
Traffic Sign Recognition Using Deep Learning

by

Afia Binte Amir
15301039

Umme Habiba Nisa
15301044

Ali Ashab Shafi
15301099

Md. Rafid-Ur-Reza
16101229

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
December 2019

c© 2019. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Afia Binte Amir
15301039

Umme Habiba Nisa
15301044

Ali Ashab Shafi
15301099

Md.Rafid-Ur-Reza
16101229

i

Approval

The thesis titled “Traffic Sign Recognition using Deep learning” submitted by

1. Afia Binte Amir (15301039)

2. Umme Habiba Nisa (15301044)

3. Ali Ashab Shafi (15301099)

4. Md. Rafid-Ur-Reza (16101229)

Of Fall , 2019 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on December 24, 2019.

Examining Committee:

Supervisor:
(Member)

Dr. Jia Uddin
Associate Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Annajiat Alim Rasel
Lecturer

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Mahbubul Alam Majumdar
Professor and Chairperson(CSE)

Department of Computer Science and Engineering
Brac University

ii

Abstract

Traffic sign recognition plays a significant role in modern automated driver assisting
systems and showing information about safety measures. It is a technology that
allows users to recognize traffic signs in real-time, typically in videos, or sometimes
just in photos. Poor identification of traffic signs cause road accidents. Moreover
In adverse situation like heavy rain,foggy weather or sleepy driver can misidentify a
traffic sign that may cause the death of hundreds of people. As a result identification
of traffic signs properly has become an obligatory topic for research. In this research,
we have used convolutional neural network for detecting and classifying the road
signs accurately. We have proposed five Keras models of CNN and compared their
results. The main challenge of this research is dealing with noise in images such as
ads, parked vehicles, pedestrians, and other moving objects or background objects
that made the recognition much more difficult. Not only the objects but also various
environmental issues like the reflection of light, rainfall, fog etc has affected the
research. In order to conduct this research we have collected our own data-set. We
roamed around Dhaka city and clicked pictures of the traffic signs as there is no
benchmark data-set available in the perspective of Bangladesh. For 500 images this
model gives out an accuracy of 63%. There have been many researches in this field
but our one is unique as it is tested on our own collected data-set on Bangladesh’s
perspective. Recognizing traffic signs has become a part of our daily essentials as
road safety depends on it, on a large scale which made it an obligatory topic for
research.

Keywords: Models; Image processing; CNN; Detection; Recognition; Traffic Sign;
Detection; Prediction; Train loss; Parameters; Keras; Inception V3; Inception-
Resnet; Mobilenet; Renet50; Xception; Over-fitting

iii

Acknowledgement

All praise to the Almighty Allah, the most beneficent and the most merciful who
blessed us with guidance, strength and ability to complete this research.
Furthermore, we would like to express our gratitude to our advisor Dr. Jia Uddin
sir for his kind support and advice throughout our thesis work. His contribution
and guidance helped us to overcome our problems and make this research work
successful.
Finally, we are thankful to our friends and parents for their continuous support
throughout this journey. A special thanks to BRAC University for providing us
with the opportunity to complete our thesis and finish our Bachelors Degree.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature x

1 Introduction 1
1.1 Inspiration . 1
1.2 Objective . 2
1.3 Thesis Outline . 2

2 Literature Review 3
2.1 Detection method . 3

2.1.1 Colour-based method . 3
2.1.2 Shape-based method . 4
2.1.3 Learning-based method . 4

2.2 Classification method . 5
2.2.1 Hand crafted feature method 5
2.2.2 Deep learning-based method 5

3 CNN and feature extraction 7
3.1 Convolutional Neural Network (CNN) 7

3.1.1 How CNN works . 8
3.1.2 Architectural Overview of CNN 9

3.2 Data set description . 13
3.3 Workflow . 16
3.4 Pre-processing . 17

3.4.1 Image pre-processing techniques 17
3.4.2 Image pre-processing with Keras 17

3.5 Compiling the model . 17

v

4 Proposed model implementation 18
4.1 Inception V3 . 18

4.1.1 Inception V3 concept . 18
4.1.2 Applying Inception V3 on our dataset 19

4.2 Resnet 50 . 20
4.2.1 Resnet concept . 20
4.2.2 Applying Resnet 50 on our dataset 21

4.3 Inception-Resnet V2 . 21
4.3.1 Inception-Resnet V2 concept 22
4.3.2 Applying Inception-Resnet on our dataset 22

4.4 Mobilenet . 24
4.4.1 Mobilenet concept . 24
4.4.2 Applying Mobilenet on our dataset 25

4.5 Xception . 25
4.5.1 Xception concept . 26
4.5.2 Applying Xception on our dataset 26

5 Result analysis 28
5.1 Comparison among the CNN models 28

6 Conclusion 31
6.1 Future works . 31

Reference 34

vi

List of Figures

3.1 Convolution function . 7
3.2 Array of RGB matrix . 8
3.3 Different layers of CNN . 9
3.4 Input and output of a Conv layer . 10
3.5 Input and output of a Conv layer . 11
3.6 ReLU layer . 12
3.7 Fully connected layer . 12
3.8 Collected data set . 13
3.9 Collected data set . 14
3.10 Flowchart of the Proposed Model . 16

4.1 Inception V3 architecture . 18
4.2 Train loss and valid loss Inception V3 19
4.3 Increment of network depth resulting worse performance 20
4.4 Train loss and valid loss ResNet 50 21
4.5 Inception-ResNet V2 architecture . 22
4.6 Train loss and valid loss Inception-ResNet V2 23
4.7 Depthwise separable convolution . 24
4.8 Train loss and valid loss MobileNet 25
4.9 Modified depthwise separable convolution 26
4.10 Train loss and valid loss Xception . 27

vii

List of Tables

3.1 Class values . 15

4.1 Train loss and Valid loss(Inception V3) 19
4.2 Train loss and Valid loss(ResNet50) 21
4.3 Train loss and Valid loss(Inception-ResNet V2) 23
4.4 Train loss and Valid loss(MobileNet) 25
4.5 Train loss and Valid loss(Xception) 27

5.1 Results of different models . 28
5.2 Output,shape and the parameters . 29
5.3 Output,shape and the parameters . 30
5.4 Result comparison of the previous works 30

viii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ADAS Advanced Driver Assistance System

ADES Automatic Driver Evaluation System

ANN Artificial Neural Net

AR Augmented Reality

CNN Convolitional Neural Net

CSV Comma Separated Values

CV A Computer Vision Applications

DSS Driver Support System

EV S Explaine Varience Score

FC Fully Connected

GTSRB German Traffic Sign Recognition Benchmark

HOG Histogram of Oriented Gradient

KL Karhunen-Ioeve

MAE Mean Absolute Error

MLP Multilayer Perceptron

MSE Mean Squared Error

NN Neural Network

PLSA Probabilistic Latent Semantic Analysis

R− CNN Regional Convolutional Neural Network

ResNet Residual Network

ROI Region of Interest

SIFT Scale Invariant Feature Transform

ix

SURF Speeded Up Robust Features

SVM Support Vector Machine

TS Traffic Sign

TSR Traffic Sign Recognition

x

Chapter 1

Introduction

Traffic signs or road signs are the signs we see everyday at the side of the roads. The
purpose of these signs are to give instructions to the pedestrians as well as drivers.
The oldest traffic sign is dated back to 1668 which was placed in Lisbon, Portugal by
the order of King Peter II of Portugal in order to regulate traffic at that time. Since
then the traffic volume is expanding. Many countries have readjusted traffic signs in
to simplified pictorial forms. Slowly it became a must to recognise these signs. With
the growth of technology the importance of TSR (traffic sign recognition) became
inevitable. TSR is a technology that enables to control and guide traffic for road
safety purposes.

