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Abstract

This thesis is the application of the BenderWu Mathematica package to
different physical systems. The code was developed to calculate wave function
and energy data of higher order perturbation theory in quantum mechanics.
The review is done by practical application of the code on the potentials in the
examples accompanying the package, as well as the application of it on novel
potentials of various forms. The development of the recursion relation behind
the code, and the generalization of the relation are also discussed. Finally,
the relation between higher order perturbation theory and non-perturbative
information encoded in it is also discussed.
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Chapter 1

Introduction

The role of computation in physics has always been imperative and is be-
coming more relevant in recent times, because of its ability to complement
both theoretical and experimental works. Initially the need for computers
was because of calculations which were too time consuming to be done by
humans. It started with numerical analysis methods developed by Newton,
Raphson, Euler, Runge, Kutta being implemented in programming. However,
now the role of computation has become manifold. Computational works in
physics today includes simulation of models, visualization of physical studies,
testing hypothesis, interpreting complex data sets, guiding experiments. In
experimental physics, virtual simulation can replace expensive experiments.
And in theoretical physics, it can be used to obtain numerical results to back
up theoretical assumptions, ideas and predictions. One such field that needs
this type of computation ability is the field of approximate problem solving,
such as perturbation theory in Quantum Mechanics.

Perturbation theory consists of mathematical techniques that are used to
solve problems and systems approximately, which do not have exact solutions.
It does that by dividing the problem into solvable and perturbative parts. If
we want to apply the perturbation method to a system, the complex system
we are trying to solve, needs to have a mathematical expression to define it.
Then a system which closely resembles the problem at hand is selected. The
difference is that the resembling system has exact solution. Next, small cor-
rections or “perturbations” are added to the exact solution. The final solution
is expressed in the form of a power series. There are a lot of mathematical
descriptions and solutions which are included in perturbation theory. For



example, differential equations used to express wave equation or equation of
motion, ground state energy in quantum mechanics. These are all perturba-
tion series. In quantum mechanics, time-independent perturbation theory is
as old as quantum mechanics itself. It has roots in wave mechanics as well. For
this reason sometimes perturbation theory is also called Rayleigh-Schrodinger
perturbation theory. Perturbation series shows interesting behaviour in higher
order expansion. Higher orders of the perturbative expansion is intimately re-
lated with non-perturbative physics. And this phenomena is called resurgence.

Therefore, there has been many studies regarding higher order perturba-
tion series. The connection between large order perturbative expansion and
WKB approximation method was established and studied in detail in works of
Carl. M. Bender and Tai Tsun Wu, who studied anharmonic oscillator. They
developed recursion techniques to generate very high orders of perturbation
theory efficiently and with precision. These analytic techniques are known as
Bender-Wu method. Since then this method has been used and applied in
variety of studies.

These recursion relations were later generalized by Mithat Unsal and
Tin Sulejmanpasic for locally harmonic potentials in quantum mechanics, to
determine perturbative wavefunction and energy correction to an arbitrary
order. Then the algorithm of this recursion relation was implemented in a
Mathematica code. This code is named the BenderWu code and can be used
in home computer via the BenderWu Mathematica package, in the Wolfram
Mathematica software. This code can be applied on classical, semi-classical
and quantum mechanical potentials. The usage and importance of this code
is the focus of this thesis.

This thesis is organized as follows: Chapter-2 looks into the analytic
methods introduced by Bender and Wu and the subsequent generalization of
those techniques by Sulejmanpasic and Unsal, that went behind the devel-
opment of the code. Chapter-3 is a study of the features of the BenderWu
code along with its application on a number of potentials of various forms.
In Chapter-4 we implement the code on a potential, which is a part of the
derivation of the Hawking radiation as tunneling done by Wilczek and Parikh.
Chapter-5 includes further discussion of the relation of perturbative and
non-perturbative physics.



Chapter 2

Developing the code

This chapter is dedicated to study the development of the BenderWu Mathe-
matica package and the method, the procedures and the mathematics used
behind constructing it. To do that there are two papers which have been
studied. One is the paper titled “Aspects of perturbation theory in Quantum
mechanics: The BenderWu Mathematica package”, authored by the develop-
ers of the Package, Tin Sulejmanpasic and Mithat Unsal.

The second paper is “Anharmonic Oscillator” written by Carl Bender
and Tai Tsun Wu. This paper describes in detail the process of developing
the recursion relations, which are known as the Bender-Wu method. Based
on this method, later the package was developed by Sulejmanpasic and Unsal.

2.1 Adapting the BenderWu method to arbi-
trary locally harmonic potentials

The paper “Aspects of perturbation theory” was written by Tin Sulemanpasic
and Mithat Unsal to study perturbation theory in higher order. In this
paper a general setup is developed to study the perturbation theory of an
arbitrary, locally harmonic 1-D quantum mechanical potential as well as its
multivariable generalization.

Time independent perturbation theory is as old as Quantum mechanics
itself. It is a center topic in quantum mechanics and was developed by Erwin



Schrodinger. The method is rooted in wave mechanics, and can be dated back
to Lord Rayleigh in his book, The theory of sound. Although the revelation
that large order of perturbation theory has a radius of convergence of zero
for most systems, came much later. This is connected to non-perturbative
physics. And thus this ties higher order perturbation expansion to non-
perturbative theory, making it clear that the perturbative expansion is tied
to non-perturbative physics. The study of which falls under Resurgence theory.

In this work the authors adapt the method developed by Carl Bender
and Tai Tsun Wu for a perturbative expansion of an arbitrary locally har-
monic potential around one harmonic minima. The method was originally
for anharmonic oscillator with quartic term in the potential.

The authors also develop a Mathematica code to calculate many orders
of perturbation theory.

The code presented here allows a perturbative treatment of one-dimensional
systems with a Hamiltonian in the coordinate representation given by:

H=-——"_1V(X) (2.1)

Here, the potential V' (X) is a non-singular potential. This potential can
be represented as:

V(X) = mw?a®v(X/a) (2.2)

Here, v(X/a) is a dimensionless function which defines a non-trivial
potential.

The paper explains in detail what it defines as a perturbation theory. In
the paper the perturbation theory is defined as the expansion of the potential:
V(X) = mw?a*v(X/a) around its local minima which coincides with the
minima of v(X/a). The authors take one such minima and build the pertur-
bation theory around it, still keeping the generality. Thus, in this paper the
perturbation series is defined as expansion of the wave-function and energy
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in small coupling by the expansion of potential v(X/a) in powers of X/a .
The non-quadratic terms will be thus treated as perturbations of Harmonic
Oscillator.

Treating the non-quadratic terms as perturbation leads to solving the
reduced Schrodinger equation for 1(z), the wavefunction and € represents the
energy as power series.

hip(x) = €(x) (2.3)

This can be done using the BenderWu method. This method can be gen-
eralized for any potential as long as its minima are harmonic and non-singular.
Using this method the authors develop recursion relations, which allows the
computation of perturbative expansion of wavefunction and energy.

The method is adapted for a potential of the form:

Vi(gx)/g? (2.4)

This is a general classical potential. The method will also be generalized
for some of its quantum effective potentials, such as:

V(z) = g—tvo(gx) + vo(gx) (2.5)
and,
Via) =5 3 g"un(ag) (2.6

Any function can be considered to be the potential as long as harmonic
minimum is at z = 0, and is infinitely differentiable at = = 0.



