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Abstract

We formulate a model consisting of multipartite entanglement that helps provide a
physical significance to the Bekenstein-Hawking entropy obtained after quantising
the horizon area of a black hole as proposed by Jacob D. Bekenstein in ”Spectroscopy
of the quantum black hole”. We propose an entanglement between the black hole
information and the information of the Hawking pairs, giving rise to such entangle-
ment entropies. We calculate the entanglement entropy of a black hole using the W
state for k > 3 qubits and attempt to obtain the Page curve.

Keywords: Bekenstein-Hawking Entropy; Entanglement Entropy; Qubit; Multi-
partite Entanglement; W State; Quantum Gravity; Page Curve
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Chapter 1

Introduction

This paper gives an insight into the information entanglements inside black holes in
order to open doors to understanding black hole constituents and properties. This
field has been a growing and emerging field in the Physics community, venturing to
gain more knowledge and peak into the unknown mysteries of black holes.

Ever since black holes were understood, it was described as a region of space with
such a high field of gravitation that no particle or electromagnetic wave, i.e. light,
could escape once it had fallen inside. It was presumed that once a black hole assim-
ilates a particle, the black hole horizon area increases, and the black hole gets bigger.

However, Stephen Hawking led the way to newer findings in his 1975 paper [6].
In quantum field theory for curved spacetime, it is predicted that event horizons
expel Hawking radiation, with the exact spectrum as that of a black body of tem-
perature that is inversely proportional to its mass. So, we then understood that
black holes emit some sort of thermal radiation. Moreover, the black holes eventu-
ally evaporate over time due to this very Hawking radiation. Thus, we came to the
conclusion that black holes evaporate eventually, and Hawking radiation is one of
the main causes.

Nevertheless, the mystery surrounding black holes never disappeared. As it is known,
there are quantum conservation laws. One of them being the conservation of quan-
tum information. However, culminating to black hole properties, any particle that
is pulled beyond the event horizon of the black hole is lost, along with its quan-
tum information. This violates the law of conservation of information, leading to a
paradox. This is what we now call the Black Hole Information Paradox.

1.1 A Guide of the Thesis

In order to answer the big questions, this paper paves through tricks and mathe-
matical tools addressing the problem.

Moving onto Chapter 2, it focuses on the preliminaries to understanding quantum
systems and how they are denoted with respect to their nature. Chapter 2 lays
a brief introduction to pure and mixed states of a quantum system and how their
properties would be determined using density operators and density matrices.
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The main objective of Chapter 3 is to explain the whole idea of quantum entan-
glement. It is a grave topic in quantum physics, and is crucial if one wants to
understand black hole entropy. This chapter provides minimal explanation of the
monogamy property of entangled pairs, the Einstein-Podolsky-Rosen paradox which
states how quantum physics fails to paint the true picture of reality due to its prob-
abilistic nature. It also explains Bell’s inequality and the entropy associated with
the entanglement of particle pairs.

Chapter 4 is crucial for this paper, and is one of the most important derivations
till date. It was originally published by Stephen Hawking, and was later derived
by many others. Chapter 4 is about Hawking radiation that leads to the evapo-
ration of black holes. An important take from this is the derivation of Hawking
temperature that provides us with the unique idea that Hawking radiation is, in
fact, a thermal radiation. it is believed that Hawking radiation is due to the particle
pair-production near the event horizon. Due to the heavy pull of gravity, immedi-
ately in the moment of emergence, one from the pair is pulled in, and to conserve
momentum, the other flies off. The particles that are thrown off the event horizon
is deemed as Hawking radiation and they radiate a thermal spectrum. This paper
uses the WKB approximation to derive the Hawking temperature.

The Information Paradox, as discussed earlier, is elaborately explained in Chap-
ter 5. It is explicitly inspired by an excellent paper published by Samir D. Mathur
[19] and it encompasses his take on the paradox.

As black hole entropy is in discussion, one must mention the Bekenstein-Hawking
entropy. It is a thermal entropy and the derivation is done through quantisation
of space. It is shown in Chapter 6, how taking the maximised entropy leads to an
expression that is very similar to the Bekenstein-Hawking entropy.

Heavily inspired by the papers of J. Bekenstein, V. Mukhanov [8] and Shahar Hod
[13], Chapter 7 wraps the idea of quantisation of the horizon area leading to changes
in how the Bekenstein-Hawking entropy is expressed. This chapter is concluded with
a new establishment made by Mr. Shahar Hod in respect to the quantisation of black
hole horizon area.

Chapter 8 is the main soul to this thesis paper. It constitutes of the work that
has been put for this thesis. In this chapter, we propose an idea of multipartite en-
tanglements between the Hawking pairs and the black hole system. Assisted by the
Information Theory, we devise calculations of the entanglement entropies between
the Hawking pair information subsystems with that of the black hole information
by treating these systems as quantum bits. We also present a toy model explaining
ways in which the information of the black hole may be retrieved.



Chapter 2

Pure and Mixed States

2.1 Quantum Systems

In terms of quantum physics, a quantum sate is one that describes the state of an
integrated quantum system. It give the probability distribution for the magnitude
of each observable i.e. for the result of each probable measurement on the system.

The state of a system can be called a pure state, if the system can be described
using only one wave function, i.e. one ket-vector, |ψ〉.

A mixed state, however, is a state that cannot be described by solely one wave-
function. In order to describe a mixed state, multiple wavefunctions are needed.

For example, a complicated case is given by the singlet state,

|ψ〉 =
1√
2

(
|↑↓〉 − |↓↑〉

)
(2.1)

which describes a superposition of connected spin states for two particles with spin-
1
2
. This is a pure state.

A mixed quantum state refers to a probable mixture of pure states; however, dif-
fering distributions of pure states can give rise to equal mixed states. Mixed states
can be expressed using density matrices.