1.1 Inspiration

Traffic Sign is one of the most indispensable components of sleek flowing of traffic
now a days. It also provides road safety by communicating road conditions and
reminding the road-safety rules to the drivers. TS recognition and detection is very
important for building automated, intelligent driver support systems, intelligent ve-
hicle development and road maintenance. With the help of this detection system,
there is a scope to inform the drivers about the road conditions and reduce road
accidents. As a result there is a wide range of intelligent driving systems now a days
that require the perfect detection method. Detection of the TS might be difficult
sometimes due to various weather conditions such as - rainy or cloudy weather, night
environment etc. This technology regulates the position of the road sign and what it
is in real time. This makes the task complicated and requires a very high accuracy.
In order to achieve a higher and more accurate detection system CNN is used.
In recent years self driving cars have taken center stage which is only possible be-
cause of CNN. A research conducted by Kaijing Shi, Hong Bao and Nan Ma CNN
gives an excellent estimation on vehicle detection base on CNN [30]. Another paper
presents an analytical study of comparing the two major approaches: color segmen-
tation and convolutional neural network (C-CNN) approach and fast region proposal
convolutional neural network (Fast R-CNN) approach. In the C-CNN method a
set of regions of interest (ROIs) is applied for color tresholding on the input image.
These methods imply several techniques to improve training and testing speed while
also increasing detection accuracy [24]. We are inspired by such research works for
conducting our thesis.

1

1.2 Objective

The aim of this thesis is to predict a TS recognition system based on Convolutional
Neural Network (CNN). Our main objective is to collect real time images of the
TS in the perspective of Bangladesh on various weather conditions. After collecting
the images we have converted the digital images into a data-set. Later we used
that data-set for building pretraining and training models. We also aim to apply
numerous pre-trained models based on Convolutional Neural Network (CNN) [13].
The models will predict the traffic signs and thus we will make a comparative analysis
between various models. Finally, we analyzed the reasons why performance varies
between models having tested with the same dataset.

1.3 Thesis Outline

In this research an in depth study is presented in multiple distinctive strategies and
techniques that are associated with traffic sign recognition. For our thesis we have
used a new approach and methodology to recognize TS in real-time
In chapter 1 we gave a brief introduction of the traffic sign recognition. Chapter
2 discussed some previous research works and their procedures whereas chapter 3
highlighted on CNN and its feature extraction process. Moreover, in chapter 4 we
discussed the proposed model and its implementation. Chapter 5 discussed the
result analysis. Finally, in Chapter 6 we concluded our research and gave a brief
overview of the future.

2

Chapter 2

Literature Review

TSR has become an integral part of modern research as it paves the way for a
safer transportation system. Detecting and recognizing traffic signs properly has
always been a challenge due to various environmental conditions. This technology is
mainly adapted by numerous automobile companies. In order to detect TS properly,
various methods have been used. TSR systems have evolved rapidly over the past
ten years. Extracting the ROI that contains the TS is the main goal of a TSR
system. A research done by researchers Prashenjit Dhar and Zainal Abedin states
that HSV color model is used to extract color information from the images. Thus
the features of the image can be extracted by using ROI. The images then are
classified again with CNN [26]. The detection method can be divided into three main
categories such as color-based, shape-based and learning-based methods. Moreover,
classification methods can be divided into two main categories: learning methods
based on hand-crafted features (HOG, BRISK, SIFT,LBP, SURF) and deep learning
methods. According to these categories, some previous research work on the TSR
system is discussed in the following sections.

2.1 Detection method

As acknowledged earlier, there are three main detection categories: color-based,
shape-based and learning-based methods. The appropriate method to apply is cho-
sen considering the system requirements and the problem [29]. A few works are
discussed that used these detection categories

2.1.1 Colour-based method

For different traffic signs, there are different color specifications. Red, blue and
yellow is the most commonly seen traffic sign colors. In this method, the dominant
color based portion is applied to find the ROI. The research paper of Tam T. Le
and Son T. Tran gives a clear visualization of color detection and segmentation base
on SVM (Support Vector Machine) on their paper [7]. They use SVM for retrieving
candidate regions for real-time TS processing. An input vector of the SVM block
of pixels is used as which is used in color classification. A group of nearby pixels is
adopted for increasing the dimension of each vector.
On the other hand, Luis David Lopez and Olac Fuentes used a set of Gaussian
models to segregate the TS from its background [4]. A constant homogeneous color

3

space called CIELab is used for measuring the similarities of the original color (what
is viewed by a human observer) and the reproduction of it. thus the system is color
sensitive. Also, Gaussian models were implemented for automated detection of
mobile targets using color information.
Color threshoding technique is sometimes used in color based detection system.
In order to separate TS from background noise, this technique works perfectly.
Moreover, RGB color space, HIS, HSV are used for TS detection. An innovative
color model named Eigen-Color was introduced by Xie and Li-Feng Liu in their
research [5] . Their idea was inspired from the KL (Karhunen-Ioeve) transform
hypothesis. This hypothesis suggests to differentiatet road sign color pixels from
the background.

2.1.2 Shape-based method

Color segmentation is not treated as an absolute feature for the detection method
because of its sensitivity to discrete factors. for example the distance of the target,
weather condition, sunlight reflection, variance of daylight, etc. Contrarily Shape-
based methods are further robust than color-based methods. the computation time
on this approach depends on the numbers of detected edges which may give a very
high computation time.
G. Loy and N. Barnes stated a new approach for detecting geometrical shapes ef-
fectively [2]. The symmetric nature of the shapes such as triangular, square and
octagonal are used together with the pattern of edge orientations. This method
returns the location and size of the shape detected. The results in still images show
a 95% detection rate.
Another paper by Alfes and Bram presents a system based on edge orientation his-
tograms for road sign detection [3]. The edge orientation histograms are steadfast.
It entails of features like contrast invariant and scale that can be used efficiently
using integral images. To select features based on the implicit transmission function
of the designer’s template to the object’s appearance in the image a learning method
is familiarized. The system is intelligent to detect 85% of the objects on from 12
pixels width and 95% for objects on from 24 pixels width at a truncated false alarm
rate

2.1.3 Learning-based method

Machine learning has become compulsory for learning to solve problems. Traffic
signs detection is one of the key technologies in automatic driving, which uses ar-
tificial feature extraction and machine learning algorithms. In a research based on
deep learning for detecting traffic signs, an advanced method called Faster R-CNN
is used [31]. Faster R-CNN is an improved version of R-CNN. It combines region
proposals with CNNs. As a result, represents the highest level in the field of object
detection in recent times.
S. Houben and J. Stallkamp described locating a traffic sign properly as a very chal-
lenging computer vision task [11]. Their approach aims to remove the inconsistency
between the absence of comprehensive and unbiased identification of the previous
methods. In this paper, a real-world benchmark data set is introduced for TS de-
tection. Viola-Jones detector based on Haar features, HOG descriptors are used in