2.1.1 Classical Potential

In the case of the classical 1-D potential V (xg)/g?, the Schrodinger equation is:

1, 1 B
—5¥ (@) + Fulgr)v(z) = ep(z) (2.7)

And construct a perturbative expansion around the minimum at x = 0.
The paper then derives the following recursion relations using the BenderWu
method:

!
1 v v—n—
g = —§(v+2)(v—l—1)Al+2+ZvnA7 2 (2.8)

l—n
n=1

This recursion relation can be now solved for energy e.

Here, A} = coefficient of energy, where rows are related to the index [,
and k is related to the power of x. Also, v = level number of energy.

And the other recursion relation is:

pr— ) (+2)(k + 1) Af T2

2wk — v

l -1
12) A, =23 v Al
n=1 n=1

(2.9)

Which can be used to solve for the coefficient A¥ recursively. And then
from that the wavefunction can be derived.

2.1.2 Adding quantum effective action

Along with classical potential, the paper also solves quasi-exactly solvable
problems; with the potential in equation (1.5). The recursion relations derived



in this case are:

l
1
e = —5 (U + 2+ DA + 3 (AL ol A (2.10)
n=1
1 l
ko k42 ko _
n= (2.11)
l
23k AE 2 4 o A

n=1

This algorithm is the core of the Mathematica package. It is implemented
to build the code.

2.1.3 Generalization of Recursion relation

Unlike the other recursion relations, the recursion relation in this section is
not applied to the Mathematica code. Here recursion relation is generalized
to arbitrary effective potential of the form:

V(z) = Uoéfg) + vo(2g) (2.12)

Here,vy and vy are defined as coefficients of expansion.

The recursion relation becomes:

1
A= — — 1(k+2)(k+1)AF*
F= G oy L+ D+ AR -
D 2eadln =23 ) oA
n=1 n=1 n=1



2.1.4 Symmetries and the form of the perturbation se-
ries

The corrections odd in g of the energy series vanishes. This holds if the
potential is symmetric under interchange of x — —x and g — —g, which is
called g-parity.

Although the power series of energy is always in even powers of g, the

wave function can also be normalized to contain only powers g'z*, such that
(I + k) is odd.

2.1.5 Multivariable case

This is a generalization to multivariable case. The discussions of this section
may have direct application to quantum field theory and in the role of resur-
gence there.

In principle large-order asymptotic growth can be removed and there can
be connection found with IR renormalon singularities and resurgence structure.

There is strong possibility that resurgence structure may be present in
quantum field theories as well as in quantum mechanical systems.

The recursion relation in the formalism used here takes geometric form.
This formalism might be helpful in the long run in determining the relation
between non-perturbative physics and perturbation theory.

2.2 Analytic tools used to develop the Bender
Wu method

In this section the Bender-Wu method, based on which the code was devel-
oped, is discussed in detail. For this the paper “Anharmonic Oscillator”,
written by Carl Bender and Tai Tsun Wu is studied. In this paper analytic
tools are developed to study singularity structure.



The aim of the paper is to shed light on the fact that for a particular
model of anharmonic oscillator the perturbation series for the ground state
energy diverges. Bender and Wu developed recursion techniques for efficiently
generating very high orders of perturbation theory, and compared these results
with higher orders of the WKB approximation.

The model is:
|-+ gt et o) = E0() (2.14)

The boundary condition is:

lim ¢(z) =0 (2.15)

T—r00

However, a direct inspection of the perturbation series does not give any
revelation about the nature of the singularity in the complex A plane that
causes the divergence. And to understand the singularity, analytic method
were developed.

And these tools are developed in the following techniques:

1. The authors analytically continue the energy level into the complex A
plane and derive some exact properties of the continuation including
the exact condition that gives the location of the singularities in the
plane.

2. After deriving the condition, the application of the condition requires
the approximation of wave function. The approximation of the wave
function is done using a technique based on the zeroth order WKB
methods in the complex plane.

3. The results from this is used to determine the singularities in the
resolvent (z — H)~L.

4. Then the results of (1) and (2) are combined to find the approximate
location of singularities in the analytic continuation of energy levels.

9



The motivation behind developing this method was that prior to this
work, no techniques had been discovered to shed light on the singularities in
the fields with divergent perturbation series. Dyson was the first to discuss
divergence of perturbation series in field theory. Jaffe proved the divergence of
perturbation series in Green’s function in self-interacting boson field theories.

The study of anharmonic oscillator is important in field theory because it
is a simple model field theory in one-dimensional space time. The technique
developed here to locate singularities in this particular field theory can lead
to study of other models with increasing complexity.

The major takeaway from the paper “Anharmonic Oscillator” is, the
finding that, energy levels of the anharmonic oscillator for a given positive
real A are the positive real values of E()\) on each of the infinite number of
branches of a Riemann surface, with each energy level corresponding to a
sheet in the surface.

The paper ventures to answer three questions in the process: Whether
the perturbation series is convergent for any A which is not 0. Does the
ground state energy have an isolated singularity at A=07 Is the resolvent
analytic at A=07

The paper also might be of interest to field theorists because of the
unexpected analytic properties observed of the energy levels and resolvent.
These properties may help give us an idea of vast underlying complexity of a
more realistic field theory.

Along with these are the development of methods to describe actual
singularity structure of a particular field theory.

In the following sections, the details of the findings of this paper are
presented.

2.2.1 Ground state energy of the perturbation series

Here the properties of perturbation series is investigated in detail.

10



The perturbation series for the ground state energy in the model in
equation (2.14), is defined by E()A). It is a power series in the coupling
constant A, which takes the form:

Ey(\) = %m + imAn [A/mg]n (2.16)

n=1

Two methods are used to calculate A,,, which is the coefficient in the
energy power series. Both the methods illuminate properties of the perturba-
tion series.

Method-1: Feynman diagram can be used to calculate A,,, as in field
theory in perturbation series ground state energy is the sum of all connected
Feynman diagrams.

The perturbation series is finite in every order, though the ground state
energy is not an analytic function of A* about A=0 for any «. So, the ground
state energy is not analytic at the point where X is zero.

Method-2: Difference equation is used to calculate A,,. Here they use
the differential equation:

— D et () = EOe(e) (2.17)

[ d? 1
dz? 4 4

The desired difference equation leads to the relation:

An=—DBna (2.18)

Where B,(z) is the polynomial of z.

Along with this they determined from computer generated calculation of
75 terms of ground state energy the asymptotic growth is:

A, ~ (—1)”“( 0 )1/2F<n + %)3” (2.19)

3
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2.2.2 Analytic continuation

The previous section is not able to explain the reason for divergence of pertur-
bation series, which means the singularity structure of Ey(A) in the complex
plane is not known from the two methods in the last section.

The analytic continuation of energy level, E()), which is the eigenvalue
of the differential equation, into A plane helps understand some properties of
the continuation.