Since mixed states are arrays of pure states, pure states are a subset of mixed
states. Therefore, the density operator can be used to identify if a state is pure or
mixed.

2.2 Density Matrices

Density matrices are used to describe the probabilistic state of a quantum system.
The density matrix is a portrayal of the density operator. It is retrieved from the
density operator by basis selection in space. The operator is self-adjoint(or Hermi-
tian) in nature, positive semi-definite, of trace one, and may be infinite dimensional.
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For example, taking a collection of particles that consist of several smaller groups of
particles. There are N groups of particles, each group corresponding to a different
pure state and containing a fraction of the particles in the collection.

A fraction with a relative population Ai is in the pure state c. The states |αi〉
are normalized but not necessarily orthogonal to each other. They are expressed in
terms of the basis vectors |η〉, where η ∈ {e1, e2, ....} of the Hilbert space.

|αi〉 =
∑
n

cn |η〉 (2.2)

The coefficients can be calculated,

c(i)
n = 〈η | α(i)〉

and
cin
∗ = 〈α(i) | η′〉

The density matrix of a state will reflect the fraction of particles that are in each
pure state in terms of the probabilities Ai, where Ai are real, 0 ≤ Ai ≤ 1 and∑

iAi = 1.
The definition of the density operator is,

ρ =
N∑
i=1

|α(i)〉Ai 〈α(i)| (2.3)

The density operator is Hermitian, as in, ρ = ρ†, and Hermitian matrices are diag-
onalisable.

A represenation of pure and mixed states can be expressed by light polrization.
Photons are bound to having two perpendicular quantum states, |R〉 which refers to
right circular polarization, and |L〉 which refers to left circular polarization. They
can also be in a superposition state of both, 1√

2
(|R〉+ |L〉).

For the example of unpolarised light, the density operator equals,

ρ =
1

2

(
|R〉 〈R|+ |L〉 〈L|

)
where it showcases both of the orthogonal quantum states for photons.



Chapter 3

Quantum Entanglement

Quantum entanglement is a physical phenomenon that occurs among a pair or group
of particles in a way such that there is an interdependence of properties between
them, even at space-like separation, leading to correlations among them. Consider
a pair of entangled particles that are generated such that their total spin is zero.
If a measurement of spin is taken of one of the particles along the z-axis, resulting
in a clockwise spin, then a spin measurement of the complement particle along the
same axis results in an anti-clockwise spin. Measurements of various other physical
properties such as position, momentum and polarisation on entangled particles also
show similar correlations.

Thus, particles exhibiting the phenomenon of entanglement can only be described
by a single non-separable wavefunction, as opposed to non-entangled particles that
can be described by a state consisting of multiple separate wavefunctions describing
each subsystems. As explained in [27], consider a system of N particles. If there are
no correlations present between them, the system of particles can be described by a
tensor product of separate pure states of each subsystem |ψ1〉 , |ψ2〉 , ..., |ψN〉,

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψN〉 , (3.1)

whose Hilbert space is,

H = H1 ⊗H2 ⊗ ...⊗HN , (3.2)

where |ψ1〉 ∈ H1, |ψ2〉 ∈ H2, ..., |ψN〉 ∈ HN . This is not the case for a system of
entangled particles.

3.1 Monogamy of Entanglement

Monogamy of entanglement is one fundamental property of quantum entanglement
where maximal entanglement can only occur between a pair of particles. Consider
3 particles A, B and C. If particles A and B are maximally quantumly correlated,
then neither of the particles have any correlation with particle C. This is clearly
shown in Coffman-Kundu-Wooters (CKW) inequality in [14],
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τAB + τAC 6 τA(BC), (3.3)

where τAB and τAC are a measure of entanglement known as the ”tangle”, between
pairs AB and AC respectively, which is related to the entanglement of formation.
If particle A has a certain amount of entanglement with the pair BC, then that
amount bounds A’s entanglement with particles B and its entanglement with par-
ticle C. The amount of entanglement that A has to particle B is not available to
particle C. The above inequality can be generalised for the case of n particles.

From the above inequality, we can see that the tangle between pairs AB plus the
tangle between AC cannot be greater than the tangle between A and the pair BC.
Therefore, there is a trade-off between A’s entanglement with B and its entangle-
ment with C.

3.2 The EPR Paradox

In 1935, Einstein, Podolsky and Rosen published a paper which is now famously
known as the EPR Paradox [1] where it was proposed that the theory of quantum
mechanics was an incomplete description of physical reality. We cannot define all
classical physical observables of a system simultaneously with complete precision,
such as position and momentum. This was due to the fact that quantum mechanics
is probabilistic, as opposed to previous theories that were deterministic. There must
be hidden variables along with wavefunctions that would completely characterise the
state of a system in order to get a deterministic theory. The paper stated that there
is an element that corresponds to each of the elements of reality in a complete the-
ory. Here, the elements of reality are all the physical properties that exist in a system.

Referring to David Bohm’s version of the EPR Paradox in [2] and [26], consider
a neutral pi meson having 0 spin at rest that decays into a positron and electron,

π0 → e− + e+.

To preserve conservation of angular momentum, the positron and electron fly off in
opposite directions and are in the singlet configuration,

1√
2

(↑−↓+ − ↓−↑+) .

If the electron has an up spin, then the positron must have a down spin. Therefore,
the above state is an entangled state. Now, if a measurement is taken after there is a
separation of an arbitrarily large distance between the particles, e.g. 10 light years,
and we get an up spin for the electron, then we automatically know the spin of the
positron. Before the measurement, the particles did not have a definite spin until the
measurement caused the wavefunction to collapse, which instantaneously produces
the positron’s spin. However, this violates the principle of locality as it insinuates
that information would have to travel faster than light speed in order to give the
positron its down spin. Therefore, Einstein rejected the ”orthodox” position and
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believed that both particles always had definite spins even before any measurements
were made and the implementation of hidden variables would solve this paradox.

