bibliography