The exact properties of analytic continuation found are:

1. E(A) can be continued analytically to all points A where [ ¢*(x,y)dx is
not 0.

2. At points where E()\) is analytic, there is no degeneracy in the energy.

3. E;(\)issingular at A = \g. Thus level crossing only occurs at singularity
points of E(\).

4. The singularities of E()\) are of square root type when A is not 0.

Also, \g is a square root type singularity point of F(\). This is asso-
ciated with the double Riemann sheet, so energy level crossing must take
place at every point where A\g does not equal to zero. After understanding the
singularities, the next section works on applying the conditions of singularity
to find approximation of wave-function.

2.2.3 WKB Solutions

To apply the condition of previous section we must know wave function ¢.
In this section we approximate the wave function using zeroth order WKB
method.

12



Two WKB solutions to the differential equation (1.16), lead to a plot
in the complex plane. The sectors in which the general boundary condition
applies and the turning points are plotted as well in Figure-2.1 for arg A

=0,7/2,7,37/2 .

/
\

\
3

"‘-|_|_‘_--_‘_‘_‘_

{a] argA=0 (bl argh=w/2
m \
f=a]
—_—
[}
Oy
(el argh=m id] arg h=3WS2

Figure 2.1: Figure:Curves in the complex x plane.

The figure shows the curves in the complex z plane where Re \7'[(1 +
Az?)1/2 — 1] = 0 for various values of arg A. The circles denote the turning

points and oo denotes the sectors.

Through WKB analysis we find four regions: A,B,C and D. WKB proce-
dure is carried out in the four regions and after finding asymptotic behavior
of ¢ in all the regions, they are connected across the regions.

13



I'(3+31E) i 5mi p
AT [+ 2R (—)} 2.20
ri—1g) ~ P [3p+ 1 "2 (2:20)
Which is for even parity.
[(:+1E '
LD [ (9)] 2.21)

Which is for odd parity.

These resultant equations may be regarded as approximate equations to
zeroth order in A relating in the low-lying energy levels to complex A near
arg A = 270°.

2.2.4 Resolvent

Here the location of singularities of the resolvent of the Hamiltonian H is
determined. The authors prove that for both parities the resolvent (z — H)™!
has poles when arg A is near 270°.

2.2.5 Qualitative Description

In this section the authors discover the properties of the analytic continuation
of the energy levels E(\), as a function of complex A in three parts. These
parts are as the following:

Location of branch points

In this section we find the coordinates of branch points of £ in A plane by
solving simultaneously two equations found in equations (1.19) and (1.20)
along with this equation:

14



/gb2(x, Ndz =0 (2.22)

After a series of procedures the following equation is found.

1 1
- =6WN+3—%—3i[1n(2n)!+§ln (g>—
g (2.23)

In(In N) — <2n + %) In(247N) — 1}

1 1

— :67TN+37m+?%—32’[111(2714—1)!—}—5111 <g>—

g ; (2.24)
In(In V) = (20 + 3 ) In(24m(N +1)) = 1]

Here, p is a variable introduced for the procedure, defined as, p = \e3™/2.
It lists the coordinates of the branch points of E()\) parametrized by two

integers N (large) and n (small).

Paths on E plane

This section gives a qualitative picture of the complex function E(\).

Considering the symmetry properties of E and considering Hamiltonian
is positive definite and Hermitian, the energy levels lie in positive real axis
when A is positive real. Also the energy levels are pure imaginary. The energy
levels lie near real axis as arg A increases from 0 to 270.

The figure-(2.1) gives a picture of A\ plane along with the E-plane. A

plane is shown in three planes, where arg A ranges from 0 to 6. The brach
points and branch cuts are shown schematically.

15



COMPLEE E-PLANE

COMPLEX A\=-PLAMES

BRARCH CUTS

AT Aip*
BRANCH GUTS
AT E0*

prg ki Qg —= 2w arg A 2w —e 4w arg 14y — Ex

Figure 2.2: A rough picture of the A plane along with the E(\) in the E-plane.

Combining the symmetry properties with these results, predictions can
be made.

One prediction is that, A goes in a circle three times about the origin in
the A plane. Another finding is the branch points do not effect curves in the
E-plane.

Presence of the branch points cannot be detected as long as A is held fixed.

If the path made by energy lavel in the complex E-plane is traced, it can
be seen that the energy level returns to positive real axis when arg A = 6.
But it returns to the positive real axis as a different energy level from the
original. This is reffered to as level crossing.

Thus, it can be said, the physical energy levels for anharmonic oscillator
for a given positive real A are the positive real values of E()) on each of the
infinite number of branches of a Riemann surface. This is the major result of
the paper.

16



Level crossing

In the previous section it is mentioned that energy levels in the complex A
plane returns as a different energy level once it crosses branch cuts. This is
addressed as level crossing. Which means that energy levels are related to
each other by the structure of the branch cuts. That means it is possible
to go to one energy level from another different energy level as long as the
appropriate branch points are followed.

This section goes into the details of level crossing and gives a pictorial
illustration of it through graphs. It is known that level crossing occurs in the
A plane and that it occurs at branch points. In this section, level crossing is
investigated in a more detailed manner. The auhtors try to find which level
crossing occur at which point and what does level crossing look like graphi-
cally. To answer these questions they conduct intensive numerical calculations.
Then they use these calculations to construct graphical representations of
level crossings.

The numerical investigation also attempts to answer if the WKB approx-
imation is accurate. And it is found that the numerical results are consistent
with the WKB approximations. The results from this part ties in nicely with
earlier findings of this paper, such as:

1. At arg A=180°, the WKB turning point enters the sector in which
general boundary condition applies. This is just the point where WKB
equation is expected to become valid.

2. Bunching phenomena takes place at 180°.

3. The poles of the resolvent occur when arg A is larger than 180°.

17



Chapter 3

Description and Application of
the BenderWu Mathematica
Package

3.1 Basic structure of the code

The BenderWu package allows for analytic computation of the perturbation
series of a potential in 1-D quantum mechanics around a harmonic minimum
of the potential. The code is based on the method pioneered by C. M. Bender
and T. T. Wu. The original method was developed by Bender and Wu for
anharmonic oscillator with quartic term in the potential.

To execute the code, one must install the Mathematica package in the
Wolfram Mathematica, using the package files that can be found in the file
accompanying the paper “Aspects of Perturbation theory in Quantum Me-
chanics”. After installing the package, by following the instructions in the
file, the package is ready to use. The package is easy to install and contains
detailed instructions, examples and tips about running the code. It also is
the biggest resource available when it comes to using this code.

The calculation is done by a standard basic syntax. This syntax is
different depending on the function one is using.

There are three different functions in the package. They are:

18



1. The BenderWu function
2. BWProcess function

3. BWLevel polynomials

3.1.1 The BenderWu function

The BenderWu function calculates the solution of the differential equation:

3V (@) + 5Va(ga) V(o) + Valgo)¥(a) = ¥(a) (31)

The function presents the solution as a perturbation series in the coupling
of g:

U(z) = > Afzty (3.2)
l,k=1

o0

€= Z €an (3.3)

This function is used to calculate the energy (3.3) and wavefunction data
(3.2) of a given potential, up to a given order.

The input consists of four arguments and a number of options. The
function is called with the following basic syntax:

BenderWu [ V(x), x, (Level Number), (Order), Options]

19



In this syntax, there are four arguments and after that a function for
calling in various options.

