
Botnet Detection In IoT Devices using Machine Learning

By

Shakir Rouf
16101104

Nazmus Sakib Akash
16101208

Amlan Chowdhury
16101042

Sigma Jahan
16301031

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
BRAC University
December 2019

© 2019. BRAC University
All rights reserved.

Declaration

It is hereby declared that:

1. The thesis submitted is our own original work while completing degree at
BRAC University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Shakir Rouf
16101104

Nazmus Sakib Akash
16101208

Amlan Chowdhury
16101042

Sigma Jahan
16301031

i

Approval

The thesis/project titled “Botnet Detection In IoT Devices using Machine Learn-
ing” submitted by

1. Shakir Rouf (16101104)

2. Nazmus Sakib Akash (16101208)

3. Amlan Chowdhury (16101042)

4. Sigma Jahan (16301031)

Of Fall, 2019 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on December 24, 2019.

Examining Committee:

Supervisor:
(Member)

Dr. Amitabha Chakrabarty
Associate Professor

Department of Computer Science and Engineering
BRAC University

Thesis Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Dr. Mahbub Alam Majumdar
Professor

Department of Computer Science and Engineering
BRAC University

ii

Abstract

Internet of Things (IoT) devices are a group of interconnected devices or ma-
chines that have the ability to transfer data over a network without the influence
of any external factor. The technology makes use of sensor nodes embedded into
everyday computing objects, which communicate in a wireless multi-hop fashion
to exchange data over a local network or the internet. With the rapid techno-
logical advancements taking place around the globe, the use of IoT devices has
also increased proportionately. Although the prevalence of IoT devices in human
lives has influenced the IoT manufacturers to make it cheap an accessible, but on
the other hand, the system provides minimal control with no substantial security
measures due to its prodigious application, which in turn makes it susceptible to
botnet attacks. Botnet is a network of interconnected malware contaminated IoT
devices, individually referred to as a bot. These bots are used as instruments of
malicious attack on a network of IoT devices which allows the group of hackers
(referred to as Botmaster) to perform distributed denial-of-service attack (DDoS),
data theft and spam by flooding the network with unnecessary information. As
a result, botnet detection has risen as an essential ingredient of network security.
In this paper, our motive is to use various Machine Learning algorithms to detect
botnet attacks and filter out the algorithm which will be most suitable and accu-
rate to detect such attacks by comparing the derived outputs.

Keywords: Botmaster, Botnet, DDoS (Distributed Denial of Service), IoT (In-
ternet of Things), Multi-hop, Machine Learning Classifiers, Sensor Nodes.

iii

Acknowledgement

Firstly, all praise to the Almighty for whom we have been able to complete our
thesis without any major interruption. Secondly, to our advisor Dr. Amitabha
Chakrabarty sir for his kind support and advice in our work. He has pushed us
to test our limits and bring out results in a sector we struggled to understand.
And finally, to our parents who have always motivated us and inspired us to work.
Without their thorough support, our thesis would not have been complete. With
their prayers, support, inspiration and investment, we are about to complete out
graduation from this prestigious institution of Brac University.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgement iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contribution . 3

1.2.1 Problem statement . 3
1.2.2 Solutions . 3
1.2.3 Methodology . 4

2 IoT & Security 6
2.1 What is IoT? . 6

2.1.1 Importance of IoT . 7
2.1.2 How does IoT work? . 8

2.2 The Challenges of IoT . 9
2.2.1 Security . 9
2.2.2 Privacy . 10

2.3 Distributed Denial-of-Service (DDoS) 10
2.3.1 Botnet . 11

2.4 Machine Learning . 12
2.4.1 Supervised Learning . 13
2.4.2 Unsupervised Learning . 13

2.5 Botnet Detection . 13

3 Literature Reviews 15

4 Collecting and Processing the Dataset 17
4.1 Transport Layer Data Pre-processing 17
4.2 Dimension Reduction . 20

4.2.1 What is Dimension Reduction 20
4.2.2 PCA (Principal Component Analysis) 21

v

4.2.3 ICA (Independent component Analysis) 22
4.2.4 High Correlation Filter . 23
4.2.5 Random Forest Regression 23

5 Research Methodology 25
5.1 K-Nearest Neighbour . 25

5.1.1 Implementation of kNN on Transport Layer Dataset 26
5.2 Näıve Bayes . 26

5.2.1 Implementation of Näıve Bayes on Transport Layer 27
5.3 Random Forest . 28

5.3.1 Implementation of Random Forest on Transport Layer . . . 29
5.4 Support Vector Machine . 30

5.4.1 Implementation of Support Vector Machine on Transport
Layer . 30

6 Result Analysis 32
6.1 Comparison using F1 score . 32
6.2 Comparison using Accuracy . 33
6.3 Comparison using AUC (Area under ROC curve) 34
6.4 Comparison Based on Prediction time 35
6.5 Comparison of the Confusion Matrix 36

6.5.1 Analysis of k-Nearest Neighbour 37
6.5.2 Analysis of Näıve Bayes . 38
6.5.3 Analysis of Random Forest Classification 39
6.5.4 Analysis of Support Vector Machine 40

6.6 Collectively analyzing all the results 40

7 Conclusion 44
7.1 Future Direction . 45

Bibliography 49

vi

List of Figures

2.1 Classification of IoT Devices . 6
2.2 Various usages of IoT . 8
2.3 How IoT works . 9
2.4 Obstacles of IoT . 9
2.5 The Botnet Attack process . 12
2.6 Steps of Machine Learning . 13
2.7 Classification of Botnet Detection 14

4.1 The Benign Dataset header for Transport Layer 18
4.2 The Affected Dataset header for Transport Layer 18
4.3 Dimension Reduction Example [29] 21
4.4 Component wise and Cumulative Explained Variance for PCA . . . 22
4.5 Training set header after ICA . 22
4.6 Test set header after ICA . 23
4.7 Training set header after High Correlation Filter 23
4.8 Test set header after High Correlation Filter 23
4.9 Feature Importance from Random Forest Regression 24
4.10 Dataset header from Random Forest Regression 24

5.1 The Code for kNN classification . 26
5.2 Normal distribution for Gaussian Näıve Bayes [35] 28
5.3 Code for Näıve Bayes Classifier . 28
5.4 Visualisation of a Random Forrest algorithm [37] 29
5.5 The Code for Random Forest classification 29
5.6 The Code for SVM classification . 31

6.1 The Code Segment for determining each metric 32
6.2 The ROC curve for Naive Bayes Classification under ICA 34
6.3 The ROC curve for Naive Bayes Classification under PCA 35
6.4 The ROC curve for Random Forest, kNN, SVM 35
6.5 The Confusion Matrix . 36
6.6 The Code Segment for Confusion Matrix 36
6.7 High Correlation . 37
6.8 ICA . 37
6.9 PCA . 37
6.10 Random Forest . 37
6.11 High Correlation . 38
6.12 ICA . 38
6.13 PCA . 38
6.14 Random Forest . 38

vii

6.15 High Correlation . 39
6.16 ICA . 39
6.17 PCA . 39
6.18 Random Forest . 39
6.19 High Correlation . 40
6.20 ICA . 40
6.21 PCA . 40
6.22 Random Forest . 40

viii

List of Tables

6.1 F1 Scores . 33
6.2 Accuracy . 33
6.3 AUC Scores . 34
6.4 Prediction Time . 36

ix

Chapter 1

Introduction

Internet of Things (IoT) refers to a global network of sensor nodes. It is a mesh of
devices connected over a local network or the Internet so that they may exchange
data. This data is generated by the sensor nodes that are embedded into the
devices. The sensor nodes are constantly generating large volumes of raw data
which have little or no interpret-ability. Our research reflects on taking this data
and deriving meaningful insights from it. As mentioned before, IoT in general
refers to a very large network, which is practically impossible to visualize from a
standalone point of view. This make the system harder to monitor, while leaving
loop holes in the security protocols, that can be easily bypassed and would let any
given person an access to a huge amount of confidential data. Sensitive data can
then be misused to perform various illegal activities. The system provides little
control with no evident security measures. Our research is based upon the Mirai
botnet attack that shook the whole world when it was released on the Internet
as an open-source, leaving people access to an algorithm that would prove to
be very dangerous for large organizations and would leave the privacy of people
exposed to these hackers, known as Botmasters. In our research we have targeted
to solve these problems by collecting raw data that has been divided into two
parts. The benign data represent the state of a device where it is not under
attack, while the attack data represents vice versa. We have looked in to various
classification algorithms which were backed by multiple feature selection processes,
known as dimension reduction techniques, to determine the state of a device. The
dimension reduction techniques have helped us to determine which features would
prove to be prolific in determining the outcome. Our research dives deep into
four different feature selection processes and each of the processes contain four
classifiers. Although we had access to 9 different sets of data from 9 different IoT
devices, we did our research based on a security camera. The insights from the
research can be further used to determine how good the algorithms that we have
designed would work on the other devices.

1.1 Motivation

The Internet of Things (IoT) enhances our methods of collecting data from the real
world like smart devices, factories, automobiles, agriculture, medical services and
even ourselves. The resulting surge of records, from numerous IoT devices all over
the world will eventually create many opportunities for improving quite a number

1

of elements of real-world problems. However, realizing this potential also requires
us to address the fact that the raw data needs to be mined properly using relative
mathematical models, to give it some meaning. The knowledge generated from the
system can be then used for multiple purposes. It is important to note that raw
data itself will provide no substantial benefit, hence, processing it is mandatory.
As the reputation of the Internet increases, so does the wide variety of miscreants
who abuse the Internet for their nefarious purposes. Mirai (known as ‘future’ in
Japanese literature) is a malware that places itself onto devices connected through
a network, via downloading. The devices may include IoT units like smartphones,
laptops, desktops or other devices. The malware eventually turns these devices
into bots that can be remotely controlled using a Control & Command server,
and makes them a part of the larger Bot Network (botnet) which can be used
for performing large-scale DDoS (Distributed Denial of Service) assaults of mul-
tiple types. This malware mainly focuses on devices like domestic routers and IP
cameras that are constantly connected to the Internet through some path using a
Network [1]. The discovery of the Mirai botnet dates back to August, 2016 [2] and
has been developed by group of white hat malware researchers known as Malware-
MustDie [3]. They are known throughout the world for being part of some of the
most troublesome DDoS (Distributed Denial of Service) assaults. They include
the attack on the website of computer security journalist ‘Brian Krebs’ on the
date 20th September, 2016 [4], and followed up with the assault on French Internet
host OVH [5]. There was also the DYN cyber-attack dating back to October, 2016
[6][7]. There was a text log between ‘Anna-senpai’ and ‘Robert Coelho’, which
serves as a proof of the fact that the Mirai botnet was named after one of the
Television animated series in 2011 named ‘Mirai Nikki’ [8]. The worst of the cir-
cumstances was yet to follow, when the Mirai source code was uploaded onto Hack
Forums as an open-source [9]. From there onwards, with code being published
online, multiple miscreants have made use of this with slight upgrades and alter-
ations, and adapted them into their own personal malware-based attacks which
eventually caused a great deal of harm [10][11]. Then came the DDoS assault
that left a whole lot of the Internet inaccessible in U.S (United States). It was
actually the work of the Mirai botnet, although officials initially thought of the at-
tack having been being executed by an opposing nation. This Mirai botnet based
on which we are performing our research, never had such grand nefarious ambi-
tions. All they wanted to do through developing such malware in the first place
was, to make little money off of Minecraft enthusiasts, but it eventually evolved
and became more powerful beyond their imagination. It is a story of unintended
penalties and sudden protection threats, and it says a lot about our current world.
The immense rise in the number of IoT based DDoS attacks, witnessed in current
years, will likely proceed until IoT device manufacturers address this security issue
and take steps to prevent this. Our motivation is to serve as part of the bigger
group, who intend to prevent such mishaps from taking place and work to design
and deploy algorithms that will prove to be helpful in detecting and preventing it.

