Reinforcement Learning Based Autonomous Vehicle for
Exploration and Exploitation of Undiscovered Track

by

Razin Bin Issa

16101214
Md. Saferi Rahman
16101011
Modhumonty Das

16101204

Monika Barua
16101262

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
December 2019

(© 2019. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is our own original work while completing degree at

BRAC University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Razin Bin Issa Md. Saferi Rahman
16101214 1601011
Modhumonty Das Monika Barua

16101204 16101262

Approval

The thesis titled “Reinforcement Learning based Autonomous Vehicle for Explo-
ration and Exploitation of Undiscovered Track” submitted by

1. Razin Bin Issa (16101214)

2. Md. Saferi Rahman (16101011)
3. Modhumonty Das (16101204)
4. Monika Barua (16101262)

of Fall, 2019 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science and Engineering on 24th Decem-
ber.

Examining Committee:

Supervisor:

Md. Golam Rabiul Alam
Associate Professor
Department of Computer Science and Engineering

BRAC University

Co-Supervisor:

Md. Khalilur Rhaman
Associate Professor

Department of Computer Science and Engineering
BRAC University

i

Thesis Coordinator:

Head of Department:

Md. Golam Rabiul Alam
Associate Professor
Department of Computer Science and Engineering
BRAC University

Mahbubul Alam Majumdar
Professor and Chairperson
Department of Computer Science and Engineering

BRAC University

il

Abstract

This research focuses on autonomous traversal of land vehicles through exploring
undiscovered tracks and overcoming environmental barriers. Most of the existing
systems can only operate and traverse in a distinctive mapped model especially in a
known area. However, the proposed system which is trained by Deep Reinforcement
Learning can learn by itself to operate autonomously in extreme conditions. The
dynamic double deep Q-learning (DDQN) model enables the proposed system not
to be confined only to known environments. The ambient environmental obstacles
are identified through Faster R-CNN for smooth movement of the autonomous vehi-
cle. The exploration and exploitation strategies of DDQN enables the autonomous
agent to learn proper decisions for various dynamic environments and tracks. The
proposed model is tested in a gaming environment. It shows the overall effectiveness
in traversing of autonomous land vehicles in comparison to the existing models. The
goal is to integrate Deep Reinforcement learning and Faster R-CNN to make the
system effective to traverse through undiscovered paths by detecting obstacles.

Keywords: Reinforcement Learning; Faster R-CNN; Double Deep QQ Learning;
Markov Decision Process; Autonomous Vehicle; Object Classifier

v

Acknowledgement

First of all, we would like to thank Almighty Allah, as we could work on this thesis
which has been a great learning experience for us. By the grace of Allah, we were
able to put our best efforts and successfully complete it on time.

Secondly, we would like to convey our gratitude to our supervisor Dr. Md. Golam
Rabiul Alam and co-supervisor Dr. Md. Khalilur Rhaman for their guidance and
handful contribution throughout the whole phase of our thesis work. From the very
beginning to the end of the work they have provided us with all kinds of help and
inspired us to move forward to our goal.

Thirdly, the reviewers of The 34th International Conference on Information Net-
working (ICOIN 2020), whose valuable reviews helped us to improve our work.
Last but not the least, we are also very thankful to our parents, friends, and well-
wishers who have supported us throughout our research. We would also like to
acknowledge the assistance that we received from a number of resources over the
Internet especially from related researches.

Table of Contents

Declaration

Approval

Abstract

Acknowledgment

Table of Contents

List of Figures

List of Tables

Nomenclature

1

Introduction

1.1 Background
1.2 Research Problem
1.3 Research Objectives.
1.4 Scope and Limitation
1.5 Document Outline

Literature Review and Related Work
2.1 Reinforcement Learning L.
2.1.1 Reinforcement Learning Definition
2.1.2 Elements of Reinforcement Learning
2.1.3 Reinforcement Learning versus Supervised Learning
2.1.4 Exploitation and Exploration
2.1.5 Reinforcement Learning Model
2.2 Adam Optimizer
2.3 Xavier Initializer o
2.4 Challenges of Reinforcement Learning
2.5 Region Convolution Neural Network (RCNN)
2.5.1 Convolutional Neural Network(CNN)
252 R-CNN . .o
253 Fast R-CNN o
254 Faster R-CNN o
2.6 Related Works.o

vi

ii

iv

vi

viii

ix

3 Methodology

3.1 Object Classification Through Faster R-CNN

3.1.1 Faster R-CNN
3.1.2 Acquiring Data-set
3.1.3 Training Object Classifier .

3.2 Distributional Agent for Autonomous Driving

3.2.1 Double Deep Q Network (DDQN)
3.2.2 Markov Decision Process for Path Distribution

3.2.3 Data Preprocessing
3.2.4 Model Architecture Design .
3.2.5 Hyperparameters
3.2.6 Model Training

4 Implementation and Result Analysis
4.1 Data Preprocessing
4.1.1 Object Detection

4.1.2 Reward Determination . . .

4.2 Combined Decision Making
43 Result
4.4 Discussion

5 Conclusion
5.1 Research Overview
5.2 Research Challenges
5.3 Experimentation and Results . . .
5.4 Contribution and Impact
5.5 Recommendation and Future Work

Bibliography
Appendix A Double Deep Q-Learning

Appendix B Adam Optimizer

vil

16
16
16
17
17
21
21
22
23
23
23
25

27
27
27
27
29
34
38

39
39
40
40
41
42

46

47

48

List of Figures

2.1

2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13

4.14
4.15

Flowchart of Proposed Reinforcement Learning Based Autonomous

Vehicle Model o
Convolutional Layers [48]
Architecture of region proposal network [49]

Training data model object classification
Loss Graphs of training data model: Anchor Loss - Classification . . .
Loss Graphs of training data model: Anchor Loss - Localization . . .

Loss Graphs of training data model: RPN Loss — Localization
Loss Graphs of training data model: RPN Loss — Localization

Loss Graphs of training data model: Clone loss
Total loss graph of the trained data model
Camera Coverage of Perception.

Proposed DDQN architecture for Reinforcement Learning based Au-

tonomous vehicle

Image Classification through Faster R-CNN: Car [52]
Image Classification through Faster R-CNN: Object [52]
Image Classification through Faster R-CNN: Pedestrian [52]
Training data model object classification

Characteristics of DDQN hyper-parameters: Average Reward

Characteristics of DDQN hyper-parameters: Value Loss
Characteristics of DDQN hyper-parameters: Total Loss
Training data values before normalization
Training data values after normalization
Combined Decision Making Process

Braking Situation in terms of Distance Calculation in GTA V Envi-

ronment [52]
Normalized Confusion Matrix for the object classifications

Lane Changing comparison of different algorithms of Reinforcement

Learning Lo

Characteristics of DDQN hyper-parameters: Average QQ Value

Characteristics of DDQN hyper-parameters: Average Reward Value .

viil

24

28
28
29
30
30
31
31
32
32
33

34
35

36
37
38

List of Tables

2.1 Reinforcement Learning vs Supervised Learning 6
3.1 Autonomous Driving Policy Network:Hyperparameters 25
4.1 Braking Distance Calculation (Dry Road) 34
4.2 Precision and Recall values of the classes gradually 36

1X

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

€ Epsilon

CNN Convolutional Neural Network

COCO Common Objects in Context

CUDA Compute Unified Device Architecture (Nvidia)
DDQN Double Deep Q-Network

DQN Deep Q-Network

GTA Grand Theief Auto

M DP Markov Decision Process

MS Microsoft

PEA Parameter estimator algorithm

R — CNN Region Based Convolutional Neural Network
ReLU Rectified Linear Unit

ROI Region of Interest

RPN Region Proposal Network

SV M Support Vector Machine

Chapter 1

Introduction

1.1 Background

Reinforcement Learning [10] involves taking decision to perform suitable action by
maximizing reward in a specific circumstance. Various software and machines em-
ploy it and it then finds the most suitable decision which should be taken in a
particular circumstance [10]. A Reinforcement Learning based agent learns by in-
teracting with the environment. It can decide how to perform a given task on its
own from a training dataset. However, it must learn from its experience in the ab-
sence of a dataset.

In this modern age, autonomous vehicles are considered one of the most integral
parts of intelligent transportation system. An autonomous vehicle first takes percep-
tion from the environment, makes a decision, plans it and then controls the vehicle
[38]. Thus, it is one of the most emerging technologies that exists today. The brain
of an autonomous vehicle is the decision-making module. Integrating reinforcement
learning in an autonomous vehicle will help the vehicle perform in any environment
through exploitation and exploration. Thus, the vehicle or autonomous agent will
be able to take its own decision to traverse and drive in undiscovered tracks.

The conventional ways of autonomous vehicles are limited within certain maps.
However, integrating autonomous vehicle and reinforcement learning will make an
agent take decisions more efficiently and control it in that manner as the vehicle
will be able to explore undiscovered tracks [1]. The proposed research suggests,
traversing of an autonomous vehicle which tries to find its own path by detecting
and identifying obstacles along the way. It takes data and information of rough and
rocky surface and obstacles through sensor data. The agent feeds the data in our
proposed algorithm for taking decisions in future based on the fed conditions. The
sensor that is mainly used to implement the proposal is Camera.

The agent explores the environment using Double Deep Q-Learning. It estimates
more accurate values [35]. The process of the agent always picking the highest g-
value for exploration is called the epsilon greedy strategy. The three terms that are
used in this strategy are state, reward and action. In order to performing method,
the algorithm uses Bellman Equation.

Furthermore, Faster R-CNN [20] will be applied at first for the prototype as the
agent and vehicle tries to track and detect objects while traversing. Faster R-CNN,
at this time, is one of the most prominent algorithms for object detection. In Faster-
RCNN, region proposal and object detections are done using convolutional network
which make this algorithm faster in terms of objection detection. By merging the
mentioned processes of path finding and object tracking, developing an agent is
aimed so that it can find its own path by avoiding obstacles on its way. This
algorithms is tested on a gaming environment.