Yet, there are no such violations. Experiments have shown that the collapse of
the wavefunction is instantaneous and the spins have perfect correlations.

3.3 Bell’s Inequality

In 1964, John Bell published a paper [3] that would vindicate quantum mechanics
by proving that the use of local hidden variables would not be valid.
Once again, we consider the above thought experiment where we have an electron
and positron in the singlet entangled state,

1√
2

(
↑−↓+ − ↓−↑+

)
. (3.4)

However, this time the spins of 2 particles are measured in different directions by
having the detectors oriented at angles that are different with respect to the z-axis.
The spin of the electron is measured in the direction of a unit vector u whereas the
positron spin is measured in the direction of the unit vector v. The values +1 and
-1 are given by each of the detectors for spin up and spin down respectively. The
possible combinations of spins and their products are,

positron electron product
+1 +1 +1
+1 -1 -1
-1 +1 -1
-1 -1 -1

For a set of detector orientations, let P (u, v) represent the average value of the
product of the spins. If our detectors were parallel, u = v and,

P (u, u) = −1 (3.5)

as the product will always be -1, due to an up spin and down spin of the electron
and positron respectively. For anti-parallel orientations of the detectors,

P (u,−u) = +1 . (3.6)

For the rest possible spin combinations,

P (u, v) = −u · v, (3.7)

If we consider a hidden variable or variables denoted by λ that characterise the
electron positron system, then U(u, λ) and V (v, λ) are some functions that give the
result of an electron measurement and positron measurement respectively.

U(u, λ) = ±1; V (v, λ) = ±1 (3.8)
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The idea is that U(u, λ) should be completely independent of the orientation of
the positron detector. If the detectors are aligned, then the results are perfectly
correlated for all λ under the assumption of locality,

U(u, λ) = −V (u, λ) (3.9)

The average of the product of the measurements is given by,

P (u, v) =

∫
ρ(λ)U(u, λ)V (v, λ)dλ (3.10)

ρ(λ) represents the probability density for the hidden variable and is nonnegative.
From (3.9),

P (u, v) = −
∫
ρ(λ)U(u, λ)U(v, λ)dλ (3.11)

Taking w to be any other unit vector,

P (u, v)− P (u,w) = −
∫
ρ(λ)[U(u, λ)U(v, λ)− U(u, λ)U(w, λ)]dλ (3.12)

As [U(v, λ)]2 = 1,

P (u, v)− P (u,w) = −
∫
ρ(λ)[1− U(v, λ)U(w, λ)]U(u, λ)U(v, λ)dλ (3.13)

From (3.8), it follows that

−1 6 U(u, λ)U(v, λ) 6 +1

and
ρ(λ)[1− U(v, λ)U(w, λ)] > 0

Thus,

|P (u, v)− P (u,w)| 6
∫
ρ(λ)[1− U(v, λ)U(w, λ)]dλ (3.14)

which leads to the Bell’s inequality,

|P (u, v)− P (u,w)| 6 1 + P (v, w) (3.15)

However, we can show that this inequality simply does not hold for (3.7). Let’s
assume that all 3 of our vectors u, v and w lie on the same plane where u and v are
perpendicular to each other and w is in between, creating a 45◦ angle with both.
Hence,

P (u, v) = −u · v = 0; P (u,w) = P (v, w) = −uw cos
π

4
= −0.7071067812

| P (u, v)− P (u,w) |6 1 + P (v, w) = −0.7071067812

1 + P (v, w) = 1− 0.7071067812 = 0.2928932188

Substituting these values into our Bell’s inequality,

−0.7071067812 
 0.2928932188

This inequality clearly does not hold at all for such a case, Thus, using hidden
variables does not hold or exonerate quantum mechanics from the violations of
locality and causality as proposed by the 1935 paper of the EPR Paradox. Many
experiments have since proven that this inequality indeed does not hold and that
quantum mechanics is complete as it is and the properties of quantum particles are
not predetermined before measurements are made.
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3.4 Entanglement Entropy

If we have a quantum mechanical system which can be represented by a density
matrix ρ, we can calculate its entropy by,

S(ρ) = −tr(ρ ln ρ). (3.16)

This is called the Von Neumann entropy, whose units are in qubits. A qubit is
the most basic unit of quantum information and is described by a 2 state quantum
mechanical system such as,

|ψ〉 = a1 |0〉+ a2 |1〉 ,

where |0〉 and |1〉 are the basis states. A qubit can either possess the state |0〉 or |1〉
or a superposition of both. We can also write ρ as the sum of all possible states ρxi ,

ρ =
∑
i

p(xi)ρxi ,

where p(xi) is the probability of the ensemble being in the state given by ρxi . If all
these states are pure and orthogonal, then there is only a single element of unity on
one of the diagonal elements of the density matrix. In such cases, our Von Neumann
entropy starts to resemble the Shannon entropy,

S(ρ) = −
∑
i

p(xi) ln p(xi). (3.17)

As there is only a single diagonal element of unity in the density matrix, the Von
Neumann entropy is equal to 0. Further along this paper, we shall use the form
of (3.16) to calculate the entanglement entropies for the cases of multiple qubits.
Many of the above topics in this chapter have been discussed in this paper with the
help of [15]



Chapter 4

Hawking Radiation

4.1 The WKB Approximation

The WKB approximation is incorporated in order to obtain general solutions of
linear differential equations. The WKB approximation comes in handy in the dif-
ferential equation solutions that have either constants or slowly varying coefficients.
This can also be used to find approximate solutions to the Schrodinger equation.
It is specifically helpful when finding solutions concerning tunneling rates through
potential barriers.

We [25] eliminate the time-dependence of the wavefunction because the space-like
involvement to the tunneling event happens quite rapidly. We can write the wave-
function as,

ψ(x) = Ae
iS(x)

~ . (4.1)

Here, S is the classical action.