2

1.2 Thesis Contribution

1.2.1 Problem statement

In the world today, IoT device manufacturers have targeted consumer level IoT
devices; the consumers care more for the low value and ease of use, while disre-
garding the need for security and control. The exponential rise in demand for these
IoT devices has led the IoT device manufacturers to avoid necessary protection
features and keep injecting large volumes of insecure gadgets such as Digital Video
Recorder boxes, IP cameras and many more. And therefore, it leads to these weak-
nesses being epitomized through the insecure security protocols being used, default
credentials and the inherent computational limitations. Hence, we are left with an
exponentially expanding band of external attack sources due to the immense pro-
duction of such devices and the ease with which hackers can locate them and use
them for various malicious means, such as Shodan [12]. One such famous system
that has incorporated itself into the ecosystem of hackers today, is the use of Bot-
nets. The bot is known as a malware affected device that intends of compromising
and taking control of these IoT devices that are constantly connected to Internet
through various means. The process takes place in the following way. Firstly,
the malware is placed onto the user’s device which can be a smartphone, PC or
laptop; it is done via downloading the malware forcefully or tricking the user into
downloading it through the use of social engineering techniques like clicking on an
advertisement and many more like this [13]. The victim is totally uncertain of the
fact that his device has been compromised and is now part of the Bot Network.
From here on out, multiple malware-infected devices creating a network of bots, is
put under the command of a single entity. This entity is known as the hacker or
otherwise the Bot Master. The network of bots is therefore known as the Botnet.
The hacker controls the network of bots through a Control and Command server
and perform these DDoS (Distributed Denial of Service) assaults. To complement
the evaluation of these devices, it is necessary to have a network based-detection
device accessible which can monitor the whole network and look for the indica-
tions of bot-infected gadgets. As long as these issues remain unaccounted for, the
technology known as IoT can become the new playground for these hackers to
perform more dangerous DDoS assaults that could mean a great deal of harm to
us, and hence presents us with a wide variety of challenging task to accomplish so
that we can be able to counteract it. Due to the fact that more of these DDoS
attacks are trying to target consumer-level IoT devices and the problems presented
earlier, coupled with a lack of technical attention towards the inherent computa-
tional vulnerabilities of the IoT technology, is what led us to deciding our topic of
research.

1.2.2 Solutions

There have been some significant achievements in the field of Intrusion Detection,
with the execution of deep learning approaches like: Bidirectional Long-Short Term
Memory and Recurrent Neural Networking. A packet-level Machine Learning DoS
detection has also been worked on, with it being able to recognize typical DoS
attack traffic from consumer IoT devices.
The results we observed from our research showed us that machine learning is ap-

3

plicable to our problem and our problem is a learnable one. The final model was
able to predict the state of an individual IoT device with an average accuracy of
98% and within the time frame of 3 to 10 seconds. With the help of four machine
learning algorithms which include kNN, Näıve Bayes, Random Forest, Support
Vector Machine and the dimension reduction processes such as Principal Com-
ponent Analysis, Independent Component Analysis, Random Forest Regression,
High Correlation Filter; we have managed to solve the problem statement that has
been presented in (section 1.2.1). We have been able to accurately predict the state
of an IoT device; whether it is in a benign state, or is it being attacked. All four
of our Machine Learning classifiers have performed very good. The reason behind
this is that, our dataset was very representative. Our sampling techniques have
captured substantial amount of information in the original dataset which even-
tually has helped us to develop predictors that are able to predict the outcomes
with high precision while being efficient at the same time with very fast prediction
times. The result analysis in Chapter 6 will provide a more in-depth review of our
work.
It was also evident that Random Forest was able to improve the performance of
the model greatly, although at a considerable cost in terms of overfitting. This is a
good reminder that proper feature engineering and collecting as much data as pos-
sible has a much larger pay-off than refurbishing the algorithm. We also observed
the trade-off in run-time versus accuracy, while working with kNN classifier, it
produced some of the best results but underperformed in terms of time taken for
prediction in comparison to the other learning models. This is one of many con-
siderations we have to take into account when designing machine learning models.
We trained our models to be accurate to a great extent, but we do not know how
it generates the predictions. So, our next step in the machine learning process is
crucial, to understand how the model makes predictions. Achieving high accuracy
is great, but it would also be helpful if we could figure out why the model is able
to predict with such a high accuracy to better understand each model. One of
the possibilities could be overfittng by seeing too many samples and relying too
much on a large sample data rather than designing a model around it to generate
predictions. Even so we are still left with quite a few questions. For example, what
features does our model rely on when predicting the state of an IoT device? Is
it possible to design a more robust model, based on the feature selection process?
Would the models survive in real-world situations and not generate predictions
based on overfitting? The upcoming chapters will delve into it and answer the
questions, following up with a more meaningful insight on our work.

1.2.3 Methodology

Our research uses raw data collected from the UCI repository number 00442 of
machine learning. We ran the data through a few pre-processing phases before
diving into the feature selection and classification process. We introduced a new
column ‘Attack’ which denotes the state of the IoT device (Security Camera) in
either benign phase or attack phase. We had our hand on two different datasets
that were concatenated to form a single dataframe. This dataframe was then run
through a handful of dimension reduction techniques. This is because our raw
dataset had 115 features, hence it would have been hard to design a model around

4

it, and even more hard to visualize the data and how it behaves. Then we applied
the previously mentioned classification techniques to complete our research .We
will dive deep into each of those algorithms, and do an in-depth analysis of them
in the following chapters.

5

Chapter 2

IoT & Security

2.1 What is IoT?

The Internet is a global wide-area network which connects all the computer system
across the world, with the inclusion of devices that are part of the IoT (Internet of
things) technology. It is a method for interfacing a computer to another one, using
switches and servers. The web is a system of worldwide trades including: private or
open businesses, scholastic corporations and government systems – associated with
directed, remote and fiber-optic advances [14]. Internet Protocol (IP) is consid-
ered as the internet’s fundamental component and communication backbone. The
Internet of Things (IoT) portrays the system of physical items, ”things”, which
are installed with sensors, programs and different advances to connect and trade
information along with different gadgets and frameworks over the web. The Inter-
net of Things has transformed basic machines and home frameworks into ”smart”
gadgets that can be observed and controlled over the Internet. IoT gadgets are
intended to work for individuals at home or in industry. All things considered,
the IoT gadgets can be ordered into three primary classifications: consumer, en-
terprise and industrial. Although, smart devices like watches and phones are part
of the consumer IoT sector, the weather and traffic management system is a core
component of the Industrial or Enterprise IoT chains.

Figure 2.1: Classification of IoT Devices

6

2.1.1 Importance of IoT

In the course of recent years, IoT has became one of the most significant advance-
ments of the 21st century. Since we can couple everyday items like kitchen ma-
chines, vehicles, indoor regulators, child screens, to the web through the help of the
sensor nodes embedded into them. By the use of methods for ease of registering to
the cloud, large information, investigation, and portable advances, physical things
can share and gather information with insignificant human mediation. In this
hyper-connected world, computerized frameworks can record, screen, and change
every interaction between connected devices. Hence, the physical world meets the
advanced world of technology, to coordinate. IoT is changing each aspect of our
lives and it isn’t only simply changing our lives, it is making our lives, way simpler
and more straightforward. IoT gives organizations and individuals better under-
standing and power. Moreover, IoT enable us to be progressively associated with
the general surroundings and to accomplish significantly elevated level of work.
Within excess of 7 billion associated IoT gadgets today, specialists are anticipat-
ing that this number should develop to 10 billion by 2020 and 22 billion by 2025
[15]. Although the IoT has been in presence for quite a while, an assortment of
current advances in various innovations is constantly helping it to evolve.

1. Access to ease: low-control sensor innovation. Moderate and solid sensors
are making IoT innovation workable for common people.

2. Availability: A large group of system conventions for the internet has made
it simple to interface sensors to the cloud and gadgets for moving productive
information.

3. Distributed computing stages: The expansion in the accessibility of cloud
stages empowers the two organizations and customers to get to the founda-
tion where they have to scale up without really overseeing everything.

4. AI and investigation: With signs of progress in Artificial Intelligence and
investigation, alongside access to different measures of information put away
in the cloud, organizations can accumulate knowledge quickly and effectively.
The rise of these united advances keeps on driving the limits of IoT and the
information created by IoT additionally sustains these advances.

5. Conversational computerized reasoning: Advances in neural systems have
brought Natural Language Processing (NLP) to IoT gadgets, (for example,
Alexa, Cortana, and Siri) and made them engaging, moderate, and reason-
able for home use.

7

Figure 2.2: Various usages of IoT

2.1.2 How does IoT work?

The whole IoT system mainly incorporates 4 integral parts: Collecting the data
generated by the sensor nodes, a User interface, Processing the data and Connec-
tivity.

1. Collection of data from the sensor nodes: This exhibit the use of sensors to
collect data. Sensors can range from a wide variety of moisture, air qual-
ity, temperature, motion, light sensors and many more. This collection of
sensors aids us in collecting data from the real world. Although the data
is unstructured and raw, yet, insight can be drawn from them eventually
leading to more smarter choices.

2. User Interface: From here on out, the information collected by the sensors
and processed is made significant to the end-user to a greater extent. It
can be using an alarm to notify the client of a message, email, phone-call,
warning and so on. For example, using a text or alarm-based indicator to an
exorbitantly high temperature so that the user may take necessary actions
regarding the issue. This way the user can have access to an interface that
empowers them to proactively screen the system and act accordingly.

3. Processing the Data: When the surge of information floods the cloud, some
pre-programming helps to prepare it. This can be something very simple,
such as monitoring the temperature and observing if it is becoming very hot.
Moreover, it can be an unpredictable event taking place. In any case, if the
temperature rises above a certain threshold or someone violates your privacy
at home through breaking and entering, the data collected is processed and
presented to the user so that he/she may take action.

4. Connectivity: It is the core aspect of the whole technology; this is what me-
diates the flow of information from one system to another. The information
generated by the sensor nodes are then forwarded to the cloud. There are

8

many ways these gadgets can be connected to the cloud, through using cel-
lular, WiFi, Bluetooth, satellite or being interfaced directly to the Internet
through the use of an Ethernet cable. Each and every alternative has a cer-
tain trade-off that takes place between the capacity to transfer data, security,
range of coverage etc. The best option that should be selected comes down
to keeping the specific application purpose in mind. Although they all serve
the same purpose, which is getting the information generated, to the cloud.