4

this research. Their algorithms are the best-performing algorithms in the IJCNN
competition.
Another research incorporates a top-down and bottom-up visual operation to recog-
nize TS [6]. This paper explains the concept of implementing a completely parallel
image analysis approach. The bottom-up approach uses the improved model of
Saliency-Based Visual Attention. On the other hand, the top-down stage looks out
for saliency regions based on the HOG features. This approach achieves robustness
to a great extent.
A group of Korean researchers proposed a strong detection and recognition method
that perform well against illumination changes [28]. There is a lot of previous
research work that does not show promising results under low lighting conditions.
That’s, why the introduced a General Purpose Graphics Processing Unit (GPGPU),
based on real-time traffic sign detection techniques. In order to evolve ADAS systems
in the near future robust methods for traffic sign detection are becoming essential.

2.2 Classification method

Image classification is the mechanism categorizing an image considering its visual
content and according to its group with the help of a computer vision application.
An image classification model should identify images properly and divide the images
into groups or types. Detecting an object and classifying it properly might seem like
an easy task but for computer vision applications it is a vigorous task. Classification
methods can be divided into two subdivisions- learning methods based on various
hand-crafted features and deep learning methods. These two divisions are discussed
in the below sections.

2.2.1 Hand crafted feature method

A research conducted by Mrinal Haloi, suggests that every image is a periodic collec-
tion of visual topics [14]. His algorithm uses an exceptional classification technique
based on PLSA (probabilistic latent semantic analysis). This method is important
for feature depiction. This algorithm is tested onGTSRB (German traffic sign recog-
nition benchmark) and delivers a very outstanding result.
High performance of computer vision and machine learning is essential for sign detec-
tion and recognition system. This system mainly consists of three parts- detection,
feature extraction, and classification. In their paper, Samira El Margae and Berraho
Sanae focused on feature extraction with Local Binary Pattern (LBP) method [12].
The LBP method is block based. They implemented the LBP method with the K-
NN classifier. Tested on GTSRD, this method has proven to influence a very high
accuracy in terms of image classification.

2.2.2 Deep learning-based method

Deep learning is making revolutionary changes in image classification methods and
bringing more accurate detection and classification systems. One such system is
proposed by Rongqiang Qian and Bailing Zhang who developed a high performance
classification system with deep convolutional neural network (CNN) [16]. Their sys-
tem demonstrates a very high performance rate and recognition accuracy. As their

5

system is tested on a Chinese traffic sign dataset, their main target was to classify
signs according to digits, English letters and Chinese characters. Their work was
inspired by R-CNN.
For building, a perfect TSR system, high accuracy and short processing time are in-
tensely important. Lotfi Abdi and Aref Meddeb discover one such techniques using
deep CNN architecture [22]. In their research, they focused on Augmented reality
(AR) and cascade deep learning. For maximum road-safety and driver comfort, they
have used the AR that provides the driver with visual feedback. On the other hand,
cascade deep learning and AR covers augmented virtual objects which enhance the
driving experience. The researchers experimented by combining the Haar Cascade
and deep convolutional neural networks. The results indicate that combined learn-
ing increases the ability of the detection system.
Real-time traffic sign detection and classification system are essential for the auto-
matic Driver Evaluation System (ADES). The system proposed by Kemal Kaplan
and Caner Kurtul uses affine transformation coefficients as genetic algorithm param-
eters for sign detection [10]. Their results show that the neural networks are better
in classification than SVMs. Their research uses two machine learning approaches
that are tested for sign classification- the neural network-based classification and the
Levenberg-Marquardt learning technique. Their model can linearly separate classes
of objects. However, the errors on the detection stage showed an adverse effect on
the classification stage.

6

Chapter 3

CNN and feature extraction

3.1 Convolutional Neural Network (CNN)

CNN is a normalized version of multilayer perceptrons.It specializes in 2D matrix
like images detection. These images consist of 2D matrix of pixels on which we run
the CNN algorithm. For recognizing the image or to classify it, CNN takes brain as
a motivation. In a human brain the visual area consists of two kind of cells- simple
cells and complex cells. Simple cells aid to feature detection whereas complex cells
combine local features from small spatial neighbourhood. Spatial pooling helps with
translational invariant features. Humans combine all the different local features that
they scan through their eye for classifying the image.That’s how we see a new image.
CNN adopts this process in order to classify images accuraely.

Figure 3.1: Convolution function

A convolutional neural network works with a convolution. A convolution math-
ematically refers to a function that is derived from two other functions by using
integration. It describes how the shape of a function can be modified by another
function. For example, if we imagine an input I and an argument, the kernal K
will produce an output that will express the modification of the shape of one is by
another.From the figure 2.1, we get an image “x”. The image is a 2D array of pixels
that contain different color(RGB) channels. “w” is the kernel (feature detector)
through which we get the output after applying feature map. A feature map is a
mathematical operation that is used to compute similarity between two signals. In
order to identify the edges of an image, a feature detector or filter is used. The
convolution operation does the main task of determining the edges of an image.

7

Generally it is assumed that the convolution function is always zero. This results in
the implementation of infinite summation as a summation over a finite number of
array elements which we can see from the below stated equation.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (3.1)

From the equation we see a convolutional function for 2D array, where I means the
2D array and K represents the Kernal.
For simplifying the implementation of convolution in machine learning, we can
rewrite the equation number 3.1 using a cross correlation function. A cross cor-
relation function is used in almost all of the neural networks. As a convolution is
unstable, the equation 3.1 can be written as the equation 3.2.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (3.2)

The equation 3.2 shows the cross correlation function. in order to stabalelize the
algorithm the range of valid values of m and n is used. As a result less variation
takes place.

3.1.1 How CNN works

CNN is considered as the regularized version of fully connected networks. Earlier
we learned that CNN takes inspiration from the brain for functioning. Each neuron
in a single layer is connected to all the neurons in the next layer. However, in a
neuron is completely independent in a single layer and don’t share any connection
with other neurons of that layer .As a result, the network becomes fully connected
with every layer which also makes CNN prone to data overfitting. The last FC (fully
connected) is recognized as the output layer. Moreover, CNN regularizes data with
the hierarchical pattern. It assembles the complex patterns using more simplified
patterns. CNN takes image as an input for processing and classifying it. Computers
recognize images as an array of pixels which depends on the image resolution.It will
divide the resolutions into height, width and dimension.

Figure 3.2: Array of RGB matrix

8

From figure 3.2 we see an image of h x h x d (h = height, w = width, d = dimen-
sion)array of matrix of RGB. Here the values are 6 x 6 x 3 [32]. Now for example
if we take an image sized 224 x 224, the neurons will calculate 224x224x3 weights.
here the dimension will remain 3 as it define the RGB color channel. What CNN
mainly does is to pass every input image through a series of convolutional layer that
includes filters. This helps CNN to reduce the image size without loosing any in-
formation. The layers that include filters are called Kernals.The images are passed
through the kernals for training and testing various CNN models.