The first argument: The first argument is the potential function,
which can be input in two basic forms, either by just writing the potential, in
which case the entry specifies the classical potential only, or it can be entered
as:

BenderWu[Vy(z), Va(x), z, (Level Number), (Order), Options]

Here, Vy(z) and V,(z) are the classical and the quantum effective poten-
tials respectively.

The second argument: Is the argument of the potential (i.e: z). In
this argument, the potential which is to be calculated is entered.

The third argument: Is the level number at which the potential is
being computed.(i.e: The energy level of the potential).

The fourth argument: Is the order of ¢, which is the expansion pa-
rameter, to which the energy and wavefunction is computed.

After this there is the arrangement to call for options in the syntax.

3.1.2 The BWProcess function

BWProcess function is used to format the output produced by BenderWu
function in such a way that is helpful to the user. The user can control the
output as he wishes by a number of options provided by the function. The
basic syntax:

BWProcess[(output Of BenderWu), Options]

This function is extremely helpful in making the output data easier to
understand. This can be used to output only energy data or only wavefunction
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data and that in a preferable form to the user, either in series, matrix or in a
graph.

3.1.3 The BWlevelpolynomials Function

The third function in the package, the BWLevelPolynomials computes the
perturbative data for multiple values of level number to reconstruct level
number dependence. It is useful because the BenderWu function does not
allow the direct computation of analytic level number dependence.

3.2 Implementation of the code

Here, all three functions of the package are reviewed through their application
on different potentials. The first five examples were done by the developers
of the code in their paper and in the accompanying Mathematica files. The
first example is demonstrated in detail in the paper “Aspects of Perturbation
Theory in Quantum Mechanics”. The second, third, fourth and fifth examples
can be found in the Mathematica file accompanying the paper. Following
their instructions, these examples were also attempted by us. After that, in
the sixth and seventh examples we have applied the code on some other novel
potentials, and examined the results in various forms. The potentials in these
examples are of higher order polynomial function and trigonometric function.

The takeaway from all these, is that the code can be used to get the
energy and wavefunction data in most of these potentials. The calculations
are often too big, and that is why it can be a hassle to calculate them in a
short time. In that case, one can consider taking advantage of the options
available to limit the time spent on calculation, or can ask for the value to be
calculated up to a specific order. We used the strategy of not calculating to
too high of an order. However, these results are bound to be less illuminating.
Also, if the potentials are calculated to a lower order, it will be hard to get
the output in the form of a series.

Other than the options built in the functions, there are also other ways
to format the output data. When the result is shown, there are a number of
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options given to the user in the output box. These give the user more choices
in displaying the output. There are options which help in mathematical cal-
culations as well. They can help calculate the transpose of a matrix, factoring
of a series, or plotting from the data.

3.2.1 Example-1: Computing the energy correction of
a potential at a certain level

In this example, the BenderWu function is used to compute the first 100
corrections of the perturbation for the third excited state for the potential:

2

= e (3.4)

Here g is treated as an expansion parameter.

To calculate the data of the potential to the level of 3 and to the order
100, the command is given:

In[2] := BW=BenderWul[x"2/2+x"4,x,3,100];

After running the code in Mathematica we get an output which needs to
be analyzed in terms of three elements. The symbol BW is assigned three
elements. The first element of the variable BW gives a series of corrections.
This is the energy series correction. We can get this element by the command:

In[4]:= BW[[1]]

Out[4]= [I, T 17 —tsisssrs ]

The energy correction is:

_ 7 . 75 , 1575 _ 15184575
€=35t T T g — Tagg T
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The second element, BW[[2]] outputs a matrix AF. Where [ is associated
with the power of g and k is associated with the power of z. A is the
coefficient of the wavefunction. This matrix gives the wavefunction values
(¢). The wavefunction can be calculated from A¥, by using :

o0

U(z) = Z Argh gl

k=1

The result is large but it can be presented in a cleaner way using
BWProcess. When the BWProcess function is called it presents the out-
put for the user’s suitability.

It returns the eigenvalues:

In[5] := BWProcess[BW]

Out [5] = 7 75 1575 15184575 ]

2 408 198ttt

To generate an output which only contains data up to a specific order,
one can use the option Order— > n, where n specifies the order (of g?) at
which to trim the output, e.g:

In[7] := BWProcess[BW,OutputStyle->"Series",Order->2]

Out [7]=[F + B _ 15%0" 4 ]

The energy correction is:

We can also output the wavefunction series, u(z), by utilizing the option:
Output— >“WaveFunction”, in the coupling of g. This gives:

In[8] := BWProcess[BW,OutputStyle->"Series",Order->2,
Output->"WaveFunction"]
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11

_3z 3 20225z 1525 7 4( 35775z | 315x5 | 13527 | 115z° | z!1
Out [9]=F +2° + ¢° (53 3 T+ (S5 + 59 5 0 T 5%)

The wavefunction data is:

_ 3z 3., 20225z  152° 27 4(¢ 35775z | 31525 | 13527 | 1152° | z!1
u(x)—2+x+g(16 3 T)+g'( 128+16+32+192+32)

From running this example it can be said that while the code is quick
and easy to use, one must be skilled in interpreting the data output, as it can
be hard to analyze.

The large size of the output is also quite difficult to analyze, and it
is important to know the usage of the options, to give the output a more
manageable look.

3.2.2 Example-2: The Double well potential

The examples- 2, 3, 4 and 5 are explained in detail in the Mathematica
files accompanying the paper “Aspects of Perturbation Theory in Quantum
Mechanics”. For all these examples, the classical potential is assumed to be
of the form:

9—12V(gx) (3.5)

And the potential has to have a local minimum at x = 0.

The double well potential will be defined by V (z):

V(z) = M + v (3.6)

To execute this code the following syntax is commanded. Here V' (z) is
the potential, 3 is the level number of energy and 20 is the order of ¢ to
which the data is calculated:

The Basic syntax:

BW = BenderWulV[x], 3, nu, 20];
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To calculate the energy data: If we call the BenderWu function to
calculate the potential in equation (1.5), without any visualization option, it
returns the result in terms of three elements.

The first element would be the energy data. But that result is difficult

to decipher. The following are examples of syntax that can be used to call
only the energy data, and only in the forms the user desires.

1. To get the output as an array, either of the following syntax will give
the same outcome:

BWProcess [BW]
BenderWul[V[x], x, nu, 20, Output -> "Energy"]

Which gives the output:

_ 7 1491 59093
Out= [—57 —37, 5 T 9 ]

2. To output the data in series:

BWProcess[BW, OutputStyle -> "Series"]

3. To output as Matrix:

BWProcess [BW, OutputStyle -> "MatrixForm"]

4. To change the symbol of expansion parameter:

BWProcess[BW, OutputStyle -> "Series", Coupling -> h]

5. To truncate the output to a specific order:
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BWProcess[BW, Order -> 6]

6. The BWProcess can be used to plot the energy data as ratio to quickly
establish if the series is factorial:

ratio = BWProcess[BW, OutputStyle -> "Ratio"];
ratio // N

ListPlot[ratio]

or, to qickly plot:

BWProcess [BW, OutputStyle -> "RatioPlot"]

150 - .o
L '..
[ ]
L ...
100 e’
= [ ]
| ...
...
I K
r [ ]
L ...
50 - oot
..
I [ ]
...
I L.
L ..
..
= [ ]
[ ]
.\ I I | I I I I | I I I I | I I I I | I I I I |
I 10 20 30 40 50

Figure 3.1: Energy Ratio plot

The figure-3.1 shows the result of plotting the energy correction ratio.
This plot is used to determine whether the series is factorial.

