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ABSTRACT 

 

 

An over-riding factor in the operation of the power system is the desire to maintain 

security and expectable reliability level in all the sectors- power generation, 

transmission and distribution. System security can be assessed using contingency 

analysis. The result of this analysis allows system to be operated defensively and 

securely. In our thesis contingency analysis and reliability evaluation of 

Bangladesh power system will be performed that will ensure safe, secure and 

reliable operation of the system. 
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CHAPTER I 

INTRODUCTION 
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1.1. POWER SYSTEM SECURITY 

One of the most important factors in the operation of a power system is the desire to maintain 

system security. System security involves practices designed to keep the system operating when 

components fail. For example, a generating unit may have to be taken off-line because of 

auxiliary equipment failure. By maintaining proper amounts of spinning reverse, the remaining 

units on the system can make up the deficit without too low a frequency drop or need to shed any 

load. Similarly, a transmission line may be damaged by a storm and taken out by automatic 

relaying. If, in committing and dispatching generation, proper regard for transmission flows is 

maintained, the remaining transmission lines can take the increased loading and still remain 

within limit. 

Because the specific times at which initiating events that cause components to fail are 

unpredictable, the system must be operated at all times in such a way that the system will not be 

left in a dangerous condition should any credible initiating event occur. Since power system 

equipment is designed to be operated within certain limits, most pieces of equipment are 

protected by automatic devices that can cause equipment to be switched out of the system if 

these limits are violated. If any event occurs on a system that leaves it opening with limits 

violated, the event may be followed by a series of cascading failures continues, the entire system 

or large parts of it may completely collapse. This is usually referred to as a system blackout. 

An example of the type of event sequence that can cause a blackout might start with a single line 

being opened due to an insulation failure; the remaining transmission circuits in the system will 

take up the flow that was flowing on the now-opened line. If one of the remaining lines is now 

heavily loaded, it may open due to relay action, thereby causing even more load on the remaining 

lines. This type of process is often termed a cascading outage. Most power systems are operated 

such that any single initial failure event will not leave other components heavily overloaded, 

specifically to avoid cascading failures. 
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1.2. FACTORS AFFECTING POWER SYSTEM SECURITY 

As a consequence of many widespread blackouts in interconnected power systems, the priorities 

for operation of modern power systems have evolved to the following: 

1. Operate the systems in such a way that power is delivered reliably. 

2. Within the constraints placed on the system operation by reliability considerations, the system 

will be operated most economically. 

 The power systems transmission and generation systems are always designed by engineers with 

reliability in mind. This means that adequate generation has been installed to meet the load and 

adequate transmission has been installed to deliver the generated power to the load. If the 

operation of the system went on without sudden failures or without experiencing unanticipated 

operating states, we would probably have no reliability problems. However, any piece of 

equipment in the system can fail, either due to internal causes or due to external causes such as 

lighting strikes, objects hitting transmission tower or human errors in setting relays. It is highly 

uneconomical if not possible, to build a power system with no such redundancy that failures 

never cause load to be dropped on a system. Rather systems are designed so that the probability 

of dropping load is accepted small. Thus, most power systems are designed to have sufficient 

redundancy to withstand all major failure events, but this does not guarantee that the system will 

be 100% reliable. Usually, a power system is never operated with all equipment in since failures 

occur or maintenance may require taking equipment out of service. Thus the security system 

designed for the power system play a considerable role in seeing that the system is reliable. 

Two major types of failure events that affect the power system mostly are transmission line 

outage and generation unit failures. Transmission line failures cause changes in the flows and 

voltages on the transmission equipment remaining connected to the system. Therefore the 

analysis of transmission failures requires methods to predict these flows and voltages so as to be 

sure they are within their respective limits. Generation failures can also cause flows and voltages 

to change in the transmission system, with the addition of dynamic problems involving system 

frequency and operator output. 
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1.3. FUNCTIONS OF POWER SYSTEM SECURITY 

Power systems security can be broken into three major functions that are carried out in an 

operations control center: 

1. System monitoring. 

2. Contingency analysis. 

3. Security-constrained optimal power flow. 

System monitoring provides the operators of the power system with related up-to-date 

information on the conditions on the power system. From the time that utilizes went beyond 

systems of one unit supplying a group of loads, effective operations of the system required that 

critical quantities be measured and the values of the measurements be transmitted to a central 

location. Such systems of measurement and data transmission, called telemetry systems, that can 

monitor voltages, currents, power flows, and the status of circuit breakers and switches in every 

substation in a power system transmission network. In addition, other critical information such as 

frequency, generator unit outputs and transformer tap positions can also be telemetered. With so 

much information telemetered simultaneously, no human operator could hope to check all of it in 

a reasonable time frame. For this reason, digital computers are usually installed in operations 

control centers to gather the telemetered data, process them and place them in a data base from 

which operators can display information on large display monitors. More importantly, the 

computer can check incoming information against pre-stored limits and alarm the operators in 

the event of an over load or out-of-limit voltage. 

Such systems are usually combined with supervisory control systems that allow operators to 

control circuit breakers and disconnect switches and transformer taps remotely. Together, these 

systems are often referred to as SCADA systems, standing for supervisory control and data 

acquisition system. The SCADA system allows a few operators to monitor the generation and 

high-voltage transmissions system and to take action to correct overloads or out-of-limit 

voltages. 

The second major security function is the contingency analysis. The results of this type of 

analysis allow systems to be operated defensively. Many of the problems that occur on a power 
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system can cause serious trouble within such a quick time period that the operator could not take 

action fast enough. This is often the case with cascading failures. Because of this aspect of 

systems operation, modern operations computers are equipped with contingency analysis 

programs that model possible systems troubles before they arise. These programs are based on a 

model of the power system and are used to study outage events and alarm the operators to any 

potential overloads or out-of-limit voltages. For example, the simplest form of contingency 

analysis can be put together with a standard power-flow program, together with procedures to set 

up the power-flow data for each outage to be studied by the power-flow program. Several 

variations of this type of contingency analysis scheme involve fast solution methods, automatic 

contingency event selection and automatic initializing of the contingency power flows using 

actual system data and state estimation procedures. 

The third major security function is security-constrained optimal power flow. In this function, a 

contingency analysis is combined with an optimal power flow which seeks to make changes to 

the optimal dispatch of generation, as well as the other adjustments, so that when a security 

analysis is run, no contingencies result in violations. To show how this can be done, the power 

system can be divided into four operating states. 

Optimal dispatch: This is the state that the power system is in prior to any contingency. It is 

optimal with respect to economic operation, but it may not be secure. 

Post contingency: It is the state of the power system after a contingency has occurred. We shall 

assume here that this condition has a security violation (line or transformer beyond its flow limit, 

or a bus voltage outside the limit). 

Secure dispatch: It is the state of the system with no contingency outages, but with corrections to 

the operating parameters to account for security violations. 

Secure post- contingency: It is the state of the system when the contingency is applied to the 

base-operating condition with corrections. 

We shall illustrate the above with an example. Suppose the trivial power system consisting of 

two generators, a load, a double circuit line is to be operated with both generators supplying the 

load as shown below. 
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We assume that the system as shown is in economic dispatch, which is the 500 MW from unit 1 

and 700 MW from unit 2 is the optimum dispatch. Further, we assert that each circuit of the 

double circuit line can carry a maximum of 400 MW, so that there is no loading problem in the 

base-operating condition. 

Now, we shall postulate that one of the two circuits making up the transmission line has been 

opened because of a failure. This result in- 

 

Now there is an overload on the remaining circuit. We shall assume that we do not want this 

condition to arise and that we will correct the condition by lowering the generation on unit 1 to 

400 MW. The secure dispatch is- 

 

Now, if the same contingency analysis is done, the post-contingency condition is- 
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By adjusting the generation on unit 1 and unit 2, we have prevented the post-contingency 

operating system from having an overload. This is the essence of what is called “security 

corrections”. Programs which can make control adjustments to the base of pre- contingency 

operation to prevent violations in the post-contingency conditions are called “security-

constrained optimal power flows” or SCOPF. These programs can take account of many 

contingencies and calculate adjustments to generator MW, generator voltages, transformer taps, 

interchange etc. 

Together the functions of system monitoring, contingency analysis and corrective action analysis 

comprise a very complex set of tools that can aid in the secure operation of a power system. 

In our thesis, we have mainly concentrated on contingency analysis. 
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CHAPTER II 

POWER FLOW STUDY 

 



 
9 | P a g e  

 

2.1. What is power flow study? 

Power flow analysis is probably the most important of all network calculations since it concerns 

the network performance in its normal operating conditions. It is performed to investigate the 

magnitude and phase angle of the voltage at each bus and the real and reactive power flows in 

the system components.  

 

Power flow analysis has a great importance in future expansion planning, in stability studies and 

in determining the best economical operation for existing systems. Also load flow results are 

very valuable for setting the proper protection devices to insure the security of the system. In 

order to perform a load flow study, full data must be provided about the studied system, such as 

connection diagram, parameters of transformers and lines, rated values of each equipment, and 

the assumed values of real and reactive power for each load. 

 

The steady state operation of power system as a topic for study is called ‘Power flow study’. The 

objective of any power flow program is to produce the following information: 

• Voltage magnitude at each bus. 

• Real and reactive power flowing in each line. 

• Phase angle of voltage at each bus. 

 

Simply stated the power flow problem is as follows: 

● At any bus there are four quantities of interest: │V│, θ, P, and Q. 

● If any two of these quantities are specified, the other two must not be specified otherwise we 

end up with more unknowns than equations. 

● Because records enable the real and reactive power to be accurately estimated at loads, P and 

Q are specified quantities at loads, which are called PQ buses. 

● Likewise, the real power output of a generator is controlled by the prime mover and the 

magnitude of the voltage is controlled by the exciter, so and P and │V│ are specified at 

generators, which are called PV buses. 

● This means that │V│ and θ are unknown at each load bus and θ and Q are unknown at each 

generator bus. 
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● Since the system losses are unknown until a solution to the load-flow problem has been found, 

it is necessary to specify one bus that will supply these losses. This is called the slack (or swing, 

or reference) bus and since P and Q are unknown, │V│ and θ must be specified. Usually, an 

angle of θ = 0 is used at the slack bus and all other bus angles are expressed with respect to slack. 

 

The foregoing is summarized in the following one-line diagram in which the 

specified quantities are italicized, while the quantities that are free to vary during the 

iteration process are indicated with up-and-down arrows. Note that at each bus we can 

write TWO node equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Data needed for power flow 

● One line diagram 

● Either  Yୠ୳ୱ or Zୠ୳ୱ (Value of series impedance and shunt admittance of transmission line are 

necessary to from Zୠ୳ୱ )  

● Power input from generator and from interconnection.  
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2.3. Bus Classification  

Each bus in the system has four variables: voltage magnitude, voltage angle, real power and 

reactive power. During the operation of the power system, each bus has two known variables and 

two unknowns. Generally, the bus must be classified as one of the following bus types:  

 

1. Slack or Swing Bus  

This bus is considered as the reference bus. It must be connected to a generator of high rating 

relative to the other generators. During the operation, the voltage of this bus is always specified 

and remains constant in magnitude and angle. In addition to the generation assigned to it 

according to economic operation, this bus is responsible for supplying the losses of the system.  