The time-independent Schrodinger equation is,

− ~2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x). (4.2)

This explains a probability distribution of the wavefunction in an environment with
a potential distribution.

The solutions to the Schrodinger equation has the form,

ψ ∼ e
iS(x)

~ . (4.3)

From this equation, we get

ψ′ =
i

~
S ′ψ, (4.4)

ψ′′ =

(
i

~
S ′′ − i

~2
S ′2
)
ψ. (4.5)
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We, now, substitute the derivatives into the time-independent Schrodinger equa-
tion, we get

− ~2

2m

(
1

~
S ′′ − i

~2
S ′2
)
− [E − V (x)] = 0. (4.6)

The system has a total energy of E = p2

2m
+ V (x) that can be shuffled to get

p2 = 2m(E − V (x)). We incorporate this into the previous equation and get

i~S ′′ − S ′2 − p2 = 0 (4.7)

From this we take a semi-classical WKB approximation by Taylor expanding the
classical action in powers of ~ and dropping terms that exceed linear order.

The Taylor expansion of the classical action is as follows,

S(x) = S0(x) + S1(x)~+ S2(x)~2 + ... . (4.8)

We differentiate this equation and put it in (4.7),

i~
(
S ′′0 + S ′′1~+ S ′′2~2 + ...

)
−
(
S0 + S1~+ S2~2 + ...

)
− p2 = 0 , (4.9)

This simplifies to,

−
(
p2 + S ′20

)
+ (iS ′′0 − 2S ′0S

′
1) ~+

(
iS ′′1 − S ′21 − 2S ′0S

′
2

)
~2 + ... = 0 . (4.10)

Since the right hand side equals to zero, we take the zeroth order term in the equation
that gives us,

p2 = −S ′20 −→ S0(x) = ±
∫ x

x0

p(x)dx (4.11)

The first order term,
i

2
S ′′0 = S ′0S

′
1 ,

i

2
p′ = pS ′1 ,

and
i

2

∫
dp

p
=

∫
dS1 (4.12)

Therefore,

S1(x) =
i

2
ln |p|. (4.13)

We can use these equations to find the semi-classical approximation for ψ,

ψ(x) = exp

[
i

~
S(x)

]
.

Expanding this further will give us,

ψ(x) ≈ exp
i

~
(S0(x) + S1(x)~).
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And finally,

ψ(x) = exp

[
± i
~

∫ x

x0

p(x)dx− 1

2
ln |p|

]
. (4.14)

After taking the second term as a coefficient, this leads us to approximate a general
solution to the time-independent Schrodinger equation,

ψ(x) ≈ 1√
|p(ẋ)|

[
C + e

+ i
~
∫ x
x0
p(x)dx

+ Ce
− i

~
∫ x
x0
p(x)dx

]
(4.15)

Here,
p(ẋ) =

√
2m(E − V (x)).

This is the WKB approximation for ψ(x).

4.2 WKB Approximation at the Event Horizon

General plane wave solutions to the time-independent Schrodinger equation can be
approximated as,

ψ(x) =
C±√
|p(ẋ)|

e
± i

~
∫ x
x0
p(x)dx

(4.16)

where,
p(ẋ) =

√
2m(E − V (x)),

Here, m is the mass, E is the total energy and p is the classical momentum of the
tunneling particle. V (x) acts as the potential barrier that the particle must cross in
order to tunnel through. The potential barrier at the event horizon can be thought
of as the gravitational potential barrier that the particle has to cross to reach the
outside of the black hole. The particle must, however, tunnel through a potential
barrier that is directly related by the particle’s own total energy. From the equation,
we can see that the momentum and energy would be conserved if the V (x) is equal
to the particle’s own total energy.

The integral in the expression for ψ(x) is the classical action,

S(x) =

∫ x

x0

p(x′)dx′

The expression for the classical action is real-valued when the particle is in a classi-
cally viable region where E > V (x), establishing that p(ẋ) is real. S(x) is, however,
imaginary where the region follows E < V (x), which implies p(ẋ) is imaginary.

If the particle has negligible mass, the momentum should be expressed in a fashion
where it does not heavily depend on the particle’s mass. This can be organised
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through a Hamilton formalism. This implies that p(ẋ) can be generally referred to
as the particle’s canonical momentum, where

p(ẋ) =
∂L
∂ẋ

.

Here, L is the Lagrangian density. We can see that the equation does not explicitly
depend on the particle’s mass.

A particle, if it were to cross the event horizon, would cross along a radial coor-
dinate axis. Therefore, assuming (x′ −→ r) into the classical action equation and
replacing the momentum with a component of a momentum 4-vector,

S =

∫ ri

rf

prdr .

This equation can be introduced while obtaining the tunneling rates of Hawking
radiation.

4.3 Surface Gravity

A stagnant subject in the Schwarzschild geometry has proper acceleration that di-
verges near the event horizon. Surface Gravity can be predicted to be the accelera-
tion occuring due to gravity that is observed by a particle which is very close to the
surface of the gravitational source, given the condition that the particle has negligi-
ble mass. Here, the gravity has been normalised by gravitational redshifting. Due to
this normalisation, the surface gravity near the event horizon of a black hole is finite.

Assuming a particle with a finite and unit mass is situated at r. It is acceler-
ated in the up direction by a force F to a distance δr. The work done to carry this
out would be,

δW = F (r)δr = ma(r)δr

∣∣∣∣
m=1

a(r)δr

The equation for 4-acceleration is,

a(r) =
M

r2

√
1− 2M

r

.