To get the Wavefunction Data: If the function is called without a
visualization option, the second element of the output will be used to calculate
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the wavefunction using equation (3.2). Other than that, a number of op-
tions can be used to present the wavefunction data directly and in desired form.

They are the following:

1. To display only the wave function data, this syntax is used:

BWProcess[BW, Output -> "WaveFunction",
OutputStyle -> "Series", Order -> 3]

And that gives the result:
Out= [1+g(z+2)+ & g2 (184622 +a*) + P2z +2°+ & + T+ 2y ]

2. To change the grouping from of x to of g, the following syntax is used:

BWProcess[BW, Output -> "WaveFunction",
OutputStyle -> "Series",

Order -> 3,

SeriesQOutput -> "Argument"]

Output=[1+ (g+2¢° + 16¢°)x + (¢° + % + 2 )a?]

Wavefunction, u(z) =1+ (g +2¢° + 16°)x + (9> + % + %),

3. To include pre-exponent, this syntax is used:

BWProcess[BW, Output ->
"WaveFunction", OutputStyle -> "Series",
Order -> 3, Prefactor -> Truel]

4. To output the coefficients of the wavefunction as a matrix:

BWProcess[BW, Output -> "WaveFunction",
OutputStyle -> "MatrixForm", Order -> 3].
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3.2.3 Example-3: The SUSY double well potential

A Supersymmetric potential of the form:

1 !/ 2 1 "
SW/(@)” + W (@), (3.7)

Can be given the form:

5V (ag) + Vi(ag) (338)

As, there are two potentials, the first argument of the syntax should be:

Vial, Vylz].

The potentials need to be defined in Mathematica first:

Vix_] = x"2 (x - 1)°2/2;
V_flx_] = (2 x - 1)/2;

1. For the ground state energy, the first 50 orders are and for the higher
state energy, first 20 orders are calculated respectively by:

BenderWu[{V[x], Vf[x]}, x, 0, 50, Output -> "Energy"]
BenderWu[{V[x], Vf[x]}, x, 3, 20, Output -> "Energy"]

For the ground state, energy data is trivial, but for higher states it is
trivial and asymptotic.

2. All these calculation can take long amount of time. One can manage
this inconvenience by using the options:

BenderWul[{VI[x], Vf[x]}, x, 3, 50,
OQutput -> "Energy", MaxTime -> .02]

BenderWul[{V[x], Vf[x]}, x, 3, 100,
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Output -> "Energy",
TotalMaxTime -> .005]

3. We can use the symbolic parameter ¢ to get the energy output as its
coupling, using:

energyzet = BenderWu[Evaluate[{x"2 (x - 1)7°2/2, \[Zeta]
(2 x - 1)/2}], x, 0, 10, Output -> "Energy",
Simplify -> True]

¢ here is a parameter and the energy data can be expressed as a coupling
in ¢, in stead of as a coupling of x or g.

Plotting the orders of g as a function of ( = 1 looks like the figure-3.2.

50000 -

-50000 -

-100000 ~

Figure 3.2: Plot of the orders of g as a function of (.
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The horizontal axis represents the values of ¢ and the vertical axis shows
the orders of g.

3.2.4 Example-4: The Jacobi-Elliptic potential

Jacobi-Elliptic functions are standard forms of elliptic functions. Potentials
of this form can be calculated, as the BenderWu function can handle any
potential as long as it has a polynomial power series around z = 0. For
the Jacobi-Elliptical potential the first argument is: JacobiSN [z, m]?. The
syntax to the order of three in the third excited state is:

BW = BenderWu[JacobiSN[x, m]~2, x, 3, 10, Simplify -> True];

BWProcess [BW, Order -> 6]
— 7(13—28m~+13m?
Out=[J5, =2 (m + 1), - B0 8981 4 m)2(1+m), ....]

3.2.5 Example-5: Sine-Gordon level dependence of the
perturbation theory

If level number is expressed by v, one can construct the energy data series
for each level number from 0 to 6, and that way can establish the level
dependence of perturbation theory. To do that, one also needs to use the
BWLevelPolynomial function to reconstruct the level dependence at each
other. Using the syntax:

BW3 = Table[BenderWu[Sin[x]~2/2, x, nu, 5,
Output -> "Energy", Monitor -> False], {nu, 0, 7}];

BW3levels = BWLevelPolynomial [BW3]

Out=[d +o,~L—2 -2 ]

Thus, the energy correction is:
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To get the energy series at a specific level:

BW3levels[[4]]
_ 3 11 2 503 5v4
Out=l—g35 — 1i = 5 + 57 + 15!

Which is the fourth element, meaning the energy data at the third level.

Energy correction at third level:

_ 3 1lv 0?2 503 | but
€3= 7128 T 128 s %0 T 15

3.2.6 Example-6: Higher Order Polynomial potentials

In this section, there are the results of applying the BenderWu functions to a
number of Higher Order Polynomial potentials.

1. V(z)= 21+ 2% + 2°.

The syntax used to output the energy in series of the level number 2:

BW = BenderWu[x"10 + x"2 + x°5, x, 2, b,
Output -> "Energy", OutputStyle -> "Series"];

3152945 + 5764598]

_r.5
Out_[Ti_ 256 128v2

This output can be displayed in other forms, by utilizing the choices
given by Mathematica after the calculation is done. By using the plot-
ting option, we get the plot of the result in Fig-3.3:

In this figure the horizontal axis represents values of g.
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Figure 3.3: Plot of energy series in terms of g

2. V(z) =a*+ 2.
For this potential, without using any visualization options, we get the
calculation of level number = 2, to the order of 1, by the syntax:

BW = BenderWu[x"8 + x°2/2, x, 2, 1];
Output=[{0, 5/2, 0}, {{-(1/2), 0, 1, 0, O, O, O, O, O},

{0, o, 0, 0, 0, 0, 0, 0, O}, {0, O, 0, O, O, O,
O: O: 0}}: {X, 2’ 2’ 1}]

Here, first element is the energy data, second element gives wavefunction
data.

3. V(z)=a+ 22 +2° + .

To get the wavefunction of this potential, this syntax is used:

BW = BenderWul[x"10 + x"2 + x°5 + x, x, 2, 1,
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Output -> "Wavefunction",OutputStyle -> "Matrix"];

Qutput=[{-(1/2), 0, 0}, {0, 0, 0}, {2, O, O},
{0, o, o}, {o, o, 0}, {0,0, O}, {0, O, O},
{0, 0, 0}, {0, 0, 0}]

4. V(x) =2* + %2

For this potential, the syntax used to get the energy data of first 5
orders is:

BW = BenderWu[x"21 + x°2/2, x, 2, 5, Output -> "Energy"]

Qutput={5/2, 0, 0, 0, 0, O}

BW = BenderWu[x"21 + x°2/2, x, 2, 5, Output -> "Energy",
OutputStyle -> "Series"];

OQutput=5/2.