Figure 2.3: How IoT works

2.2 The Challenges of IoT

Multiple key IoT issue territories are analyzed to investigate the most crushing
difficulties and questions .The main challenges of IoT include security, legal, reg-
ulatory, and rights privacy.

Figure 2.4: Obstacles of IoT

2.2.1 Security

Even though in the world today, monitoring security threats is not a new, yet the
extensive use if IoT devices introduce some new and more challenging security
tasks. Both the users and manufacturers of the IoT technology need to be aware
of the fact that these personal information in their devices are not secure enough
due to internal vulnerabilities of the system. The main reason behind this is
that, IoT provides a substantial amount of the personal data in extreme details

9

without the user’s active participation, and the technology has become an integral
part of our daily lives. Due the network being saturated enough by millions of
devices, the task of monitoring the system is a challenging one indeed. The idea
of IoT devices being constantly connected to the Internet in some way, eventually
deteriorates the security and the strength of the Internet as a whole. As far as the
standard of the Internet security is concerned, designers and clients are not paying
enough attention to this issue while manufacturing or purchasing these IoT devices.
Likewise, a synergistic effort is expected to create a good enough influence to solve
this issue, and would definitely improve the technology altogether. Specialists
have just shown that it is possible to make remote hacks on pacemakers and
vehicles, and in October 2016, the Mirai botnet had compromised the servers on
the east shore of the United States. It was even made possible to penetrate systems
through making or turning devices such as remote switches and cameras into Bots
controlled by a Botmaster [16]. On account of the Mirai botnet, it was evident that
the use of default passwords and security protocols made it easier for bypassing the
protection. Although, much more solid passwords, validation/approval procedures,
and cryptography would actually make a dent in the issue regarding security.

2.2.2 Privacy

In the IoT (Internet of things) technology devices are connected with a complex and
saturated collection of hardware and software, hence it becomes hard to monitor
and manipulate the system as sensitive information or personal data can leak
through anytime through some kind of security bypassing by a hacker. All the
devices are constantly sharing substantial amount of personal details about the
user in some sort of association. The details can range from name to birthplace and
many more intricate information [17]. The Internet of Things (IoT) can produce
huge quantities of data. This record has to be transmitted, processed in some way,
and then doubtlessly stored somewhere, hopefully securely. (Pollmann, 2017) says
“Much of this data is private data, and some can be pretty sensitive. This brings
statistical privacy questions to the forefront” [18]. Although, there are safety and
privacy concerns with IoT, it serves to make our everyday lives easier through
its multi-functional capability and ability to gather information from outside and
present them in a way that is interpretable. It eventually helps us to perform
our everyday duties; remotely and automatically, and more importantly, it is a
game-changer for industries.

2.3 Distributed Denial-of-Service (DDoS)

The DDoS (Distributed Denial of Service) assault is at the core of one of the
dominant weapons on the Internet known to performing network-based attacks.
The attack performs by flooding huge amounts of traffic onto a server or system
by means of IoT devices, eventually crashing it and making it obsolete. Network
connections that make up the Internet are consisted of, multiple layers of the
OSI (Open Systems Interconnection) model. Many of the noteworthy layers are
known as: The Network Layer, Transport Layer and Application Layer. There are
multiple DDoS attacks that are based around these specific layers. The following
categories exhibit their meanings:

10

1. Volume based attacks: This attack makes use of multiple IoT devices that
have been contaminated to transfer large quantities of packets making asso-
ciation demands, eventually bringing down the bandwidth of the network.

2. Protocol attacks: These are more focused attacks that look for vulnerabilities
in a server or system’s resources eventually utilizing them to perform an
assault.

3. Application attacks: They are known as the most famous forms of DDoS
assaults, and perform their tasks by focusing on specific Internet applications.

Distributed Denial-of-Service attacks mainly target websites and online services.
The task is to overpower the server or system by more amount of traffic than it
is capable of handling. Their sole purpose is to make the site or administration
obsolete through various means. The traffic is mainly compromised of packets and
demands for associations [19]. This might be joined with a coercion danger of an all
the more decimating assault except if the organization reimburses a cryptographic
recovery system.

2.3.1 Botnet

In some essential ways, DDoS (Distributed Denial of Service) are performed by
using a mesh of remotely controlled PCs or other IoT devices; these are compro-
mised devices that have been hacked and now work as bots. The botnet, otherwise
known as the Bot Network, is a case of using a devastating technology for nefari-
ous purposes. Botnets are at the core of the numerous hazards that the Internet
presents. It consists of a network of gadgets (IoT devices) that may be wirelessly
connected to the Internet, which include smart phones, servers, smart devices and
other IoT gadgets. These devices are comprised of a typical sort of malware that
turns it into a bot and it eventually becomes a part of the larger Bot Network.
Users are usually unknown to the fact that their device may be a part of the bot-
net. These malware infected devices are in turn remotely controlled by hackers,
who are known as BotMasters; they control these contaminated gadgets through
the use of a Control and Command Server, and utilize the bots to perform illegal
activities, and the notorious task remains unidentified to the client. Bots are gen-
erally used to send spam mails, participate in sending over large volumes of data
(Volume Based Attacks) and create malicious traffic that surpasses the threshold
of a large organizational network for DDoS (Distributed Denial of Service) attacks.
As mentioned, they are utilized to flood traffic by sending over huge amounts of
packets, focused on systems, servers and websites than they are capable of han-
dling.
These typical botnets vulnerates the transmission capacity of the targeted individ-
ual by sending over more association requests than a server or network is capable
of managing. Hackers use botnets for multiple purposes, which may range from
spam mails to downloading malwares onto a particular device. Progressively, the
huge number of IoT gadgets that are overflowing the markets and extends the
reach of the Internet of things system, are being targeted and transformed into
a part of the Bot Network used to perform DDoS assaults. The disregard of the
technology for security measures with minimal control, eventually leaves the de-
vices defenseless against hackers who the misuse these devices to create a larger

11

Bot Network. The infamous DYN assault that took place in 2016 was performed
through utilizing the Mirai malware, which made a Bot Network consisting of IP
Cameras, Smart Televisions, Printers and Smart Phones. The Mirai Botnet made
up of IoT devices might be more hazardous than it was originally intended. Af-
ter the Mirai source code was released to the world as an open-source, multiple
DDoS assaults have taken place, by making slight tweaks to the original code.
Cyber-criminals used the code and altered it to develop multiple versions for use
in future DDoS attacks [20]. What Mirai does is, it forces the devices to download
a malware, eventually taking control over it and making it report to a Control and
Command Server, turning them into bots that can be utilized to perform DDoS
assaults on large organizations. The following figure 2.5, shows how a general bot
attack is performed.

Figure 2.5: The Botnet Attack process

2.4 Machine Learning

Machine learning refers to a sort of information examination, that utilize mathe-
matical models that learn from the information provided to it in terms of samples.
It is a sort of Artificial Intelligence(AI) that furnishes frameworks with the capac-
ity to learn without being expressly customized. The information is being utilized
to make predictions, not codes. Information is dynamic so the system enables the
framework to learn and develop models, and the more information that is ana-
lyzed, the higher the accuracy, in terms of prediction. Although, it may come at
the cost of overfitting the training data. Machine learning was first characterized
in 1959 by Arthur Samuel, a pioneer in the field of man-made consciousness and
AI. Samuel characterized machine learning as a field of practice that enables per-
sonal computers to learn without being unequivocally modified [21]. The ability
of Machine Learning is to develop models that are capable of making their own
judgment based on decisions and classifications, rather than requiring any kind of
human intervention and manual rules. There are seven steps to the whole process:

1. Collecting the data.

2. Pre-processing the data.

12

3. Making use of model to represent the data.

4. Training the dataset on that model.

5. Evaluating the model based on classification accuracy.

6. Performing hyper-parameter tuning.

7. Making predictions.

Figure 2.6: Steps of Machine Learning

2.4.1 Supervised Learning

Supervised learning is the most well-known sub branch of machine learning today.
The name ”Supervised” comes from the preparation that this sort of calculation
resembles, in having an instructor regulate the entire procedure. When preparing
a regulated learning calculation, the preparation information will comprise of data
sources combined with the right yields. During preparing, the calculation will
look for designs in the information that relates to the ideal yields. In the wake of
preparing, a supervised learning calculation will take in new inconspicuous sources
of information and will figure out how the outcomes should be predicted based on
the information that has been provided to it earlier. The target of a regulated
learning model is to foresee the right mark for recently introduced information.
Regulated learning can be part of two subcategories: Classification and Regression.
Our model is a supervised learning model.

2.4.2 Unsupervised Learning

Unsupervised learning is where no labels are given to the learning calculation,
leaving it all alone to discover structure in its information. The problem of unsu-
pervised learning is in trying to find a hidden structure in unlabeled data. The
objective in such learning issues might be to find gatherings of comparative models
inside the information, where it is called clustering or to decide how the informa-
tion is conveyed in the space, known as density estimation [22]. To put forward
in simpler terms, for an n-sampled space x(1) to x(n), true class labels are not
provided for each sample, hence known as learning without supervision.

2.5 Botnet Detection

Botnet detection can be categorized into the Honeynet-based and Intrusion De-
tection System. In IDS there is a subsection consist of behavior-based detection

13

and hybrid. Behavior-based detection can be parted into Anomaly-based and
Signature-based. Later, from anomaly-based, there are four different methods
which are DNS based detection, Data-mining, Host-based, Network-based [23].
Active monitoring and passive monitoring, these two are forms a Network-based
detection system. Figure 2.7 exhibits a tree that shows the multiple approaches
to Botnet Detection. The goal of a detection model is to monitor the network
traffic activity and look for indications to the presence of a bot-infected device.
The system generally works by overseeing a huge collection of devices, which are
generating data through the use of sensor nodes. Each instance of these real-time
data are further processed through a predictor which classifies the state of the de-
vice. Although, real-time monitoring of these many devices is a challenging task,
yet it is not an impossible one. It will require a huge amount of computational
power. There are many other approaches to detect botnet like deep learning, kernel
recursive, least squares, neural networking and finally machine learning.

Figure 2.7: Classification of Botnet Detection

14

Chapter 3

Literature Reviews

IoT (Internet of Things) requires smart handling and dependable transmission in-
side the system. Other than all the benefits and positive qualities that the remote
medium has brought to IoT, there are many drawbacks in the security and privacy
issue of the system. Since, it provides a huge amount of personal in extreme detail
without the user’s active participation. There are different types of traffic oddities
and attacks. The most widely recognized security dangers are gatecrashers, which
is mainly known to the world as infection, malware or anomaly. This accompanies
the danger of individual information being communicated to the world and cause
more digital assaults like Denial of Service (DoS), Remote to Local (R2L), Probe,
botnet and much more. Ordinary flow of traffic has pattern, due to the fact that
these assaults are not regular. In any case, when another element will take an
attempt to twist or alter the information, the example will change and this is the
place the intrusion recognition procedure becomes possibly the most important
factor with regards to the web and specifically with regards to the Internet of
Things.