This can also be thought as the observer’s proper acceleration that is needed for
it to stay stationary in the Schwarzschild geometry. Incorporating the value of the
proper acceleration in to the equation for work done,

δW =
M

r2

√
1− 2M

r

δr . (4.17)

If work done by the observer were to be converted to a signal radiation, i.e. a
high energy photon, to be transmitted to another observer at infinity, the angular
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frequency of this high energy photon would be δω. If we assume the conversion has
an efficiency of 100%, we can write,

δω =
M

r2

√
1− 2M

r

δr . (4.18)

The other observer that receives this high energy photon would intercept it at a
much lower energy than that with which it was sent. The photon would be gravita-
tionally redshifted. We can calculated the degree of the gravitational redshift.

We consider the Schwarzschild metric,

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (4.19)

We consider dr = dΩ = 0 in the metric and take dτ 2 = −ds2. This gives

dτ =

√
1− 2M

r
dt . (4.20)

From this equation, we can observe that the proper time of an observer at spatial
infinity, and one that is in rest, is equal to the time coordinate of the Schwarzschild
metric, i.e. dτ∞ = dt. Therefore, we can write

dτr =

√
1− 2M

r
dτ∞ , (4.21)

where τr is the proper time of a stationary observer at a spatial distance r.

Now, by the general relation, we can consider the proper frequency of the photon
to be,

δω =
1

δτ
. (4.22)

Then the proper frequency of the photon at r can be written in relation to the
proper frequency of the photon at infinity as,

δω∞ =

√
1− 2M

r
δωr . (4.23)

Putting the value of δωr from equation (4.17) into equation (4.22), we get

δω∞ =
M

r2
δr . (4.24)

We can see that the terms in this equation have units of energy, as in, units of
[force]x[distance].

Therefore, we get an equation for force by dividing both sides by δr

δF =
M

r2
, (4.25)
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Recalling that we considered the mass of the observer in question as unitary, there-
fore, this force can also be considered to be acceleration. Hence, we write

κ(r) =
M

r2
. (4.26)

This way of calculating acceleration can be deemed as surface gravity. Particularly,
it can be considered as the acceleration needed to keep an observer situated near
the event horizon from falling into the black hole. In the field of black holes, the
surface gravity is measured at the event horizon. For a Schwarzschild black hole,
the event horizon is at r = 2M . Therefore,

κ(r = 2M) =
1

4M
(4.27)

4.4 Considering Near Horizon Approximation for

Calculation of Hawking Temperature

In this section, considering the coordinates of near horizon approximation we cal-
culate the Hawking temperature using gravitational WKB approximation by ac-
knowledging the relation between the Schwarzschild geometry and Rindler space,
as shown in [25]. We will first derive the near horizon approximation by using the
Schwarzschild metric. We can relate Rindler space to a local set of Minkowski co-
ordinates as Rindler space is conformally flat, allowing us to work with a new set
of local Rindler coordinates. We will then use these coordinates to calculate the
Hawking temperature.

4.5 Taking Near Horizon Approximation

The Schwarzschild geometry in the local inertial frame of an observer near the
horizon is described by the near horizon approximation. The Schwarzschild metric
is given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 , (4.28)

We set dt = dΩ = 0 in order to take an infinitesimal element of proper radial
distance ( as it would be measured by an observer at r > 2M). Taking the square
root of both sides of the metric above gives us

ds =

(
1− 2M

r

)− 1
2

dr . (4.29)

Integrating (4.28), after a long and lengthy calculation, gives us

ρ(r) =

∫ ρ

0

ds
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=

∫ r

2M

(
1− 2M

r′

)− 1
2

dr′ = 2M sinh−1

(√
r

2M
− 1

)
+
√
r(r − 2M) , (4.30)

where ρ is the proper radial distance from r to 2M (r > 2M). As dρ = ds

dρ2 =

(
1− 2M

r

)−1

dr2 . (4.31)

For r > 2M , we can now state the Schwarzschild metric as a function of proper
radial distance to the event horizon

ds2 = −
(

1− 2M

r

)
dt2 + dρ2 + r2dΩ2 . (4.32)

Here, r = r(p). As r approaches 2M , sinh−1
(√

r
2M
− 1
)

tends to zero. Doing a first

order Taylor expansion of sinh−1
(√

r
2M
− 1
)

about r = 2M gives us

sinh−1

(√
r

2M
− 1

)
≈ 2M

√
r

2M
− 1− M

3

( r

2M
− 1
) 3

2
+ ...

=
√

2M(r − 2M) . (4.33)

We consider the region near the event horizon of the black hole for (4.32). Similarly,
Taylor expanding the second term of (4.29) at r = 2M

r(r − 2M) |r=2M≈ 2M(r − 2M) . (4.34)

So we can approximate the second term as√
r(r − 2M) ≈

√
2M(r − 2M) . (4.35)

We can now write (4.29) as

ρ(r) = 2
√

2M(r − 2M) (4.36)

in the neighbourhood of r = 2M . The inverse of ρ(r) is as follows

r(ρ) =
ρ2

8M
+ 2M .

Substituting this into the time component gtt(ρ) of the metric (4.31) gives

gtt(ρ) = −

1− 2M(
ρ2

8M
+ 2M

)
 dt2 ,

= −

(
ρ2+16M2

8M
− 2M

ρ2+16M2

8M

)
dt2 ,

= −
(

ρ2

ρ2 + 16M2

)
dt2 ,



Taking Near Horizon Approximation 17

= −ρ2

(
1(

ρ
4M

)2
+ 1

)(
dt

4M

)2

,

≈ −ρ2

(
dt

4M

)2

. (4.37)

We assume that ρ � 4M , therefore
(

ρ
4M

)2 � 1 as we consider the observer to be
very close to the horizon. We can now write (4.31) using (4.36) as

ds2 = −ρ2

(
dt

4M

)2

+ dρ2 + r2dΩ2 . (4.38)

We now define

ω ≡ t

4M
, (4.39)

in order to re-scale the time coordinate. Here, t is the Schwarzschild time. In terms
of ω, (4.37) can now be written as

ds2 = −ρ2dω2 + dρ2 + r2dΩ2 . (4.40)