3.1.2 Architectural Overview of CNN

A convolutional network is made of several layers. The layers are stacked together
in order to form a full convolutional architecture. Every layer of this network re-
constructs one volume of activations to to another which is done by a differentiable
function. Each layer has a straightforward API that converts the 3D input volume to
a 3D output volume. The differential function is used to do so. Generally three types
of layers are used to build convolutional architecture: Convolutional layer, pooling
layer and FC layer. By piling up these layers the original image is transformed to
the final class score. Some layers may or may not contain parameters. Usually the
convolution layer and the FC layer contain parameters. These parameters are used
not only in activation of the input volume, but also as the weights and biases of the
input. On the other hand, the ReLu and Pooling layers work to implement a fixed
function. So that the parameters from the previous layers can be trained. Gradient
descent technique is used to calculate the class results in the convolution layer that
depends on the labels of each image in the training set.

Figure 3.3: Different layers of CNN

From the figure 3.3, we can get a clear visualization of the different layers of CNN.
Each input image pass through these layers and Kernals, Pooling, FC and lastly
applying Softmax function for classifying an object. This gives out a probabilistic
values between 0 and 1. The figure 3.3 represents the complete flow of CNN from
processing an input image to classifying the images based on their values. The
different layers of CNN are described below:

Input Layer

This layer reads the image. As a result, the input layer has nothing to learn. It
only provides the shape of the input image. The input holds the raw pixel values

9

of an image. For example, if we consider a 64x64 image, the input will be 64x64x3.
Here, the height 64, width 64 and with three color channels RGB. So, there are no
parameters learn in this layer.

Convolutional Layer

CNN is implemented in this layer.This makes it the basis of a CNN as it is responsible
for most of the complex computation. This layer is where CNN actually learns.
So, certainly, we have parametres that are the weight matrices. These parameters
comprise a set of learnable filters. In order to calculate the parameters, we have
to multiply the height, width, and account for the filters. We also have to consider
the bias term for each filter. So the number of parameters in a convolutional layer
would be -

((m ∗ n) + 1) ∗ k) (3.3)

In equation 3.1, m= shape of the width of the filter. n= shape of the height of the
filter and k= number of filters. It is considered that a convolutional layer has “k”
feature maps as output. We added the 1 as the bias term for every single filter.

Figure 3.4: Input and output of a Conv layer

From the figure 3.4, We see that the input has I=32 feature maps. k=64 feature
maps will be given as outputs and the filter size is n=3 and m=3. It is crucial to
keep in mind that we take a 3*3 filter because the input is of 3 2 dimensions. So
the output of the first convolution layer is 64 different 3*3*32 filters.

10

Pooling Layer

In this layer no parameters are announced because it only calculates a fixed function
of the given input. This layer helps to reduce image dimension size for reducing
amount of parameters. As a result overfitting does not occur. A pooling layer is
usually found in-between successive convolutional layers.
A pooling layer is also invariant to translation [8]. This means that if the input is
changed at a very small portion, the pooled output remains the same. This feature
of the pooling layer helps detecting common characteristics in the input image. For
example, edges or colors of an image.

Figure 3.5: Input and output of a Conv layer

Moreover, the max-pooling function produces a better result if compared to min or
average pooling. Max pooling sums up the output over a whole other similar input.

ReLu Layer

Rectified Linear Unit(ReLU) is a non-linear operation. reLu means rectified linear
unit. This idea is implemented in the convolutional network for introducing non-
linearity. As the real-world data requires the convolutional network to be non-
negative-linear values, what ReLU does is to transform all the negative numbers
into zeros.The output of this layer is shown in equation 3.2.

f(x) = max(0, x) (3.4)

From the equation 3.4, it is clear that the ReLU function takes any integer value ’x’
and returns zero if the integer value is negative.

11

Figure 3.6: ReLU layer

Besides the ReLU function there are also other activation functions like- tanh or sig-
moid functions that can used for adding non-linearity to the network. But according
to experiments and research, ReLU works best for CNN [17].

Fully-connected Layer

The fully connected layers in CNN are fully connected to each other as the name
suggests. This lays is in the last stage of CNN which is completely connected with
the previous layers.It portrays the feature vector for the input. From the figure 3.5
we can see the structre of a FC layer.

Figure 3.7: Fully connected layer

Neurons of a fully connected layer has all previous layer activation connection. Ma-
trix multiplication with a basis offset id used for activating the connections. When
the network gets trained, the feature vectors regulate the loss. This feature vector
is also used for classification, regression and feeding input into other layers.

Output Layer

Output layer is the final layer of a CNN. in this layer produces an approximation of
each class according to the given input image. This layer uses the softmax activation
function that maps the final dense layer and produces vector output that sums up
in one output. It will denote whether each element is in certain classes or not.

12

3.2 Data set description

Benchmark image dataset is vital for conducting a good research. As our research is
based on the road signs of our country- Bangladesh, we have to use a data-set that
contains Bangladeshi traffic signs. However there is no benchmark dataset available
for bangladeshi traffic signs. Hence, we had to collect our own data-set. We moved
around various main streets of Dhaka city to collect the footage of traffic signs.
We found that some particular signs were not uniform for a particular road sign.
For example, we saw that there were “Pedestrian-crossing” sign was inconsistent in
different streets of Dhaka; it had contrastive shapes of the frame, independent fonts,
different type of image too.

Figure 3.8: Collected data set

13

Figure 3.9: Collected data set

14

Table 3.1: Class values

Class number Class name
1 Road cross
2 Left turn
3 No hydraulic horn
4 No bus stop
5 Bus Stop
6 ///// blank
7 No rickshaw
8 right turn
9 One way
10 Caution
11 No right turn
12 No parking
13 30 km
14 40 km
15 U turn
16 Mosque
17 Side road
18 Speed breaker
19 Petrol pump
20 Parking
21 No parking 1
22 No horn
23 Hospital
24 No road crossing
25 Parallel parking
26 Rail-line
27 No truck
28 No car
29 No u turn
30 Both ways
31 50 km
32 No left turn

15

In future, we plan to get more datasets in diverse weathers like rainy season, foggy
winter etc. also in the various time of the day for getting different light conditions
and expanding collecting dataset outside of Dhaka city so that we can get a more
enriched and diverse dataset of road signs to do further advance research.

3.3 Workflow

Figure 3.10: Flowchart of the Proposed Model

Our proposed model recognizes Bangladeshi Traffic signs. We have collected our
data set by taking pictures of the road signs of Dhaka city for implementing the

16

model. Figure 3.10 describes the complete workflow of the proposed model. At
first we used the data(images) for training our model. We split the data into two
parts- raw training data and test data. Then we again split the data into two parts-
training data and validation data. After that we pass our train data through the
image generator function. We also pass the test data through the same function.
Finally we use the generated data with the prediction model and present results.