 

2. Generator or Voltage Controlled Bus  

During the operation the voltage magnitude at this the bus is kept constant. Also, the active 

power supplied is kept constant at the value that satisfies the economic operation of the system. 

Most probably, this bus is connected to a generator where the voltage is controlled using the 

excitation and the power is controlled using the prime mover control (as you have studied in the 

last experiment). Sometimes, this bus is connected to a VAR device where the voltage can be 

controlled by varying the value of the injected VAR to the bus.  

 

3. Load Bus  

This bus is not connected to a generator so that neither its voltage nor its real power can be 

controlled. On the other hand, the load connected to this bus will change the active and reactive 

power at the bus in a random manner. To solve the load flow problem we have to assume the 

complex power value (real and reactive) at this bus. 
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2.4. Variables of power flow study 

At each bus two of four quantities δ, │V│, P and Q are specified and the remaining two are 

calculated. 

Bus Type Known variables Unknown variables 

Swing/ Slack/ reference bus V , δ P , Q 

PV/ Generator/ Voltage 

Control Bus 
P , V Q , δ 

PQ/ Load Bus P , Q V , δ 

 

2.5. Developing Power Relation 

I = V
Z
 = YV 

I୆US ൌ  Y୆US V୆US  

I୧ ൌ  ∑ Y୧୩ V୩
N
Kୀଵ   ………. (1) 

V = │V│e୨ סV 

I = │I│e୨ סI 

Iכ = │I│eି୨ סI 

S = V Iכ = │V││I│e୨ ሺסVି סI ሻ 

    = │V││I│e୨ ሺθሻ 

    = │V││I│ሺcos θ ൅  j sin θሻ 

              = P + jQ 

Sכ  = ሺV Iכሻכ = VכI = P- jQ 
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I୧ ൌ  P౟ష୨Q౟
V౟

כ      ………………(2) 

Using equation (1) replace I୧ from (2) 

P౟ି୨Q౟
V౟

כ  = ∑ Y୧୩ 
N
Kୀଵ V୩    ………………(3) 

         = Y୧୧V୧ + ∑ Y୧୩ 
N
Kୀଵ V୩    (k ≠ i) 

     V୧ = ଵ
Y౟౟

 [P౟ି୨Q౟
V౟

כ െ ∑ Y୧୩ 
N
Kୀଵ V୩ ]        (k ≠ i) ……….(A) 

Equation (3) can be written as, 

P୧ - jQ୧ =  V୧
כ  ∑ Y୧୩ 

N
Kୀଵ V୩ 

           = V୧
∑ + Y୧୧V୧ ] כ Y୧୩ 

N
Kୀଵ V୩]           (k ≠ i) 

Q୧ = - I୫ [V୧
∑ + ሺ Y୧୧V୧ כ Y୧୩ 

N
Kୀଵ V୩ ሻ ]          (k ≠ i)  ………. (B) 

 

2.6. Techniques of Solution  

Because of the nonlinearity and the difficulty involved in the analytical expressions for the above 

power flow equations, numerical iterative techniques must be used such as:  

1. Gauss-Seidel method (G-S).  

2. Newton-Raphson method (N-R).  

The first method (G-S) is simpler but the second (N-R) is reported to have better convergence 

characteristics and is faster than (G-S) method. 
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2.7. The Gauss-Seidel Method 
 

2.7.1. Definition 
The Gauss-Seidel method was introduced late in the 1950. This method is based on substituting 

nodal equations into each other. It is the slower of the two but is the more stable technique. Its 

convergence is said to be Monotonic. The iteration process can be visualized for two equations: 

 

 

 

 

 

 

 

 

 

 

Although not the best load-flow method, Gauss-Seidel is the easiest to understand and was the 

most widely used technique until the early 1970s. 

 

2.7.2. Assumption 
1.   Bus 1 => Swing Bus 

2.   Remaining generator Buses are consecutively numbered as 2, 3, 4… 

3.   The load buses are numbered as G+1, G+2, … 
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2.7.3. Information regarding Variables 

Bus types Knowns Unknowns 

Swing Bus 

1 
Vଵ ൌ Vଵ ∟0 Pଵ , Qଵ 

Generator Bus 

K = 1, 2, 3 … 
V୩ ,P୩ Q୩ , S୩  

Load Bus 

K = G+1, G+2, G+3… 
P୩ , Q୩  V୩ , S୩ 

 

2.7.4. Procedures 
1.   Form P.U. Y୆US 

 

2.   Assume the following initial values 

 For Generator Buses    S୩ = 0  k = 2, 3, 4… 

           For Generator Buses    V୩ ൌ 1  k = G+1, G+2, G+3… 

          S୩ = 0  

 

3.   Calculate Qଶ using equation (B) 

 

4.   Calculate  

(i)   V ଶ = Vଶୡס δୡ using equation (A) 

(ii)  V ଶ = Vଶୱס δଶୡ  Where Vଶୱ is the specified (known) generator voltage 

[In effect. the angle is adjusted, keeping the magnitude constant] 

(iii)  Substitute the new value of  V ଶ of (ii) to recalculate  

   V ଶ = Vଶୡ′ס δୡ′   

          And set    V ଶ = Vଶୱסδୡ′ 

 

5.   (i) Obtain ΔQଶ and Δδଶ and  

      (ii) Store the larger one as ΔX୫ୟ୶. 
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    (iii) Replace the old value of Vଶ with the newly calculated and corrected one. 

 

6.   Repeat steps 3 through 5 for K = 3, 4, 5… 

 

7.   (i) Calculate VGାଵ (Voltage of load Bus) using equation (A) 

      (ii) Then substitute the new value of VGାଵ into equation (A) and recalculate. 

 

8.   (i) Obtain ΔVGାଵ and  ΔδGାଵ. 

      (ii) Compare ΔVGାଵ and ΔδGାଵ with ΔX୫ୟ୶and replace with larger change. 

      (iii) Replace VGାଵby newly calculated value. 

 

9.   Repeat steps 7 and 8 for K = G+1, G+2,…  

      This is the end of the first iteration. 

 

10.   Check the convergence of the solution 

  ΔX୫ୟ୶ ൑  ࣟ 

        If all calculation are with the tolerance specified then the solutions have been reached. 

Otherwise repeat steps 3 through 10 until the solution is reached. 

 

11.    Calculate ௜ܲ and ܳ௜ if needed using 

         

 ௜ܲ ൌ  ∑ ሺ ௜ܸܩ௜௞ ௞ܸߜ ݏ݋ܥ௜௞
ே
௄ୀଵ െ  ௜ܸܤ௜௞ ௞ܸܵ݅݊ ߜ௜௞ ) 

        

           ܳ௜ ൌ  ∑ ሺ ௜ܸܤ௜௞ ௞ܸߜ ݏ݋ܥ௜௞
ே
௄ୀଵ ൅  ௜ܸܩ௜௞ ௞ܸܵ݅݊ ߜ௜௞ ) 

         Where  

௜ܻ௝ = ௜ܻ௝ ݁ି௝థ೔ೕ = ܩ௜௝ െ     ௜௝ܤ݆ 

      Convergence to the solution can be accelerated someone by using an acceleration factor 1.3 

to 1.6 in steps 4 and 7. 
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2.8. Newton-Raphson Method 
 

2.8.1. Definition 
In numerical analysis, Newton's method (also known as the Newton-Raphson method), named 

after Isaac Newton and Joseph Raphson, is perhaps the best known method for finding 

successively better approximations to the zeroes (or roots) of a real-valued function. The 

Newton-Raphson (NR) method is widely used for solving nonlinear set of equations. It 

transforms the original nonlinear problem into a sequence of linear problems whose solutions 

approach the solution of the original problem. This method begins with initial guesses of all 

unknown variables (voltage magnitude and angles at Load Buses and voltage angles at Generator 

Buses). Next, a Taylor Series is written, with the higher order terms ignored, for each of the 

power balance equations included in the system of equations.  

 

Taylor’s series of expansion is used 

ݕ ൌ  ܾ଴ ൅  ܾଵܺ ൅ ܾଶܺଶ ൅ ܾଷܺଷ ൅  ܾସܺସ 

ݕ     ൌ ݂ሺݔሻ 

Let, Solution of X is, 

ݔ              ൌ ଴ݔ  ൅     ݔ∆ 

ൌ ݔ∆ ݔ െ ݔ଴ 

According to Taylor’s series: 

ݕ   ൌ ݂ሺݔሻ ൌ ݂ሺݔ଴ሻ ൅ ∆௫
ଵ!

 ݂ ′ ሺݔሻ |௫బ ൅ ∆௫మ

ଶ!
 ݂ ′′ ሺݔሻ |௫బ ൅ ڮ ൅  ∆௫೙

௡!
 ݂௡ ሺݔሻ |௫బ  

   Where ݂ ′ሺݔሻ ൌ  ௗ௙ሺ௫ሻ
ௗ௫

 

 

 If  ∆ݔ ൏൏ 1 
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ݕ   ൌ ݂ሺݔሻ ൎ ݂ሺݔ଴ሻ ൅  ∆௫
ଵ!

 ݂ ′ ሺݔሻ |௫బ   

 Or,   ݕ ݂ሺݔ଴ሻ ൌ   ݂ ′ ሺݔሻ |௫బ ∆ݔ   

  ሾkሿ ൌ ሾJሿ ∆ݔ  

ൌ ݔ∆    ሾܬሿ  ିଵ ሾkሿ 

 If  ∆ݔ ൌ ଴ݔ ݄݊݁ݐ  ߝ  ൌ ଴ݔ  ൅   ݔ∆ 

Otherwise continue iteration assuming  

௜ାଵݔ   ൌ ௜ݔ  ൅  (That is new value of x = previous value + Difference)        ݔ∆ 

 ௜ܵ
כ ൌ  ௜ܲ െ  ݆ܳ௜ ൌ   ܫ כݒ 

ܫ   ൌ  ∑ ௜ܻ௞
ே
௞ୀଵ ௞ܸ 

כܵ  ൌ  ௜ܲ െ  ݆ܳ௜ ൌ  ∑ ௜ܸ
כ

௜ܻ௞
ே
௞ୀଵ ௞ܸ 

 ௜ܸ ൌ |ܸ| ݁௝ௌ೔ ൌ ௜ܦ  ൅  ௜ܨ݆ 

 ௜ܻ௞ ൌ | ௜ܻ௞| ݁ି௝ఝ೔ೖ ൌ ௜௞ܩ  െ  ௜௞ܤ݆ 

׵  ܵ ൌ  ௜ܲ െ  ݆ܳ௜ ൌ ሺܦ௜ െ ௜௞ܩ௜ሻሺܨ݆  െ ௜ܦ௜௞ሻሺܤ݆  ൅  ௜ሻܨ݆ 

Equating real and imaginary terms, 

 ௞ܲ ൌ  ∑ ሺ ܦ௞
ே
௠ୀଵ ௠ ൅ܦ ௞௠ܩ  ௠ܨ ௞௠ܤ ௞ܦ  െ ௠ܦ ௞௠ܤ ௞ܨ  ൅   ௠ ሻܨ ௞௠ܩ ௞ܨ 

 ܳ௞ ൌ  ∑ ሺ ܦ௞
ே
௠ୀଵ ௠ܨ ௞௠ܩ ௞ܦ ௠ ൅ܦ ௞௠ܤ  െ ௠ܦ ௞௠ܩ ௞ܨ  ൅  ௠ ሻܨ ௞௠ܤ ௞ܨ 

 ܲ ൌ ݂ሺܦ,  ሻܨ

 ܳ ൌ ݂ሺܦ,  ሻܨ
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2.8.2. Information regarding variables 