R. Doshi et al [24] proposed that a packet-level machine learning DoS detection can
precisely recognize typical DoS attack traffic from consumer IoT devices. They uti-
lized a constrained list of features to limit computational overhead, which is vital
for real-time classification and middlebox deployment. They have tested diverse
machine learning classifiers on a dataset of normal and DoS attack traffic, collected
from an experimental consumer IoT attack network. However, to avoid complica-
tions of running the actual Mirai Botnet, they simulated the three most common
classes of DoS attacks a Mirai-infected device will run - those being “TCP SYN
Flood”, “UDP Flood”, “HTTP Get Flood” and only amassed 300 seconds of At-
tack data which makes their dataset relatively small.

Mcdermott et al [25] demonstrated the execution of deep learning in this sector
with the Bidirectional Long Short-Term Memory Recurrent Neural Networking
conjunction with Word embedding for botnet detection. However, the bidirec-
tional approach adds overhead to each epoch and builds preparing time and the
“ACK” attack vector metrics were shown to be less favourable.

Another proposal by Mai L. et al [26] was categorizing flows into similar groups
which would decrease the complexity of training data. To screen and recognize

15

abnormalities or any suspicious conduct, Interruption Identification Framework
(IDS) and Interruption Anticipation Framework (IPS) are being utilized. As differ-
ent conditions and most recent advances are inclined to be malignantly assaulted,
machine learning calculations can identify, break down and group gatecrashers
precisely and rapidly [27]. Yet, the research falls short in feature selection tech-
nique as they get each feature one by one until reaching the best performance for
clustering similar flows. This is time consuming in regular cases as their accuracy
is hindered by a prediction time of 51.07 seconds.

Roughan et al [47] uses the classification of traffic for the purpose of identify-
ing four major classes of services: interactive, bulk data transfer, streaming, and
transactional. They study the effectiveness of using packet size and flow duration
characteristics, and simple classification schemes were observed to produce very
accurate traffic flow classification.

In addition, a paper presented by Ahmed, shows that they have developed a
sequential, real-time anomaly detection algorithm using Kernel Recursive Least
Square method that incrementally constructs and keeps a dictionary of enter vec-
tors that defines the region of normal behavior [48]. The dictionary adapts over
time to tackle modifications in the shape of ordinary traffic, with new elements
being added out of date individuals deleted as the normality vicinity expands or
migrates.

Although multiple approaches have already been accounted for such as Neural
Networking, Deep Learning and a few Machine learning approaches. Simply due
to fact that our problem is a classification of compromised IoT devices, is the
reason for targeting classifiers like (k-NN, Näıve Bayes, Random Forest, Support
Vector Machine).

16

Chapter 4

Collecting and Processing the
Dataset

A properly labelled dataset for Botnet detection in IoT (Internet of Things) is very
rare to find. Hence for our research we are using a dataset for Mirai Botnet dataset
from the UCI repository for Machine Learning. The device we are focusing on is
a security camera, labelled as: Provision PT 737E Security Camera. The creator
of the dataset is Yair Meidan, and dates back to March, 2018. We have our hands
on two different datasets, for the benign dataset labelled as benign.csv where the
data represents a phase where the aforementioned IoT device is attack free. And
the attack data labelled as “udp.csv”, which represents the phase where the device
is being attacked. In total there are 115 features for each dataset, which have been
further processed using a few dimension reduction techniques. As for the number
of entries or records in each dataset, it consisted of 62154 entries for the benign
dataset, and 156248 entries for the attack dataset. The UCI Machine learning
repository number 00442 consisted of 9 different device datasets, with around
7,062,606 number of instances, we preferred to choose the security camera dataset
for our research since it suited our purpose.

4.1 Transport Layer Data Pre-processing

Figure 3.1 and figure 3.2, shows the Affected and the Benign datasets, for the device
Provision PT 737E Security Camera, collected from UCI repository number 00442
for machine learning. Both the Affected and Benign datasets were introduced
with a new column called, ‘Attack’, which denotes the state of the device. While
the benign dataset’s ‘Attack’ column was filled with ‘0s’, the Affected dataset’s
‘Attack’ column was filled with ‘1s’. Both datasets were further processed, which
we will be discussing ahead.

17

Figure 4.1: The Benign Dataset header for Transport Layer

Figure 4.2: The Affected Dataset header for Transport Layer

18

The following information best describes each of the feature headers: [28]

1. Stream aggregation:

(a) H: Stats summarizing the recent traffic from this packet’s host (IP).

(b) HH: Stats summarizing the recent traffic going from this packet’s host
(IP) to the packet’s destination host.

(c) HpHp: Stats summarizing the recent traffic going from this packet’s
host + port (IP) to the packet’s destination host + port. Example:
(192.168.4.3:1242 to 192.168.4.13:80).

(d) HH jit: Stats summarizing the jitter of the traffic going from this
packet’s host (IP) to the packet’s destination host.

2. Time-frame (The decay factor Lambda used in the damped window):

(a) How much recent history of the stream is captured in these statistics.

(b) L5, L3, L1, etc.

3. The statistics extracted from the packet’s stream:

(a) Weight: The weight of the stream (can be viewed as the number of
items observed in recent history)

(b) Mean: The mean of the stream.

(c) Std: The standard deviation of the stream.

(d) Radius: The root squared sum of the two stream’s variances.

(e) Magnitude: The root squared sum of the two stream’s mean.

(f) Cov: An approximated co-variance between the two streams.

(g) Pcc: An approximated co variance between the two streams.

The dataset characteristic is multivariate and sequential. There are about 115
attributes. The data type is similar for all the attributes, which is float64, and the
dataset contains no NaN values.

First and foremost, the udp.csv and benign.csv datasets are read into different
dataframes due to the different characteristic of the dataset’s, which is the at-
tack phase. The datasets are then introduced with another attribute, labelled as
‘Attack’. The ‘Attack’ column for the benign dataset is filled with 0’s which rep-
resents that there is no attack. And the ‘Attack’ column for the attack dataset
is filled with 1’s, which represent attack. Both dataframes are then concatenated
into a single dataframe with which we will be performing further processing. The
single dataframe is named df udp and the features are then normalized because
it contains attributes of different scales. We normalized the dataframe so that it
eliminates the units of measurement for the data, and helps us to better compare
the data from different attributes. We are rescaling the data using standard scaler
so that it centers around 0.

19

This is known as feature scaling and the formula is as follows:

xnew =
x − µ

σ
(4.1)

where, σ= Standard Deviation, µ=Mean

Dimension reduction techniques are then performed on the dataframe to allow bet-
ter interpretability and eliminate attributes that are not needed in the prediction.
Our target is to reduce the dimensions using four different dimension reduction
approaches, to extract different datasets and then compare and analyze the results
to see which technique better suits our research.

Four different dimension reduction techniques are then applied onto the dataframe:

• PCA (Principal Component Analysis)

• ICA (Independent Component Analysis)

• High Correlation Filter

• Random Forest Regression

4.2 Dimension Reduction

4.2.1 What is Dimension Reduction

In the world today, huge amount of data is generated on a daily basis. And Iot
devices based on their specific use, are known to generate immense amounts of
data. These sensor nodes embedded into everyday objects (IoT devices) collect
and store millions of real-time data instances every day, such as weather, health,
agricultural, traffic information, and in our case the Transport layer information.
As the data collection and generation increases on a daily basis, it becomes a
challenging task to derive inference from it or even visualizing it to see how each
feature behaves. Since our goal is to work with classification problems, there are
way too many factors present in the dataset based on which the final classification
is to be done. The more the number of features the harder it becomes to interpret
the data. This is where the dimension reduction techniques serve their purpose.
It processes and reduces the number of random variables under consideration to
obtain a set of principal variables. Fig 3.3 shows how a 3-dimensional dataset is
reduced to a 2-dimensional dataset; the resulting 2-dimensional dataset is the used
to interpret the original 3-dimensional model.

20

Figure 4.3: Dimension Reduction Example [29]

4.2.2 PCA (Principal Component Analysis)

One of the most well renowned dimension reduction tool used today is known
as PCA (Principal Component analysis), it is used as a tool to make a high
dimensional (multi attributed) dataset smaller, for better knowledge extraction
while making visualization and more meaningful. PCA looks for uncorrelated
variables in a high dimensional dataset, and uses a mathematical model to
transform it to a smaller dataset with uncorrelated attributes or variables. The
tool uses the dataset to find principal components, the first principal component
captures the highest variability in the dataset and the second principal component
captures the second highest variability, and so on. As shown in (figure 4.4) we are
able to explain around 85% variance in the dataset using five components.

A principal component is a linear arrangement of the original predictors in
a dataset. The first principal component accounts for as much variability in the
data as possible, and the remaining variability is addressed by each of the succes-
sor components. Two different components are considered to be uncorrelated if
their direction is orthogonal [30].

For first Principal Component ∅1, with normalized set of predictors β1,β2,β3,.....,βx

∅1 = α11β1 + α21β2 + α31β3 + + αx1βx (4.2)

Where αx1 is the loading vector compromised of loading’s (α1,α2...) for the first
principal component.

The second principal component is as follows:

∅2 = α12β1 + α22β2 + α32β3 + + αx2βx (4.3)

The sequence follows on based on the number of preferred components.

21

After splitting the original concatenated dataset into test and train sets, we per-
form PCA with n components=5, so the dimension of the test and train dataset
reduces down to 5 from 115. The figure below shows the Component-wise and
Cumulative Explained Variance. While, the blue line represents component-wise
explained variance, the orange line represents the cumulative explained variance.

Figure 4.4: Component wise and Cumulative Explained Variance for PCA

4.2.3 ICA (Independent component Analysis)

Another dimension reduction technique we are using is ICA (Independent
Component Analysis). It is a computational approach to separate a multivariate
dataset into its hidden subcomponents. The difference between ICA and PCA
(Principal Component Analysis) is that, while PCA searches for uncorrelated
variables, ICA examines for independent variables. While PCA shows that two
variables are uncorrelated, which means there is no linear relationship between
them, ICA shows that a variable may be independent given that they are not
dependent any other variable. The original dataset is split into training and test
set and is then normalized. We are performing ICA to derive two datasets of
5 independent component from the test and training dataset consisting of 115
attributes. The results are as followed:

Figure 4.5: Training set header after ICA

22

Figure 4.6: Test set header after ICA

4.2.4 High Correlation Filter

The 3rd dimension reduction technique in use is the high correlation filter. High
correlation between two components suggests that they have similar trends be-
tween them and are likely to carry similar information, hence increases data re-
dundancy. Since we can determine the correlation between variables that are
numerical in nature, we can then maintain a threshold for the correlation coeffi-
cient, and if it crosses that value, we can then drop one of the variables. We are
maintaining a threshold point for the correlation coefficient at 0.5. The number
of correlated features we found after performing high correlation was 111, so after
dropping those features it formed datasets of 4 features from the test and training
sets. Figures 3.2.4 and 3.2.5 show the resulting train and test sets after performing
High Correlation filter.