3.4 Pre-processing

3.4.1 Image pre-processing techniques

For implementing our model, first we have to process our data. To do that image
processing is required. Image processing in a technique through which a consistent
set of data is produced. Image processing helps to improve the detection systems by
reducing variation among data sets, remove misinterpretation and enhancing some
valuable features [1]. In image processing systems the images are interpreted as 2D
signals. Image processing is essential for pre processing the data set because it helps
to extricate objects in an image, measuring the objects of an image and visualizing
the invisible objects of an image.
Image processing is usually of two type- digital image processing and analogue image
processing. For our research work we will be using digital image processing. It helps
to manipulate digital images given as data sets.

3.4.2 Image pre-processing with Keras

Keras is a very powerful deep learning library that is used for data augmentation
and building machine learning models. The image data generator class in Keras
generates batches of tensor image data with real time data augmentation. First of all
all the images are converted into 224 x 224 pixels as it is the standard input for CNN
models. We have used some parameters like horizontal flip,vertical flip,height shift
range, width shift range,zoom range,fill mode etc.

3.5 Compiling the model

After the pre-processing stage we compiled our models. For compiling the models we
have excluded the fully connected layer. It is necessary to do so because it requires
a complete image to function but with a reduced version of an image it might not be
able to perform properly. An active FC layer might result in overfitting. Thus the
object will not be classified properly. As for our models the image shape or input
size is fixed at 224x 224 x 3, the FC layer is prevented from activating.

17

Chapter 4

Proposed model implementation

For this research we have used five NN models from Keras. We ran our data-set
on these models in order to compare the results. The details is discussed in the
following sections.

4.1 Inception V3

In the development stages of the CNN classifier, the Inception network brought an
important breakthrough. Before the concept of Inception, what CNNs did, is to
just stack convolution layers deeper and deeper for better performance. On the
other hand, the Inception network was complex. It pushed performance in terms
of both speed and accuracy. the continuous modification of this network leads to
the discovery of several versions of the network. For this research, we will be using
Inception version 3.

4.1.1 Inception V3 concept

Inception V3 is a CNN model that is trained especially for image classification. In the

Figure 4.1: Inception V3 architecture

Inception model, the additional classifiers subsidize at the end of a training process.
Usually, the accuracy are saturated near the end. That’s why in the Inception V3
model the BatchNorm is used in the additional classifiers[20]. Moreover in this

18

model, a regularizing component is added to the loss formula which prevents the
network from overfitting. This process is called label smoothing. Besides Inception
V3 also uses 7x7 factorized convolutions. This model also integrates the upgrades
of the previous models of Inception.

4.1.2 Applying Inception V3 on our dataset

After preparing our model, we ran 500 steps per epoch and 10 epochs per model.
For the Inception V3 model we see a greater valid loss then train loss.

Table 4.1: Train loss and Valid loss(Inception V3)

Train loss Valid loss
62.3223 118.1029
45.0415 251.5956
54.9919 141.7624
43.0990 57.4983
36.2884 274.7885
39.7707 447.9269
38.1633 628.4097
32.7210 70.7147
41.5034 964.8751
36.5510 155.6451

From the table 4.1 we see that the train loss data has slowly decreased whereas the
valid loss data has a very high value. The higher value of validation loss indicates
that over-fitting has occured. Over-fitting is a situation where a highly complex
model allows a perfect classification of the training samples. It is highly implausible
to give a very good classification result. So, Inception V3 model allowed a perfect
classification which resulted in data over-fitting.

Figure 4.2: Train loss and valid loss Inception V3

The figure 4.2, shows a graph between the trainloss and valid loss data. We can see
that irregular and sudden rise and fall of the valid loss data. The training loss data
is comparatively steady.

19

4.2 Resnet 50

Deep Residual net(ResNet) is one of the most groundbreaking discoveries in deep
learning. In ResNet, several layers are stacked which helps to train hundreds or
even thousands of layers. Even though training this huge amount of data ResNet
gives still produces compelling performance. Due to this fascinating performance,
many CVA(computer vision applications) have been encouraged. Especially the
object detection and face recognition work remarkably well in this model. Since the
discovery of ResNet in 2015, many changes have been made to its architecture for
better results[27].

4.2.1 Resnet concept

We know that shallow network seems to work well. We used the weights of the
shallow network to construct a much deeper network and whenever we have gap,
we do identity mappings. This is just the construction.The main idea of ResNet is
making a deeper network out of a shallow network by copying weights in the shallow
network and setting other layers in the deeper network to identity mapping. Gen-
eral convention suggests going deeper for training and testing errors in ResNet.But
simply stacking the layers together does not make the layer deeper. Deep networks
are hard to train because the non-linearity is inversed along with the depth. How-
ever, this seems to be a problem because generally, this does not seem to work as
we go deeper.The more we go deep the more saturated result we get. As a result,
we face issues with training and testing. The reason behind this problem is called
vanishing gradient problem [15]. In this problem the gradient is back-propagated
to the previous layers which repeats multiplication among layers. Correspondingly
the gradient becomes infinitively small in size.That is not alleviated and so it is an
optimization problem basically. From the figure 4.1 we can visualize this problem.

Figure 4.3: Increment of network depth resulting worse performance

To get over this problem, the ResNet paper introduced “Skip connections” which
is basically identity mapping or replication. This provides an alternative path for
the gradient flow and makes training possible. The number of parameters is also
sometimes increase with the kind of approach as you go deeper, you have more
layers.

20

4.2.2 Applying Resnet 50 on our dataset

For ResNet 50 we have used 10 epochs and 500 steps per epoch. We kept the epochs
and steps per epoch same for each of the models in order to compareamong them.

Table 4.2: Train loss and Valid loss(ResNet50)

Train loss Valid loss
65.8007 146.6959
52.5009 58.9105
40.3297 63.0124
40.1097 100.4593
46.4111 83.5137
34.1146 76.4893
35.5693 69.8227
30.7061 59.7766
30.1588 68.5390
24.4571 34.4596

From the table 4.2 we can see that the train loss and valid loss data has given closer
output then the Inception V3. This indicates that the ResNet50 network worked
perfectly for our dataset. ResNet 50 is able to perfrom at its best in comparatively
smaller dataset. That’s why the ResNet50 give out a very good accuracy.

Figure 4.4: Train loss and valid loss ResNet 50

From the figure 4.4, we can see that in the second and last epoch the train loss and
valid loss data is very close to each other. If the train loss and valid loss data are
close to each other, there’s a very chance of getting a very high accuracy.

4.3 Inception-Resnet V2

The Inception V3 architecture has achieved an exquisite performance with a sur-
prisingly low computational cost. The recent discovery of residual networks that has
a more traditional architecture also performed exceptionally well in a challenging
environment. This model of CNN is pretrained in ImageNet dataset which has more
than a million of images. Somehow its performance was identical to the Inception-v3
model. Inception-ResNet is the study of two ideas combined together.