KNOWN 

ଵܸୀ ଵܸ 0 ס  For swing bus 

௞ܸ  , ௞ܲ  k = 2……..G (Gen. Bus) 

௞ܲ , ܳ௞  k = G+1……..N (Local Bus) 

UNKNOWN 

ଵܲ , ܳଵ  

ܳ௞ , ܵ௞  k = 2……..G 

௞ܸ  , ܵ௞  k = G+1……..N 

 

2.8.3. Procedures 
 

1. Form P.U. ஻ܻ௎ௌ 

 

2. Assume initial values: 

௞ܦ
଴ ൌ  ௞ܸ௦   ܨ௞

଴ ൌ  0   k=2,3,….G 

௞ܦ
଴ ൌ ௞ܨ   1 

଴ ൌ  0   k=G+1,…N 

 

3. Calculate ௞ܲ
௜ , ܳ௞

௜  

 

4. Calculate, 

 ∆ ௞ܲ
௜ ൌ  ௞ܲ௦ െ ௞ܲ

௜  k= 2,…N (For both Generator and Load buses) 

  ∆ܳ௞
௜ ൌ  ܳ௞௦ െ ܳ௞

௜  k= G+1…N (Only for Load buses) 
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 ∆ ௞ܸ
௜మ ൌ  ௞ܸ௦

ଶ െ  ௞ܸ
௜మ  k= 2,3,…G (Only for Generator buses) 

Where ௞ܲ௦ , ܳ௞௦ ܽ݊݀ ௞ܸ௦ are scheduled (known) quantities and  

௞ܸ
௜మ ൌ ሺ ܦ௞

௜ ሻଶ ൅  ሺ ܨ௞
௜ ሻଶ 

Set,        ∆ݔ௠௔௫ ൌ ∆ሼ ݔܽܯ ௞ܲ೘ೌೣ
௜  , ܳ௞೘ೌೣ

௜  , ∆ ௞ܸ೘ೌೣ
௜మ ሽ 

Whichever is large. 

 

5. Calculate the bus currents using, 

௞ܫ
௜ ൌ  ௉ೖ

೔ ି ௝ொೖ  
೔

ሺ௏ೖ
כሻכ ௞ܣ  =  

௜ ൅ ௞ܥ݆ 
௜     k=2,3….N 

 

6. Calculate the Jacobian matrix  

 

7. Obtain by matrix inversion the correction 

௞ܦ∆
௜  , ௞ܨ∆

௜        k=2,3,….N    (For all generator and load buses) 

 
8. Calculate the new bus voltages 

a. At generator buses (voltage controlled Bus = PU Bus) 

௞ܦ
௜ାଵ ൌ  ௞ܸ௦ ߜ ݏ݋ܥ௞

௜ ′′  

௞ܨ
௜ାଵ ൌ  ௞ܸ௦ ߜ ݏ݋ܥ௞

௜ ′′   k= 2,3,….G 

Where      ߜ௞
௜ ൌ ௞ܨଵ ሺି݊ܽݐ

௜

௞ܦ
௜൘ ሻ 

b. At the remaining buses (load buses) 
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௞ܦ
௜ାଵ ൌ ௞ܦ 

௜ ൅ ௞ܦ∆ 
௜  

௞ܨ                                                              
௜ାଵ ൌ ௞ܨ 

௜ ൅ ௞ܨ∆ 
௜             k=G+1, G+2,….N 

 

9. Replace ܦ௞
௜ ௞ܨ ݀݊ܽ 

௜ ௞ܦ ݕܾ 
௜ାଵ ܽ݊݀ ܨ௞

௜ାଵ, ݇ ݎ݋ܨ ൌ 2,3, … ܰ 

 

10. This is the end of the current iteration, check the ∆ݔ௠௔௫  ൑  ߝ 

If all corrections are within the tolerance specified, 

Then the solution has been reached. Otherwise, repeat steps 3-10 until the solution is 

reached. 

 
11. Calculate 

௜ܲ ൌ  ∑ ሺ ௜ܸ
ே
௞ୀଵ   ௜௞  ሻߜ݊݅ܵ ௜௞ ௞ܸܤ௜௞ െ  ௜ܸߜݏ݋ܥ ௜௞ ௞ܸܩ 

ܳ௜ ൌ  ∑ ሺ ௜ܸ
ே
௞ୀଵ ௜௞ െߜݏ݋ܥ ௜௞ ௞ܸܤ    ௜ܸܩ௜௞ ௞ܸ ܵ݅݊ߜ௜௞  ሻ  

Where,            ߜ௜௞ ൌ ௜ߜ  െ  ௞ߜ 
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CHAPTER III 

SHUNT CAPACITANCE COMPENSATION 
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3.1. SHUNT CAPACITANCE COPENSATION 

 
In order to solve the faulty conditions found in our network, we used a technique called “Shunt 

capacitance compensation”. 

 

An electric transmission system must provide power transmission within voltage limits at safe 

and high quality conditions. By industrial development, demand of electrical energy has become 

harder to provide acceptable voltage profile in power system. Therefore voltage stability and 

voltage collapse studies have become increasingly important. 

 

Voltage collapse is a type of system instability, and it is defined as the ability of power system to 

keep bus voltages at acceptable steady state values following a disturbance and under normal 

operating conditions. Main reason of voltage instability is an insufficient injection of reactive 

power to the system. Consequently, sufficient amount of reactive power reserve must be placed 

at suitable points. The load flow analysis involves the calculation of load flows and voltages of 

network for specified terminal and bus conditions. Shunt compensating is applied to electric 

power transmission system to confirm transmission effectively.  

 

A shunt compensation system ideally performs the following functions: 

1) It helps produce a substantially flat voltage profile at all levels of power transmission, 

2) It improves stability by increasing the maximum transmissible power, 

3) It provides an economical means for meeting the reactive power requirements of transmission. 

 

Shunt capacitors are also used at the distribution level. Reactive power injected to the network by 

these capacitors helps regulate the voltage at the desired level and limit its deviations within a 

certain range. Moreover, by correcting the load power factor (especially for the highly inductive 

loads) and therefore releasing the capacity of the power lines and transformers, they can help 

reduce the investment cost of the network, as well as the power losses. 
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It is well known that shunt capacitance is both socially and economically beneficial to power 

system network. These devices reduce the apparent power (S) which is produced by generators 

allowing more customers to be served and increasing the income of electrical companies. 

 

3.2. TECHNIQUES OF SHUNT CAPACITANCE COMPENSATION 
 

Capacitance units were placed on different substations (buses) according to the following three 

categories: 

 

A. Single Bus Compensation 

In this case the computer program places a capacitor on each bus of the system separately. The 

capacitance is then increased until the highest compensation of reactive power on that bus is 

achieved, provided that the generators are not converted to capacitive power generation 

 

B. Double Bus Compensation  

The computer program places capacitors on two buses, simultaneously maintaining the same 

condition on both (system not converted to be capacitive).  

 

C. Triple Bus Compensation  

The computer program places three capacitors on three different substations simultaneously. 

 

To solve the abnormal conditions in our network, we used Single Bus Compensation Technique. 

 

 

3.3. IMPLEMENTING SHUNT CAPACITANCE COMPENSATION  

To maintain least possible losses, our required per unit voltage solution for a certain bus ranges 

from 0.9 to 1.1. When any bus doesn’t meet these criteria, the bus is beyond our expected 

voltage limit. To get the voltage within the range, we include capacitor as a shunt to the specific 

bus using shunt capacitance technique. 
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In our case, we have collected the apparent power (Q) and voltage rating (KV) from the database 

for those under loaded buses. Then we did the following calculations: 

We know, Q = V2/ Xc  

Therefore, Xc = V2/Q 

 

We also know that, C = 1/(wXc) 

But, w = 2πf 

Therefore, C = 1/(2πfXc) 

 

This way, we get the exact value of the shunt capacitor needed for a specific bus. 
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CHAPTER IV 

CONTINGENCY ANALYSIS 
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4.1.  Contingency Analysis 

Many possible outage conditions could happen to a power system. Thus, there is a need 

to have a mean to study a large number of them, so that operation personnel can be warned ahead 

of time if one or more outages will cause serious overload on other equipments. The problem of 

studying all possible outages becomes very difficult to solve since it is required to present the 

results quickly so that corrective actions could be taken. To meet this requirement, a special type 

of analyzing program is designed named Contingency analysis that model failure events, one 

after the other in sequence until all credible outages have been studied. In today’s world, 

contingency analysis is an important component of the security function which is considered to 

be an integral part of the modern power management system at power control centers. 

Contingency Analysis actually provides and prioritizes the impacts on an electric power 

system when problems occur. A contingency is the loss or failure of a small part of the power 

system (e.g. a transmission line), or a individual equipment failure (such as a generator or 

transformer). This is also called an unplanned "outage". Contingency analysis is a computer 

application that uses a simulated model of the power system, to evaluate the effects, and 

calculate any overloads resulting from each outage event. In other word, Contingency Analysis is 

essentially a "preview" analysis tool that simulates and quantifies the results of problems that 

could occur in the power system in the immediate future. 

This Analysis is used as a study tool for the off-line analysis of contingency events, and 

as an on-line tool to show operators what would be the effects of future outages. It allows 

operators to be better prepared to react to outages by using pre-planned recovery scenarios. 

After a contingency event, power system problems can range from:  

• None: When the power system can be re-balanced after a contingency, without overloads 

to any element.  

• Severe: When several elements such as lines and transformers become overloaded and 

have risk of damage.  

• Critical: When the power system becomes unstable and will quickly collapse. 

By analyzing the effects of contingency events in advance, problems and unstable situations 

can be identified, critical configurations can be recognized, operating constraints and limits can 

be applied, and corrective actions can be planned. 
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4.2.  Contingency Analysis Procedure 

How contingency analysis can be performed is described in a simple way in the following 

flowchart: 

 

Figure: A simple technique for contingency analysis 
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4.3.  Necessity of Contingency Analysis 

• Improving system reliability: In a developing country like Bangladesh, we are already 

facing huge amount of load shedding. There have been a number of reforms in the power 

sector in Bangladesh. But government reforms failed to bring desired improvements in 

the power sector. On the other hand, we are loosing transformers and generators for 

security violation or for some overload problem, or a bus voltage outside the limit. It 

means that if we aren’t able to maintain our existing generator or network properly it 

might be a great loss of our valuable property. With the help of contingency analysis we 

will be able to know the ranking by which helps us to know the amount of losses for any 

fault in bus, generator, transformer and transmission line. So we must have to be aware to 

solve the problem before they arise.  