As our coordinate frame is in the neighbourhood of r = 2M due to the near horizon
approximation, we can write the angular component of the metric as

r2dΩ2 ≈ (2M)2dΩ2 = (2M)2(dθ2 + sin2 θdφ2) , (4.41)

where dΩ2 = dθ2 + sin2 θdφ2 is an infinitesimal displacement on the surface of a
sphere. We will use the relation between Cartesian and spherical coordinates

x = sin θ cosφ (4.42)

and y = sin θ sinφ (4.43)

whose squared differentials can be written as

dx2 + dy2 = cos2 θdθ2 + sin2 θdφ2

6= dθ2 + sin2 θdφ2 = dΩ2 . (4.44)

We can then centre the coordinate frame at θ = 0 as the geometry of th Schwarzschild
black hole displays rotational invariance. However, centring removes one degree of
freedom of Ω from Ω(θ, φ) → Ω(φ). We require two degrees of freedom in order
to approximate the two-dimensional spatial component of Rindler space, which is
orthogonal to the acceleration. To get around this issue, we can let θ vary around
zero by small amounts. Hence,

dx2 + dy2 ≈ dθ2 + θ2dφ2 ≈ dΩ2 . (4.45)

So we can now write (4.39) as

ds2 ≈ −ρ2dω2 + dρ2 + dx2 + dy2 (4.46)

From this we can see that there is an equivalence between the local geometry at
the event horizon of a Schwarzschild black hole and the hyperbolic spacetime of
a uniformly accelerating observer in Minkowski space. We can now say that the
metric is locally hyperbolic for near horizon approximation. It is conformally flat in
its time-radial component.
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4.6 Near Horizon Coordinates with a (1+1) Minkowski

Spacetime Metric

We can now define a local Minkowski space from the hyperbolic coordinates since
the hyperbolic angle and local radial coordinates in flatspace are equivalent to ρ and
ω [25]. Thus,

T = ρ sinhω , (4.47)

X = ρ cosh , (4.48)

and,
Y = y , (4.49)

Z = z . (4.50)

For the Schwarzschild metric, the surface gravity is

κ(r) =
M

r2
. (4.51)

About r = r0, we can take its Taylor expansion using

κ(r = 2M) =
1

4M
. (4.52)

Now, we will consider (4.50) to be the surface gravity of its black hole. From (4.38),
ω = κt and (4.46) and (4.47) becomes

T = ρ sinh(κt) (4.53)

and
X = ρ cosh(κt) . (4.54)

For an observer near the event horizon, T and X are the local (1+1)-dimensional
Minkowski space coordinates. Here, κ and t are quantities that an observer can mea-
sure at infinity, just like the Hawking temperature of the black hole. Hence, these
coordinates need to be re-scaled by some conformal factor so that they can be de-
fined as distances that are measured using coordinates of an observer also at infinity.

The gravitational redshift normalisation factor is given by

f(r) =
1√(

1− 2M
r

)
We now multiply (4.35) by this factor, giving us

ρ(r)f(r) =
2
√

2M(r − 2M)√
1− 2M

r

= 2

√
2M(r − 2M)r

(r − 2M)
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= 2
√

2Mr (4.55)

If we consider the region near r = 2M , we get

ρ(r ≈ 2M)f(r ≈ 2M) ≈ 2
√

2M · 2M

= 4M

=
1

κ
(4.56)

Thus, near the event horizon ρ ≈ 1
κ
. We can rewrite our local (1+1)-dimensional

Minkowski coordinate as

T ≈ 1

κ
sinh(κt) (4.57)

and

X ≈ 1

κ
cosh(κt) (4.58)

An observer in a locally inertial rest frame S near the horizon can be described by
the coordinates T and X. If a second observer in a reference frame S ′ is dropped
into the black hole from the origin of S, S ′ will have some acceleration a with respect
to S. This acceleration can be normalised to κ with respect to the coordinates of
an observer at infinity.

The following set of basis vectors will be used for a frame that is comoving in-
stantaneously with S ′ as the it starts falling into the black hole

eµ′ = eµ′(τ)

The 4-velocity vector of the comoving observer e0′ = u and its local time axis are
aligned if we we consider the observer to be in their own rest frame. e1′ can be
aligned with the acceleration of the observer, which coincides with the X axis of S.
Spatial rotations of the basis vectors can be neglected by choosing

e2′ = e2; e3′ = e3

We can relate the S basis vectors with the comoving basis vectors by a proper-time-
dependent Lorentz transformation

eµ′(τ) = Λν
µ′(τ)eν (4.59)

where

Λν
µ′ =


γ −νγ 0 0
−νγ γ 0 0

0 0 1 0
0 0 0 1

 (4.60)

ν(τ) is a proper-time-dependent velocity boost along the X axis. It is the velocity
required to bring the comoving frame up to the velocity of S ′. Using ν = tanh−1(κτ)
(4.59) can be written as

Λν
µ′(τ) =


cosh(κτ) − sinh(κτ) 0 0
− sinh(κτ) cosh(κτ) 0 0

0 0 1 0
0 0 0 1

 (4.61)
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Using the inverse of the above Lorentz transformation matrix Λ µ′
ν , we can obtain

the local tangent space basis vectors

[e0′(τ)]µ = Λ µ
ν (τ) [e0]ν =


cosh(κτ) sinh(κτ) 0 0
sinh(κτ) cosh(κτ) 0 0

0 0 1 0
0 0 0 1




1
0
0
0



=


cosh(κτ)
sinh(κτ)

0
0

 (4.62)

Similarly, for [ei′ ]
µ

[e1′ ]
µ =


cosh(κτ)
sinh(κτ)

0
0

 ; [e2′ ]
µ =


cosh(κτ)
sinh(κτ)

0
0

 ; [e2′ ]
µ =


0
0
1
0

 ; [e3′ ]
µ =


0
0
0
1

 (4.63)