3.2.7 Example-7: Trigonometric potentials

Potentials which are trigonometric functions can also be calculated by this
function. Here are a number of examples which were tried:

1. V(z) = sin (%) .

The energy was calculated up to order 5 in series form, using the
command:

BW = BenderWu[Sin[x]~2/2, x, 2, 5, Output -> "Energy",
OutputStyle -> "Series"];
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Out=[2 — 13g2  35g%  249¢5 977548 115371410
2 8 32 128 2048 115371410

Using the application named “Factor”,we get:

Energy series in factorial form:

_20480—13312¢%—89609*—159364°—39100¢8 —115371g10
- 8192

And, using the “Plot” application gives the Figure-3.4.

0.5 .0
-50
-100

-150

-200

-250

Figure 3.4: Plot of the energy series of the trigonometric function

Here is the plot of the energy series in terms of g, which is represented
in the horizontal axis.

2. V(x) = cos (%)

Calculating this potential without any visualization options, gives the
energy and wavefunction data:
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BW = BenderWul[Cos[x]~2/2, x, 2, 1];

Output=[{1/2, (5 i)/2, -(13/8)}, {{-(1/2), O,
i, 0, 0, 0, 0, 0, 0}, {0, 0, O, 0, O, O,

0, 0, 0}, {(13 i)/32, 0, 0, 0, (13 i)/48,

0, -(1/24), 0, 0}}, {x, 2, 2, 1}]

3. V= cos z.

To get the wavefunction of this potential in a Matrix form, one has to
use the syntax:

BW = BenderWu[Cos[x], x, 2, 1, Output -> "Wavefunction",
OutputStyle -> "Matrix"];

Y

Then use the option “display” in the dialogue box to get the matrix.

3.2.8 Example-8: BWDifference function example

The BWwDifference function computes the perturbative expansion of the
eigenvalue problem:

hz,p)¥(z) = EY(z) (3.9)

Where, z = ez and p = e9p, such that the commutator [z, p] = i. The
BWDifferencefunction computes an expansion of W(x) and E as a power
series in g.

The command is executed by the syntax:
BW = BWDifferencel[X + P + 1/X + 1/P, {X, P}, 2, 10];
Which gives the output in terms of three elements.

Bw[[1]]

This gives the first element, which is the energy element.
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BW[[2]] // MatrixForm

This gives the second element the wavefunction in a matrixform.

BWProcess [BW]

The energy data can be directly called by this command:

BWProcess[BW, Output -> "WaveFunction"] // MatrixForm

The wavefunction data can be directly displayed through this syntax.

3.3 Features

This section takes a deeper look into the features of the BendeWu pack-
age. To use the package, it is imperative to know about the feature called
“Options”. The outputs of the code can be large, messy and difficult to under-
stand. And that is why the “Option” feature, whose job is to make the output
understandable to the users is extremely important to know about and master.

The feature can be used from making the the output truncated to plotting
the data in a way to quickly understand the level dependence. It is worth the
time and labour to check out the many different options available in both the
BenderWu function and the BWProcess function, and experiment with there
results.

3.3.1 Options

The basic syntax of the BenderWu function is:

BenderWul[V(x), x, (Level Number, (Order), Options]
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This syntax includes a feature called “Options” which can be used in
numerous ways. The options are called with the standard Mathematica syntax:

(Option)->(Option Value)

These options help the user determine how the ouptput is presented. For
this they are called “Visualization options”. There are a number of options
that can be used to present the output in matrix form or in an array or in a
series form.

There are options which can be used to hide the progress monitor which
appears when conducting an ongoing calculation. It can be done using the
option Monitor— > “False”. There are options which can be used to output
only the energy data or only the wavefunction data.

The options are mentioned in the Table-(3.1).

Options Results
Monitor— > “False” Turns off progress monitor
OutputStyle— > “Series” To change the output into series
Order— >n n specifies the order at which to trim the output
Output— > “Wave function” to output the wavefunction series
Simpli fy— > “True” simplifies the analytic expressions at each step
Simplify— > “False” Turning this on may speed up analytic evaluations
Evaluation Evaluate numerically
WorkingPrecision Using hardware machine for numerical evaluation
Coupling— > g A symbol to be used for coupling in output
OutputStyle— > “Ratio” Affects only the “Energy” output.
OutputStyle— > “RatioPlot” Affects only the “Energy” output.

Table 3.1: Visualization options
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Some of the options are shared by the functions BenderWu and BWProcess.
These options are presented in Table-(3.2).

Output— > “Energy” output energy
OutputStyle— > “Array” output as array
OutputStyle— > “Series” display the output as a series in the coupling
OutputStyle— > “Matrix form” display output as a matrix
SeriesOutput— > “Coupling” group coupling in wavefunction
SeriesOutput— > “Argument”  group powers of argument x in wavefunction

Table 3.2: Options in BWProcess function

Most options are shared between the two functions BWfunction and
BWProcess function. If no options are called in the BenderWu function, or
only evaluation options are called, the default output is in terms of raw data
which serves as an input to the BWProcess function.

3.3.2 Reconstructing level number dependence

Another function of the package BenderWu is the BWLevelPolynomial func-
tion, which allows one to compute the functional form of the energy correction
€2, ON a given level number.

What the function BWLevelPolynomial does is, it takes a two-dimensional
array, with first level entries of the energy series coefficients €5, up to some
order N4, for various level numbers of the potential V(x), and returns an
array of the polynomials in V' corresponding to each order of n = 0,1, ... n45-

3.4 Utility of the code in various fields

Here is a short summary of all the usages of the code in various fields of
physics and also some of the other features of the package that have not been
mentioned in this chapter.
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. Quick computation of higher order of perturbation theory.

. The BenderWu package can calculate the first 100 corrections of the
perturbation for the potential:

ZL'2
o 7§-+-g2x4 (3.10)

. The BenderWu function calculates the solution to differential equation:

V@) + Vg ¥a) + Valgn) @) = W) (1)

as a parturbation series in the coupling g.

. BenderWu package can be used to compute energy data and display the
wave function of a double well potential which is defined as:

V(z) = M + vy (3.12)

. By implementing the BenderWu package we can get the energy data of
the supersymmetric double well potential given by:

1 1
?V@f+§www (3.13)
Which can be given the form:

%V(m + Vi (xg) (3.14)

. The BenderWu function can handle any potential as long as it has a
polynomial power series around z = 0.

It can be applied on the Jacobi-elliptic potential using the command:
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7.

10.

BW = BenderWu[JacobiSN[x, m]~2, x, 3, 10, Simplify
-> True] ;

BWProcess[BW, Order -> 6]

The Package can also be used to establish the Sine-Gordon level depen-
dence of perturbation series.

Using the commands:

BW3 = Table[BenderWu[Sin[x]"2/2, x, nu, 5, Output
-> "Energy",Monitor -> False], {nu, 0, 7}];

BW3levels = BWLevelPolynomial [BW3]

. As the potential can be allowed to depend on arbitrary symbolic vari-

ables, the study of parametric dependence of perturbation theory can
be done.