Figure 4.7: Training set header after High Correlation Filter

Figure 4.8: Test set header after High Correlation Filter

4.2.5 Random Forest Regression

Lastly, we have looked in to Random Forest Regression for dimension reduction.
It is known as one of the most widely used and preferred technique for feature
selection. Random forest is a part of ensemble method that can perform both
regression and classification by using multiple decision trees and a method which
is known as Bootstrap Aggregation. It relies on training each decision tree on
multiple unalike samples where sampling is done through replacement, it helps
us to better understand the bias and the variance. While it is a very powerful,
supervised technique for feature selection, yet it is very simple to perform. It

23

comes with in-built feature importance and by setting a threshold, we can perform
dimension reduction. In our case we are using a threshold of 0.25. Figure 3.2.6
represents the feature importance after performing Random Forest Regression.

Figure 4.9: Feature Importance from Random Forest Regression

At a threshold of 0.25 which is the preferred threshold for feature selection
under Random Forest Regression, a 2-dimensional dataset forms consisting of
the attributes: MI dir L0.01 variance, H L0.01 variance. For Random Forest
Regression the test-train splitting is performed after the feature selection process.
Figure 3.2.7 represents the state of the original concatenated dataset after
Random Forest Regression is performed.

Figure 4.10: Dataset header from Random Forest Regression

24

Chapter 5

Research Methodology

Although there has already been some significant investigation with regards to
this field, with multiple deep learning, neural networking and Machine learning
approaches prevailing. We have chosen the following Machine Learning approaches
like: (kNN, Random Forest, SVM, Näıve Bayes) to execute our research. From
previous papers it has been evident that some significant amount of work has been
done with approaches like Decision Trees, Logistic Regression and Random Forest.
We have further explored a few more classifiers with some recurrent approaches,
and executed them following up from a handful of feature selection processes.
Feature engineering is one of the core aspects to the success in Machine Learning.
Proper feature engineering would eventually produce better results, and create
better predictors. In this chapter we are going to review, each of our four classifier
algorithms. This chapter contains the justification for using each of the four algo-
rithms, based on the fact that our data is linear or non-linear. This chapter dives
deep into each of those algorithm and describes their purpose in our research.

5.1 K-Nearest Neighbour

kNN is a basic algorithm that stores every single accessible case and classifies new
cases dependent on a likeness measure. It can solve problems related to regression,
prediction, and classification of data, statistical estimation, pattern recognition,
and intrusion detection [44]. It is effective in real-life problems because of its
non-parametric nature which means it does not make any radical prognosis
about the distribution of data. As a result, the model structure is ordained from
the data. It is useful for non-linear data. It is commonly preferred for ease of
illustrating output and the fast calculation. It falls under the supervised machine
learning category which relies on labeled sample data. This algorithm takes
labeled data as input. After learning a function from the given input, it can then
propagate an output when a new unlabeled data is given. The algorithm stores
training samples in an array of data points which refers to each element of this
array conveys as a tuple (x,y). After determining distance from distance functions
like Euclidean, Manhattan, Minkowski for each element in the array, a set of S is
made of K smalled distance obtained.

Euclidean,

√√√√ k∑
i=1

(x(i)− y(i))2 (5.1)

25

Manhattan,
k∑

i=1

|x(i)− y(i)| (5.2)

Minkowski, (
k∑

i=1

(|x(i)− y(i)|)q)
1
q (5.3)

Every one of these separations relates to a previously grouped information point.
Then it returns to the majority label among S. K nearest algorithm. It stores
the whole preparing dataset which it utilizes as its portrayal. It doesn’t gain
proficiency with any model. It makes forecasts in the nick of time by ascertaining
the likeness between an information test and each preparation occurrence.

5.1.1 Implementation of kNN on Transport Layer Dataset

After pre-processing dataset, we implemented k-Nearest Neighbour on transport
layer.Transport layers work straightforwardly inside the layers above to convey and
get information without mistakes. The most crucial part of implementing kNN al-
gorithm is to find out the value of k. It plays a significant role on the result and
the level of accuracy. In our case, we have worked with 5 neighbours and we took
the default value of k while implementing the algorithm on pre-processed dataset
as we got highest accuracy doing so. We received an accuracy of 99.97% with that
default k’s value which is very satisfactory. Furthermore we used Minkowski dis-
tance metric. Minkowski distance is a metric in Normal vector space and S normal
vector has some properties like zero vector, scalar factor and triangle inequality
which keeps the standard prompted metric-homogeneous and interpretation invari-
ant [31]. Minkowski distance is a generalization of the Euclidean and Manhattan
distances which takes two points of p. The Minkowski distance between two vari-
ables X and Y. The case where p = 1 is equivalent to Manhattan distance and the
case where p = 2 is equivalent to Euclidean distance.The code mentioned below
exhibits our implementation of kNN.

Figure 5.1: The Code for kNN classification

5.2 Näıve Bayes

Naive Bayes is a probabilistic machine learning algorithm depends on the Bayes
Theorem, utilized in a wide assortment of order errands. Regular applications
of Näıve Bayes incorporate separating spam, arranging records, estimation

26

expectation, etc. The name ‘Näıve’ is utilized because it accepts the highlights
that go into the model is free of one another. That is changing the estimation of
one element, which doesn’t legitimately impact or change the estimation of any
of the different highlights utilized in the calculation. This algorithm works with
Bayes theorem which can be illustrated as:

P (A|B) = P (B|A).P (B)/P (A) (5.4)

Here, P (A—B) means posterior probability, P (B—A) indicates the likelihood
of the event, P(B) represents class prior probability and P(A) refers to predictor
prior probability. A is is a dependent feature vector (of size n) where:

A = (a1, a2, a3.an) (5.5)

The diverse NB classifiers vary fundamentally by the suppositions which are made
in regards to the dissemination of the conditional probability P(Ai|B) [32]. There
is a huge scope to Näıve Bayes. Since it is a probabilistic model, the calculation
can be coded up effectively and the predictions can be made in real-time very
quickly. Moreover, it is effectively adaptable, fast learner and is traditionally used
for the calculation of decisions in real-world applications, that are required to react
to a client’s solicitations quickly.

5.2.1 Implementation of Näıve Bayes on Transport Layer

There are three kinds of Naive Bayes models underneath the scikit-learn library
for implementation: Gaussian, Multinomial, Bernoulli.

Gaussian is used in classification and it assumes that facets observe a nor-
mal distribution. When the predictors take up a continuous fee and are not
discrete, we expect that these values are sampled from a Gaussian distribution.
Multinomial is used for discrete counts. Multinomial NB implements the naive
Bayes algorithm for multinomial allotted facts and is one of the two traditional
naive Bayes editions used in text classification. Bernoulli implements the naive
Bayes education and classification algorithms for information that is distributed
in accordance with multivariate Bernoulli distributions. There might also be
more than one features but everyone is assumed to be a binary-valued (Bernoulli,
Boolean) variable. Therefore, this class requires samples to be represented
as binary-valued function vectors; it surpassed any different variety of data,
a Bernoulli NB instance may binarize it’s enter (depending on the binarize
parameter). The binomial mannequin is beneficial if function vectors are binary
[33].

Here, after data processing and studying the type of our dataset we got
that all the features are following the normal distribution, hence we implemented
Gaussian. Gaussian Näıve Bayes can work better with a normal distribution.
When dealing with the Gaussian Näıve Bayes classifier, the consequence model
will have a high-performance with excessive coaching pace with the skills to
predict the chance of the feature that belongs to the Zk class. The purpose of
the Näıve Bayes classifier to compute the îth statement would be with the aid of
computing the following probability [34].

27

Figure 5.2: Normal distribution for Gaussian Näıve Bayes [35]

Probability of (Zk|X(i) .The X(i) can be illustrated as the vector of the number of
features with the number of components as [X(i, 0), X(i, 1), X(i, 2), X(i, 3)] [36].
The following figure exhibits our implementation of Näıve Bayes Classifier.

Figure 5.3: Code for Näıve Bayes Classifier

5.3 Random Forest

The Random Forest classifier is termed as an ensemble algorithm as it encapsulates
more than one algorithm which might be of same or of different kind. It comprises
of a large number of individual decision trees that operate together at the same
time. Each individual tree produces a class prediction and the class with the most
votes is chosen as the model’s prediction by random forest. Each tree derives
its input from the sampled data of the dataset and from the features available;
a subset of features is selected for each node [45]. The trees do not involve any
pruning. The advantages of random forest are its capability of efficiently working
on large databases and still maintaining a fast computational speed; however it is
prone to overfitting.

28

Figure 5.4: Visualisation of a Random Forrest algorithm [37]

5.3.1 Implementation of Random Forest on Transport
Layer

Firstly, the classifier works on the dataset by creating multiple different decision
trees, then it trains each individual decision trees on multiple divergent samples
where the sampling is done through replacements. The process in turn aids us
in having a better interpretation for the bias and variance. Random Forest Clas-
sification comes with an in built function known as feature importance. This is
what makes this classification technique simple yet very powerful. The feature
importance method is then applied onto the original concatenated dataset before
normalization and the test-train split is performed. This exhibits the feature im-
portance of each individual attribute in terms of its relative importance based on
the dataset. Since we already have the relative importance of the attributes we
can then make use of a threshold which will help us to drop any attributes that
fall below this margin. For our research, we are setting the threshold at 0.25.
The figure below shows how we implemented Random Forest Classification as our
predictor.

Figure 5.5: The Code for Random Forest classification

29

5.4 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm which
classifies data into several groups. Data is then classified into different classes de-
pending on their individual groups. Then the data is plotted on a n-dimensional
plane where n is the number of features provided as input. These classes are then
differentiated from each other using a hyper-plane. The aim is to find a plane
consisting of the maximum margin where the margin is defined as the distance be-
tween data points of both classes and the hyper-plane [46]. The data points closest
to the margin are called support vectors. The hyper-plane which has the highest
distance from the closest data points of each class is considered as the optimal
hyper-plane. Considering the dimension to belong to a data set of 2(two) input
features, the flowing steps and equations elaborate the process of constructing a
hyper-plane.
The optimal hyper plane has the equation:

w ∗ x− b = 0 (5.6)

In above mentioned equation, w is the normal vector to the hyper-plane, while x
can vary for each instance and b is the distance between the nearest point to the
hyper-plane and the hyper-plane itself.

w ∗ x− b >= 1 (5.7)

w ∗ x− b <= 1 (5.8)

If the resultant value of the equation is positive, then the hyper-plane belongs
to the positive class and so any value greater than 1 will showcase a data point
belonging to the positive class. Similarly, the value being negative indicates the
hyper-line is of the negative class. So any value less than -1 will prove to be data
from the negative class.
Any variable that effects the degree of maintenance of constraints is called a Reg-
ularization Parameter [38]. Consider the following equation:

min ‖w‖2 + C ∗
N∑
i

(εi) (5.9)

The equation determines the type of margin derived from the dataset. A steep
value of C will result in a narrow margin and a more distinct separation. On the
contrary, if the C showcases an infinite value, the margin will be labelled as a hard
one. The evident impact of the range of values of C in this equation makes it the
Regularisation Parameter of this instance.