• For secured operation: As we can determine early by using this method that which 

components are risky and have probability to fail in near future so we can be more aware 

about those components and can take additional steps of maintenance to protect it. That 

means, we can operate components of the power system more safely and effectively 

utilizing this analysis. 

• For future planning and expansion: If fault occurs in any transmission line then the 

load flows through the rest of the lines in the system and this process will increase 

pressure on those lines. To avoid such problem we can run contingency analysis and 

design a parallel line and avoid this kind of problem. Thus contingency analysis helps us 

to expand transmission line and improve future power system. 

 

4.4.  Power Flow Study for Contingency Analysis 

Power flow calculations provide active and reactive power flows and bus voltage magnitude and 

their phase angle at all the buses for a specified power system and operating condition subject to 

the regulating capability of generators, synchronous condensers, static VAR compensators, tap 

changing under load transformers and specified net interchange between individual operating 

systems (utilities). This information is essential for the continuous evaluation or contingency 
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analysis of the current performance of a power system and for analyzing the effectiveness of 

alternative plans for system expansion to meet increased load demand. These analyses require 

the calculation of numerous power flow cases for both normal, and emergency (contingency) 

operating conditions. 

 

4.5. Contingency Ranking using Overloading Performance Index 

We would like to get some measure as to how much a particular outage might affect the power 

system. The idea of a performance index seems to fulfill this need. The definition for the 

overloading performance index (PI) is as follows: 

 

ܫܲ ൌ  ෍ ቆ ௙ܲ௟௢௪ ௟

௟ܲ
୫ୟ୶ ቇ

௡

௔௟௟ ௕௥௔௡௖௛௘௦
௟

                      ሺ11.8ሻ 

If n is a large number, the PI will be a small number if all flows within limit, and it will be a 

large if one or more lines are overloaded. The problem then is how to use this performance 

index. 

Various techniques have been tried to obtain the value of PI when a branch is taken out. These 

calculations can be made exactly if  n=1; that is, a table of PI value, one for each line in the 

network, can be calculated quite quickly. The selection procedure then involves ordering the PI 

table from the largest value to least. The lines corresponding to the top of the list are then the 

candidates for the short list. One procedure simply ordered the PI table and then picked the top  

௖ܰ entries from this list and placed them on the short list. 

However when n =1, the PI does not snap from near zero to near infinity as the branch exceeds 

its limit. Instead, it rises as a quadratic function. A line that is just below its limit contributes to 

PI almost equal to one that is just over its limit. The result is a PI that maybe large when many 

lines are loaded just below their limit. Thus the PI’s ability to distinguish or detect bad cases is 

limited when n=1. Ordering the PI values when n=1 usually results is a list that is not at all 
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representative of one with the truly bad  cases at the top. Trying to develop an algorithm that can 

quickly calculated PI when n=2 or larger has proven extremely difficult. 

One way to perform an outage case selection is to perform what has been called the │P│Q 

method. Here, a decoupled power flow is used. As shown in figure 11.10, the solution procedure 

is interrupted after one iteration (one P – θ calculation and one        Q – V calculation; thus, the 

name │P│Q). With this procedure, the PI can use as large an n values as desired, say n = 5, there 

appears to be sufficient information in the solution at the end of the first iteration of the 

decoupled power flow to give a reasonable PI. Another advantages to this procedure is the fact 

that the voltages can also be included in the PI. Thus, a different PI can be used, such as: 

  

ܫܲ ൌ  ෍ ቆ ௙ܲ௟௢௪ ௟

௟ܲ
௠௔௫ ቇ

ଶ௡

௔௟௟ ௕௥௔௡௖௛௘௦
௟

൅  ෍ ቆ
│௜ܧ│߂

௠௔௫ቇ│ܧ│߂
ଶ௡

௔௟௟ ௕௥௔௡௖௛௘௦
௟

               ሺ11.9ሻ                 

 

Where ܧ│߂௜│ is the difference between the voltage magnitude as solved at the end of the │P│Q 

procedure and the base-case voltage magnitude Δ│E│௠௔௫ is a value set by utility engineers 

indicating how much they wish to limit a bus voltage from changing on one outage. 

To complete the security analysis, the PI list is sorted so that the largest PI appears at the top.  

The security analysis can then start by executing full power flows with the case which is at the 

top of the list, then solve the case which is second, and so on down the list.  This continues until 

either a fixed number of cases are solved, or until predetermined number of cases are solved 

which do not have any alarms. 
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    Begin power flow solution 

Build B’ and B’’ matrix 

Model outage case 

Solve the P – θ equation for the 

Δθ’s  

 

Solve the Q – V equation for the 
   

Calculate flows and voltages for 
this case then calculate the PI  

Pick next outage case 

 

 

Full outage case list 

PI list (one entry for 
each outage case) 

FIG. 11.10: The │P│Q contingency selection procedure 
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CHAPTER V 

RELIABILITY EVALUATION 
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5.1.  Reliability Evaluation 
  

An electric utility’s main concern is to plan, design, operate and maintain its power supply to 

provide an acceptable level of reliability to its users. This clearly requires that standards of 

reliability be specified and used in all three sectors of the power system, i.e., generation, 

transmission and distribution. Reliability indices have been defined for the three sectors 

separately as well as for the bulk power system. Reliability criteria may be determined at the 

selected load points in the system for different combination of generators and transmission line 

failures.  

 

A survey of literature reveals the fact that there has been a considerable activity in the 

development and application of reliability techniques in electric power systems. In power system 

reliability evaluation, usually component failures are assumed independent and reliability indices 

are calculated using methods based on the multiplication rule of probabilities. But in some cases, 

for instance when the effects of fluctuating weather are considered, the previous assumption is 

invalid. Generally, two kinds of methodologies are adopted to solve this problem, analytical 

methods based on Markov processes, and Monte Carlo simulation. A DC-OPF based Markov 

cut-set method (DCOPF-MCSM) to evaluate composite power system reliability considering 

weather effects is presented in where the DC-OPF approach is used to determine minimal cut 

sets (MCS) up to a preset order and then MCSM is used to calculate reliability indices.  

 

The appropriate incorporation and presentation of the implications of uncertainty are widely 

recognized as fundamental components in the analyses of complex systems. There are two 

fundamentally different forms of uncertainty in power system reliability assessment. Aleatory 

and epistemic uncertainties are considered in power system reliability evaluation in where 

aleatory uncertainty arises because the study system can potentially behave in many different 

ways. A method for incorporating the failures due to aging in power system reliability evaluation 

is presented in. It includes the development of a calculation approach with two possible 

probability distribution models for unavailability of aging failures and implementation in 

reliability evaluation. Adverse weather such as hurricanes can have significant impact on power 
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system reliability. One of the challenges of incorporating weather effects in power system 

reliability evaluation is to assess how adverse weather affects the reliability parameters of system 

components. A fuzzy inference system (FIS) built by using fuzzy clustering method is combined 

with the regional weather model to solve the preceding problem is illustrated in. A new 

computationally efficient methodology for calculating the reliability indices of a bulk power 

system using the state enumeration approach is depicted in. The approach utilizes topological 

analysis to determine the contribution of each system state to the frequency and duration indices 

at both the system and the bus level. Common cause outage is also considered in power system 

reliability evaluation. Power system reliability evaluation and quality assessment using fuzzy 

logic and genetic algorithm are depicted in and, respectively.  

 

5.2. Generator Model 
 

The simplest model for a generating unit for continuous operation is a Run-Fail-Repair-Run 

cycle that states that every generator has two states. They are— i) Unit availability and ii) Unit 

unavailability or forced outage rate (FOR). The unit availability means the long term probability 

that the generating unit will reside in on state and unit unavailability or FOR means the long term 

probability that the generating unit will reside in off state. Mathematically FOR can be defined 

as,  

 
 
 
Where,  

FOH = Forced outage hours  

SH = Service hours or operating hours at full availability  

Unit availability of a generating unit can be defined as,  
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For a generating unit with capacity = C MW and FOR = q and unit availability = p, the 

probability density function (PDF) of forced outage capacity is shown in Fig.1.  

BPS has sixty one generators and a total installed capacity of 5275 MW. The individual capacity 

and FOR of the generators are shown in Table I.  

For a generating unit with capacity = C MW and FOR = q and unit availability = p, the 

probability density function (PDF) of forced outage capacity is shown in Fig.1. 

 
 

 

 

 

 

 

 

 

5.3. Load Model 

 
In order to develop the load model of BPS, hourly loads of last five years (2006-2010) are 

collected from NLDC of Bangladesh. Hourly loads are divided in seven groups having a group 

size of 500 MW. The occurrence of each group is then counted. The probability of occurrence of 

each group is calculated as,  

 
 
Where,  

P
g 
= Probability of occurrence of a group  

N
g 
= No. of occurring days of that group in observation period of 5 years  

N
t 
= Total no. of days in observation period of 5 years  

Finally the average value of each group is taken and the corresponding probabilities reside for 

that average value of the load. 

Figure1. PDF of forced outage capacity of a generating unit  
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5.4. LOLP using Cumulant method  

 
The cumulant method also known as the method of moment is an approximation technique 

which approximates the discrete distribution of load through Gram– Charlier series expansion as 

a continuous function. In this method, convolution of generating unit outage with the distribution 

of load is performed through a very fast algorithm. The steps of calculating LOLP (Loss of Load 

Probability) using cumulant method are described in what follows. 

 
(i) The moments about the origin for each generating unit is determined at first. For any i-th 

machine, the moments about the origin can be calculated using the following relations. 

 
 
 

 

 

 

 

 

Where,  

m
n 

(i) = n-th moment about the origin of the i-th machine  

C
i 
= Capacity of the i-th machine  

q
i 
= FOR of the i-th machine  

 
(ii) In the second step, the central moments or moments about the mean of each generating unit is 

calculated. For any i-th machine, the central moments can be calculated as, 

 

 

 

 



 

38 | P a g e  
 

Where, 

M
n 
(i) = n-th central moment of the i-th machine  

p
i 
= Availability of the i-th machine  

 
(iii) In the third step, cumulant of each machine is calculated. For i-th machine, the cumulants 

can be determined as follows, 

 

 

 

 

 
 

(iv) In the fourth step, the cululants of the load is obtained. For this, at first, the moments about 

the origin and the central moments of the load are calculated. Using these moments, cumulants 

of the load are obtained using (13) to (17).  

 
(v) In this step, total system cumulant is obtained by summing the machine cumulants and load 

cumulants. It can be represented as,  

 
 
 
 
 (vi) Now standardized random variable, z is calculated using the relation, 
 

 
Where,  

IC = Installed capacity of the power system  

k
1
, k

2 
= System cumulants  
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(vii) LOLP can be calculated using the relationship given by,  

 

 

Where, Q (z) can be calculated as, 

Here, 
  

 

 

 

 

And r, b
1
, b

2 
and b

3 
are constants 

 

(viii) F (z) is calculated using Gram- Charlier series which is given by, 

 

 
 

Where, the expansion factors G
1
, G

2
, G

3 
are calculated using the following relationship. 