1.2 Research Problem

Traditional ways of driving automobiles and vehicles have made road safety an issue
throughout the world. In fact, road traffic accidents reflect as the eight leading
cause of death in the world and more than 1.35 million lives are taken and 50 mil-
lion are injured every year because of it [54]. Further, more than half of road traffic
deaths of the world are amongst cyclists, motorcyclists and pedestrians who are of-
ten neglected in road traffic system designs in many countries [46]. Without proper
measure taken, road traffic deaths by 2030, are anticipated to become the fifth lead-
ing reason of death [45]. Hence, it is an alarming issue which does not receive proper
attention.

Roads shared by cars, buses, trucks, motorcycles often support economic and social
development in many countries [9]. As vehicles are responsible for deaths, failure to
find the actual prevention for this may lead to more casualties in the future. Self-
driving cars over traditional vehicles become necessary in this manner for better
road management.

The technology of autonomous vehicles has been evolving since its invention. As
road traffic death remains a problem, The United States Department of Transporta-
tion (USDOT) predicts that autonomous cars will reduce traffic deaths by 90% [50].
A reduction of 90% would save 30,000 lives per year. Moreover, effective advent of
autonomous vehicles will cause reduction of harmful emissions by 60%, according
to Ohio University’s Future of Driving Report [51]. The Ohio University study also
supports the report that autonomous cars will provide a reduction in fuel economy
by between 4% and 10% [19]. Autonomous Vehicles will also reduce commute time
by 40% [29]. Further, according to a report by US Energy Information Administra-
tion (EIA), reduction in traffic accidents will also reduce traffic congestion as these
traffic incidents are the reason behind 25% of congestion [53].

Therefore, with the emerging technology of autonomous vehicles lives and environ-
ment both can be saved. This research focuses on effective traversal of autonomous
vehicles. Through detection and classification of objects and integrating Reinforce-
ment Learning, autonomous navigation of self-driven cars is ensured.

1.3 Research Objectives

The aim of this research is to establish traversal of an autonomous vehicle in undis-
covered tracks through object detection. It uses the combination of Reinforcement
Learning and Faster R-CNN. Reinforcement Learning is applied for traversal along
with Faster R-CNN intended for object classification and detection. The research
objectives are as follows:

e To initiate application of Reinforcement Learning for autonomous vehicle nav-
igation.

e To develop Faster R-CNN with the aim of object classification and detection.

e To deeply understand Reinforcement Learning Model, Double Deep Q-Learning
Network (DDQN) and Markov Decision Process (MDP).

e To develop a model for autonomous traversal of vehicles by integrating Rein-
forcement Learning and Faster R-CNN.

e To evaluate the outcome and accuracy of the model.

e To provide recommendations on improving the model.

1.4 Scope and Limitation

The object classifier through Faster R-CNN has scope to improve its performance.
The execution can be improved by lowering the average number of misclassification
and by increasing the average number of accuracy level [33]. Moreover, training with
larger number of datasets can help this research attain better accuracy in future.
Confusion matrix will indicate the percentage of accuracy that has been acquired
through these processes. Hence, the iteration score can be increased by training
object classes to overcome the misclassification problem. This research has been
only used for autonomous cars for now. Further, it can be implemented in other
autonomous agents.

The research model does not take rear view camera and condition into consideration
which is a limitation to this research. It also struggles to take decisions while there
are other vehicles trying to overtake. Further, implementation of this model in
Bangladesh road perspective is difficult as of now.

1.5 Document Outline

The structure of rest of the paper is as follows. Literature review and related works
that have already been recognized are described in Section 2. Reinforcement Learn-
ing, Adam Optimizer, Xavier Initializer, Challenges of Reinforcement Learning and
Regional Convolution Neural Network (R-CNN) have been described in different
subsections in this part. In Section 3, methodology of this research has been dis-
cussed which includes the procedure of making the object classifier through Faster
R-CNN and input distributional agent for autonomous driving through Double Deep

Q Network (DDQN). Section 4 describes the implementation and result analysis part
where different procedures has been discussed for implementing this research in GTA
V game environment along with various testing results, accuracy of reinforcement
learning and Faster R-CNN in the autonomous vehicle and comparison between dif-
ferent algorithms of Deep Reinforcement Learning. Section 5 concludes the paper
which summarizes the whole research in some subsections along with contribution
and future plan.

Chapter 2

Literature Review and Related
Work

This chapter talks about Reinforcement Learning model and its elements. It also
includes the comparison between supervised learning and reinforcement learning. It
presents Deep Q- Learning network using which we have introduced an autonomous
vehicle system. Another algorithm which we have integrated here for image clas-
sification is described in this chapter. So, this chapter also describes about Faster
R-CNN and shows how Faster R-CNN is much effective than R-CNN and Fast R-
CNN.

2.1 Reinforcement Learning

2.1.1 Reinforcement Learning Definition

Reinforcement Learning is a machine learning branch which works by gaining experi-
ences through communicating with the worldly environment and evaluating feedback
to develop a system’s performance to make behavioral decisions [30]. It improves the
system’s performance through trial and error experience with dynamic environment.
Qualitative and quantitative frameworks to understand and adapt decision-making
are provided by reinforcement learning through rewards and punishment [12].

The roots of Reinforcement Learning are in psychology, but while getting into the
details of it, the differences can be seen [7]. In psychology, it refers to occurrence
of an event in relation to a response which increases the probability of the response
occurring again in that situation [2]. On the other hand, in engineering and artificial
intelligence, Reinforcement Learning refers to learning tasks and algorithms based
on the principle of reinforcement [7]. Hence, reinforcement learning involves learning
to take decisions, mapping situations to actions and maximizing reward signals [16].

2.1.2 Elements of Reinforcement Learning

Some common terms that are used in Reinforcement Learning [47] such as:
e Agent: The entity that executes actions in an environment to receive reward.

e Environment (e): The surrounding that an agent encounters.

Reward (R): The return that an agent receives when it executes a particular
action.

e State (s): The present condition that is represented by the environment.

e Policy (7): The approach which is applied by the agent for deciding the
following action depending on the present state.

e Value (V): The long-term return with discount in comparison to the short-
term reward.

e Value Function: The total amount of reward which is the state value.
e Model of the environment: The behavior of the environment.

e Model based methods: The method for resolving Reinforcement Learning
problems that applies model-based ways.

e Q value or action value (Q): Q value is almost similar to value. The sole
difference between the two is that it takes another variable as a present action.

2.1.3 Reinforcement Learning versus Supervised Learning

The following Table 2.1 [47] shows the differences between Reinforcement Learning
and Supervised Learning.

Parameters

Reinforcement Learning

Supervised Learning

Decision Making

Sequential decision
making

Decision making based
on input given initially

Working Policy

Works by communicating
with the environment

Works from previous
examples or sample data

Dependency

Dependent learning decision.
Hence, labels are provided
in all of those decisions

Independent decisions.
Hence, labels are provided
for individual decision

Best Supported

Best supported in Al
where human communication
is usual

Mostly supported in an
interactive software system
or application

Table 2.1: Reinforcement Learning vs Supervised Learning

2.1.4 Exploitation and Exploration

As Reinforcement Learning refers to making an agent learn its way, finding an
optimal path is thus, important. An agent learns to take decisions by receiving
rewards for its actions [11]. For learning to take optimal decisions, an agent must
explore the same environment many times. Hence, a balance of exploitation and
explorations is needed to get the agent learn to find better goals every time [11].
According to Coggan [11], exploitation is what the agent already knows about the

worldly environment and what it knows of as the best results. On the other hand,
exploration is to discover new conditions and features of the world and finding
better goal path than what the agent knows of already. Better goal will not be
found without exploring and the agent will choose the first goal always which will
not be optimal decision making. However, Coggan [11] further mentions, an agent
will not stick to a particular path if it explores much and its knowledge will not
be exploited for that. Hence, a balancing between exploration and exploitation is a
must for effective decision-making.

2.1.5 Reinforcement Learning Model

Usually, an agent in a Reinforcement Learning model communicates with the en-
vironment through perception and action [6]. It inputs indication from the envi-
ronment and agent takes actions based on decisions which is generated as output.
Actions, which has been taken by the agent can alter the condition of the envi-
ronment. An agent communicates with values of this state transition with a scalar
reinforcement signal. Hence, the model is composed of:

e A distinct set of environment sets
e A distinct set of agent actions

e A set of scalar reinforcement signals which are usually real numbers or 0,1
Some important learning models in reinforcement learning are:

e (Q-Learning

e Markov Decision Process (MDP)

e Deep Q-Learning Network (DQN)

e Double Deep Q-Learning Network (DDQN)

Q-Learning

One of the Reinforcement Learning algorithms is Q-Learning that thrives to look for
the finest action to decide in a provided present situation [16]. Being an off policy
Reinforcement Learning algorithm, a Q-learning function trains itself from actions
that are not inside the current policy. Q-learning also learns the policy that can
maximize the whole reward. How a given action is useful can be represented by the
quality for this case in gaining future reward.

An agent updates Q-values in a QQ table by interacting with the environment. The
first one is by exploiting where the environment information is known to the agent to
make decision. The second one is taking actions randomly which is called exploring.
Random actions generate Q-values from which the agent chooses actions based on
optimal Q-values. The key entities in Q-learning are — environment, action, reward
and state.

The basic steps for Q-learning are:

e Agent taking a decision or action in a state and receiving a reward

e Agent selecting which action to take by matching Q-table with maximum value
or by random (epsilon, ¢)

e Updating Q-value

Markov Decision Process

Markov property is considered as a memory-less property of a stochastic procedure.
If probability distribution of future states is dependent on present state and condi-
tioned on both past and present state, it can be said that it has Markov property
[16]. Markov Decision Process, or MDP is the Reinforcement Learning action which
supports the Markov property. To understand MDP, Markov reward process has to
be looked at. Markov reward process accumulates the reward through some par-
ticular sequence. Further, Markov decision process is nothing but Markov reward
process along with decisions.