21

4.3.1 Inception-Resnet V2 concept

Inception-Resnet v2 is simply the combination of the Inception and the Residual
Network structure.In this structure, multiple sized convolution filters are merged
with the residual network. It is designed in such a way to bypass the degradation
problem that occurs for the deep structure. This model is used to ease the diffi-
culties of training a deep neural network. Instead of learning unrefereed functions,
this model only learns from the layers that have the reference to the layer input.
These networks are easy to optimize. On the other hand, the Inception model is
exceedingly prone to change. A pure Inception variant without residual connections
gives out the same recognition result as Inception-ResNet-v2. In fact, sometimes a
Residual-Inception model outperforms the similar Inception models without residual
connections such as- Inception V3 and Inception V4 [19].

Figure 4.5: Inception-ResNet V2 architecture

From figure 4.3, we can see that the top of the second Inception-ResNet V2 figure, the
full Inception-ResNet V2 network is expanded. This network is considered deeper
than the previous Inception V3 networks. The Inception-ResNet V2 architecture is
more authentic than the previous networks. This model also requires approximately
twice the memory as well as the computation time compared to Inception V3.

4.3.2 Applying Inception-Resnet on our dataset

Similar to the previous models, we have used 10 epochs and 500 steps per epoch in
this model as well.
From the table 4.3, we visualize that some valid loss and train loss data is close to
each other. As a result, it is not due to overfitting. InceptionRestnet model uses
the core concept of Residual network.

22

Table 4.3: Train loss and Valid loss(Inception-ResNet V2)

Train loss Valid loss
46.4809 60.9243
38.6178 35.2266
27.6253 34.1973
28.3849 44.4474
32.6751 63.8055
29.5776 40.4417
27.9130 53.7313
27.2952 41.4022
26.8861 50.6517
26.6391 34.3154

Figure 4.6: Train loss and valid loss Inception-ResNet V2

23

4.4 Mobilenet

The MobileNet network is basically proposed by Google. The significance of us-
ing this network is the advantage of parameter number reduction in NN. This is
one of the fastest models in terms of performance and a significantly lower space-
consuming model. The MobileNet gives an opportunity to solve image classification
and detection problems efficiently.

Figure 4.7: Depthwise separable convolution

4.4.1 Mobilenet concept

In order to explain the architecture of the MobileNet, first of all, the perception of
depthwise separable convolution should be clear. It is used by MobileNet.That’s why
MobileNet has a very lightweight architecture [33]. If we try to distinguish between
the network that has normal convolution with a depthwise separable convolution,
with the same depth in the network, we will find that that the depthwise separable
convolution outstandingly lessens the parameter quantity.
From the figure 4.4, we can see that depthwise separable convolutions does not
combine all three color channels rather performs a single convolution on each colour
channel. This effects filtering of the input channels. In other words, MobileNets
depthwise convolution applies a single filter for each input channel. However, the
pointwise convolution. The pointwise convolution is a 11 convolution that is applied
in combining the outputs. The depthwise separable convolution has two layers - a

24

layer for filtering and another one for combining. This helps to reduce computation
and model size.

4.4.2 Applying Mobilenet on our dataset

As we kept the epochs and steps per epochs same for all the model,so, for this model
it is also 10 epochs with 500 steps per epoch.

Table 4.4: Train loss and Valid loss(MobileNet)

Train loss Valid loss
35.6542 65.1221
26.5699 34.7975
23.7361 52.3003
23.7620 27.3313
21.5263 37.9076
24.8763 61.6929
23.1744 27.0103
19.5940 27.0088
18.5548 42.2702
20.9273 47.1078

The table 4.4 shows the train loss and valid loss data for the MobileNet model. this
model gives out the best result on our dataset. from the table it is visible that the
difference between train loss and valid loss data is not very high compared to other
models. This indicates that MobileNet model works well for our data-set.

Figure 4.8: Train loss and valid loss MobileNet

From the figure 4.8, we see that the in most of the epochs, the difference between
valid loss and train loss data are very low. As we know if train loss and valid loss
data is approximately similar compared to other models then there is a chance of
having a better result. Because of that MobileNet model worked excellently under
our small dataset.

4.5 Xception

Xception a model developed by Google which stands for “Extreme Inception”. This
model represents an comparatively stronger version of Inception architecture. This

25

model also uses a depthwise separable convolution and gives out further better even
result than Inception V3. Xception presents a clarification of Inception models in
CNN. It is an intermediate stepin-between regular convolution and the depthwise
separable convolution operation which is followed by a pointwise convolution [25].

Figure 4.9: Modified depthwise separable convolution

4.5.1 Xception concept

A Xception architecture is a linear stack of depthwise separable convolution lay-
ers with residual con-nections. It has 36 convolutional layer that forms the feature
extraction base of this network.This model uses the modified depthwise separable
convolution hypothesis. Modified depthwise separable convolution performs 1x1
convolution first then channel-wise spatial convolution whereas an original depth-
wise separable performs channel-wise spatial convolution first. Xception architecture
depends on two major points- one is the depthwise separable convolution and an-
other is shortcuts in convolutional blocks (similar to the ResNet architecture). In a
word the Xception model architecture consists of depthwise separable convolution
blocks and Maxpooling together linked with the shortcuts of ResNet application.
This model architecture has a finite number of trainable parameters contrast to an
identical depthwise classical convolutions.

4.5.2 Applying Xception on our dataset

As same as the previous models, we have used 10 epochs and 500 steps per epoch.
the table 4.5 shows us the trainloss and valid loss data for our Xception model.

26

Table 4.5: Train loss and Valid loss(Xception)

Train loss Valid loss
43.9929 716.7349
32.5064 108.2320
28.0942 53.0001
24.9578 102.3378
22.7562 119.2220
24.2169 42.0844
22.2047 32.3283
22.0193 84.6817
22.4495 34.0924
25.6874 32.4876

Figure 4.10: Train loss and valid loss Xception

From the figure 4.10, we see that our train loss and validation loss are close to each
other. This shows that the Xception model worked well for our dataset.

27

Chapter 5

Result analysis

5.1 Comparison among the CNN models

For detecting and recognizing the traffic signs in an effective manner, we have used
five CNN models. They are Inception V3, MobileNet, ResNet 50, Inception-ResNet
V2 and Xception. This section views a comparative study among the given results
by these models. Here we have used three metrics for measuring accuracy in CNN
models. They are - mean absolute error (MAE), mean squared error (MSE) and
explained varience score (EVS). From the table 5.1 below, we see the results of
different models.

Table 5.1: Results of different models

Model Mean Absolute Error Mean Squared Error Explained Variance Score
MobileNet 4.6919 37.2801 0.5710
Inception V3 2.3792 27.8953 0.5028
ResNet 50 4.1039 31.5095 0.6308
Inception-ResNet V2 3.8293 29.7352 0.6223
Xception 3.8314 33.1771 0.6291

Mean absolute error

MAE of a CNN model assigns the average of the absolute values of each prediction
error. It indicates error on all instances of the test data-set. The difference between
the original value and the prediction value of a particular instance is called the
prediction error. From the table we see that our Inception-Resnet V2 model gave
a MAE of 3.8293 metrics.among all the models Inception-ResNet V3 gave the less
error in terms of MAE. Moreover, not only Inception-ResNet but also Xception
model gave a similar MAE. Xception model showed MAE of 3.8314 metric which is
almost similar to the Inception-ResNet model. This means our Inceprtion-Resnet
model and Xception model will work more effectively than the other models if the
accuracy is calculated in MAE.In terms of MAE accuracy search, highest value
suggests that the model is less effective.