5.4.1 Implementation of Support Vector Machine on
Transport Layer

For our research, the training set is fitted using SVM. Our training set consists
of 152881 instances after the transport layer dataset was split into train and test
sets following the ratio 7:3. Due to the size of the training set being immense,
the SVM algorithm will not work properly if the data is very continuous, which

30

leads us to the conclusion that even with a narrow margin, it would still make
mistakes. The specific kernel that we have chosen was tested based on the fact
that it supported our cause the best. For our training set we have used a linear
kernel to draw the hyper plane that would separate the two classes which are
the abnormal/attack phase and the normal/benign phase. The following figure
exhibits how we implemented the Support Vector Machine Classification.

Figure 5.6: The Code for SVM classification

31

Chapter 6

Result Analysis

In this Chapter we will be review our results. We will compare each different
Dimension reduction technique and the classification techniques, based on these
parameters: F1 score, Accuracy, AUC (Area Under the ROC Curve) Score. These
accuracy parameter entries are given in terms of percentage. We will also be com-
paring each individual algorithm based on their prediction time, which is the time
it takes to generate a prediction given the test data-set, under the four different
dimension reduction techniques. Finally, we will end this chapter with a compari-
son of the algorithms based on the confusion matrices they have presented us with
based on their feature selection process. The experiment is carried using Spyder
(Python 3.6) in Mac OS environment on 8GB RAM and 2.3 GHz Intel Core i5.
Moreover, for the transport data, we introduced two labels, ‘0’ and ‘1’ and 0 refers
to Normal/Non-attack and 1 refers to Abnormal/Attack. It is also noteworthy
that the entire data-set was split 7:3 where 70% of the data was used to train the
classifiers and 30% of the data was used to test the trained classifiers.

Figure 6.1: The Code Segment for determining each metric

6.1 Comparison using F1 score

The F1 score is an accuracy parameter that is based on the sensitivity and precision
of a confusion matrix [39]. Sensitivity shows us how much of the actual positives
our model has captured out of all the actual positives, which is the sum of true
positives and false negatives. While precision is the calculation that determines
how much of the predicted positive is actually positive. Combining both of these,

32

Classification
F1 Score (percentage)
Dimension Reduction Techniques
PCA ICA High Correlation Random Forest Regression

1 KNN 99.98 99.98 99.97 100
2 Näıve Bayes 99.56 94.25 99.82 99.86
3 RFC 100 99.99 99.99 99.99
4 SVC 100 99.57 99.97 100

Table 6.1: F1 Scores

we get the function that determines the F1 Score.

Precision =
True Positive

True Positive+ False Positive
(6.1)

Sensitivity =
True Positive

True Positive+ False Negative
(6.2)

F1score = 2× Precision ∗ Sensitivity
Precision+ Sensitivity

(6.3)

The aforementioned Table 5.1, shows a comparison of each individual algorithm
under their respective dimension reduction technique, based on their generated F1
Scores given in terms of percentage. If we observe the data present in the table we
can see in a comparison between the classifiers, Random Classifier performed the
best. And Random Forest Regression prevailed over all other dimension reduction
techniques.

6.2 Comparison using Accuracy

It is metric that is used to compare between classification models. It is the most
widely used technique to measure the precision of a classifier algorithm among
all. It determines the fraction of correct predictions made by a model to the
total number of predictions it made [40]. The following equation shows how it is
calculated.

Accuracy =
True Positive+ True Negatives

Total predictions
(6.4)

Classification
Accuracy (percentage)
Dimension Reduction Techniques
PCA ICA High Correlation Random Forest Regression

1 KNN 99.98 99.98 99.96 100
2 Näıve Bayes 99.38 91.27 99.74 99.79
3 RFC 100 99.99 99.98 99.99
4 SVC 100 99.38 99.96 100

Table 6.2: Accuracy

Table 5.2, shows the accuracy that each classifier has presented us with. Similar
to the F1 score results, the Random Forest Classifier has once again generated the

33

best accuracy, and Random Forest Regression has proved to be the best dimension
reduction technique.

6.3 Comparison using AUC (Area under ROC

curve)

This is another performance measurement metric for classifiers. ROC (Receiver
Operating Characteristics) curve is a probability curve that distinguishes between
the true positive rate and false positive rate [41]. And AUC determines the fraction
of area that falls underneath the ROC curve. The following table 5.3, does a brief
comparison of the AUC produced by each classification model and their respective
feature selection process.

Classification
AUC (percentage)
Dimension Reduction Techniques
PCA ICA High Correlation Random Forest Regression

1 KNN 99.97 99.98 99.96 100
2 Näıve Bayes 98.93 84.70 99.72 99.86
3 RFC 99.99 99.99 99.98 99.99
4 SVC 99.99 98.91 99.94 100

Table 6.3: AUC Scores

The ensemble algorithms Random Forest Regression and Random Forest Classi-
fier, performs the best among all. Random Forest model has shown great promise
by producing the best possible results in all three accuracy measuring categories,
among all other techniques. All the models have generated a nearly perfect ROC
curve, with the only anomaly being ICA(Independent Component Analysis) fol-
lowed up by Näıve Bayes Classification. It occurs due to Näıve Bayes’s tendency
to learn fast, and it’s assumption of the features being independent. The following
graph shows the ROC curve for the aforementioned Classifier.

Figure 6.2: The ROC curve for Naive Bayes Classification under ICA

34

The following graph shows the ROC curve for Näıve Bayes under PCA.

Figure 6.3: The ROC curve for Naive Bayes Classification under PCA

The rest generated a near perfect ROC curve. The following figure shows the ROC
that was generated by kNN, Random Forest and SVM.

Figure 6.4: The ROC curve for Random Forest, kNN, SVM

6.4 Comparison Based on Prediction time

For measuring, or timing the prediction phase of each classifier we used the timeit
function. We assumed that, when put in a real-life situation, the speed at which
our model predicts an outcome will prove to be most beneficial. Table 5.4 exhibits
the results generated by each model in terms of seconds.

35

Classification
Time (Seconds)
Dimension Reduction Techniques
PCA ICA High Correlation Random Forest

1 KNN 1.9265220 1.8393085 3.5923713 1.3710406
2 Näıve Bayes 0.0254196 0.0205383 0.0122119 0.0074057
3 RFC 0.0306846 0.0290179 0.0317149 0.0291516
4 SVC 0.0324104 30.0314590 0.0915311 0.0446332

Table 6.4: Prediction Time

While Näıve Bayes Classifier has proved to be the fastest predictor among all other
classifiers, it suffers greatly in terms of accuracy, which might prove to be harmful
in the long run. Although Random Forest Classifier comes in second in terms of
speed of prediction, it produces results with the best possible accuracy. So, even
though it takes a few milli-seconds longer than Näıve Bayes Classifier to predict
an outcome, it the best learner among all the other classifiers.

6.5 Comparison of the Confusion Matrix

While the accuracy measuring metrics provide a general overview, the confusion
matrix shows the actual results of the prediction. It divides the results into
four different categories, True Positive (TP), True Negative (TN), False Positive
(FP), False Negative (FN). True Positive and True Negative shows us the
fraction of test data that have been correctly predicted. While False Positive
and False Negative shows the segment of test data, that has been predicted
erroneously by the classifier. The following figure shows how each category is rep-
resented. And the code segment in Figure 5.3 that determine the confusion matrix.

Figure 6.5: The Confusion Matrix

Figure 6.6: The Code Segment for Confusion Matrix

36

6.5.1 Analysis of k-Nearest Neighbour

Figure 6.7: High Correlation Figure 6.8: ICA

Figure 6.9: PCA Figure 6.10: Random Forest

From the Figures (5.4, 5.5, 5.6, 5.7), we can see that for dimension reduction with
Random Forest, k-NN provides with perfect results, having 0 false positives or 0
false negatives. It also consistently provides a good AUC score and makes fewer
errors compared to the other algorithms. In case of High Correlation (Figure 542),
it produces the most number of false negative instances which only amount to 10.
For both PCA and ICA (Figures 5.5, 5.6), it has 7 instances where it predicts
wrongly that there was no attack when actually there was one. Overall, this
provides with the least amount of errors; however, k-NN algorithm also takes the
most amount of time among all the other algorithms regardless of the dimension
reduction technique used. k-NN algorithm works very well in situations where
the dataset is well-separable into their respective classes. Since the data from
the Transport Layer is continuous, k-NN provides with the best results because
k-NN groups them well together. Due to k-NN being a lazy learner and doing the
classification work mostly at the testing phase, k-NN takes more time compared
to other algorithms.

37

6.5.2 Analysis of Näıve Bayes

Figure 6.11: High Correlation Figure 6.12: ICA

Figure 6.13: PCA Figure 6.14: Random Forest

The Figures (5.8, 5.9, 5.10, 5.11) showcase the confusion matrix for Näıve Bayes
Classifier under four different dimension reduction techniques. From Figure 5.10
we can see that under PCA (Principal Component Analysis) we have generated 17
false negatives and 324 false positives while the rest of the data instances have been
predicted correctly. The false positives indicate that the device is not be under
attack while the algorithm has predicted that it has undergone an attack and
although the prediction may be wrong, we will not suffer much from it. Moreover,
the low number of false negatives indicates that the algorithm will make fewer
mistakes in case of an attack scenario.
Random Forest gives us much better result in terms of generated false positives
since it has 0 instances of false positives (as shown in Figure 5.11). However, the
number of false negatives are much higher and it is at 112 instances. Hence it does
not outperform ICA dimension reduction results in that account.
From Figure 5.8, we see that High Correlation gives us moderately accurate re-
sults if compared between the figures with 90 instances of false negatives and 52
instances of false positives. In comparison, ICA provides with the least reliable
data where it provides with 41 instances of false negatives and 4727 instances of
false positives (shown in Figure 5.9).
Näıve Bayes’ eagerness to learn is evident in the time taken to execute, and hence
it is optimal for making real-time classifications; although it also provided us with
more erroneous results than the other classifiers that were considered.

38

6.5.3 Analysis of Random Forest Classification

Figure 6.15: High Correlation Figure 6.16: ICA

Figure 6.17: PCA Figure 6.18: Random Forest

The aforementioned Figures (5.12, 5.13, 5.14, 5.15) exhibit the confusion matrix for
Random Forest Classification under four different dimension reduction techniques.
From figure 5.12 we can see that under High Correlation we have generated 3 false
negatives and 6 false positives, the rest of the data instances have been predicted
correctly. The false positives define that the device may not be under attack
while the algorithm has predicted that it has undergone an attack, although the
prediction may be wrong but we may not suffer much from it. Although 3 instances
of the test set have been predicted as false negatives, where the system is under
attack but the algorithm has predicted that it is not, this where we would probably
suffer more since, false negatives affect us more than false positives.
ICA (Independent Component Analysis) gives us much better result in terms of
generated false positives, although the number of false negatives remain the same.
Hence it performs better than High Correlation yet suffers the same problem in
terms of false negatives.
Both, PCA (Principal Component Analysis) and Random Forest Regression have
generated much more accurate results, although the system would suffer a little
under PCA rather than Random Forest Regression due to the 1 false negative
prediction.
Collectively the Random Forest Classification has presented us with above par
result based on the confusion matrix, in comparison to the other classification
techniques. However, it is prone to over-fitting which indicates that it may perform
erroneously on new data due to different type of noise being present there.