Deep Q-Learning Network

A neural network is used to estimate the Q-value function in Deep Q-Learning [42].
Input is state and output is the produced Q-value of all feasible actions. In Deep
Q-Learning Network (DQN), all the previous experiences are gathered by the agent
in memory. The following decision can be decided with the highest return of the
Q-network. With DQN, an agent has a model to make predictions from instead of
looking into Q table. Rather updating in the Q table, the model can be trained. It
is a regression model which will output values for each possible actions which then
can be called Q-values for this algorithm.

Double Deep Q-Learning Network

The problem in Q-Learning is, it requires estimation of learning from estimates.
This overestimation may be troublesome as electing such highest overestimated val-
ues means electing the estimate of the highest value.

To solve this problem, Double QQ Learning is initiated for solving the problem of
overestimation of Q-value in basic Q-Learning [35]. The solution requires making
use of two different Q-value estimator, each is utilized to upgrace the other. Un-
biased Q-values of actions can be estimated using the opposite estimator as the
estimators are independent [41]. Thus, maximization bias can be avoided. Double
Q-Learning needs two different action-value function, Q along with Q’, as estima-
tors. If Q and Q" are noisy, the noises can be considered as uniform distribution [14].

The procedure differs from the basic Q-learning as following:

Q function is used for electing the best measure with highest Q-value from the
following states

Q’ function calculates expected Q-value by using the action selected before.

Q function is then updated by using the expected Q-value of Q' function

Further, Double Deep Q-Learning Network [35], was inspired by double Q-Learning
which uses two kinds of Deep Neural Networks. They are Deep Q Network and
Target Network. The optimization stage of updating the parameters of Deep Q
Network are mentioned below:

Deep Q Network: selects the best action with highest Q-value of following
state.

Target Network: calculates the estimated Q-value with action mentioned
above.

Updates the Q-value of Deep Q Network depending on the estimated Q-value
from Target Network

Updates the variables of Target Network based on the variables of Deep Q
Network per several iterations.

Update the variables of Deep Q Network based on Adam Optimizer

. » Preprocess » State
-
Y
Neural Network -
h 4 Y
Image Reward For Penalty |« Q-values » Replay Memory
{ i
Game Environment < ¥
GIAV T »
z i Update Q-values
= Epsilon Greedy Backwards Sweep
Y Y
Action *——Train Neural Network

Figure 2.1: Flowchart of Proposed Reinforcement Learning Based Autonomous Ve-
hicle Model

10

2.2 Adam Optimizer

Adam [23] is an adaptive algorithm which optimizes learning rate and it has been
designed in a way that it can train deep neural networks. It may be considered
as a amalgamation of RMSprop and Stochastic Gradient Descent with momentum.
Squared gradients are used by it so that it can scale the learning rate like RMSprop.
Further, it takes control of momentum by making use of moving average of the
gradient as an alternative of gradient itself. Adam computes individual learning
rates for diverse scenarios and utilizes approximation of the first two moments of
gradient to adjust the rate of learning for individual weight of the neural network.

2.3 Xavier Initializer

Xavier initializer automatically depicts initialization scale. This depends on the
neuron numbers of input and output. If initialization is done wrong, it can lead to
exploding and vanishing of weights and gradients. The weights of the model might
explode to infinity or vanish to 0 which make training deep neural networks very
complicated. Hence, Xavier works with neural networks with five hidden layers.
Xavier initialization usage ensures that the weights are not too small or big to
propagate the signals precisely. Initialization of the weights from a distribution
with zero mean and variance [13]:

Var(W) = 2 (2.1)

Nin + Nout

where n;, and n,,; are respectively the number of inputs and outputs of your layer.

2.4 Challenges of Reinforcement Learning
Some challenges of Reinforcement Learning include:
e Parameters affecting the speed of learning

e Non-stationary real environments

Weakening of results may occur due to excessive reinforcement which causes
overburdening of states

Large action space may increase complexity

Reward design has to be involved

2.5 Region Convolution Neural Network (RCNN)

2.5.1 Convolutional Neural Network(CNN)

Object detection method involves a model or any distinct algorithm to execute the
identification procedure systematically. Convolutional Neural Network (CNN) is a
model constructed to identify and to classify any images data [22]. Any images of

11

particular regions are passed through the convolutional layers and show the ultimate
detection result. This model includes several layers named The Kernel, Pooling and
the Fully Connected Layer (FC Layer) through which many images or regions are
trained by feeding them into the network[22].

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution 1 /—M
(5 X 5) kernel Max-Pooling (5 X 5) kernel Max-Pooling (with
valid padding (2x2) valid padding (2x2) N\ dropout)

INPUT nl channels nl channels n2 channels n2 channels “‘

(28 x28 x 1) (24 x24 xn1) (12x12x nl) (8x8xn2) (4x4xn2) @' OUTPUT

n3 units
Figure 2.2: Convolutional Layers [48]

Here Figure 2.4 [48] represents the layer of convolutional networks. Any images
with particular bounding boxes are passed through these layers. The first layer is
the Kernel which represents the image in a matrix of 5 x 5 x 1 [48]. Then using the
second layer which is Valid Padding increases the dimensionality of image. Then
Pooling Layer reduces the size of the evaluated Feature. Fully-Connected layer then
presents last output of the desired image [48].

2.5.2 R-CNN

Drawing bounding boxes based on the image location is the key procedure of this
CNN model [18]. However, there are several ways of identifying bounding boxes.
The OverFeat method is one of the popular ways of predicting boxes. As, it handles
single object class thus a convolutional layer is used to identify multiple objects
[18]. Multi class object requires mulitiple bounding boxes to identify the objects
simultaneously. Therefore, the selction of regions can involve computational com-
plexity [21]. So, to avoid this complexity a new model has been proposed by Ross
Girshick which is called Region Convolution Neural Network (RCNN). The main
powerful tool of R-CNN is its region proposal module. This method works with a
fixed number of regions which is exactly 200 in numbers and those particular regions
are derived using another different algorithm popularly known as selection search.
Then these regions are fed into the convolutional layers and then retrieving the fea-
tures of the interested regions are again fed into the Support Vector Machine (SVM)
[24]. Therefore, following these steps any identifiable objects are detected using this
model.

12

Regression coefficients
for boxes

Equivalent to

0
o N-units

B,

® n-units
$=510
o

60
3 x 3 filters, '
512 channels o e
: =18 40
[1

1 x 1 filters,

512 channels Classification
scores

Equivalent to

Output size = [40, 80, 9, 4]
1 x 1 filters,
5§12 channels

Output size = [40, 60, 9, 2]

Figure 2.3: Architecture of region proposal network [49]

This Figure 2.5 [49] represents the region proposal network model which starts with
input image being fed into the traditional convolutional neural network. Firstly the
image is resized such that its shortest side is 600px with the longer side is 1000px
[49]. Then from the output feature map network learns the location of image. Dur-
ing the learning procedure a 3 x 3 convolution is applied to the backbone feature
map. Then this is trained through convolution layer and thus output image is re-
trieved [49].

There are many drawbacks associated with R-CNN [28]. It involves selective search
algorithm which does not include consecutive training and learning that makes the
region proposal system not adaptive with the situation. Another problem is takes a
long to train the network for classifying the regions associated with the interested
objects or images[24].

2.5.3 Fast R-CNN

Identifying the drawbacks of R-CNN Ross Girshick again improved this model which
is popularly known as Fast R-CNN [27]. Previously, in R-CNN regions which are
extracted using selective search are fed into the convolutional layers. It includes
the feeding of 200 regions per image which consumes a lot of time. So, here in
Fast R-CNN only images are feed into the convolutional layers rather than the
regions of the interested objects. It starts with feeding the images into the CNN.

13

Then the identified regions of proposal are shaped using Rol pooling layer. This
shaping procedure enables the efficient region-based object detection. Then the
class of the proposed regions are predicted using the softmax layer [25]. Then
from the offset values features of the objects are extracted. Thus it completes the
object identification process. Fast R-CNN takes less time than R-CNN due to the
elimination of steps which feed proposed 200 regions of each image to the network.
Therefore, this model is comparatively in better position for its accuracy and faster
processing capability [25].

2.5.4 Faster R-CNN

As both the algorithms do not work efficiently due to the time complexity prob-
lem Faster R-CNN was introduced by Shaoqing Ren who modified the features of
previous models and algorithms. Faster R-CNN also includes convolutional net-
work which provides a feature map [27]. In the previous algorithms the model
used selective search for identifying the interested regions but here it does not use
this algorithm as it consumes huge time to identify the regions associated with the
interested images. Therefore, it involves another different network to predict the
proposal of the regions. Then those regions identified though the networks are pro-
cessed and shaped using Rol pooling layer [17]. Then it follows the procedure of
Fast R-CNN to identify the object. Basically, Faster R-CNN is the product of two
features. One is deep fully convolutional network using which the interested and
proposed regions can be identified and then comes the Fast R-CNN detector [27].
This detector completes the steps and features that Fast R-CNN model uses.

2.6 Related Works

In recent years, neural networks have turned into the main technique for reliable
object identification. In [40] most neural networks images are classified, clustered
by their similarity using R-CNN, Fast R-CNN, Faster -RCNN algorithm. Thus, in
object detection these algorithms are explicitly used.

CNN [34] is the abbreviation for Convolutional Neural Network. It consists of con-
volution, RELU, Pooling and Fully connected layer. Initial approach towards object
detection is classifying some interested regions and use CNN to it. The CNN [21] in
RCNN focuses on a single region at a time to minimize the interface. Here, regions
are specified. So, it is also called region proposal.