The BWwDifference function computes the perturbative expansion of
the eigenvalue problem:

h(z,p)[¥](z) = E[V](z) (3.15)
The series expansion of x and E can be computed using the command:

BW = BWDifference[X + P + 1/X + 1/P, {X, P}, 2, 10];

Where, h=X+P+1=X+1=P.

The higher order perturbative data gained through this code can be
used to extract non-perturbative information. This is because of the
relation between higher order perturbative data and non-perturbative
physics, also known as resurgence.

For the reason mentioned in the previous point, it can be used as a
teaching tool in the study of resurgence.
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Chapter 4

Implementation of the code in
the derivation of Hawking
radiation

Along with all the potentials which have been computed in the previous
chapter, we also have implemented it on the potential of the form:

_ r—2M

2wV = i[ln (MTHQ (4.1)
and, .
V= i [m (WTT)T (4.2)

Here, m= mass of black hole, and w = energy.

Hawking radiation can be thought of as a tunnelling phenomena in Black
holes. The black-body radiation is predicted to be released by black hole due
to quantum effects near the event horizon. Classically speaking, a particle
inside an event horizon cannot escape. But negative energy just beneath
the event horizon can escape quantum mechanically and this causes pair
production to occur

In the paper written by Wilczek and Parikh, which is named “Hawking

radiation as Tunneling”, they consider two scenarios of pair creation. First
is that the pair production occurs just outside the horizon and the negative

41



energy particle tunnels in, the positive particle is radiated out. [Figure 4.1]

w IN OouT

. = .
i

Figure 4.1: Pair creation outside the horizon.

Or, the pair production can occur just inside the horizon with the positive
particle tunnelling out. [Figure 4.2] [3] [4]

Wilczek and Parikh show a direct derivation of Hawking radiation as a
tunneling phenomena using dynamical geometry and respecting conservation
of energy. Tunneling process is treated semi- classically, with the transmission

coefficient I' determined by WKB methods.

The WKB method gives the transmission coefficient or the semi-classical
transmission rate:

[ = e 2ms (4.3)

42



w IN ouT

y O - O

i .
i - R

Figure 4.2: Pair production inside the horizon.

Where Im S is the imaginary part of the momentum of the outgoing
positive particle. This imaginary part is calculated by Wilczek and Parikh. [3]

Wiczek and Parikh calculated Im S for a black hole with no charge to be:

w Tout dr
ImS = —Im B — 4.4
[/ [ = W_w,)] (4.4

The interpretation of S in the WKB formalism is that the transition
coefficient T' is:

T — i(Re(S)+ilm(S)) (4.5)

and therefore for metastable decay, the decay rate is:

I=|T]? = e 2m® (4.6)

where,

ImS = /dx\/Qm(V —F) (4.7)
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If, £ =0 then,

ImS =+/2m / dzV'V (4.8)

We wish to find the potential V' corresponding to Hawking Radiation.
We will then calculate the energy levels for this potential using the Bender-Wu
code.

For simplicity, let w = m. Therefore:

r (4.9)

where,

Pin = 2M (4.10)
Tout = 2(M — w) (4.11)
and we take the limit co — 0 at the end. This corresponds to a potential

barrier of width 2w.

We now approximate the integral is:

2(m —w') 1 ,
1 - ~4M<r—2(M—w)> (4.12)
Therefore,
1 [ v duw’
ImS =— d _ 4.13
" 4M/7'out T/O T_(M_w/) ( )
Now,
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1 /w dw’
2] oy r_22M
1 r—2M\ v
= 5h (v )
2 t 2 0
1 4 r=2M
-5 hl - 7°72]\/[2 )
2 2
Therefore,
1 w+ =28
Vow | VVdr == [ drin (——2— (4.14)
2 r—2M
2
The potential is therefore:
1 _r=2M -9

Now, we use the Bender-Wu code to find the energy eigenvalues. We will
replace w with z in the code.

To execute the code on the potential in the Equation-4.16, to find the
energy eigenvalues at the energy level = 2 and up to the first order, we first
define the potential to Mathematica using:

VIx] := (1/4) (Logl((x - ((r - 2 m)/x))/((r - 2 m)/r)])"2

Then, to calculate the potential, we use the command:
BW = BenderWulV[x], x, 2, 1]1;
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Which returns the output:
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This returns all the data including energy and wavefunction data. To
only get the energy data:

BW = BenderWu[V[x], x, 2, 1,0utput->"Energy"];

Which gives the data:

3 17V et v ey
2 72V 8] 48V 8]
15 ['?v'a-' 1k [ 17vi¥ et wi*a; | |
gLV @8 216V 8]~ 24V @)

3
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So, the energy eigenvalue:

e=2/V"0] + ...

And, to execute the code on the potential in equation-4.17, first we define
the potential in Mathematica:

Vix] = (1/8 x) {Logl(x - ((r - 2 m)/1))/((xr - 2 m)/r)]}"2

Then, to calculate the energy data at the third energy level and up to
the fourth order, we use the command:

BW = BenderWul[V[x], x, 3, 4, Output -> "Energy"];
Which returns the data:
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Here, many of the values are omitted. If the values are too large to fit
in the screen, the software keeps it omitted. It can be displayed fully if it is
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instructed to show more of the result.

The energy eigenvalue as series:

sy 7V3[0]2
EZ% V”[O]—W— ......

The interpretation of these eigenvalues is left for future work.
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Chapter 5

Non-Perturbative physics,
Resurgence

In Quantum physics there are few problems which are exactly solvable. For
this reason approximation methods are a big part of application of theories
and so are the problems whose exact solutions are available. These exact
solutions start as a starting point for approximation methods.

The Perturbation theory is one such approximation method which is
concerned with finding the changes in the discrete energy levels and eigen-
functions of a system when a small disturbance is applied. The solution is
based upon the exact solution of the systems, when there is no disturbance
in the system.

The perturbation of Hamiltonian for example is of this form:

H = Hy+ \H' (5.1)

Where Hj is unperturbed Hamiltonian, H’ is perturbed Hamiltonian,
and A is small parameter. [10]

Perturbation theory has been hugely useful in theoretical problems. How-

ever, it does have its limitations. For example perturbative solutions can
only be for systems with weak coupling. Systems with strongly interacting
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Vi) Wix) "

Figure 5.1: An unperturbed potential well, and a slightly perturbed potential
well (right).

particles do not have useful perturbative solutions. And these systems are
in plenty in physics. For these cases non-perturbative solutions are appro-
priate. Non-perturbative solutions offer more accurate description to these
systems along with offering new insights that perturbation theory cannot offer.

A function or a problem that cannot be accurately described by per-
turbation theory is called non-perturbative. Non-perturbative solutions can
offer insights that perturbative solutions cannot. Some examples of non-
perturbative approximation methods are: Lattice QCD, Anti-de Sitter/QCD.
Solitons and Instantons are non trivial solutions to Quantum field theory
which are perturbative in nature.