39

6.5.4 Analysis of Support Vector Machine

Figure 6.19: High Correlation Figure 6.20: ICA

Figure 6.21: PCA Figure 6.22: Random Forest

In case of SVM (Support Vector Machine), we have generated the aforementioned
confusion matrices. We can clearly see that for our research Support Vector Ma-
chine performs and produces the best result under Random Forest Regression,
and accurately predicts each and every instance of the test set, as represented by
figure 5.19. It also performs quite good under PCA (Principal Component Analy-
sis) figure 5.18, while generating only 1 false negative result which may seem as a
drawback, yet can be overlooked. Although, the system would suffer largely under
ICA (Independent Component analysis), generating 337 false positives as shown
in figure 5.17, which would cause a great deal of to the system by predicting that
the system is under attack, whereas it is safe. Apart from that it predicts the
rest of the instances of the test set accurately, with no false negatives which are
more harmful than false positives. Furthermore, it goes on to show us that the
hyperplane that is drawn in SVM cannot properly separate the two classes, since
the sigmoid hyperplane used to separate the data according to their classes, fails at
separating the attack and benign data. Figure 5.16 exhibits SVM through using
High Correlation Filter. Although the accuracy of the algorithm is quite high,
it produces 9 false negatives which may cause harm to the system. In a collec-
tive manner SVM performs mediocre in terms of overall accuracy, although if we
decide on using Random Forest Regression as our preferred dimension reduction
technique, it will prove to be advantageous, providing 100% accurate results for
the test set in consideration.

6.6 Collectively analyzing all the results

Our research proposes four classification algorithms; these being Random Forest
Classification, k-NN, Support Vector Classification and Näıve Bayes Classification.
Furthermore, we have used four separate dimension reduction techniques alongside
the algorithms to give us 16 sets of results in the detection of these attacks.
The datasets are taken from a security camera afflicted with the Mirai botnet
and data is taken in both the benign and attack state; so, it shows an actual
interpretation of a DDoS attack and the difference in the data of the UDP layer
before and during the attack. From our set of results, we judged the algorithms
based on their accuracy score, AUC score, F1 score and the time needed for the

40

algorithm to execute in the prediction block of code. These results indicate a
clear image about which algorithm is optimal for detecting real-time IoT related
botnet attacks. The four prediction parameters were used since they highlighted
different characteristics of a good classifier. Firstly, overall accuracy represents
how many times our model got the classification right while comparing between
the predictions and test class. However, overall accuracy is based on one specific
cut-point and comparing based on this parameter results in the comparison with
respect to one threshold value. AUC score adds more depth to the classifier
in the sense that it represents the area under the ROC (Receiver Operating
Characteristics) curve and the ROC curve is according to the sensitivity and
specificity after it tries all the possible cut-points. So, in a sense, AUC score will
eliminate the possibility of the classifier getting lucky in one cut-point. Lastly, the
F1 score will provide information about the balance between precision and recall
of the classifier. Precision refers to the number of positive identifications that was
actually correct while Recall answers the question about the proportion of actual
positives that were labeled correctly by the classifier. These three parameters
along with the time taken to execute the prediction block will give us information
that is not misleading or situational while keeping real-time intrusion detection in
mind.

From our results, we can see that among the dimension reduction tech-
niques, using Random Forest Regression to find the most important features of
the dataset and removing all the other columns from consideration provide with
the highest level of accuracy throughout all the parameters. However, using RFR
for dimension reduction can induce a problem of over-fitting – something we
should avoid to not incur misleading results.

Principal Component Analysis is another dimension reduction technique we
have used and it tackles the problem that is ever-present in RFR based di-
mension reduction. PCA does not remove any data from the dataset; rather
it does a linear transformation with respect to a real inner product space in
order to preserve the inner product and turns a set of observations consisting
of possibly correlated variables into a set of principal components which are
linearly uncorrelated variables. We have selected the number of Principal
Components to be 5 and among this the first variable has the highest possible
variance and the later components have the highest variance while they fulfill
the constraint of being orthogonal with respect to the previous component.
Dimension reduction done with PCA provided us with a reduced dataset of 5
columns from the initial 115 columns without changing the essence of the dataset.

Independent Component Analysis (ICA) was done on the dataset as our
third attempt at dimension reduction to make sure that the underlying factors
are found; something that PCA fails at doing. Even though ICA is superficially
related to PCA, it is a more powerful tool as it assumes that the data is the
mixture of latent linear variables which are non-gaussian and mutually inde-
pendent. It enhances the reduction in case PCA missed out on any hidden factors.

As for the last dimension reduction technique, we chose High Correlation

41

Filter. This technique finds out columns that have a similar trend which in
turn result in very similar information. Training our dataset on such a dataset
with similar data will lead to overfitting and hence High Correlation Filter is
used. Hence, if two columns have similar data, they are reduced to one and the
dimension of the dataset is reduced. Using these four techniques, our dataset was
reduced and then we applied the aforementioned machine learning classifiers on
these separately to generate sixteen sets of output.

While running the classifiers on the dataset reduced using Random Forest
Regression, we have found that accuracy, F1 score and AUC score is consistently
high. For k-NN and SVC, the results were 100% accurate as well. However,
this can be due to dropping the variables that have the least feature importance
and not taking into consideration about underlying factors. Furthermore, the
prediction time in case of all the classifiers in this reduced dataset is relatively low
due to the training time reduced with only two important features being available.
k-NN still provides us with the longest time needed at 1.37 seconds because of its
laziness as a learner. Näıve Bayes being an eager classifier provides with a 99.79%
accuracy while also taking the least amount of time taken with 0.007 seconds.
This is optimal for a real-time IDS and is actually the least time taken in our
set of 16 possible outputs. Lastly, RFC provides with 99.99% accuracy in 0.29
seconds - which is close to perfect. However, it is inadvisable to run RFC on a
dataset already reduced using RFR.

Alternatively, training and testing the classifiers on a dataset reduced by
High Correlation Filter also provides with a consistently high level of accuracy
and AUC score. Here, RFC is the best algorithm with an accuracy of 99.98%.
This is due to High Correlation Filter reducing the correlation between the
features of the dataset – something that RFC can take an advantage of since
low correlation between models are the key in implementing RFC. Moreover, it
takes 0.031 seconds in the prediction block and is optimal for real-time detection.
Again, k-NN and SVC follow RFC closely in the comparison of accuracy with
their accuracy being 99.96% while k-NN possesses a greater AUC score compared
to SVC. However, the accuracy scores being this high allows us to ignore these
marginal differences and lets us focus on the computational time needed to
predict. Here, k-NN takes the most amount of time at 3.59 seconds and thus,
even with its high accuracy, becomes unviable for detecting botnet attacks in
real-time. SVC takes only 0.091 seconds to provide scores close to that same
accuracy of k-NN; so, it is arguably better for our scenario. Näıve Bayes classifier
again takes the least amount of time, finishing its execution of the prediction
block just in 0.012 seconds but cannot provide the level of accuracy as the other
three algorithms; even though it assumes the variables to not be correlated.

Running the classifiers on our PCA-reduced dataset leads to the highest
accuracy throughout all four algorithms without any questions of overfitting or
changing the essence of the data. Here, both RFC and SVC provide with 100%
accuracy and F1 scores while RFC edges out SVC in terms of time taken by
a margin of just 0.002 seconds. So arguably, RFC is the better classifier while
running on a dataset reduced by PCA. k-NN performs excellently as well but

42

again, it takes the most amount of time at 1.92 seconds and is inadvisable for
real-time detection. Näıve Bayes performs the fastest but also comparatively the
poorest among the four classifiers.

As our last case, running the classifiers on ICA-reduced datasets gave us
mixed results. Firstly, Näıve Bayes is not a good approach in ICA-reduced
datasets due to their conflicting philosophy. Näıve Bayes only garnered an
accuracy of 91.27% which seems okay but is below par if compared to the other
results. Furthermore, it provided with an accuracy of 84% and had quite a lot
of false negative instances which are fatal. So, the low prediction time cannot
compensate for Näıve Bayes in this particular case. The opposite of this scenario
is SVC. SVC provides us with a 99.38% accuracy but takes a huge time to run
across the prediction block. Taking 30 seconds is not viable at all in an IDS; so,
SVC cannot be counted upon in ICA-reduced datasets. k-NN gives us a high
accuracy but again takes the second longest to compute. Lastly, the best classifier
for ICA-reduced datasets is RFC from our findings. RFC takes only 0.029 seconds
to execute the prediction block with a 99% accuracy.

43

Chapter 7

Conclusion

IoT devices or Machine-To-Machine communication is rapidly on the rise with
the number of devices that exchanged information among themselves being 15.41
million in 2015 and increasing to 26.66 million in 2019. Moreover, it is projected
to become in the range of 75 million by 2025 [42]. With the recent growth and
widespread use of IoT devices, the vulnerabilities of the system can be exploited
easily. And the example of such cases is the evolution of the Mirai Botnet and
other variants. Recently, the largest scale Botnet attack was ensued on Imperva,
an online streaming application with 4, 00,000 IoT devices used to propagate a
DDoS attack [43]. These cases of IoT related botnet attacks are directly related
to the lack of security infrastructure in the devices due to cost-related reasons.
Hence, the detection of IoT botnet attacks is essential with the rise of technology.
Among the multiple Intrusion Detection Systems present such as Signature-Based,
Anomaly-Based and Specification-Based, we have opted for the Anomaly-based
detection which is effective in the detection of unknown vulnerabilities. In the
problem statement in (section 1.2.1), we have stated how consumer IoT devices
can become a part of a Bot Network and serve malicious purposes. We have been
able to achieve some significant success in predicting the state of an IoT device,
which can be either ‘Attack’ or ‘Benign’. With the classifiers like kNN and Random
forest producing the best results in terms of accuracy. Although, Näıve Bayes has
not been the most decisive methods out of all four, it has a fast learning tendency
and produces more false predictions evident in the confusion matrix. Even though
Random Forest prevails in all four categories, it is susceptible to overfitting. With
kNN coming in second in terms of the results generated, it has a better accuracy,
but it suffers significantly in prediction time, or the run time of the algorithm.
The scope with our research could provide two solutions to the problem, either we
could opt for a fast learner like Näıve Bayes and perform more better in real-time
application for Botnet detection in the transport layer, or we could go for a better
accuracy provided by kNN and Random Forest. Even though it is unknown how
Random Forest would perform in real world, due to overfitting. To conclude our
research by saying that different dimension reduction techniques provide different
scenarios for the classifiers to run. Comparatively, PCA should be the dimension
reduction technique chosen due to its nature and also because it is less prone
to overfitting the classifier later on. As for the classifier that we should pick, it
should be Random Forest Classifier as it outperforms most other models in all
of the dimension reduced datasets. k-NN and SVC both provide high accuracy

44

as well but their run-time is not an option for real-time IDS. Näıve Bayes can
be alternatively chosen if accuracy is sacrificed for getting a faster result. Even
though we have been able to set the difference between the two states of an IoT
device, with predictions based on transport layer data. We are still to simulate our
model on more real world devices. We have only worked with a single IoT device in
focus, and how it will perform on other devices is still unknown to us. We are only
generating predictions, but no possible measures have been taken on preventing
an attack, even though our work will provide a lot of scope in the future, it is
still in the preliminary phase of IDS, and we still need to come up with methods
to prevent an attack from taking place. This would eventually relive us from the
pressure regarding the problem of Botnets attacking large organization networks.
We have only scratched the surface of a field which still has a lot of work to do.