However, to make object detection more effective and fast Faster R-CNN [34] is used.
Other algorithms use selective search for regions but a separate network is used in
Faster R-CNN to predict region proposals. By reshaping the proposed regions, the
value of bounding boxes is predicted.

A work uses [39] region-based convolutional neural network for the detection of road

obstacles using deep learning system. However, our proposal does not only detect
obstacles, it takes decisions upon them using double deep g-learning.

14

Additionally, psychology includes study of learning and reinforcement which has had
a well-built impact on Artificial Intelligence related work. In fact, all algorithms of
reinforcement learning can be considered as reverse engineering of some psycholog-
ical learning processes [5].

Although, work related to reinforcement learning has been done in the field of web-
spidering for optimal sequential decision making [8], our proposal uses reinforcement
learning for efficient path finding.

Another paper [4] suggests eight extensions of reinforcement learning which includes
adaptive heuristic critic (AHC) learning, Q-learning, and three further extensions to
both basic methods to speed up learning. This proposal mainly focuses on DDQN
based learning to train the agent.

One related work [44] determines driving policy on highways using reinforcement
learning. A different driving simulator from the mentioned work has been used in
our implementation which is discussed later in this paper.

Longitudinal control of autonomous land vehicles has been proposed [37] by using
parameterized reinforcement learning in another related work. It mainly uses PBAC
algorithm which differs from the DDQN algorithm that we have used.

Thus, Reinforcement learning is said to be an interesting learning technique which
only requires a performance feedback from the environment. Till date, it has been
used to solve simple learning problems. Our proposal investigates reinforcement
learning to be used as a decision maker for path finding.

Hence, we propose to implement a reinforcement learning based autonomous vehicle
which traverse through exploration and exploitation of environments. It finds its
own path by detecting and identifying objects and obstacles along the way using
Faster RCNN. combination.

15

Chapter 3

Methodology

This chapter describes how Double Deep Q Learning (DDQN) and Faster R-CNN
have been implemented in the Reinforcement Learning based Autonomous Vehicle
for Exploration and Exploitation of Undiscovered Track. It includes the description
of data and also describes how both the DDQN and Faster R-CNN classify and
cluster any data using to develop this model. Moreover, it describes the evaluation
procedure and the process of measuring accuracy in autonomous traversing.

3.1 Object Classification Through Faster R-CNN

3.1.1 Faster R-CNN

The Regional Convolutional Neural Network technique adopts the clear strategy of
trimming remotely calculated box proposition out of an input image and applying
neural system classifier on it. Nonetheless, this methodology can be costly because
many crops are required, which leads to large overlap calculation from overlapping
crops. Fast R-CNN moderated this issue by driving the entire picture through fea-
ture extractor. Crop from a middle layer allow crops to share the load of highlight
extraction [27]. Although R-CNN and Fast R-CNN depends on an external proposal
generator, lately it has been proven that generating box proposals using neural nets
is possible. Here, it is normal that there can be few boxes on beat of each other on
the picture at distinctive outline, scales and perspective proportions, which is called
“anchors”. Now, a model is prepared to anticipate for each anchor: (a) a discrete
class expectation for each anchor, and (b) a cumulative forecast of the counterbal-
ance, according to which the anchor has to be relocated to fit in the ground truth
bounding box. In the accompanying para, minimization of a combined classification
and regression loss is discussed [24], [32], [36].

The best matching ground-truth box b is first to be found for each anchor a. If we
can identify a match, we consider it as a “positive anchor”, and call that (a) which
is a class label y,e{1 ...k}. Furthermore, (b) which is a vector that will encode b
with respect to anchor a (known as box encoding ®(b,;a)). On the off chance that
no such match could be found, we consider it as a “negative anchor”, and set the
class name to be y, = 0. Considering the anchor as a, if box encoding is predicted
froe (I; a; 0) and following class fus (I; a; 0), where the image will be known as I
and the model parameters will be 8, then the loss for I is measured as a weighted

16

sum of a location-based loss and a classification loss:

L(a; I;0) = a x 1[aispositive] X ljpe(P(by; a) — fioe(L;a50)) + B X las(Ya, fas(L;a;6))
(3.1)

Here o, are offset values which will balance losses of localization and classification.
Equation 3.1 is averaged over anchors, in order to train the model and reduced with
respect to parameters 6. [36]

The determination of anchors has noteworthy outcomes for exactness and calculation
as well. Previously these anchors were computed from clustering ground-truth boxes
within the data-set. Nowadays, the process is handled by tiling a collection of boxes
at various scales and aspect ratios, routinely over the image. The good side of a
customary network of stays is that the forecasts can be composed as tiled indicators
on the picture with shared parameters. This process resembles traditional sliding
window method [24], [32].

3.1.2 Acquiring Data-set

Experiments were conducted on the huge data-set named Open Image V5 [43].
It’s an open-source database made by Google. It consists of annotated images of
600 box-able object classes. The total number of training images in this database
are 1,743,042. These images include annotated bounding boxes, object segmenta-
tion, and visual relationships, as well as the full validation (41,620 images) and test
(125,436 images) sets. But for our Object Classifier we don’t need all those 600
classes.

Using ‘OIDv4_Tool Kit' 7 classes from 600 were separated. Those are of Bicycle,
Bus, Person, Motorcycle, Truck, Van, Car. For training criteria, 8 355 images were
separated from the whole data-set, where minimum of 1000 images were of each
class. And 2,360 of them were taken for testing, having a minimum of 300 images of
each class. The labels of those images were then combined together in . XML format.

3.1.3 Training Object Classifier

For training our data-set and to prepare our object classifier we chose Faster R-CNN
Inception V2 feature extractor on TensorFlow framework. For training and testing,
a computer having NVIDIA GTX 1050 GPU, with CUDA core support has been
used. The training process was consistently run for 13hours, until the total loss be-
came persistent under 0.8 for a long time. A total of 1,58,777 steps were conducted
to prepare our desired image classifier.

There are two stages is the Faster R-CNN detection process. The primary stage
is called region proposal network (RPN). Here images are processed by a feature
extractor, for which we have used Faster R-CNN Inception V2 feature extractor,
and features are used to anticipate class diagnostic box proposals, at some selected
intermediate level. The loss function for this first stage appears as Equation of Loss

17

" Anaconda Prompt (Anaconda3) - activate tensorflow - python train.py --logtostderr —-train_dir=training/ --pipeline_c...

16 ; a98g 1 y:567] al st

Figure 3.1: Training data model object classification

Loss/BoxClassifierLoss/classification_loss
tag: Losses/Loss/BoxClassifierLoss/classification_loss

0.9
/l\
2 0.7
=1
=
2 05
]
m
et
= 03 ' | -
tz |
T |
“ 01
1] 40k o0k 120k 160k
Training Steps =

Figure 3.2: Loss Graphs of training data model: Anchor Loss - Classification

18

Loss/BoxClassifierLoss/localization_loss
tag: Losses/Loss/BoxClassifierLoss/localization_loss

0.6
0.5
0.4
0.3
0.2
0.1

Localization Loss =

20k 20k 60k 100k 140k 180k
Training Steps =

Figure 3.3: Loss Graphs of training data model: Anchor Loss - Localization

Loss/RPNLoss/localization_loss
tag: Losses/Loss/RPNLoss/localization_loss

>
=
(]
Ln

=
X

0.15

01

Localization Loss

0.05

0 S0k 100k 150k 200k 250k
Training Steps =

Figure 3.4: Loss Graphs of training data model: RPN Loss — Localization

19

Loss/RPNLoss/objectness_loss
tag: Losses/Loss/RPNLoss/objectness_loss

09 -

Objectness Loss =
- = =
[wn |

=
—

0 40k 80k 120k 160k
Training Steps =

Figure 3.5: Loss Graphs of training data model: RPN Loss — Localization

clone_loss
tag: Losses/clone_loss

ot
co

ot
@

-
d

-
P

Objectness Loss =

[=

20k 20k 60k 100k 140k 130k
Training Steps =

Figure 3.6: Loss Graphs of training data model: Clone loss

20

Totalloss
tag : Losses/TotalLoss

Total Loss >

60
Training Steps =

Figure 3.7: Total loss graph of the trained data model

using a grid of anchors tiled in space, scale and aspect ratio.

In the subsequent stage, the box proposals which were predicted in the first stage,
are utilized at cropping features from the same common feature map which are
subsequently used to the rest of the feature extractor so as to predict a class and
class-specific box refinement for each proposal. The loss function for this second
stage box classifier likewise appears as the Equation of Loss using the proposals
generated from the RPN as anchors. Here, Figure 3.7 shows the normalized form of
total loss graph.

3.2 Distributional Agent for Autonomous Driv-
ing
3.2.1 Double Deep Q Network (DDQN)

Double Deep Q Network (DDQN) algorithm was proposed by H. V. Hasselt [35].
This calculation utilizes the concept of Double Q-learning and is an extension of
H. V. Hasselt’s previous proposal [14] and it is applied to DQN. These Q-learning
based algorithms have overestimation problems which are caused by estimation er-
rors. Overoptimistic fee estimation and performance dilapidation happen as a re-
sult of overestimation. However, the strategy for DDQN does not just diminish the
overoptimistic esteem estimation, yet additionally gives better execution than DQN
on a few game conditions. Selection and evaluation process are isolated by DDQN
while it gets to target an incentive with two Q-functions. The required conditions
of DQN and DDQN are appeared underneath:

yPN = R, + VI}}aXQ (Sm, Apyr; 9_) (32)
t+1
yPPON — R, +~Q <St+1, arﬁmaXQ (Sig1, Ary130); 9) (3.3)
t+1

21

3.2.2 Markov Decision Process for Path Distribution

Markov Decision Process articulates the acquiring path direction for autonomous
driving in this research. The agent decides his own action in every step and imme-
diately a reward is received for that action. Markov Decision Process is narrated by
the tuple S, P, A, R, v which has already been stated before. For our problem, a
brief summary of MDP is stated below:

e s ¢ S is the finite state space which contains a gray scale image from camera
of the agent.