The origin of S ′ at proper time τ is given by A(τ) where a spacelike hypersurface
exists at each moment of proper time defined by the spacelike vectors in (4.62) and
A(τ). Consider x0(τ) and x′(τ) to be the position vector of A(τ) and the spacelike
separation vector between some point B(τ) and A(τ) with respect to the origin of
S ′. B(τ) is described by the coordinate of S ′

ξµ = (ξ0, ξ1, ξ2, ξ3) = (τ, ξi)

Therefore, the spacelike separation vector is given by

x′(τ) = ξi
′
ei′(τ)

We can now define the position vector x(τ) of B(τ)

x(τ) = x0(τ) + x′(τ) = x0(τ) + ξiei′(τ) (4.64)

The corresponding position 4-vector is

xµ(τ) = x0(τ) + ξi
′
[ei′(τ)]µ (4.65)

The position 4-vector of the local tangent space origin is

xµ0(τ) =

[
1

κ
sinh(κτ),

1

κ
cosh(κτ), 0, 0

]
(4.66)

From the second term of (4.64), the 4-vector is

ξi
′
[ei′(τ)]0 = (0, ξ1′ , ξ2′ , ξ3′) · [cosh(κτ), sinh(κτ), 0, 0] = ξ1′ sinh(κτ) (4.67)

ξi
′
[ei′(τ)]1 = (0, ξ1′ , ξ2′ , ξ3′) · [sinh(κτ), cosh(κτ), 0, 0] = ξ1′ cosh(κτ) (4.68)

and
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ξi
′
[ei′(τ)]2 = (0, ξ1′ , ξ2′ , ξ3′) · [0, 0, 1, 0] = ξ2′ (4.69)

ξi
′
[ei′(τ)]3 = (0, ξ1′ , ξ2′ , ξ3′) · [0, 0, 0, 1] = ξ3′ (4.70)

Using the above 4-vector components and (4.65), we get

T (ξµ
′
) =

(
1

κ
+ ξ1′

)
sinh(κξ0′) (4.71)

X(ξµ
′
) =

(
1

κ
+ ξ1′

)
cosh(κξ0′) (4.72)

Y (ξµ
′
) = ξ2′ (4.73)

Z(ξµ
′
) = ξ3′ (4.74)

These are just the Minkowski coordinates in terms of the local coordinates of the
comoving frame. The line element for S ′ is

ds2 = −(1 + κξ1′)2(dξ0′)2 + (dξ1′)2 + (dξ2′)2 + (dξ3′)2 (4.75)

4.7 Calculation of Hawking Temperature via Grav-

itational WKB Approximation

Following [25], from the line element of S ′, the (1+1)-dimensional component is

ds2 = −(1 + κξ1′)2(dξ0′)2 + (dξ1′)2 (4.76)

Let there be a coordinate transformation ξµ
′ → qµ such as

ξ0′ → q0; ξ1′ → 1

κ

(√
|1 + 2κq1| − 1

)
(4.77)

Taking its differentials and then substituting into the (1+1)-dimensional component
of the line element for S ′ gives us

ξ0′ = dq0 (4.78)

dξ1′ =
dq1√
|1 + 2κq1|

(4.79)

ds2 = −(1 + κq1)2(dq0)2 + (dq1)2

= −(1 + 2κq1)(dq0)2 +
(dq1)2

(1 + 2κq1)
(4.80)

In the qµ coordinate frame, the Rindler horizon is at q1 = − 1
2κ

and at this point the
metric is singular

ξ1′(q1 = − 1

2κ
) =

1

κ

[√
|1 + 2κ

(
− 1

2κ

)
| − 1

]
=

1

κ
(4.81)

The Minkowski coordinates can be rewritten as

T =
1

κ

√
1 + 2κq1 sinh(κq0) (4.82)
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X =
1

κ

√
1 + 2κq1 cosh(κq0) (4.83)

For a scalar field of mass m, the Hamilton-Jacobi equation are given as

gµν∂µS∂νS +m2 = 0 (4.84)

Here, S is the classical action which we can separate into time and space components

S(q0, q1) = ωq0 + S(q1) (4.85)

ω represents the energy of a tunneling particle and the second term comes from the
spatial part of the classical action.

Using the (1+1)-dimensional Rindler spacetime metric in (4.79), we can work out
the inverse metric components and so our Hamilton-Jacobi equations become

0 = g00(∂0S)2g11(∂1S)2 +m2

= − (∂0S)2

1 + 2κq1
+ (1 + 2κq1)(∂1S)2 +m2 (4.86)

From (4.84), taking partial derivatives

∂0S(q0, q1) =
∂S(q0, q1)

∂q0
= ω (4.87)

∂1S(q0, q1) =
∂S(q0, q1)

∂q1
= ∂1S(q1) (4.88)

Substituting the above 2 equations into (4.85)

− ω2

1 + 2κq1
+ (1 + 2κq1)

[
∂1S(q1)

]2
+m2 = 0 (4.89)

From which we solve for S(q1) as follows

[
∂1S(q1)

]2
=

(
ω2

1 + 2κq1
−m2

)(
1

1 + 2κq1

)
ω2 −m2(1 + 2κq1)

(2κ)2 [q1 + (2κ)−1]2
(4.90)

then,

S(q1) =

∫ ∞
∞

∂1S(q1)dq1

= ± 1

2κ

∫ ∞
∞

√
ω2 − (1 + 2κq1)m2

q1 + (2κ)−1
dq1 (4.91)

The physical significance of the plus and minus signs are due to ingoing and outgoing
particles tunneling at the Rindler horizon in the positive and negative q1 directions
respectively.