7.1 Future Direction

Our future plan with this model is to enhance it more and work towards developing
an Intrusion Prevention System in tandem with botnet attack detection. Although,
real-time detection and immediate response to botnet attacks can be a challenging
task, due to the fact that the Mirai source code can be altered in multiple ways, to
bypass the security protocols. Still there is a lot of scope to this research. If we are
able to design a system that can perform Botnet attack detection and prevention
simultaneously, it would immensely improve the security sector of IoT .The rise of
botnet related attacks compels us to carry on this research and hopefully, better
systems can be developed to tackle this issue.

45

Bibliography

[1] Biggs, J. (2016, October 10). Hackers release source code
for a powerful DDoS app called Mirai. Retrieved from
https://techcrunch.com/2016/10/10/hackers-release-source-code-for-a-
powerful-ddos-app-called-mirai/.

[2] Mirai. (2016, December 28). Retrieved December 10, 2019, from
https://www.cyber.nj.gov/threat-profiles/botnet-variants/mirai-botnet.

[3] MMD-0056-2016 - Linux/Mirai, how an old ELF malcode is recy-
cled. (2016, September 1). Retrieved December 10, 2019, from
https://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-
just.html.

[4] Krebs on Security. (2016, September 16). Retrieved December 10, 2019,
from https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-
ddos/.

[5] Chung, J., & DeBeck, C. (2019, July 18). I Can’t Believe Mi-
rais: Tracking the Infamous IoT Malware. Retrieved December
10, 2019, from https://securityintelligence.com/posts/i-cant-believe-mirais-
tracking-the-infamous-iot-malware-2/.

[6] Hackett, R. (2016, October 3). Why a Hacker Dumped Code Behind
Colossal Website-Trampling Botnet. Retrieved December 10, 2019, from
https://fortune.com/2016/10/03/botnet-code-ddos-hacker/.

[7] Newman, L. H. (2017, June 3). What We Know About Friday’s Mas-
sive East Coast Internet Outage. Retrieved December 10, 2019, from
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/.

[8] Krebs on Security. (2017, January 17). Retrieved December 10,
2019, from https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-
mirai-worm-author/.

[9] Warren, T. (2012, July 11). Microsoft advises users to disable Win-
dows Gadgets following security vulnerability fears. Retrieved December
10, 2019, from https://www.theverge.com/2012/7/11/3151143/windows-
gadgets-security-vulnerability.

[10] Kan, M. (2016, October 18). Hackers create more IoT bot-
nets with Mirai source code. Retrieved December 10, 2019, from
https://www.itworld.com/article/3132570/hackers-create-more-iot-botnets-
with-mirai-source-code.html.

46

[11] IoTroop Botnet: The Full Investigation. (2019, February 6). Retrieved
December 10, 2019, from https://research.checkpoint.com/2017/iotroop-
botnet-full-investigation/.

[12] Mcdermott, Christopher & Majdani, Farzan & Petrovski, Andrei. (2018).
Botnet Detection in the Internet of Things using Deep Learning Approaches.
10.1109/IJCNN.2018.8489489.

[13] Wurzinger, P. & Bilge, L. & Holz, T. (2009). Automatically Generating
Models for Botnet Detection. Retrieved December 10, 2019.

[14] Internet. (n.d.). Retrieved December 10, 2019, from
http://www.businessdictionary.com/definition/internet.html.

[15] What is the Internet of Things (IoT)?. (n.d.). Retrieved December 10, 2019,
from https://www.oracle.com/internet-of-things/what-is-iot.html.

[16] Rouse, M., & Shea, S. (2016, February 19). What is IoT devices
(internet of things devices)?. Retrieved December 10, 2019, from
https://internetofthingsagenda.techtarget.com/definition/IoT-device.

[17] Dey, A. (2019, May 10). Internet Of Things (IoT) security,
privacy, applications & trends. Retrieved December 10, 2019,
from https://medium.com/@arindey/internet-of-things-iot-security-privacy-
applications-trends-3708953c6200.

[18] IoT and Data Privacy. (2017, September 27). Retrieved December 10, 2019,
from https://innovationatwork.ieee.org/iot-data-privacy/.

[19] Weisman, S. (n.d.). What is a distributed denial of service attack
(DDoS) and what can you do about them?. Retrieved December 10,
2019, from https://us.norton.com/internetsecurity-emerging-threats-what-
is-a-ddos-attack-30sectech-by- norton.html.

[20] Weisman, S. (n.d.). What is a distributed denial of service attack
(DDoS) and what can you do about them? Retrieved December 10,
2019, from https://us.norton.com/internetsecurity-emerging-threats-what-
is-a-ddos-attack-30sectech-by- norton.html.

[21] Beal, V. (n.d.). machine learning. Retrieved December 10, 2019, from
https://www.webopedia.com/TERM/M/machine-learning.html.

[22] Mishra, S. (2017, May 21). Unsupervised Learning and
Data Clustering. Retrieved December 10, 2019, from
https://towardsdatascience.com/unsupervised-learning-and-data-clustering-
eeecb78b422a.

[23] Rawat, R. & Pilli, E. & Joshi, R. (2018). Survey of Peer-to-Peer Bot-
nets and Detection Frameworks. International Journal of Network Secu-
rity. 20. 547-557. 10.6633/IJNS.201805.20(3).18). Retrieved Decem-
ber 10, 2019, from https://www.researchgate.net/figure/Botnet-detection-
taxonomy fig1 326901249

47

[24] R. Doshi, N. Apthorpe, and N. Feamster. (2018) Machine Learning DDoS
Detection for Consumer Internet of Things Devices. Retrieved December 10,
2019.

[25] Mcdermott, C. & Majdani, F. & V Petrovski, A. (2018). Botnet
Detection in the Internet of Things using Deep Learning Approaches.
10.1109/IJCNN.2018.8489489. Retrieved December 10, 2019.

[26] Mai, L. & Park, M. (2016). A comparison of clustering algorithms for botnet
detection based on network flow. (2016) Eighth International Conference on
Ubiquitous and Future Networks.(ICUFN). doi:10.1109/icufn.2016.7537117.
Retrieved December 10, 2019.

[27] Timcenko, V. & Gajin, S.(2018, March) Machine learning based network
anomaly detection for iot environments. Retrieved December 10, 2019.

[28] Meidan, Y. (2018). detection of IoT botnet attacks N BaIoT. Retrieved
December 10, 2019, from https://archive.ics.uci.edu/ml/machine-learning-
databases/00442/.

[29] Rosero, P. & Diaz, P. & Salazar Castro, J. & Peña, D. & Anaya Isaza, A. &
Alvarado, J. & Therón, R. & Peluffo, D. (2017). Interactive Data Visualiza-
tion Using Dimensionality Reduction and Similarity-Based Representations.
Lecture Notes in Computer Science. 10125. 334-342. 10.1007/978-3-319-
52277-7 41. Retrieved December 10.

[30] Practical Guide to Principal Component Analysis (PCA) in R &
Python. (2019, September 3). Retrieved December 10, from
https://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-
component-analysis-python/.

[31] Sharma, N. (2019, January 15). Importance of Distance Metrics in
Machine Learning Modelling. Retrieved December 10, 2019, from
https://towardsdatascience.com/importance-of-distance-metrics-in-
machine-learning-modelling-e51395ffe60d.

[32] Kumar, N. (2019, January 14). Naive Bayes Classifiers. Retrieved December
10, 2019, from https://www.geeksforgeeks.org/naive-bayes-classifiers/.

[33] Naive Bayes. (n.d.). Retrieved December 10, 2019, from https://scikit-
learn.org/stable/modules/naive bayes.html.

[34] Pulipaka, G. P. (2017, January 19). Applying Gaussian Näıve
Bayes Classifier in Python: Part One. Retrieved December 10,
2019, from https://medium.com/@gp pulipaka/applying-gaussian-näıve-
bayes-classifier-in-python-part-one-9f82aa8d9ec4.

[35] Kumar, N. (2019, January 14). Naive Bayes Classifiers. Retrieved December
10, 2019, from https://www.geeksforgeeks.org/naive-bayes-classifiers/.

[36] Pulipaka, G. P. (2017, January 19). Applying Gaussian Näıve
Bayes Classifier in Python: Part One. Retrieved December 10,

48

2019, from https://medium.com/@gp pulipaka/applying-gaussian-näıve-
bayes-classifier-in-python-part-one-9f82aa8d9ec4.

[37] Yiu, T. (2019, August 14). Understanding Random Forest. Retrieved
December 10, from https://towardsdatascience.com/understanding-random-
forest-58381e0602d2.

[38] Arko,A. & Khan, S. (2019, August 9) Anomaly Detectiom In IoT Using
Machine Learning Algorithms, (18-19). Retrieved September 10

[39] Shung, K. P. (2018, June 8). Accuracy, Precision, Recall or F1?.
Retrieved December 10, from https://towardsdatascience.com/accuracy-
precision-recall-or-f1-331fb37c5cb9.

[40] Classification: Accuracy — Machine Learning Crash Course. (n.d.).
Retrieved December 10, from https://developers.google.com/machine-
learning/crash-course/classification/accuracy.

[41] Narkhede, S. (2019, May 26). Understanding AUC - ROC Curve. Retrieved
December 10, from https://towardsdatascience.com/understanding-auc-roc-
curve-68b2303cc9c5.

[42] Statista Research Department. (2019, November 14). IoT: number of
connected devices worldwide 2012-2025. Retrieved December 10, 2019,
from https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/.

[43] Asokan, A., & Ross, R. (2019, July 26). Massive Botnet Attack
Used More Than 400,000 IoT Devices. Retrieved December 10, 2019,
from https://www.bankinfosecurity.com/massive-botnet-attack-used-more-
than-400000-iot-devices-a-12841.

[44] Sayad, S. (n.d.). K Nearest Neighbors – Classification. Retrieved December
21, 2019, from https://www.saedsayad.com/k nearest neighbors.htm.

[45] Yiu, T. (2019, August 14). Understanding Random Forest. Retrieved
December 21, 2019, from https://towardsdatascience.com/understanding-
random-forest-58381e0602d2.

[46] T. Evgeniou and M. Pontil, “Workshop on support vector machines: Theory
and applications”, Support Vector Machines: Theory and Applications, p.
1, 2001.

[47] M. Roughan, S. Sen, 0. Spatscheck, and N. Duffield. (2004) “Class-of-Service
Mapping for QoS: A Statistical Signature-Based Approach to IP Traffic Clas-
sification”. Proc. 4th ACM SIGCOMM Conf on Internet Measurement,
Taormina, Sicily.

[48] Ahmed, T., Coates, M., & Lakhina, A. (2007). Multivariate Online Anomaly
Detection Using Kernel Recursive Least Squares. Retrieved December 10,
2019, from https://ieeexplore.ieee.org/abstract/document/4215661.

49