P is the transition function where P (s'[[sa) : S x A xS — [0, 1]

a € A is finite action space which works for an agent.
e R(s,a): S x A — R where R is reward function

e 7 defines the discount factor where v — [0,1] for delayed reward

MDP states’ s € S can be used for the high dimensional observations by using deep
neural networks. Figure 3.8 represents the perception of the surrounding coverage
by using 3 cameras mounted at the front.

The autonomous driving agent has 5 distinct actions. The finite action space A con-
sists of forward, left, right, stop and deceleration. 5 kph is added or subtracted from
the current agent speed for forward and deceleration. The agent speed is confined
in the range of 30 kph to 80 kph. The agent automatically adjusts the speed for
vehicles in a certain distance so that it maintains a safe distance from the front ve-
hicle. The ‘stop’ activity happens instantly when the vehicle in front all of a sudden
brakes or any other vehicle cuts in abruptly before our agent vehicle.

Center Camera

Figure 3.8: Camera Coverage of Perception.

22

3.2.3 Data Preprocessing

The images are cropped so that the model will not be trained with the sky and the
car’s front parts. Those are resized to 160x320 (3 YUV channels) as per NVIDIA
model. Those images are normalized (image data divided by 127.5 and subtracted
1.0). As stated in the Model Architecture section, this is to avoid saturation and
make gradients work better.

3.2.4 Model Architecture Design

The main target of the agent, 7(als) is mapping the perception state, S and making
the following move on action space, A. The entirety of the activity will be led in a
stochastic driving condition. However, to accomplish this mapping the model needs
to satisfy to distinct conditions: (1) extract and capture significant highlights from
3 camera images,(2) it should take account of the inherent randomness of the envi-
ronment for choosing any particular action.

Here, to satisfy the first condition; spatio-rational information retrieving from cam-
era sensor need to be sensed by the network. This process is conducted using Con-
volutional Neural Network (CNN). It is popular for extracting spatial features from
images. Moreover, high dimensional camera images are refined into visual feature
vector using three two-dimensional convolutional layers.

Furthermore, the second condition can be fulfilled by using DDQN framework. Driv-
ing environments that are stochastic use this framework. For each action there is a
return distribution which is created by the completely associated layer with the help
of . Here, the Q(s,a) result can be estimated as the desire of quantiles,) . ¢;0;(s, a).

Additionally, the maximum @ value can be retrieved from the best action, a* which
also can be picked from accessible limited Q values of action space, A.

a* = argmax, @ (s,argmax, Q(s,a)) (3.4)

Proposed DDQN architecture for Reinforcement Learning based Autonomous vehi-
cle is shown in Figure 3.9. Keras has been used to train this network.

3.2.5 Hyperparameters

The network is designed following NVIDIA model. To perform end-to-end self-
driving test by NVIDIA, it has been used. Supervised image classification or regres-
sion problems can be solved in seamless procedure using deep convolutional network.
NVIDIA model itself is well documented. Thus, our main focus lies on adjusting the
training images for delivering the best result. However, to acquire the best result we
need to make necessary adjustments for avoiding over-fitting nature and adding non
linearity to make the prediction accurate. Additionally, we have added the following
adjustment to the model.

e Lambda layer is introduced to normalize input images to make gradients work
more smoothly and to avoid saturation.

23

Z
O
N
O
Y
o

FULLY CONNECTED

FUSION

-CNN

Faster R

Figure 3.9: Proposed DDQN architecture for Reinforcement Learning based Au-

tonomous vehicle

24

e Additional dropout layer is added after the convolution layers to avoid the
over-fitting nature.

e Then we have implemented ReLU for activation function to ensure linearity.

Adam Optimizer with epsilon 0.0001 at a learning rate le™® and mini-batches of
size 32 is used to train the network for optimum accuracy. Here, Xavier initializer
has been used to initialize network weights and all inputs are normalized into [-1,1].
For achieving the accuracy of the prediction of steering angle for each image we
have used mean squared errors for estimating the loss function. The table 3.1 shows
Hyperparameters of this driving policy network. We have set the value of support
Q as 200. The size of the replay memory is 5000000 and ~ which is the discount
factor has been fixed to 0.99. e-greedy policy has been used where was gradually
diminished from 1.0 to 0.1 in each step and then fixed to 0.1. All of these policies
have been implemented during 3000000 steps trainings.

Data Layer Type Actuation | Hyperparameters
of Policy Network
Patch size = (5x5)
Stride = 4
No. of filters = 24
Patch size = (5x5)
Stride = 4
No. of filters = 36
Camera Data Convolution 2D ReLU Patch size = (5x5)
Stride = 4
No. of filters = 48
Patch size = (3x3)
Stride = 1
No. of filters = 64
Patch size = (3x3)
Stride = 1
No. of filters = 64
Concatenated Data | Fully Connected Layer ReLLU No. of Units = 512

Table 3.1: Autonomous Driving Policy Network:Hyperparameters

3.2.6 Model Training

For training, we used the following augmentation technique along with Python gen-
erator to generate an unlimited number of images:

25

Randomly choose right, left or center images.

For left image, steering angle is adjusted by +0.2
For right image, steering angle is adjusted by -0.2
Randomly flip image left /right

Randomly translate image horizontally with steering angle adjustment (0.002
per pixel shift)

Randomly translate image vertically
Randomly added shadows

Randomly altering image brightness (lighter or darker)

Using the left/right images is useful to train the recovery driving scenario. The
horizontal translation is useful for difficult curve handling.

26

Chapter 4

Implementation and Result
Analysis

This chapter describes the implementation of the proposed model for Exploration
and Exploitation of Undiscovered Track. The Object Detection part of the model
was implemented and tested using MS COCO dataset. On the other hand the Re-
ward Determination part of the model was implemented and tested using GTA V
game environment [52]. This model follows three stages; input data pre-processing,
combined decision making and finally the result output. Data preprocessing has
again two parts: Object Detection based of Faster R-CNN and Reward Determina-
tion for the Reinforcement Learning algorithm.

4.1 Data Preprocessing

4.1.1 Object Detection

The translated image is taken from the three physical cameras of the autonomous
vehicle, and run through Faster R-CNN architecture for object detection. Faster R-
CNN uses Fast R-CNN as detector, which consists of Convolutional Neural Network
backbone, Region of Interest pooling layer and fully connected layers for classifica-
tion and bounding box regression. Firstly, a feature map for the image is generated
through backbone CNN. The bounding box proposals of the Region Proposal Net-
works are then used to pool features from the feature map. ROI pooling is very
advantageous to be used here. The features are fed into the sibling classification
and regression branches.The features are passed through a softmax layer to get the
classification scores. Basically these scores determine the belonging class of each
box. The regression layer coefficients are used to improve the predicted bounding
boxes. The Figures below show the output of object detection which was imple-
mented on sample frames from a game environment.

4.1.2 Reward Determination

Double Deep QQ Learning is working based on reward value which comes from the
reward function of this algorithm. The main part of this reward function is epsilon

27

Figure 4.1: Image Classification through Faster R-CNN: Car [52]

= pm——

Figure 4.2: Image Classification through Faster R-CNN: Object [52]

28

| 2
L

PErson e s person: 68%/1 %gepersan: Bﬂmm'sﬂn S58% E[:Jnatrsu::n TR Rl

=

Figure 4.3: Image Classification through Faster R-CNN: Pedestrian [52]

e

value determination. Those epsilon values comes from data preprocessing part. In
the training period we are generating a drivinglog.csv file from input data. Figure
4.4 shows the driving log file. In this file first 3 columns are defining the cropped
image files of 3 cameras which has been already described in the methodology part.
Following 3 columns shows the steering angle from different images. After that the
last columns generates the epsilon value for each case which helps to construct the
reward values.

4.2 Combined Decision Making

This traversing algorithm involves reward method which is considered as an in-
evitable part of Deep Q Learning to make this decision-making process more accu-
rate. Moreover, we are delivering the reward to our agent based on the QQ values
of every training data. Following figures show the characteristics of DDQN hyper-
parameters by which Figure 4.5 defines the reward values, Figure 4.6 defines the
value loss which comes from the value loss function of double deep q learning and
the total loss function from the values of value loss function shows in Figure 4.7.
Following figures are generated from the output section of the algorithm that we
have implemented for the uninterrupted traversing of our agent which shows the
average reward of the training dataset.

The following graphs are the representation of training data collected from GTA V
game environment. The agent has been tested in every possible environment which
is similar to real life scenario (e.g. day, night, rainy, foggy, crowded etc.). Figure 4.8
represents the graph of raw training data. On the contrary, Figure 4.9 represents
the graph of 160000 normalized training data.