The behavior of higher order perturbation theory has been a topic of
research due to its interesting characteristics. It was Dyson who first suggested
that perturbation expansion in QED should be divergent. Later with works
from C. A. Hurst and W. Thirring , and A. Petermann through computa-
tion, showed that perturbation expansion in higher order is divergent. Later
in Arkady’s work, he gave quantitative statement of the relation between
this large order divergence of perturbative coefficients and non perturbative
physics.
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In terms of non-perturbative physics, instantons are a critical concept.
Instantons are classical solutions to the Wick rotated equations of motion
which have non-trivial topology. They are useful in both Quantum me-
chanics and Quantum Field Theory. While in Quantum Mechanics, they
are used to describe tunneling/decay phenomena by using a semi-classical
approximation to equations of motion with imaginary time, in Quantum
Field Theory, instantons are described by gauge fields with non-trivial wind-
ing at infinity. There also they lead to a description of tunneling and decay. [6]

5.1 Relation between perturbative and non-
perturbative physics

There are interesting relations between perturbative and non-perturbative
physics, and this interconnections have been the focus of research for many
papers. In this section some of the aspects of these works are summarized.

For quantum potentials, the perturbative data of their fluctuations, lead
to non-perturbative data in higher non-perturbative sectors. These quantum
potentials include instanton examples of periodic cosine and symmetric double
well potentials.

One of the characteristics of resurgent behaviour is that fluctuations
about all non-perturbative sectors are encoded in the perturbative expan-
sion about the vaccuum sector. This is considered a constructive form of
resurgence and is observed in formulas for the ionization rate of Hydrogen
atoms. They are also observer in periodic cosine Mathieu potentials and
supersymmetric Mathieu potentials.

This constructive resurgence has the form:

n d?
_E@w + V<l'>¢ = uy (52>
Which is the Schrodinger equation with the energy u. We can consider
the energy perturbative series wpe.¢(h, N), where, / is the coupling and N is

the unperturbed harmonic energy level. The perturbative data wuye,(h, V)
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can be used to write an constructive expression for the fluctuation about any
higher order non-perturbative sector.

To demonstrate this, the Mathieu cosine potential, V (z) = cos® z, the
edges of the Nth band are given by the trans-series expression:

i

u(h, N) = Upert(h, N) +

2 1 272\ N+1/2
—( ) Prt(h, N) (5.3)

TNIN R

Both the perturbative series uye(h, V) and the one-instanton sector
Pisi(h, N) are divergent series.

exp[ —

In the Mathieu system perturbative/non-perturbative relation results in
in the suppression of the one-instanton term in the trans-series. The non-
perturbative one-instanton term in trans-series including all orders fluctuation
factor P, (h, N) is expressed through perturbative data:

Pinst(ha N) =

Oipers (B, N) S; /dh Otipers (B, N) R*w.(N +1/2)
N exp[wc h3< oN et S, ﬂ

(5.4)

Where, ., is the perturbative expansion term. In terms of genus-1
systems as well, non-perturbative information is coded in perturbative ex-
pansion. Here, S; = 24/2 in the one-instanton action and w, = /2 is the
classical frequency for the harmonic motion which is at the bottom of the

potential well for the Mathieu potential, V(z) = cos? z.

The equation-5.2 shows that, all A dependent factors in equation-5.3
are encoded in uye¢(h, N), which is a perturbative series. Thus, giving the
example of a constructive resurgence. [5]

The decoding of these non-perturbative information from perturbative
expansion can be done by perturbation theory being combined with a global
boundary condition that specifies how one degenerate vacuum connects to an-
other. This technique works for a wide variety of degenerate vacua potentials,
such as double well potential and the periodic Sine-Gordon potential. The
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entire trans-series, to all nonperturbative orders, can be encoded in terms of
just the perturbative saddle point, because the fluctuations about different
saddle points are tightly related.

Studying the behavior of perturbation theory in higher order also reflects
on this relation. The field theory perturbation series in the renormalised
coupling is divergent, and the reason for this is instantons. The IR ambiguities
in perturbative QCD are associated with non-logarithmic UV divergences in
the non-perturbative Operator Product Expansion (OPE), and can cancel
between the perturbative and non-perturbative sectors. There is also a con-
nection between the large-order behavior of quantum mechanical perturbation
theory and WKB methods which was developed by Bender and Wu.

In fact there are many examples in physics where divergence in pertur-
bation theory can be associated with potential instability and thus provide
link between perturbative and non-perturbative physics. There is a precise
quantitative relation between the large-order divergence of the perturbative
coefficients and non-perturbative physics.

This instability and its relation to perturbation was described by Arkady
in his paper “Decaying systems and divergence of perturbation theory”. He
considers the ¢p\? theory in quantum mechanics and consider it for the Hamil-
tonian:

1 1
H = §¢/2 + §m2¢2 — )\¢3 (55)

He also takes the unstable ground state |1)). One of the main outcomes
from his paper was that divergence of perturbation theory is related to insta-
bility in the theory. And divergence of perturbative coefficients is related to
non-perturbative physics. [7]

5.2 Resurgence

Resurgence theory is a formalism that unifies perturbative and nonperturba-
tive physics. It has application in QM, QFT and String theory.
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The concept of Resurgence was mostly worked on during the 1980s by
the mathematician Jean Ecalle. Then its usage spread to theoretical physics
as well. Also, contribution in this notion has been made by J. Zinn-Justin,
M. Berry, U. Jentschura, G. Dunne, M. Beneke.

One other notion related to resurgence is trans-series. Trans- series can
roughly be called an expansion for real valued functions. It has become
important in asymptotic analysis, model theory, computer algebra.

In terms of quantum spectral problems, two distinct type of resurgent be-
havior has been identified. One is the “Large order/ low order” behavior where
large order of expansion of perturbative coefficient about non-perturbative
sector is related to low order of perturbative coefficients of fluctuations about
other non-perturbative sectors. Another is the “low order/low order” behavior
where fluctuations about non-perturbative sectors are encoded in perturbative
expansion around vacuum sector.

Resurgence faces conceptual difficulties in strongly coupled Yang-mills
theories, if it is carried out in the same way as in quantum mechanics. A
way to get around it may be to use Wilson’s operator product expansion
(OPE) adapted to QCD, which has conceptual similarities with the resurgence
program.
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Chapter 6

Conclusion

The significance of the BenderWu Mathematica package in the world of
computation and physics, is in its accessibility and ease of use. Anyone can
use it from the comfort of their home. In the present state of physics it is
imperative to incorporate computational methods in all its branches. That
is why this field needs a significant number of researchers skilled in these
techniques. The resources in universities might not be enough to meet this
increasing demand. That is why it is important to develop codes that can be
implemented using Wolfram Mathematica, Python and other resources that
can be accessed through home computer.

The code is also important because it can be used in a variety of different
potentials. In this thesis we have applied it to potentials of polynomial form,
trigonometric form, and potential related to tunneling. The generality of the
code that can be translated to use in a variety of different potentials, makes
it extremely useful.

The contribution of this code to the field of resurgence is of immense
value as well. The field of resurgence is rapidly growing and to understand the
relation between higher order perturbative data and non-perturbative theory
this code can be very useful. It can be used in decoding non-perturbative
data from perturbative expansion, as well as contribute to the understanding
of the behaviour of higher order perturbation series, and its connection to
tunneling.
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