 

 
And the derivatives of the normal PDF N (z) may be obtained using the following recursive 

relations. 

 

 

 

 
 

(ix) The value of constants are set as, r = 0.232, b
1 

= 0.319, b
2 

= -0.356, b
3 

= 1.781. Finally LOLP 

is evaluated using (20). 
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CHAPTER VI 

PREPERATION, ANALYSIS & RESULTS 
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6.1. Data Collection 

According to one of the primary objective of our thesis, to be able to analyze the contingency of 

the power system network of Bangladesh, we need to get a complete network database first. So 

we collected detailed database from the Power Generation Company Bangladesh (PGCB). 

According to the database, we have got the following major components: 

 Buses: 426 

 Generators: 79 

 Fixed Tap Transformer: 305 

 Underground Cables: 06 

 Transmission Lines: 225 

 Induction Motors: 21 

 Static Loads: 234 

 

6.2. Software Selection 

As a major part of our thesis is about performing software based contingency analysis, we had to 

collect the right software that would be suitable for our analysis. There is a number of software 

available in the market for this type of analysis. We selected PSAF from all those to do our 

analysis. PSAF (Power Systems Application Framework) is a software package that offers both 

graphical and tabular data entry modes, single-line diagram drawing options and many other 

sophisticated facilities for reporting, plotting and customizing the simulation reports. PSAF is 

developed by CYME International TD Inc. We found that, this software would be perfect for 

analyzing contingency of Bangladesh power system using the data we have collected. Here we 

want to mention that, we are using PSAF version 2.81 (Revision 2.8) for our thesis purpose. 
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6.3. Network Construction 

After the database is collected and suitable software is selected, it comes to the task of network 

construction. Using the database, we have constructed (simulated) the whole network of 

Bangladesh power system in PSAF. Some of the screenshots of the simulated network are given 

in Appendix ‘A’. 

 

6.4. Exploring the Abnormal Conditions 

Before performing contingency analysis, we need to converge the network using power flow 

study. We used Newton-Raphson Method among the two methods of power flow study to 

converge it. After converging, we found a lot of faulty conditions which we had to solve first in 

order to do contingency analysis properly. Some of the faults like buses with outside voltage 

limits are shown in APPENDIX ‘B’. 

 

6.5. Eliminating the Abnormal Conditions using Shunt Compensation 

Technique 

We have calculated every specific value of shunt capacitor that is needed for eliminating the 

abnormal condition of each under loaded bus using shunt compensation technique. The detailed 

calculations with results are mentioned in tabular format in Appendix ‘C’. 

 

6.6. Contingency Ranking 
 
After solving all the abnormal conditions using shunt compensation technique and converging 

the system using power flow analysis, our network is finally prepared for contingency analysis, 

which is our main concern. So we have performed contingency analysis on the system and 

determined a detailed overloading performance index for all the transmission lines of the 

network. As described earlier, we know, the higher the value of overloading index, the higher the 

contingency ranking. Thus we have determined the contingency ranking structure for the whole 
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power system network of Bangladesh. The contingency ranking along with the values of 

overloading index for the system is shown in Appendix ‘D’. 

 

6.7. Reliability Evaluation 
 

Cumulant method, a very fast computational technique is used to evaluate the reliability of 

Bangladesh Power System in our thesis. Reliability index LOLP (Loss of Load Probability) is 

assessed for this intention. LOLP gives the probability that the available generation capacity will 

be insufficient to meet the daily peak loads.  

BPS has sixty one generators and a total installed capacity of 5275 MW. The individual 

capacity and FOR of the generators are shown in Table I. 

Gen No. Capacity (MW) FOR Gen No. Capacity (MW) FOR 

1 40 1.4 x 10
-6

 32 15 0.15 

2 40 1.4 x 10
-6

 33 15 0.15 

3 50 1.4 x 10
-6

 34 15 0.15 

4 50 1.4 x 10
-6

 35 15 0.15 

5 50 1.4 x 10
-6

 36 35 0.10 

6 210 0.16 37 35 0.10 

7 50 0.113 38 21 0.122 

8 109 0.07 39 120 0.04 

9 55 0.185 40 77 0.101 

10 55 0.185 41 100 0.04 

11 210 0.095 42 125 0.10 

12 210 0.019 43 125 0.10 

13 210 0.08 44 110 0.301 
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Gen No. Capacity (MW) FOR Gen No. Capacity (MW) FOR 

14 210 0.08 45 60 0.402 

15 64 0.116 46 28 0.50 

16 64 0.116 47 28 0.50 

17 150 0.013 48 20 0.045 

18 150 0.014 49 20 0.20 

19 150 0.014 50 20 0.20 

20 56 0.321 51 20 0.119 

21 56 0.321 52 60 0.50 

22 30 0.15 53 8 0.30 

23 100 0.30 54 450 0.07 

24 210 0.197 55 235 0.07 

25 210 0.197 56 125 0.07 

26 60 0.117 57 142 0.07 

27 28 0.60 58 45 0.07 

28 28 0.60 59 45 0.07 

29 12 0.15 60 110 0.11 

30 12 0.15 61 110 0.07 

31 12 0.15    

TABLE I. CAPACITY AND FOR OF THE GENERATORS OF BPS 
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Table II shows the load model of BPS.  

Load (MW)  
Occurrence 
probability  

1750  0.0124  

2250  0.0728  

2750  0.1834  

3250  0.3331  

3750  0.2816  

4250  0.1120  

4750  0.0048  

TABLE II. LOAD MODEL OF BPS 

 

Using the generator and load model of BPS shown in Table I and Table II respectively and 

employing (4) to (17) from Chapter V, the cumulants of generating units and load are calculated. 

Table III represents the cumulants. 

 

Cumulants  Generators (Σ==611nnnk) 

 

Load  

k1 626.76  3326.83  

k2 69973.58  333749.80  

k3 1.75x10
7 
 -5.2 x 10 

7
 

k4 2.18 x 10
9
 -7.81 x 10 

10
 

k5 1.53 x 10
11

 4.12 x 10 
13 

 

TABLE III. CUMULANTS OF GENERATORS AND LOAD 
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Now system cumulants are calculated combining the cumulants of the generating units and the 

load. Table IV presents the system cumulants. 

 
System cumulants   

k1 3953.59  
k2 403723.38  
k3 -3.45 x 10 

7
 

k4 -7.59 x 10 
10

 
k5 4.14 x 10 

13 
 

 
TABLE IV. SYSTEM CUMULANTS 

Using (19), standardized random variable z is 

 

 

Using (22) and (23), normal PDF, N (z) and t are calculated as, 

 

 

Now using (30) and (31) in (21), 

 

Expansion factors G
1
, G

2 
and G

3 
are calculated using (25) as, 
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Derivatives of normal PDF are calculated using (26) to (28) as, 

 

 

 

 

Now using (33) to (35) and (37) to (39) in (24) F (z) is determined as, 

 

 

 

Finally using (32) and (40) in (20), LOLP is evaluated as,  

 

Thus, the reliability index ‘LOLP’ of Bangladesh Power System is 2.06%. 
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CONCLUSION 
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A security analysis study which is run in an operations center must be executed very 

quickly in order to be of any use to the operators. The problem of studying thousands of possible 

outages becomes very difficult to solve if it is desired to present the results quickly. So it is very 

important to have a system which can detect the possible future outages and prioritize among 

them to determine the most critical cases for detailed analysis. This is done by Contingency 

Analysis which allows operators to be better prepared to react to outages by using pre-planned 

recovery scenarios. 

In our thesis, we have performed the complete contingency analysis of Bangladesh Power 

System. We have presented a detailed contingency ranking structure of Bangladesh Power 

System through which problems and unstable situations in the system can be identified, critical 

configurations can be recognized, operating constraints and limits can be applied and corrective 

actions can be planned. Thus, our results of contingency analysis will help the components of 

Bangladesh Power System to be operated more safely and effectively as well as to improve the 

stability of future power system. 

The basic function of a power system is to supply electrical energy to both large and 

small consumers as economically as possible with an acceptable degree of reliability and quality. 

Reliability is the ability of a power system to provide service to consumers while maintaining the 

quality and price of electricity at an acceptable level. Our thesis evaluates the reliability of 

Bangladesh Power System using Cumulant Method which is a very fast computational 

technique. The simulation results in our thesis reveal that the Loss of Load Probability of 

Bangladesh Power System is 2.06%. 

Lower reliability level imperils energy supply continuity and increases the possibility of 

additional maintenance and the restoration costs due to the higher rate of system outages. The 

costs associated with low reliability or poor system qualities are enormous and can be largely 

avoided by enhancing the level of reliability. Thus the reliability assessment of Bangladesh 

Power System will help estimating the service quality of the system. It will also create awareness 

among the utility and the consumers of the system and will assist in planning and operation 

process of Bangladesh Power System. 
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APPENDIX ‘A’ 

 

SOME SCREENSHOTS OF THE  

SIMULATED NETWORK 



FIGURE :  SIMULATED POWER SYSTEM NETWORK OF BANGLADESH 
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APPENDIX ‘B’ 
 
 

BUSES OUTSIDE VOLTAGE LIMITS 
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Bus ID Zone kV Base 
Vmin - 

[pu] 
Vmax - 

[pu] 
V sol - 
[pu] 

Ang sol - 
[deg] 