29

Center Image Leftlmage RightImage Steer Angle Throttle

Speed_n Epsilon

| D:\Self Driving (D:\Self Drivii D:\Self Drivin
| D:\Self Driving ¢ D:\Self Drivii D:\Self Drivin
| D:\Self Driving t D:\Self Drivii D:\Self Drivin
|D:\Self Driving (D:\Self Drivii D:\Self Drivin
|D:\Self Driving (D:\Self Drivii D:\Self Drivin
|D:\Self Driving (D:\Self Drivii D:\Self Drivin
| D:\Self Driving (D:\Self Drivii D:\Self Drivin
| D:\Self Driving ¢ D:\Self Drivii D:\Self Drivin
|D:\Self Driving (D:\Self Drivii D:\Self Drivin
|D:\Self Driving (D:\Self Drivii D:\Self Drivin
|D:\Self Driving (D:\Self Drivii D:\Self Drivin
| D:\Self Driving t D:\Self Drivii D:\Self Drivin
| D:\Self Driving (D:\Self Drivii D:\Self Drivin
| D:\Self Driving t D:\Self Drivii D:\Self Drivin
|D:\Self Driving (D:\Self Drivii D:\Self Drivin
|D:\Self Driving (D:\Self Drivii D:\Self Drivin
|D:\Self Driving (D:\Self Drivii D:\Self Drivin
| D:\Self Driving (D:\Self Drivii D:\Self Drivin
| D:\Self Driving ¢ D:\Self Drivii D:\Self Drivin
_ D:\Self Driving t D:\Self Drivii D:\Self Drivin

Figure 4.4: Training data model object classification

-0.1
-0.3

0

0
0
0

1
1
0.823999
0.617178
0.406294
0.512264
0.798631
1
1
1
0.796008
0.573994
0.361925
0.153049
0.403547
0.647913
0.420725
0.175192
0
0

avg_rew
40.0
iLl
_%’ 30.0
-
< 200
10.0
OO0 4000k 8000k 1200
Training Step

23.41998
24.00864
24.89198
25.24657
25.49292
25.71033
26.22812
26.80527

27.3697
27.84374
28.38897
28.71699
28.90331

28.9042
28.96272

29.1839
29.44802

29.4813
29.31334
29.08018

o o o o0 o o o oo o oo oo oo oo oo

160.0K

Figure 4.5: Characteristics of DDQN hyper-parameters: Average Reward

30

Losses/Loss/localization_loss

i
£
=

2
M
&

Q Value

100

2

0.00

0.000 4000k BOO.Ok 1.200M 1.600M
Tramning Step

Figure 4.6: Characteristics of DDQN hyper-parameters: Value Loss
Losses/TotalLoss
2.00

1.60

1.20

Q Vahe
Ca
o
=

0.00

0,000 4000k B00.0k 1.200M 1.600M
Training Step

Figure 4.7: Characteristics of DDQN hyper-parameters: Total Loss

31

bellman

3

3

Network Weight
o W
8 8

3

0.000 4000k 80.00k 120.0k 160.0k
Training Step

Figure 4.8: Training data values before normalization

bellman_norm learn_tb

6.00

8

o
8

Network Weight
w
3

3

0.000 40.00k 80.00k 120.0k 160.0k
Training Step

Figure 4.9: Training data values after normalization

32

DDQN Faster R-CNN

Fusion

Decision

|
Y L v Y

No Qbstacle, Optimum | |No Object Detected | | < 1oc Found in Unexpected
Distance between on the Left or A1l of the Sensors Abruntion
Agent & Obstacle Right Sensor P

y y y i
Accelerate Lane Change Decelerate Stop

Figure 4.10: Combined Decision Making Process

In this flow diagram (Figure 4.10), the decision making procedure is represented
which our agent follows. After getting output result from the DDQN and Faster
R-CNN, they are fused and according to that an agent takes the decision. Agent
takes the mentioned decisions or actions which satisfy the following condition. Here,
four decisions or actions are considered for different scenarios. So, agent’s response
and decision making are categorized into accelerate, lane change, decelerate and
stop modes. If agent finds no obstacle in a certain distance, it will be in acceleration
mode. If no obstacle is found in the right or left side of the agent then it will be able
to change its lane. It will be in deceleration mode if obstacles are found on both
sides of agent and lastly it will immediately stop its exploration for any unexpected
abruption.

Agent take these decisions based on the distance calculations of surroundings and
the condition which satisfies the action. Moreover, to make the decision making
process error free and smooth agent follows a formula for calculating the braking
distance precisely. Here is the following calculation used for calculating the braking
distance:

Distance = — x ——2t__ (4.1)

1
2 Gravity

33

Speed | Reaction Distance | Braking Distance | Total Stopping Distance
40 km/h 1700cm 900cm 2600cm
50 km/h 2100cm 1400cm 3500cm
60 km/h 2500cm 2000cm 4500cm
70 km/h 2900cm 2700cm 5600cm
80 km/h 3300cm 3600cm 6900cm

Table 4.1: Braking Distance Calculation (Dry Road)

Table 4.1 shows the calculation of our braking distance measurement for our agent in
dry road. Following the mentioned measurements our agent will compare the braking
distance with other surrounding cars. Parameter estimator algorithm (PEA) [26] for
calculating the distance between our agent and other cars has been implemented.
Figure 4.11 shows the braking situation in terms of distance calculation in GTA V
Environment [52].

Figure 4.11: Braking Situation in terms of Distance Calculation in GTA V Environ-
ment [52]

4.3 Result

For evaluating the constructed object classifier some tests were run on the proposed
model. To understand the accuracy in terms of False positive and True negative for
each class, a normalized confusion matrix is constructed, which is shown in Figure
4.12. Here the target values are constituted by the horizontal rows which is the pre-
diction of the model - the ground-truth. The predicted values are also constructed
by the vertical columns which is the actual prediction of the model.

Furthermore, on a scale of 0.0 to 1.0 the precision and recall for each class is com-
puted below gradually according to Bicycle, Bus, Person, Motorcycle, Truck, Van,

34

Car. While recall expresses the potential to find all applicable times in a dataset,
precision expresses the share of the data factors our model says was relevant that
actually was relevant.The overall result shows that the image classification model
is quite strong for detecting objects that will come in the way of our autonomous
vehicle.

Confusion Matrix, Normalized

Bicycle 0.3 00 11.6 0.0 00
80
Bus
Person -
60
("53]
wi
T
U Motorcycle -
]
o
— 20
Truck -
Van [0
Car -
—Lo

Predicted Class
Accuracy= 0.9406; Misclassification= 0.0594

Figure 4.12: Normalized Confusion Matrix for the object classifications

For implementing the Reinforcement Learning based Autonomous Vehicle, DDQN
and Faster R-CNN have been used. At the end, the effectiveness of the proposed
algorithms is measured. The proposed algorithm is differentiated from other simi-
lar algorithm such as- Deep Q learning (Multi input) and Deep Q Learning(image)
which basically works on only image processing.

These algorithms are compared in terms of lane changes of the autonomous agent
in GTA V game environment. The following figure shows the lane changes result
of those algorithms which shows that, this proposed algorithm is better than those
algorithms.

35

Class Precision | Recall
Bicycle 0.89 0.94
Bus 0.97 0.93
Person 1.0 0.99
Motorcycle 0.93 0.89
Truck 0.98 0.97
Van 0.94 0.93
Car 0.94 1.0

Table 4.2: Precision and Recall values of the classes gradually

40/

[
N

\/’—/\

DDON(Multu-Input)
DOQN(Multi-Input)
DON(Image)

No. of Lane Change
o =

[
=

i
n

10 . l .

1 2 3 4 5 6 7 8 9 10
Training Step x10°

Figure 4.13: Lane Changing comparison of different algorithms of Reinforcement
Learning

36

Reinforcement Learning gives reward based on Q-value which is generated from Q
function. That is why, algorithms have been compared in terms of Q-values. Fol-
lowing figure shows the result of Q-values of different algorithms by which it can
be said that DDQN is better than other deep Q algorithms for autonomous vehi-
cle. The graph in Figure 4.13, Figure 4.14 and Figure 4.15 are generated from the
output section of the algorithm that have been implemented for the uninterrupted
traversing of the agent. This traversing algorithm involves reward method which is
considered as an inevitable part of deep Q learning to make this decision making

process more accurate. Moreover, the reward is delivered to the agent based on the
Q-values of every training data.

30— DDoN(Multi-Taput)

DQN(Multi-Input)
254 — DQN(Image) H‘w

-
=
1

Jr
qu ‘ H' W

[
Lh
i

Average Q Value

10

0 0.25 0.5 0.75 1 1.25 1.50 1.75 2
Training Step 108

Figure 4.14: Characteristics of DDQN hyper-parameters: Average Q Value

37

80

80
70

< 60 _
550
£ 40
& 30
20
10
0

0 1 2 3 4 5 6 7

Training Step =108

Figure 4.15: Characteristics of DDQN hyper-parameters: Average Reward Value

4.4 Discussion

The integration of Faster R-CNN along with DDQN shows the maximum optimum
result in the field of autonomous exploration. The dataset that is used here to
train the image classifier shows the accuracy of 94.06%. This accuracy level clearly
represents the effectiveness of the classifier to identify any object. Here, the key
objective of the image classifier is to identify any object during any unexpected
situation the vehicle faces and after the classification of the object then the decision
is taken. Otherwise, the whole exploration process continues with the help of the
decision that agent makes from the Q- values generating from the DDQN model.
Both the system works simultaneously and it makes the exploration process smooth.
The only implementation of DDQN model limits the situation handling process
of the agent. Therefore, the focus is more on the integration of both models to
secure the exploration process without any interruption. As, exploration requires
uninterrupted lane changing technique, Markov Decision Process is used to execute
this line changing policy. Thus the accuracy level of the agent is obtained. The
whole algorithm has been tested on GTA V game environment. Hence, it is very
similar to the real world.

38

Chapter 5

Conclusion

5.1 Research Overview

In this research, DDQN (Double Deep Q Learning) algorithm has been integrated
for autonomous exploration of agent. The main objective of DDQN is to perform
any action without depending on the model of any environment. Alongside, it en-
ables agents to take optimum decisions and perform required action to produce most
effective results. DDQN is executed through reward system policy which handles
any stochastic transition without any additional adaptation. In this proposed sys-
tem it enables the vehicle to take rational action according to the perceived decision.
Moreover, the whole system is built on the platform where multi-input architecture
has been integrated.

Q-learning is a well accepted learning algorithm which was introduced by Chris
Watkins [3]. This algorithm is widely used to solve Markov Decision Process where
it shows poor performance by overestimating action values. Therefore, another mod-
ified and upgraded algorithm is introduced which is Double Deep Q- learning. This
algorithm mainly operates through different policy from Q-learning which handles
the overestimation problem that makes learning policy even more fugitive. So, the
whole exploration of this automated vehicle is connected with the action values and
reward policy which it retrieves from this algorithm and takes optimum decision.