Mean squared error

MSE of a CNN model defines the mean squared error of the prediction results.
It is kind of similar to MAE. But the difference if that MSR calculates square

28

difference for each point. The square difference is computed between the target and
the predicted values. After that the average of those values are calculated. The
high value in this method indicates the less effective model. From the table 5.1,
we see that the values of the mean squared errors of the models. Furthermore, the
smallest value 29.7352 is shown by Inception-ResNet V2 which illustrates it as the
best model for our data-set.

Explained variance score

Variance score means the difference between the average of predicted values and the
observed values. For our system we have calculated our EVS.
Inception V3 gave out the less accuracy among the five models we have used. we
see that Inception V3 has an EVS of 50% .
On the other hand, ResNet 50 gave the highest accuracy that is 63% . ResNet
architecture works well in smaller data-set thus worked well for our data-set.
MobileNet gave the accuracy of 57% . worked well for our data-set. This is the
smallest accuracy we have got.
Inception resnet V2 and Xception both gave the same EVS which is about 62% .
Both worked well for our data-set.
If we collect more data and run our algorithm the results will change. more over if
the epochs and steps per epoch changes the results will also vary.

Table 5.2: Output,shape and the parameters

Layer Inception V3 MobileNet Inception ResNet
Image Shape (224,224,3) (224,224,3) (224,224,3)
Model Convolution shape (5,5,2048) (7,7,2024) (5,5,1536)
Model Convolutional parameters 21802784 3228864 54336736
Global avg pooling 2048 1024 1536
Dense 13 (shape) 1024 1024 1024
Dense 13(parameters) 209817 1049600 1573888
Dense 14(shape) 1 1 1
Dense 14(Parameters) 2025 1025 1025
Total parameters (23,901,985) (4,279,489) (55,911,649)
Trainable parameters (23,867,553) (4,257,601) (55,851,105)
Non-trainable parameters (34,432) (21,888) (60,544)

29

Table 5.3: Output,shape and the parameters

Layer ResNet 50 Xception
Image Shape (224,224,3) (224,224,3)
Model Convolution shape (7,7,2048) (7,7,2048)
Model Convolutional parameters 23587712 20861480
Global avg pooling 2048 2048
Dense 5 (shape) 1024 1024
Dense 5(parameters) 2098176 2098176
Dense 6(shape) 1 1
Dense 6(Parameters) 1025 1025
Total parameters (25,686,913) (22,960,681)
Trainable parameters (25,633,793) (22,906,153)
Non-trainable parameters (53,120) (54,528)

Table 5.4: Result comparison of the previous works

Author Name Dataset Methods Accuracy

Boujemaa
Et al. [24]

GTRSB Dataset C-CNN, R-CNN
95%
&
94%

Dhar
Et al. [22]

Own Dataset ANN, KNN, CNN
93.9% , 71%
&
97%

G. Loy and
N. Barnes [2]

Google
Novel shape-based
techniques

95%

Lopez and Fuentes [4] none Gaussian model 95%
T.T.Le
Et al. [7]

Real time
video

SVM and
Hough transform

92%

K.Kaplan
Et al. [10]

Real time images SVM 87%

Houben
Et al.[11]

GTSB
Viola-Jones
method

88%

Kwangyong Lim
Et al. [28]

LISA US
traffic sign dataset

GPGPU-based real-time
traffic sign detection

89.5%

Aghdam
Et al. [23]

GTSRB New Conv Net 99.23%

Xie
Et al. [21]

GTSRB Cascade CNN 97.94%

Cirean
Et al. [9]

GTSRB
MLP, HOG
CNN

99.15%

Qian
Et al. [18]

GTSRB CNN, MLP 98.86%

30

Chapter 6

Conclusion

About millions of people die every year in road accidents all over the world. In
Bangladesh road accidents are increasing at an alarming rate. Most of the accidents
occur due to the lack of traffic sign recognition. In order to improve that state traffic
sign recognition has become mandatory. The main purpose of this thesis work is
to propose a Traffic sign detection system on the perspective of Bangladesh. While
conducting this research we found some major problems with the traffic signs in our
country. We compared five Keras models of CNN on our own data-set. We did a
comparative study between these models and it turns out Mobile net gives out the
best accuracy for our data-set which is about 63%.

6.1 Future works

There has been a lot of research work done for image detection and traffic signs
detection using CNN and other neural networks. But if we look closely, we can
see that Tesla, Volvo and few other vehicle manufacturing companies are trying to
implement proper image and traffic sign detecting technologies which will finally
lead us toward full autonomous transportation system. Again, for our work, we
have collected our own data sets based on our weather conditions. So, there is a
huge opportunity to improve and solve any problem that may occur in automated
transportation system in the future.
In our research work, we got just about average accuracy rate for the algorithms
we have applied. It is because we used a small number of data sets and a fixed no
of class and also data sets were collected in bright sunlight conditions. So, we can
gather more data sets in other roads of Bangladesh and also in different weather
and lighting conditions. Then we can achieve more precise accuracy rate. Again, as
our work was based on our country’s road, the same road sign was given different
shape, font, color which gave us a complicacy but we believe the results can be more
improved through further research.

31

Bibliography

[1] J. R. Jensen and K. Lulla, “Introductory digital image processing: A remote
sensing perspective”, 1987.

[2] G. Loy and N. Barnes, “Fast shape-based road sign detection for a driver
assistance system”, in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 1, Sep. 2004,
70–75 vol.1. doi: 10.1109/IROS.2004.1389331.

[3] B. Alefs, G. Eschemann, H. Ramoser, and C. Beleznai, “Road sign detection
from edge orientation histograms”, in 2007 IEEE Intelligent Vehicles Sympo-
sium, IEEE, 2007, pp. 993–998.

[4] L. D. Lopez and O. Fuentes, “Color-based road sign detection and tracking”,
in Image Analysis and Recognition, M. Kamel and A. Campilho, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1138–1147, isbn: 978-3-540-
74260-9.

[5] L.-W. Tsai, J.-W. Hsieh, C.-H. Chuang, Y.-J. Tseng, K.-C. Fan, and C.-C.
Lee, “Road sign detection using eigen colour”, IET computer vision, vol. 2,
no. 3, pp. 164–177, 2008.

[6] Yuan Xie, Li-Feng Liu, Cui-Hua Li, and Yan-Yun Qu, “Unifying visual saliency
with hog feature learning for traffic sign detection”, in 2009 IEEE Intelligent
Vehicles Symposium, Jun. 2009, pp. 24–29. doi: 10.1109/IVS.2009.5164247.

[7] T. T. Le, S. T. Tran, S. Mita, and T. D. Nguyen, “Real time traffic sign
detection using color and shape-based features”, in Intelligent Information
and Database Systems, N. T. Nguyen, M. T. Le, and J. Światek, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 268–278, isbn: 978-3-642-
12101-2.

[8] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in
convolutional architectures for object recognition”, in International conference
on artificial neural networks, Springer, 2010, pp. 92–101.