CHANDPUR2 z1 33 0.9 1.1 0.899 -14.5 
KSTEEL33_2 z1 33 0.9 1.1 0.888 -18.9 
HSTEEL11_2 z1 11 0.9 1.1 0.878 -17.4 
CHANDPUR1 z1 33 0.9 1.1 0.899 -14.5 
KSTEEL33_1 z1 33 0.9 1.1 0.867 -18.2 
HSTEEL11_1 z1 11 0.9 1.1 0.878 -18.2 
DHANMON1 z4 33 0.9 1.1 0.895 -12.6 
DHANMON2 z4 33 0.9 1.1 0.895 -12.6 
DHANMON3 z4 33 0.9 1.1 0.895 -12.6 
HSTEEL575_1A z1 0.57 0.9 1.1 0.816 -22.7 
HSTEEL575_3A z1 0.57 0.9 1.1 0.816 -21.9 
HSTEEL575_4A z1 0.57 0.9 1.1 0.816 -21.9 
HSTEEL575_5A z1 0.57 0.9 1.1 0.835 -19.2 
HSTEEL575_1B z1 0.57 0.9 1.1 0.817 -22.6 
HSTEEL575_3B z1 0.57 0.9 1.1 0.817 -21.7 
HSTEEL575_4B z1 0.57 0.9 1.1 0.814 -22 
HSTEEL575_5B z1 0.57 0.9 1.1 0.833 -19.4 
HSTEEL575_2A z1 0.57 0.9 1.1 0.816 -22.7 
HSTEEL575_2B z1 0.57 0.9 1.1 0.816 -22.7 
NARINDA1 z4 33 0.9 1.1 0.896 -13.9 
NARINDA2 z4 33 0.9 1.1 0.896 -13.9 
NAOGAON1 z5 33 0.9 1.1 0.891 -21.4 
NAOGAON2 z5 33 0.9 1.1 0.877 -21.4 
NAOGAON3 z5 33 0.9 1.1 0.824 -25.2 
TANGAIL2 z4 33 0.9 1.1 0.864 -18.6 
JOYDEVP1 z3 33 0.9 1.1 0.899 -12.2 
JOYDEVP2 z3 33 0.9 1.1 0.899 -12.2 
JOYDEVP3 z3 33 0.9 1.1 0.899 -12.2 
PATUAKHA3 z6 33 0.9 1.1 0.888 -27.1 
KABIRP1 z4 33 0.9 1.1 0.873 -16.4 
MANIKG1 z4 33 0.9 1.1 0.88 -14.1 
MIRPUR2 z4 33 0.9 1.1 0.883 -14.8 
ULLON1 z4 33 0.9 1.1 0.884 -13.8 
GOPALG1 z6 33 0.9 1.1 0.874 -26.8 
MIRPUR3 z4 33 0.9 1.1 0.876 -14.8 
MYMENS1 z3 33 0.9 1.1 0.882 -9.4 
GOPALG2 z6 33 0.9 1.1 0.874 -26.8 
MYMENS2 z3 33 0.9 1.1 0.882 -9.4 
UTTARA2 z4 33 0.9 1.1 0.896 -14.7 
MYMENS3 z3 33 0.9 1.1 0.882 -9.4 
COMILLAS4 z1 33 0.9 1.1 0.885 -14.8 
MANIKG2 z4 33 0.9 1.1 0.88 -14.1 
PALASHB1 z5 33 0.9 1.1 0.868 -22.3 
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Bus ID Zone kV Base 
Vmin - 

[pu] 
Vmax - 

[pu] 
V sol - 
[pu] 

Ang sol - 
[deg] 

PALASHB2 z5 33 0.9 1.1 0.867 -22.4 
COMILLAS3 z1 33 0.9 1.1 0.885 -14.8 
COMILLAN1 z1 33 0.9 1.1 0.893 -14.6 
COMILLAS2 z1 33 0.9 1.1 0.885 -14.8 
FARIDPUR2 z6 33 0.9 1.1 0.883 -24.4 
COMILLAN2 z1 33 0.9 1.1 0.875 -16.3 
COMILLAS1 z1 33 0.9 1.1 0.885 -14.8 
FARIDPUR1 z6 33 0.9 1.1 0.898 -24.3 
KISHORG3 z3 33 0.9 1.1 0.888 -9.7 
KISHORG1 z3 33 0.9 1.1 0.888 -9.7 
KISHORG2 z3 33 0.9 1.1 0.888 -9.7 
KALYANP3 z4 33 0.9 1.1 0.872 -15.1 
KALYANP1 z4 33 0.9 1.1 0.872 -15.1 
KALYANP2 z4 33 0.9 1.1 0.872 -15.1 
KAMRANG1 z4 33 0.9 1.1 0.895 -13.4 
KAMRANG2 z4 33 0.9 1.1 0.895 -13.4 
MOGHBAZ1 z4 33 0.9 1.1 0.885 -15.1 
MOGHBAZ2 z4 33 0.9 1.1 0.885 -15.1 
LALMONIR2 z5 33 0.9 1.1 0.869 -22.5 
LALMONIR1 z5 33 0.9 1.1 0.869 -22.5 
1204 z3 132 0.9 1.1 0.893 -6.8 
NETRO2 z3 33 0.9 1.1 0.856 -11.8 
MADARIP1 z6 33 0.9 1.1 0.885 -25.7 
MADARIP2 z6 33 0.9 1.1 0.885 -25.7 
NETRO1 z3 33 0.9 1.1 0.856 -11.8 
RAJSHA1 z5 33 0.9 1.1 0.898 -24.8 
JAMALPUR3 z3 33 0.9 1.1 0.856 -11 
MANIKNAG1 z4 33 0.9 1.1 0.887 -15.4 
JAMALPUR2 z3 33 0.9 1.1 0.856 -11 
JAMALPUR1 z3 33 0.9 1.1 0.856 -11 
CHNAWAB1 z5 33 0.9 1.1 0.888 -25.4 
CHNAWAB2 z5 33 0.9 1.1 0.888 -25.4 
CHNAWAB3 z5 33 0.9 1.1 0.888 -25.4 
CHNAWAB4 z5 33 0.9 1.1 0.87 -24.2 
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SHUNT CAPACITORS FOR UNDERLOADED BUSES  
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Bus ID 

 

Q 

(MVAR) 

V 

(KV) 

Xc = 

V2/Q 

C = 1/2πfXc 

(F) 

C 

(µF) 

BAKULIA1_1 5 33 217.8 1.46148E-05 14.61477923

BAKULIA1_2 5 33 217.8 1.46148E-05 14.61477923

BAKULIA1_3 5 33 217.8 1.46148E-05 14.61477923

BAKULIA1_4 5 33 217.8 1.46148E-05 14.61477923

BAKULIA2_1 5 33 217.8 1.46148E-05 14.61477923

BAKULIA2_2 5 33 217.8 1.46148E-05 14.61477923

BAKULIA2_3 5 33 217.8 1.46148E-05 14.61477923

BARISAL1_1 5 33 217.8 1.46148E-05 14.61477923

BARISAL1_2 5 33 217.8 1.46148E-05 14.61477923

BARISAL2_1 5 33 217.8 1.46148E-05 14.61477923

BARISAL2_2 5 33 217.8 1.46148E-05 14.61477923

BAROAULIA1_1 5 33 217.8 1.46148E-05 14.61477923

BAROAULIA1_2 5 33 217.8 1.46148E-05 14.61477923

BAROAULIA1_3 5 33 217.8 1.46148E-05 14.61477923

BAROAULIA1_4 5 33 217.8 1.46148E-05 14.61477923

BAROAULIA2_1 5 33 217.8 1.46148E-05 14.61477923

BAROAULIA2_2 5 33 217.8 1.46148E-05 14.61477923

BAROAULIA2_3 5 33 217.8 1.46148E-05 14.61477923

BOGRA1_1 5 33 217.8 1.46148E-05 14.61477923

BOGRA1_2 5 33 217.8 1.46148E-05 14.61477923

BOGRA2_1 5 33 217.8 1.46148E-05 14.61477923

BOGRA2_2 5 33 217.8 1.46148E-05 14.61477923

BOGRA3 5 33 217.8 1.46148E-05 14.61477923

BOGRA4 5 33 217.8 1.46148E-05 14.61477923

CHANDPUR02 12.25 33 88.89795918 3.58062E-05 35.80620911

CHAPAI1 5 33 217.8 1.46148E-05 14.61477923

CHAPAI2 5 33 217.8 1.46148E-05 14.61477923
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Bus ID 

 

Q 

(MVAR) 

V 

(KV) 

Xc = 

V2/Q 

C = 1/2πfXc 

(F) 

C 

(µF) 

CHAPAI3 5 33 217.8 1.46148E-05 14.61477923

CHAPAI4 5 33 217.8 1.46148E-05 14.61477923

CHNAWAB4 5.4 33 201.6666667 1.5784E-05 15.78396157

COMILLAN2 6.8 33 160.1470588 1.98761E-05 19.87609975

COMILLAS4 8.25 33 132 2.41144E-05 24.11438573

COX1_1 5 33 217.8 1.46148E-05 14.61477923

COX1_2 5 33 217.8 1.46148E-05 14.61477923

COX1_3 5 33 217.8 1.46148E-05 14.61477923

COX1_4 5 33 217.8 1.46148E-05 14.61477923

COX2_1 5 33 217.8 1.46148E-05 14.61477923

COX2_2 5 33 217.8 1.46148E-05 14.61477923

COX2_3 5 33 217.8 1.46148E-05 14.61477923

DHANMON01 16.12 33 67.55583127 4.7118E-05 47.11804824

DHANMON02 16.12 33 67.55583127 4.7118E-05 47.11804824

DOHAZAR1_1 5 33 217.8 1.46148E-05 14.61477923

DOHAZAR1_2 5 33 217.8 1.46148E-05 14.61477923

DOHAZAR1_3 5 33 217.8 1.46148E-05 14.61477923

DOHAZAR2_1 5 33 217.8 1.46148E-05 14.61477923

DOHAZAR2_2 5 33 217.8 1.46148E-05 14.61477923

DOHAZAR2_3 5 33 217.8 1.46148E-05 14.61477923

FARIDPUR02 9 33 121 2.63066E-05 26.30660261

FARIDPUR1 5 33 217.8 1.46148E-05 14.61477923

FARIDPUR2 5 33 217.8 1.46148E-05 14.61477923

GOPALG1 3.3 33 330 9.64575E-06 9.645754291

GOPALG2 3.3 33 330 9.64575E-06 9.645754291

HALISHAHAR-0 5 33 217.8 1.46148E-05 14.61477923

HALISHAHAR-1 5 33 217.8 1.46148E-05 14.61477923

HALISHAHAR2 5 33 217.8 1.46148E-05 14.61477923
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Bus ID 

 

Q 

(MVAR) 

V 

(KV) 

Xc = 

V2/Q 

C = 1/2πfXc 

(F) 

C 

(µF) 

HALISHAHAR3 5 33 217.8 1.46148E-05 14.61477923

HASNABAD1 5 33 217.8 1.46148E-05 14.61477923

HASNABAD2_1 5 33 217.8 1.46148E-05 14.61477923

HASNABAD2_2 5 33 217.8 1.46148E-05 14.61477923

HASNABAD3_1 5 33 217.8 1.46148E-05 14.61477923

HASNABAD3_2 5 33 217.8 1.46148E-05 14.61477923

HASNABAD4_1 5 33 217.8 1.46148E-05 14.61477923

HASNABAD4_2 5 33 217.8 1.46148E-05 14.61477923

HATHAZ1_1 5 33 217.8 1.46148E-05 14.61477923

HATHAZ1_2 5 33 217.8 1.46148E-05 14.61477923

HATHAZ1_3 5 33 217.8 1.46148E-05 14.61477923

HATHAZ1_4 5 33 217.8 1.46148E-05 14.61477923

HATHAZ2_1 5 33 217.8 1.46148E-05 14.61477923

HATHAZ2_2 5 33 217.8 1.46148E-05 14.61477923

HATHAZ2_3 5 33 217.8 1.46148E-05 14.61477923

HSTEEL11_1 6 11 20.16666667 0.00015784 157.8396157

HSTEEL11_2 8 11 15.125 0.000210453 210.4528209

HSTEEL132 6 132 2904 1.09611E-06 1.096108442

HSTEEL33-1 0.013 33 83769.23077 3.79984E-08 0.037998426

HSTEEL33-2 0.013 33 83769.23077 3.79984E-08 0.037998426

HSTEEL33-3 0.013 33 83769.23077 3.79984E-08 0.037998426

HSTEEL33-4 0.013 33 83769.23077 3.79984E-08 0.037998426

HSTEEL575_-0 3.31 0.57 0.0981571 0.032428616 32428.61623

HSTEEL575_-1 3.31 0.57 0.0981571 0.032428616 32428.61623

HSTEEL575_-2 3.31 0.57 0.0981571 0.032428616 32428.61623

HSTEEL575_-3 3.31 0.57 0.0981571 0.032428616 32428.61623

HSTEEL575_1 0.013 0.575 25.43269231 0.000125158 125.1577646

HSTEEL575_1A 3.31 0.57 0.0981571 0.032428616 32428.61623
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Q 