As this research proposal aims to make the exploration process accurate and efficient
Faster R-CNN is also integrated. Here, it makes the decision making system more
reliable during any unexpected or uneven situation. As it is one of the most efficient
object classifiers it takes certain objects from datasets for testing and training to
execute the object detection process in a proper way. Acquiring values from Faster
R-CNN; reward function can be manipulated which accelerates the efficiency in de-
cision making process and smoothen autonomous exploration of vehicle.

Moreover, another advancement of this autonomous vehicle is, it is not confined to
any particular environment. This vehicle does not follow the mapped model for its
exploration. So, its exploration range is not limited which makes this system more
significant as it is different from other existing autonomous vehicles.

39

5.2 Research Challenges

DDQN(Double Deep Q-learning) is widely used as it is one of the most optimal
algorithms for constructing any automation system [31]. This is also referred as
semi-supervised learning model. As the whole system is dependent on the Q-values
generated by this algorithm; ensuring its accuracy and solving the overestimation
problem is a real struggle in this case. As, overestimation problem can be misleading
and its consequences can lead this system to perform oddly so ensuring its absence
is must required [15].

This automation vehicle system is model-free learning based. As a result, this does
not rely on any model to execute the exploration process. So, if the full focus of
exploration process is given to the vehicle it can perform oddly during any unex-
pected situation like high beams, speed breaker, dead end roads. It even sometimes
performs oddly if suddenly any passerby comes across. During the time of initial
training for inexperienced cases, it has been examined in this research that it has
made many wrong decisions. Another struggle it faces when it has to consider the
vehicles which are in parallel sides during the decision making process. However, to
overcome this struggle it need to rely on an object classifier and Lidar.

Along with DDQN to enable the agent to take action in an error free way and to
make vehicle able to face any unexpected situation Faster R-CNN is also integrated
here. The main objective of this classifier is to detect any object accurately and make
decision from it. However, sometimes the images that system retrieves through this
algorithm are hard to detect and locate its position. Due to discontinuous data it
does not work as accurately as it is expected. Sometimes low resolution of images
is also the reason behind error in object detection. Additionally, dataset have been
used from Google Open Image which has images for 600 object classes. Due to
this huge number of classes only specified 7 classes have been extracted to train.
Before using Cuda processor it took huge time to train these images approximately
took bhrs for conducting 6k iteration. Due to this many of the objects remained
unidentified. Later using Cuda processor iteration numbers have been made larger
than before.

5.3 Experimentation and Results

Deep neural networks have been explicitly developed for autonomous vehicle con-
trol. It is the technique following which this system is implemented to traverse
smoothly in a stochastic environment where the action will be taken according to
the Q-values. The implementation of DQN starts with mapping the perception state
and then conducting the possible action according to this. Therefore, Fig.3 shows
the extraction of the images from camera and then action state is derived using the
DQN framework.

Another part of this research is object classification conducting by Faster R-CNN.
In this phase of object classification a large dataset has been used where 7 distinct
object classes have been separated and images of these object classes have been
trained on Tensorflow framework till the total loss has minimized. Total 2360 im-

40

ages have been trained here where each class have minimum of 300 images using
‘OIDv4_Tool Kit'. Later, using Cuda core processor these images were trained for
13 hours till the total loss is minimized to 0.8. The accuracy level of these object
classes are measured through confusion matrix Fig. 5. After several hours training
the accuracy level shows its value 0.9406 and misclass is 0.0594. This Fig. 5 shows
the percentages of predicted classes and true classes extracted from the dataset in
the initial of object classification phase.

Following both techniques that Fig. 4 represents where images from both frame-
works are merged and then system using Markov Decision Process makes decision
about traversing policy. Here in Fig. 7 shows that the lane changing process mea-
suring from the reward policy with the help of MDP. Here, the reward policy based
on the Q-values system receives from the framework. Fig. 8(b) shows the average
Q-values and 8(a) shows the average reward. The whole algorithm has been tested
on GTA V game environment so it is very similar with the real world.

5.4 Contribution and Impact

The main target of this research is the uninterrupted exploration of autonomous ve-
hicle. This exploration process is ensured to be error free by integrating two different
algorithms. Here, DDQN is used for autonomous exploration and also it can make
decision measuring its Q-value and can take action according to it. However, if we
look at any existing autonomous vehicle system they use a policy map to produce
any action states . It sometimes produces the result which is different from any
real action. Many existing system only use tradition DQN which leads to system
producing unstable action. The main reason behind this problem is overestimation.
As, we have implemented DDQN the value of Q-function are considered to be more
appropriate than tradition DQN algorithm. Moreover, our research has also focused
on optimal path finding process using Markov Decision Process. Therefore, this
autonomous vehicle can perform autonomous exploration with ease and can tackle
the problem like lane changing and shortage path finding.

Moreover, many existing system of autonomous vehicle follow general reinforcement
learning where value is predicted and action is determined according to this which
limits its performance and ability to tackle the randomness of the environment. If
the system does not comply with the real situation then it does not serve the pur-
pose of autonomous exploration either. Therefore, this research is aimed to cope up
with stochastic environment.

Additionally, where most of the existing autonomous vehicle is fully constructed on
the frame of neural networks; Faster R-CNN has also been merged along with DDQN
to detect any object discovered on the road. Training this system with particular
object classes enable this vehicle to identify any object accurately which makes it
possible to take any decision in favor of the instructions we are feeding into it.

To summarize, this research contributes to the advancement of technology and un-

covers areas which have not been explored and considered before. The contributions
of this study are as follows:

41

e Implementing Double Deep Q-Learning (DDQN) for autonomous traversal.

e Integrating Faster R-CNN for image classification.

5.5 Recommendation and Future Work

The key recommendation for this proposed system is handling the struggle it faces
having other vehicles alongside the road. Another one will be increasing the accuracy
level during the time of any randomness and taking preferable action complying with
the reality. However, the object classifier also has great scopes for improving its
performance by lowering the average number of misclassification and by increasing
the average number of accuracy level. By configuring confusion matrix; it will
simply indicate how much percentage of accuracy has been acquired through these
processes. Therefore, we can increase the iteration score while training object classes
to overcome the misclassification problem.

42

Bibliography

1]

[10]

[11]

[12]

[13]

[14]

P. P. Reddy, Autonomous car: Deployment of reinforcement learning in vari-
ous autonomous driving applications, EasyChair Preprint no. 1305, EasyChair,
2019.

G. A. Kimble, “Hilgard and marquis™ conditioning and learning.””, 1961.

C. Watkins, “Learning form delayed rewards”, Ph. D. thesis, King’s College,
University of Cambridge, 19809.

L.-J. Lin, “Self-improving reactive agents based on reinforcement learning,
planning and teaching”, Machine learning, vol. 8, no. 3-4, pp. 293-321, 1992.

R. S. Sutton, “Introduction: The challenge of reinforcement learning”, in Re-
inforcement Learning, Springer, 1992, pp. 1-3.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey”, Journal of artificial intelligence research, vol. 4, pp. 237-285, 1996.

A. G. Barto, “Chapter 2 - reinforcement learning”, in Neural Systems for
Control, O. Omidvar and D. L. Elliott, Eds., San Diego: Academic Press,
1997, pp. 7-30, 1SBN: 978-0-12-526430-3. DOI: https://doi.org/10.1016 /BI78-
012526430-3/50003-9. [Online|. Available: http://www.sciencedirect.com /
science/article/pii/B9780125264303500039.

J. Rennie, A. McCallum, et al., “Using reinforcement learning to spider the
web efficiently”, in ICML, vol. 99, 1999, pp. 335-343.

Jacobs G, Aeron-Thomas A, Astrop A, Crowthorne, united kingdom: Trans-
port research laboratory, Estimating Global Road Fatalities, 2000. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.
5207&rep=repl&type=pdfexternal%20icon.

A. Greenwald, K. Hall, and R. Serrano, “Correlated q-learning”, in ICML,
vol. 3, 2003, pp. 242-249.

M. Coggan, “Exploration and exploitation in reinforcement learning”, Re-
search supervised by Prof. Doina Precup, CRA-W DMP Project at McGill
Unwversity, 2004.

P. Dayan and Y. Niv, “Reinforcement learning: The good, the bad and the
ugly”, Current opinion in neurobiology, vol. 18, pp. 185-96, Sep. 2008. DOI:
10.1016/j.conb.2008.08.003.

X. Glorot and Y. Bengio., “Understanding the difficulty of training deep feed-
forward neural networks”, 2010.

H. V. Hasselt, “Double g-learning”, in Advances in Neural Information Pro-
cessing Systems, 2010, pp. 2613-2621.

43

https://doi.org/https://doi.org/10.1016/B978-012526430-3/50003-9
https://doi.org/https://doi.org/10.1016/B978-012526430-3/50003-9
http://www.sciencedirect.com/science/article/pii/B9780125264303500039
http://www.sciencedirect.com/science/article/pii/B9780125264303500039
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.5207&rep=rep1&type=pdfexternal%20icon
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.5207&rep=rep1&type=pdfexternal%20icon
https://doi.org/10.1016/j.conb.2008.08.003

[20]

[21]

[22]

[26]

[27]

[28]

[29]

[30]

H. P. van Hasselt, Insights in reinforcement learning. Hado van Hasselt, 2011.

R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction”,
2011.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks”, in Advances in neural information pro-
cessing systems, 2012, pp. 1097-1105.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using convolu-
tional networks”, arXiv preprint arXiw:1312.6229, 2013.

J. M. Anderson, K. Nidhi, K. D. Stanley, P. Sorensen, C. Samaras, and O. A.
Oluwatola, Autonomous vehicle technology: A guide for policymakers. Rand
Corporation, 2014.

D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detec-
tion using deep neural networks”, in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 2147-2154.