[9] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, “A committee of neu-
ral networks for traffic sign classification”, in The 2011 international joint
conference on neural networks, IEEE, 2011, pp. 1918–1921.

[10] K. Kaplan, C. Kurtul, and H. L. Akİn, “Real-time traffic sign detection and
classification method for intelligent vehicles”, in 2012 IEEE International
Conference on Vehicular Electronics and Safety (ICVES 2012), IEEE, 2012,
pp. 448–453.

32

https://doi.org/10.1109/IROS.2004.1389331
https://doi.org/10.1109/IVS.2009.5164247

[11] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel, “Detec-
tion of traffic signs in real-world images: The german traffic sign detection
benchmark”, in The 2013 International Joint Conference on Neural Networks
(IJCNN), Aug. 2013, pp. 1–8. doi: 10.1109/IJCNN.2013.6706807.

[12] S. El Margae, B. Sanae, A. K. Mounir, and F. Youssef, “Traffic sign recognition
based on multi-block lbp features using svm with normalization”, in 2014
9th international conference on intelligent systems: theories and applications
(SITA-14), IEEE, 2014, pp. 1–7.

[13] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan, “Cnn: Single-
label to multi-label”, arXiv preprint arXiv:1406.5726, 2014.

[14] M. Haloi, “A novel plsa based traffic signs classification system”, CoRR,
vol. abs/1503.06643, 2015. arXiv: 1503 . 06643. [Online]. Available: http : //
arxiv.org/abs/1503.06643.

[15] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-
nition, 2015. arXiv: 1512.03385 [cs.CV].

[16] Rongqiang Qian, Bailing Zhang, Yong Yue, Zhao Wang, and F. Coenen, “Ro-
bust chinese traffic sign detection and recognition with deep convolutional
neural network”, in 2015 11th International Conference on Natural Computa-
tion (ICNC), Aug. 2015, pp. 791–796. doi: 10.1109/ICNC.2015.7378092.

[17] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified acti-
vations in convolutional network”, arXiv preprint arXiv:1505.00853, 2015.

[18] R. Qian, Y. Yue, F. Coenen, and B. Zhang, “Traffic sign recognition with
convolutional neural network based on max pooling positions”, in 2016 12th
International Conference on Natural Computation, Fuzzy Systems and Knowl-
edge Discovery (ICNC-FSKD), IEEE, 2016, pp. 578–582.

[19] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and
the impact of residual connections on learning”, CoRR, vol. abs/1602.07261,
2016. arXiv: 1602.07261. [Online]. Available: http://arxiv.org/abs/1602.07261.

[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision”, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

[21] K. Xie, S. Ge, Q. Ye, and Z. Luo, “Traffic sign recognition based on attribute-
refinement cascaded convolutional neural networks”, in Pacific rim conference
on multimedia, Springer, 2016, pp. 201–210.

[22] L. Abdi and A. Meddeb, “Deep learning traffic sign detection, recognition
and augmentation”, in Proceedings of the Symposium on Applied Computing,
ACM, 2017, pp. 131–136.

[23] H. H. Aghdam, E. J. Heravi, and D. Puig, “A practical and highly optimized
convolutional neural network for classifying traffic signs in real-time”, Inter-
national Journal of Computer Vision, vol. 122, no. 2, pp. 246–269, 2017.

[24] K. S. Boujemaa, I. Berrada, A. Bouhoute, and K. Boubouh, “Traffic sign recog-
nition using convolutional neural networks”, in 2017 International Conference
on Wireless Networks and Mobile Communications (WINCOM), Nov. 2017,
pp. 1–6. doi: 10.1109/WINCOM.2017.8238205.

33

https://doi.org/10.1109/IJCNN.2013.6706807
http://arxiv.org/abs/1503.06643
http://arxiv.org/abs/1503.06643
http://arxiv.org/abs/1503.06643
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ICNC.2015.7378092
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
https://doi.org/10.1109/WINCOM.2017.8238205

[25] F. Chollet, “Xception: Deep learning with depthwise separable convolutions”,
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 1251–1258.

[26] P. Dhar, M. Z. Abedin, T. Biswas, and A. Datta, “Traffic sign detection —
a new approach and recognition using convolution neural network”, in 2017
IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Dec. 2017,
pp. 416–419. doi: 10.1109/R10-HTC.2017.8288988.

[27] V. Fung. (2017). An overview of resnet and its variants, [Online]. Available:
https ://towardsdatascience .com/an- overview- of - resnet- and- its - variants-
5281e2f56035 (visited on 07/17/2017).

[28] K. Lim, Y. Hong, Y. Choi, and H. Byun, “Real-time traffic sign recognition
based on a general purpose gpu and deep-learning”, PLoS one, vol. 12, no. 3,
e0173317, 2017.

[29] Y. Saadna and A. Behloul, “An overview of traffic sign detection and classifi-
cation methods”, International Journal of Multimedia Information Retrieval,
vol. 6, pp. 1–18, Jun. 2017. doi: 10.1007/s13735-017-0129-8.

[30] K. Shi, H. Bao, and N. Ma, “Forward vehicle detection based on incremental
learning and fast r-cnn”, in 2017 13th International Conference on Computa-
tional Intelligence and Security (CIS), Dec. 2017, pp. 73–76. doi: 10.1109/
CIS.2017.00024.

[31] Z. Zuo, K. Yu, Q. Zhou, X. Wang, and T. Li, “Traffic signs detection based
on faster r-cnn”, in 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW), Jun. 2017, pp. 286–288. doi: 10.
1109/ICDCSW.2017.34.

[32] Prabhu. (2018). Understanding of convolutional neural network (cnn) — deep
learning, [Online]. Available: https://medium.com/@RaghavPrabhu/understanding-
of-convolutional-neural-network-cnn-deep-learning-99760835f148 (visited on
11/19/2019).

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks”, in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.

34

https://doi.org/10.1109/R10-HTC.2017.8288988
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://doi.org/10.1007/s13735-017-0129-8
https://doi.org/10.1109/CIS.2017.00024
https://doi.org/10.1109/CIS.2017.00024
https://doi.org/10.1109/ICDCSW.2017.34
https://doi.org/10.1109/ICDCSW.2017.34
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Inspiration
	 Objective
	 Thesis Outline

	Literature Review
	Detection method
	Colour-based method
	Shape-based method
	Learning-based method

	Classification method
	Hand crafted feature method
	Deep learning-based method

	CNN and feature extraction
	Convolutional Neural Network (CNN)
	How CNN works
	Architectural Overview of CNN

	Data set description
	Workflow
	Pre-processing
	Image pre-processing techniques
	Image pre-processing with Keras

	Compiling the model

	Proposed model implementation
	Inception V3
	Inception V3 concept
	Applying Inception V3 on our dataset

	Resnet 50
	Resnet concept
	Applying Resnet 50 on our dataset

	Inception-Resnet V2
	Inception-Resnet V2 concept
	Applying Inception-Resnet on our dataset

	Mobilenet
	Mobilenet concept
	Applying Mobilenet on our dataset

	Xception
	Xception concept
	Applying Xception on our dataset

	Result analysis
	Comparison among the CNN models

	Conclusion
	Future works

	Reference