(MVAR) 

V 

(KV) 

Xc = 

V2/Q 

C = 1/2πfXc 

(F) 

C 

(µF) 

HSTEEL575_1B 3.31 0.57 0.0981571 0.032428616 32428.61623

HSTEEL575_2 0.013 0.575 25.43269231 0.000125158 125.1577646

HSTEEL575_3 0.013 0.575 25.43269231 0.000125158 125.1577646

HSTEEL575_3A 3.31 0.57 0.0981571 0.032428616 32428.61623

HSTEEL575_4 0.013 0.575 25.43269231 0.000125158 125.1577646

HSTEEL575_4A 3.31 0.57 0.0981571 0.032428616 32428.61623

ISHURDI1_1 5 33 217.8 1.46148E-05 14.61477923

ISHURDI1_2 5 33 217.8 1.46148E-05 14.61477923

ISHURDI2 5 33 217.8 1.46148E-05 14.61477923

ISHURDI3 5 33 217.8 1.46148E-05 14.61477923

JAMALPUR2 6.5 33 167.5384615 1.89992E-05 18.999213 

JAMALPUR3 9.3 33 117.0967742 2.71835E-05 27.18348937

JESSORE1 5 33 217.8 1.46148E-05 14.61477923

JESSORE2 5 33 217.8 1.46148E-05 14.61477923

JESSORE3 5 33 217.8 1.46148E-05 14.61477923

JHENAI1 5 33 217.8 1.46148E-05 14.61477923

JHENAI2 5 33 217.8 1.46148E-05 14.61477923

KABIRP1 16.6 33 65.60240964 4.85211E-05 48.52106704

KABIRPUR1 5 33 217.8 1.46148E-05 14.61477923

KABIRPUR2 5 33 217.8 1.46148E-05 14.61477923

KABIRPUR3_1 5 33 217.8 1.46148E-05 14.61477923

KABIRPUR3_2 5 33 217.8 1.46148E-05 14.61477923

KALYANP1 24.7 33 44.08906883 7.2197E-05 72.19700939

KALYANP2 24.7 33 44.08906883 7.2197E-05 72.19700939

KALYANP3 24.7 33 44.08906883 7.2197E-05 72.19700939

KHULNAC1_1 5 33 217.8 1.46148E-05 14.61477923

KHULNAC1_2 5 33 217.8 1.46148E-05 14.61477923

KHULNAC2_1 5 33 217.8 1.46148E-05 14.61477923
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(MVAR) 

V 

(KV) 

Xc = 

V2/Q 

C = 1/2πfXc 

(F) 

C 

(µF) 

KHULNAC2_2 5 33 217.8 1.46148E-05 14.61477923

KHULNAC3 5 33 217.8 1.46148E-05 14.61477923

KSTEEL33_02 6 33 181.5 1.75377E-05 17.53773508

KSTEEL33_1 12.25 33 88.89795918 3.58062E-05 35.80620911

KULSHI1 5 33 217.8 1.46148E-05 14.61477923

KULSHI2 5 33 217.8 1.46148E-05 14.61477923

KULSHI3 5 33 217.8 1.46148E-05 14.61477923

LALMONIR1 5.5 33 198 1.60763E-05 16.07625715

LALMONIR2 5.5 33 198 1.60763E-05 16.07625715

MADHUNA1_1 5 33 217.8 1.46148E-05 14.61477923

MADHUNA1_2 5 33 217.8 1.46148E-05 14.61477923

MADHUNA2 5 33 217.8 1.46148E-05 14.61477923

MANIKG1 10.4 33 104.7115385 3.03987E-05 30.3987408 

MIRPUR1_1 5 33 217.8 1.46148E-05 14.61477923

MIRPUR2_2 5 33 217.8 1.46148E-05 14.61477923

MIRPUR2_3 5 33 217.8 1.46148E-05 14.61477923

MIRPUR2_4 5 33 217.8 1.46148E-05 14.61477923

MIRPUR2 23.4 33 46.53846154 6.83972E-05 68.39716679

MIRPUR2_1 5 33 217.8 1.46148E-05 14.61477923

MIRPUR2_2 5 33 217.8 1.46148E-05 14.61477923

MIRPUR2_3 5 33 217.8 1.46148E-05 14.61477923

MIRPUR2_4 5 33 217.8 1.46148E-05 14.61477923

MIRPUR3 23.4 33 46.53846154 6.83972E-05 68.39716679

MIRPUR3_1 5 33 217.8 1.46148E-05 14.61477923

MIRPUR3_2 5 33 217.8 1.46148E-05 14.61477923

MYMENS1 11 33 99 3.21525E-05 32.1525143 

MYMENS2 11 33 99 3.21525E-05 32.1525143 

MYMENS3 11 33 99 3.21525E-05 32.1525143 
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Xc = 

V2/Q 

C = 1/2πfXc 

(F) 

C 

(µF) 

NAOGAON1 12 33 90.75 3.50755E-05 35.07547015

NAOGAON2 12 33 90.75 3.50755E-05 35.07547015

NAOGAON3 12 33 90.75 3.50755E-05 35.07547015

NATOR1_1 5 33 217.8 1.46148E-05 14.61477923

NATOR1_2 5 33 217.8 1.46148E-05 14.61477923

NATOR2_1 5 33 217.8 1.46148E-05 14.61477923

NATOR2_2 5 33 217.8 1.46148E-05 14.61477923

NETRO1 6.5 33 167.5384615 1.89992E-05 18.999213 

NETRO2 6.5 33 167.5384615 1.89992E-05 18.999213 

NEWTONGI1_1 5 33 217.8 1.46148E-05 14.61477923

NEWTONGI1_2 5 33 217.8 1.46148E-05 14.61477923

NEWTONGI2_1 5 33 217.8 1.46148E-05 14.61477923

NEWTONGI2_2 5 33 217.8 1.46148E-05 14.61477923

NOAGA1_1 5 33 217.8 1.46148E-05 14.61477923

NOAGA1_2 5 33 217.8 1.46148E-05 14.61477923

NOAGA2 5 33 217.8 1.46148E-05 14.61477923

NOAGA3 5 33 217.8 1.46148E-05 14.61477923

PALASHB1 5.5 33 198 1.60763E-05 16.07625715

PALASHB2 5.5 33 198 1.60763E-05 16.07625715

PATUAKHA3 3.5 33 311.1428571 1.02303E-05 10.23034546

RAJSHAHI1_1 5 33 217.8 1.46148E-05 14.61477923

RAJSHAHI1_2 5 33 217.8 1.46148E-05 14.61477923

RAJSHAHI2_1 5 33 217.8 1.46148E-05 14.61477923

RAJSHAHI2_2 5 33 217.8 1.46148E-05 14.61477923

RAJSHAHI3_1 5 33 217.8 1.46148E-05 14.61477923

RAJSHAHI3_2 5 33 217.8 1.46148E-05 14.61477923

RAJSHAHI3_3 5 33 217.8 1.46148E-05 14.61477923

RAJSHAHI3_4 5 33 217.8 1.46148E-05 14.61477923
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Xc = 

V2/Q 

C = 1/2πfXc 

(F) 

C 

(µF) 

RANGPUR1_1 5 33 217.8 1.46148E-05 14.61477923

RANGPUR1_2 5 33 217.8 1.46148E-05 14.61477923

RANGPUR1_3 5 33 217.8 1.46148E-05 14.61477923

RANGPUR1_4 5 33 217.8 1.46148E-05 14.61477923

RANGPUR2_1 5 33 217.8 1.46148E-05 14.61477923

RANGPUR2_2 5 33 217.8 1.46148E-05 14.61477923

RANGPUR2_3 5 33 217.8 1.46148E-05 14.61477923

RANGPUR2_4 5 33 217.8 1.46148E-05 14.61477923

SAIDPUR1_1 5 33 217.8 1.46148E-05 14.61477923

SAIDPUR1_2 5 33 217.8 1.46148E-05 14.61477923

SAIDPUR1_3 5 33 217.8 1.46148E-05 14.61477923

SAIDPUR1_4 5 33 217.8 1.46148E-05 14.61477923

SAIDPUR2_1 5 33 217.8 1.46148E-05 14.61477923

SAIDPUR2_2 5 33 217.8 1.46148E-05 14.61477923

SAIDPUR2_3 5 33 217.8 1.46148E-05 14.61477923

SAIDPUR2_4 5 33 217.8 1.46148E-05 14.61477923

SYLHET1_1 5 33 217.8 1.46148E-05 14.61477923

SYLHET1_2 5 33 217.8 1.46148E-05 14.61477923

SYLHET2 5 33 217.8 1.46148E-05 14.61477923

SYLHET3 5 33 217.8 1.46148E-05 14.61477923

TANGAIL2 11 33 99 3.21525E-05 32.1525143 

THAKUR1_1 5 33 217.8 1.46148E-05 14.61477923

THAKUR1_2 5 33 217.8 1.46148E-05 14.61477923

THAKUR1_3 5 33 217.8 1.46148E-05 14.61477923

THAKUR1_4 5 33 217.8 1.46148E-05 14.61477923

THAKUR2_1 5 33 217.8 1.46148E-05 14.61477923

THAKUR2_2 5 33 217.8 1.46148E-05 14.61477923

THAKUR2_3 5 33 217.8 1.46148E-05 14.61477923
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C = 1/2πfXc 
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C 
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TONGI1_1 5 33 217.8 1.46148E-05 14.61477923

TONGI1_2 5 33 217.8 1.46148E-05 14.61477923

TONGI2_1 5 33 217.8 1.46148E-05 14.61477923

TONGI2_2 5 33 217.8 1.46148E-05 14.61477923

TONGI3_1 5 33 217.8 1.46148E-05 14.61477923

TONGI3_2 5 33 217.8 1.46148E-05 14.61477923

ULLON1 15.6 33 69.80769231 4.55981E-05 45.5981112 

ULLON1_1 5 33 217.8 1.46148E-05 14.61477923

ULLON1_2 5 33 217.8 1.46148E-05 14.61477923

ULLON1_3 5 33 217.8 1.46148E-05 14.61477923

ULLON2_1 5 33 217.8 1.46148E-05 14.61477923

ULLON2_2 5 33 217.8 1.46148E-05 14.61477923

ULLON2_3 5 33 217.8 1.46148E-05 14.61477923

ULLON3_1 5 33 217.8 1.46148E-05 14.61477923

ULLON3_2 5 33 217.8 1.46148E-05 14.61477923
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CONTINGENCY RANKING 
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Contingency 
Ranking Contingency Name 