——, “Scalable object detection using deep neural networks”, in Proceedings

of the IEEFE conference on computer vision and pattern recognition, 2014,
pp. 2147-2154.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation”, in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2014, pp. 580—
587.

D. P. Kingma and J. Ba., “Adam: A method for stochastic optimization”,
arXiw preprint arXiv:1412.6980, 2014.

C. Szegedy, S. Reed, D. Erhan, D. Anguelov, and S. Ioffe, “Scalable, high-
quality object detection”, arXwv preprint arXiw:1412.1441, 2014.

J. Dai, K. He, and J. Sun, “Convolutional feature masking for joint object
and stuff segmentation”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3992—4000.

C.-G. J. Gerardo, A.-L. Jesus, and O.-M. Ricardo, “Modeling the turning
speed and car following behaviors of autonomous vehicles in a virtual world”,
Ingenieria, Investigacion y Tecnologia, vol. 16, no. 3, pp. 391-405, 2015.

R. Girshick, “Fast r-cnn”, in Proceedings of the IEEE international conference
on computer vision, 2015, pp. 1440-1448.

J. Hosang, R. Benenson, P. Dolldr, and B. Schiele, “What makes for effective
detection proposals?”, IEEFE transactions on pattern analysis and machine
intelligence, vol. 38, no. 4, pp. 814-830, 2015.

J. Leech, G. Whelan, M. Bhaiji, M. Hawes, and K. Scharring, “Connected and
autonomous vehicles-the uk economic opportunity”, KPGM, 2015.

M. L. Littman, “Reinforcement learning improves behaviour from evaluative
feedback”, Nature 521, no. 7553, pp. 445-451, 2015.

44

[31]

[32]

33]

[34]

[37]

[38]

[39]

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-
level control through deep reinforcement learning”, Nature, vol. 518, no. 7540,
p- 529, 2015.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks”, in Advances in neural information
processing systems, 2015, pp. 91-99.

Q. Fan, L. Brown, and J. Smith, “A closer look at faster r-cnn for vehicle
detection”, in 2016 IEEE intelligent vehicles symposium (IV), IEEE, 2016,
pp. 124-129.

T. Ujiie, M. Hiromoto, and T. Sato, “Approximated prediction strategy for
reducing power consumption of convolutional neural network processor”, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, 2016, pp. 52-58.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double g-learning”, in Thirtieth AAAI conference on artificial intelligence,
2016.

J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, et al., “Speed/accuracy trade-offs for
modern convolutional object detectors”, in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 7310-7311.

Z. Huang, X. Xu, H. He, J. Tan, and Z. Sun, “Parameterized batch reinforce-
ment learning for longitudinal control of autonomous land vehicles”, IFEFE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 4,
pp- 730-741, 2017.

S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. Eng, D. Rus,
and M. Ang, “Perception, planning, control, and coordination for autonomous
vehicles”, Machines, vol. 5, no. 1, p. 6, 2017.

G. Prabhakar, B. Kailath, S. Natarajan, and R. Kumar, “Obstacle detection
and classification using deep learning for tracking in high-speed autonomous
driving”, in 2017 IEEE Region 10 Symposium (TENSYMP), 1EEE, 2017,
pp. 1-6.

M.-C. Roh and J.-y. Lee, “Refining faster-rcnn for accurate object detection”,
in 2017 Fifteenth IAPR International Conference on Machine Vision Appli-
cations (MVA), IEEE, 2017, pp. 514-517.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods”, arXiv preprint arXiw:1802.09477, 2018.

e. a. Hester Todd, “Deep ¢-learning from demonstrations”, Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

R. Benenson, S. Popov, and V. Ferrari, “Large-scale interactive object seg-
mentation with human annotators”, in C'VPR, 2019.

K. Min, H. Kim, and K. Huh, “Deep distributional reinforcement learning
based high level driving policy determination”, IEEE Transactions on Intelli-
gent Vehicles, 2019.

45

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Asirt.org, Road safety facts, [Online; accessed December 24, 2019]. [Online].
Available: https://www.asirt.org/safe-travel /road-safety-facts/.

Center for Health Statistics and Information Ministry of Healthy, Beijing,
China, Vital registration data, [Online; accessed December 24, 2019].

Guru99, Reinforcement learning vs. supervised learning, [Online; accessed De-
cember 10, 2019]. [Online]. Available: https://www.guru99.com/reinforcement-
learning-tutorial.html.

Medium, Convolutional layers, [Online; accessed December 10, 2019]. [Online].
Available: https://miro.medium.com/max/1644/1*uAe ANQIOQPqWZnnuH-
VEyw.jpeg.

Medium.com, Architecture of region proposal network, [Online; accessed De-

cember 10, 2019]. [Online]. Available: https://miro.medium.com/max/1280/
1*S_-8lv4zP3WSIVIGP6_MHw.jpeg.

nhtsa.gov, Automated driving system, [Online; accessed December 24, 2019].

[Online]. Available: https://www.nhtsa.gov/vehicle-manufacturers/automated-
driving-systems.

onlinemasters.ohio.edu, The future of driving, [Online; accessed December 24,

2019]. [Online]. Available: https://onlinemasters.ohio.edu/blog/the-future-of-

driving/.

Rockstar North, Grand theft auto v, [Online; accessed December 24, 2019].

[Online]. Available: https://www.rockstargames.com/V /info.

U.S. Energy Information Administration, Study of the potential energy con-
sumption impacts of connected and automated vehicles, [Online; accessed De-
cember 24, 2019]. [Online|. Available: https://www.eia.gov /analysis/studies/
transportation/automated /pdf/automated_vehicles.pdf.

World Health Organization, Global status report on road safety 2018, [Online;
accessed December 24, 2019]. [Online|. Available: https://www.who.int /
violence_injury_prevention/road_safety status/2018/en/.

46

https://www.asirt.org/safe-travel/road-safety-facts/
https://www.guru99.com/reinforcement-learning-tutorial.html
https://www.guru99.com/reinforcement-learning-tutorial.html
https://miro.medium.com/max/1644/1*uAeANQIOQPqWZnnuH-VEyw.jpeg
https://miro.medium.com/max/1644/1*uAeANQIOQPqWZnnuH-VEyw.jpeg
https://miro.medium.com/max/1280/1*S_-8lv4zP3W8IVfGP6_MHw.jpeg
https://miro.medium.com/max/1280/1*S_-8lv4zP3W8IVfGP6_MHw.jpeg
https://www.nhtsa.gov/vehicle-manufacturers/automated-driving-systems
https://www.nhtsa.gov/vehicle-manufacturers/automated-driving-systems
https://onlinemasters.ohio.edu/blog/the-future-of-driving/
https://onlinemasters.ohio.edu/blog/the-future-of-driving/
https://www.rockstargames.com/V/info
https://www.eia.gov/analysis/studies/transportation/automated/pdf/automated_vehicles.pdf
https://www.eia.gov/analysis/studies/transportation/automated/pdf/automated_vehicles.pdf
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/

Double Deep Q-Learning

Algorithm 1 : Double QQ-learning
Initialize primary network 0, target network (Jg, replay buffer D, v << 1
for each iteration do
for each environment step do
Observe state s; and select ay ~ m(a. 5¢)
Execute a; and observe next state s;; and reward r; = R{s;, a;)
Store (s, a4, 14, 5;,1) in replay buffer D
for each update step do
sample e; = (8¢, ¢, 14, 5441) ~ D
Compute target () value:
Q* (sp.ae) =1y + 7 Qplsegr,argmazx,, Qg (s, a'))
Perform gradient descent step on (Q*(ss, ar) — Qalse, ae))?
Update target network parameters:
T84+ (1 —7) 8

47

Adam Optimizer

Algorithm 1. Adam Optimization Algorithm

Require: Objective function f(#), initial parameters 6, stepsize hyperparameter «,
exponential decay rates (1, By for moment estimates, tolerance parameter A > 0
for numerical stability, and decision rule for declaring convergence of #; in scheme.

1. procedure ADAM(f, 6y ; «, 51, B2)

2: mg, v, t < [0, 0, 0] # Initialize moment estimates

3: # and timestep to zero

4: # Begin optimization procedure

5: while 6, has not converged do

6: t +—t+1 # Update timestep

7 g < Vg fi(0,1) # Compute gradient of objective
8: me < By + (1 —051) gt 4 Update first moment estimate
9: vy 4 Bavey + (1—52) (9 ©g:) # Update second moment estimate
10: my — my/(1—Bf) # Create unbiased estimate m;
11: vy — v /(1=) # Create unbiased estimate v;
12: 0, < 0,1 — a-m,/(Vo, +) # Update objective parameters
13: return 0, # Return final parameters

48

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Research Problem
	Research Objectives
	Scope and Limitation
	Document Outline

	Literature Review and Related Work
	Reinforcement Learning
	Reinforcement Learning Definition
	Elements of Reinforcement Learning
	Reinforcement Learning versus Supervised Learning
	Exploitation and Exploration
	Reinforcement Learning Model

	Adam Optimizer
	Xavier Initializer
	Challenges of Reinforcement Learning
	Region Convolution Neural Network (RCNN)
	Convolutional Neural Network(CNN)
	R-CNN
	Fast R-CNN
	Faster R-CNN

	Related Works

	Methodology
	Object Classification Through Faster R-CNN
	Faster R-CNN
	Acquiring Data-set
	Training Object Classifier

	Distributional Agent for Autonomous Driving
	Double Deep Q Network (DDQN)
	Markov Decision Process for Path Distribution
	Data Preprocessing
	Model Architecture Design
	Hyperparameters
	Model Training

	Implementation and Result Analysis
	Data Preprocessing
	Object Detection
	Reward Determination

	Combined Decision Making
	Result
	Discussion

	Conclusion
	Research Overview
	Research Challenges
	Experimentation and Results
	Contribution and Impact
	Recommendation and Future Work

	Bibliography
	Appendix A Double Deep Q-Learning
	Appendix B Adam Optimizer