Overloading 
Index 

1 1103_1107 OUT 85.144 

2 1105_1107 OUT 84.741 

3 1323_1324 OUT 84.3 

4 1415_1440_1 OUT 84.225 

5 1415_1440_2 OUT 84.225 

6 1101_1102_1 OUT 84.174 

7 1101_1102_2 OUT 84.174 

8 1201_1211_1 OUT 84.127 

9 1201_1211_2 OUT 84.127 

10 2010_2011_1 OUT 84.116 

11 2010_2011_2 OUT 84.114 

12 1130_1201_1 OUT 84.101 

13 1130_1201_2 OUT 84.101 

14 1003_1015_1 OUT_1 84.089 

15 1003_1015_2 OUT_1 84.089 

16 2012_2043 OUT 84.054 

17 2001_2002_1 OUT_2 84.038 

18 2001_2002_2 OUT_2 84.038 

19 1003_1005_1 OUT_1 84.037 

20 1003_1005_2 OUT_1 84.037 

21 1101_1104_1 OUT 83.996 

22 1101_1104_2 OUT 83.996 

23 1403_1405_1 OUT 83.995 

24 1111_1113 OUT 83.994 

25 1403_1405_2 OUT 83.99 

26 1030_1031 OUT 83.975 

27 1122_1134_1 OUT 83.974 

28 1122_1134_2 OUT 83.974 

29 1203_1444_1 OUT 83.974 

30 1203_1444_2 OUT 83.974 

31 1113_1122 OUT 83.967 

32 1320_1323 OUT 83.962 

33 1310_1401_1 OUT 83.927 

34 1310_1401_2 OUT 83.927 

35 2013_2014_1 OUT 83.92 

36 2013_2014_2 OUT 83.92 

37 1101_1111 OUT 83.911 

38 1123_1125 OUT 83.906 

39 1001_1005 OUT_2 83.899 

Contingency 
Ranking Contingency Name 

Overloading 
Index 

40 1113_1114 OUT 83.896 

41 1401_1403_1 OUT 83.883 

42 1401_1403_2 OUT 83.882 

43 1005_1006_1 OUT 83.842 

44 1005_1006_2 OUT 83.842 

45 1101_1112 OUT 83.842 

46 1301_1302_1 OUT 83.835 

47 1301_1302_2 OUT 83.835 

48 1130_1132_1 OUT 83.833 

49 1130_1132_2 OUT 83.833 

50 1101_1109 OUT 83.825 

51 1413_1415_1 OUT 83.813 

52 1413_1415_2 OUT 83.813 

53 2012_2015_1 OUT 83.805 

54 2012_2015_2 OUT 83.805 

55 1412_1413_1 OUT 83.797 

56 1412_1413_2 OUT 83.797 

57 1411_1412 OUT 83.792 

58 1001_1002 OUT_2 83.791 

59 1120_1125 OUT 83.786 

60 1005_1013_1 OUT 83.781 

61 1005_1013_2 OUT 83.781 

62 1013_1015 OUT 83.778 

63 1310_1313_1 OUT 83.772 

64 1113_1118 OUT 83.77 

65 1125_1126_1 OUT 83.769 

66 1125_1126_2 OUT 83.767 

67 1310_1313_2 OUT 83.758 

68 1425_1442_1 OUT 83.754 

69 1425_1442_2 OUT 83.754 

70 1415_1417_1 OUT 83.748 

71 1415_1417_2 OUT 83.748 

72 2010_2020_1 OUT 83.744 

73 2010_2020_2 OUT 83.744 

74 1302_1305_1 OUT 83.739 

75 1302_1305_2 OUT 83.739 

76 2010_2016_1 OUT 83.739 

77 2010_2016_2 OUT 83.739 

78 1401_1412 OUT 83.733 
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Contingency 
Ranking Contingency Name 

Overloading 
Index 

79 1425_1430_1 OUT 83.729 

80 1425_1430_2 OUT 83.729 

81 1120_1134_1 OUT 83.724 

82 1120_1134_2 OUT 83.724 

83 2008_2036_1 OUT 83.724 

84 2008_2036_2 OUT 83.724 

85 1420_1442_1 OUT 83.721 

86 1420_1442_2 OUT 83.721 

87 1410_1411 OUT 83.709 

88 1002_1005 OUT_2 83.705 

89 2020_2032_1 OUT 83.701 

90 2020_2032_2 OUT 83.701 

91 2030_2036_1 OUT 83.701 

92 2030_2036_2 OUT 83.701 

93 1030_1032 OUT 83.692 

94 2013_2034_1 OUT 83.692 

95 2013_2034_2 OUT 83.692 

96 1126_1132_1 OUT 83.688 

97 1126_1132_2 OUT 83.688 

98 1203_1204_1 OUT 83.686 

99 1203_1204_2 OUT 83.686 

100 1118_1122 OUT 83.684 

101 1011_1013_1 OUT 83.683 

102 1011_1013_2 OUT 83.683 

103 1104_1109 OUT 83.682 

104 1305_1306_1 OUT 83.681 

105 1305_1306_2 OUT 83.681 

106 2005_2008_1 OUT_2 83.681 

107 2005_2008_2 OUT_1 83.681 

108 1102_1105_1 OUT 83.678 

109 1102_1105_2 OUT 83.678 

110 1443_1015 OUT 83.676 

111 1130_1133 OUT 83.674 

112 1101_1130 OUT 83.672 

113 2020_2030_2 OUT 83.671 

114 1201_1202_1 OUT 83.669 

115 1201_1202_2 OUT 83.669 

116 1213_1214_1 OUT 83.666 

117 1213_1214_2 OUT 83.666 

Contingency 
Ranking Contingency Name 

Overloading 
Index 

118 2012_2016_1 OUT 83.666 

119 2012_2016_2 OUT 83.666 

120 1006_1008_1 OUT 83.665 

121 1006_1008_2 OUT 83.665 

122 1126_1128_1 OUT 83.665 

123 1126_1128_2 OUT 83.665 

124 1405_1406_1 OUT 83.663 

125 1405_1406_2 OUT 83.663 

126 1020_1030_1 OUT 83.659 

127 1020_1030_2 OUT 83.659 

128 1126_1127_1 OUT 83.659 

129 1126_1127_2 OUT 83.659 

130 2011_2034_1 OUT 83.659 

131 2011_2034_2 OUT 83.659 

132 1430_1432_1 OUT 83.656 

133 1430_1432_2 OUT 83.656 

134 1214_1215_1 OUT 83.643 

135 1214_1215_2 OUT 83.643 

136 2020_2030_1 OUT 83.643 

137 1030_1101_1 OUT 83.64 

138 1030_1101_2 OUT 83.64 

139 1013_1443 OUT 83.637 

140 1125_1445_1 OUT 83.637 

141 1125_1445_2 OUT 83.637 

142 1401_1410 OUT 83.637 

143 1313_1315_1 OUT 83.632 

144 1313_1315_2 OUT 83.632 

145 1203_1205_1 OUT 83.627 

146 1203_1205_2 OUT 83.627 

147 1008_1009_1 OUT 83.625 

148 1008_1009_2 OUT 83.625 

149 2012_2014_1 OUT 83.625 

150 2012_2014_2 OUT 83.625 

151 1011_1017 OUT 83.623 

152 1101_1133 OUT 83.623 

153 1403_1415_1 OUT 83.622 

154 1403_1415_2 OUT 83.622 

155 1013_1016_1 OUT 83.621 

156 1013_1016_2 OUT 83.621 



79 | P a g e  
 

Contingency 
Ranking Contingency Name 

Overloading 
Index 

157 1212_1213_1 OUT 83.621 

158 1212_1213_2 OUT 83.621 

159 1215_1216_1 OUT 83.621 

160 1215_1216_2 OUT 83.621 

161 1411_1413 OUT 83.62 

162 1202_1203_1 OUT 83.619 

163 1202_1203_2 OUT 83.619 

164 1003_1020_1 OUT_1 83.616 

165 1003_1020_2 OUT 83.616 

166 2040_2042_1 OUT 83.616 

167 2040_2042_2 OUT 83.616 

168 1211_1212_1 OUT 83.612 

169 1211_1212_2 OUT 83.612 

170 1006_1016_1 OUT 83.611 

171 1006_1016_2 OUT 83.611 

172 1124_1125_1 OUT 83.611 

173 1124_1125_2 OUT 83.611 

174 1302_1332_1 OUT 83.609 

175 1302_1332_2 OUT 83.609 

176 1308_1310_1 OUT 83.609 

177 1308_1310_2 OUT 83.609 

178 1006_1017 OUT 83.607 

179 1112_1114 OUT 83.607 

180 1006_1018_1 OUT 83.606 

181 1006_1018_2 OUT 83.606 

182 1104_1446_1 OUT 83.603 

183 1104_1446_2 OUT 83.603 

184 1307_1308_1 OUT 83.603 

185 1307_1308_2 OUT 83.603 

186 1017_1018_1 OUT 83.602 

187 1017_1018_2 OUT 83.602 

188 1020_1021_1 OUT 83.601 

189 1020_1021_2 OUT 83.601 

190 1415_1418_1 OUT 83.601 

191 1415_1418_2 OUT 83.601 

Contingency 
Ranking Contingency Name 

Overloading 
Index 

192 1021_1032_1 OUT 83.6 

193 1021_1032_2 OUT 83.6 

194 1315_1320_1 OUT 83.6 

195 1315_1320_2 OUT 83.6 

196 1420_1425_1 OUT 83.6 

197 1420_1425_2 OUT 83.6 

198 1306_1307_1 OUT 83.599 

199 1306_1307_2 OUT 83.599 

200 1418_1420_1 OUT 83.598 

201 1418_1420_2 OUT 83.598 

202 1107_1124_1 OUT 83.595 

203 1107_1124_2 OUT 83.595 

204 1103_1105 OUT 83.584 

205 1031_1032 OUT 83.583 

206 2005_2014_1 OUT_1 83.581 

207 2005_2014_2 OUT_1 83.581 

208 2002_2005_1 OUT_2 83.578 

209 2002_2005_2 OUT_2 83.578 

210 1001_1003_1 OUT_2 83.572 

211 1001_1003_2 OUT_2 83.572 

212 2008_2010_1 OUT_1 83.571 

213 2008_2010_2 OUT_1 83.571 

214 1120_1123 OUT 83.569 

215 2036_2040_1 OUT 83.545 

216 2036_2040_2 OUT 83.545 

217 1324_1326 OUT 83.419 

218 1332_1334 OUT 83.32 

219 1314_1315 OUT 83.101 

220 1320_1330 OUT 83.099 

221 1310_1447 OUT 83.021 

222 1420_1421 OUT 82.652 

223 1015_KSTEEL OUT 82.497 

224 1015_HSTEEL OUT 77.739 

 