Let

εeiφ = q1 +
1

2κ
; dq1 = iεeiφdφ (4.92)
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Considering ingoing particles that possess positive energy

S = lim
ε←0

1

2κ

∫ 2π

π

√
ω2 − [1 + 2κ(εeiφ − (2κ)−1]m2

εeiφ
(iεeiφdφ)

=
iω

2κ

∫ 2π

π

dφ =
iπω

2κ
(4.93)

Doing a similar calculation for outgoing particles also give us the same value for S.
Therefore, we can write the total spatial contribution to the action as

S0,total =
iπω

κ
(4.94)

by summing both the terms for ingoing and outgoing particles. Now, we will focus
on the time component of the classical action.

When X = 1
κ
, there is a rotation of coordinate axes into the complex plane which

we can see from the invariant interval

X2 − T 2 = κ2

=⇒ ±
√
X2 − 1

κ2
(4.95)

During this rotation, the amount of time occurring is defined as

T ≡ T0e
iφ (4.96)

Taking differentials on both sides gives us dT = iT0e
iφdφ. Defining X = 1

κ
to be

the radius at which the axes rotate, then T0 = 1
κ
. An imaginary time translation

ξ0′ ← ξ0′ − iπ
2

causes the axes to rotate

ω∆T = ω

∫
dT =

iω

κ

∫ 0

π
2

dφ = −iπω
2κ

(4.97)

The coordinates T and X individually add a factor of − iπω
2κ

to the rate of tunneling
across the Rindler horizon. Therefore, the total time component contribution to the
classical action is

ω∆T =
iπω

κ
(4.98)

From the gravitational WKB approximation, the tunneling rate is

Γ ∼ e−
1
~ [Im(

∮
pxdx)−ωIm(∆t)] (4.99)

The tunneling rate Γ is similar to a Boltzmann distribution of energy states

Γ ∼ e
− ω
TH (4.100)

where ω is the energy states and TH is the temperature of the thermal flux. Hence,

ω

TH
=

1

~

[
Im

(∮
pxdx

)
− ωIm(∆t)

]
(4.101)
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Using natural units ~ = 1

TH =
ω

Im
(∮

pxdx
)
− ωIm(∆t)

(4.102)

This is the Unruh temperature. Now,

Im

(∮
pxdx

)
= Im(∆t) =

πω

κ
(4.103)

Therefore, (4.102) becomes

TH =
κ

2π
(4.104)

This is the Hawking temperature. We can treat κ as a constant by choosing a certain
value of r at which we calculate the tunneling rates. Thus, we can write (4.103) as

TH(r) =
κ(r)

2π
=

M

2πr2
(4.105)



Chapter 5

The Information Paradox

In this chapter, we will take a look at the information paradox issue as proposed
by Hawking, and the consequences that arise as a result. We will ignore any of the
possible effects that quantum gravity can affect, as we will be working within the
confines of a limit where these effects become small where we will describe this limit
as ”solar system physics”.

The solar system physics consider various conditions known as niceness conditions
N such that physics is described more highly accurately as a small parameter ε
is taken to be arbitrarily less than 1. From [19], the niceness conditions for local
evolution are stated as follows

(N1) We introduce our spacelike slice, where we define our quantum state to be
on, to have an intrinsic curvature (3)R that should be a lot more smaller than the
planck scale: (3)R� 1

l2p
.

(N2) The spacelike slice is embedded in a 4-dimensional spacetime. We define the
extrinsic curvature of the slice to be K, which should be small: K � 1

l2p
.

(N3) In the neighbourhood of the spacelike slice, the 4-curvature should be small:
(4)R� 1

l2p

(N4) All quanta that are present on the spacelike slice should have wavelengths much
larger than planck length (λ � lp). The energy and momentum densities U and P
should be small on the slice compared to the planck density: U � l−4

p . All usual
energy conditions such as the dominant energy condition should be satisfied by any
matter present on the slice. Therefore, any matter on the slice can be referred to as
’good’.

(N5) As we evolve the spacelike slices to later slices, all the latter slices includ-
ing the initial one should also be ’good’. The lapse and shift vectors, which are
required to specify the evolution of the spacelike slices, should be changing smoothly
with position: dN i

ds
� 1

lp
, dN

ds
� 1

lp

If we incorporate locality with these niceness conditions, we see that the evolu-
tion of our spacelike slices lead to many major issues which we will discuss in this
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chapter.

5.1 Hawking Pair Production

We will now introduce a set of slices in a vacuum state that satisfy the niceness
conditions N . From [19], in the figure below, we show several initial slices that are
evolved in the right hand region of the slice. In the middle region of the slice where
it is evolved, there is a distortion in intrinsic geometry, leading to pair production of
particles in that region. This is due to the fact that the later evolved slice is not in
the natural vacuum state as in the initial slice. The very bottom part of the figure
shows matter that is immensely far away from the region of pair production. Due to
locality, there should be very weak correlation between the matter and the particle
pairs.

Figure 5.1: Evolution of Spacelike Slices [19]

The deformation of the geometry will give rise to particle-antiparticle creation. The
time and length scale denoted by L characterises the geometry in the region of
deformation. The particle pairs that are created in this region have wavelength
λ ∼ L. We will consider L ∼ 3 since at the horizon of a black hole of solar mass,
this is the length scale of curvature. The particle pair is denoted by c and b quanta.
The particle pair is in a state such as

|Ψ〉pair =
1√
2

(|0〉c |0〉b + |1〉c |1〉b) (5.1)

On our previously introduced spacetime slice, there will be some kind of matter
present in the |Ψ〉M state. However, the separation of the matter from our region of
pair production is of the order L

′ ∼ 1077 light years. Here, L
′
> L, where L is the

length and time scale describing the geometry at the deformation region.
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Our state on the spacelike slice now becomes

|Ψ〉 ≈ |Ψ〉M ⊗
1√
2

(|0〉c |0〉b + |1〉c |1〉b) (5.2)

Despite such large separation distances, the state |Ψ〉M still has some effect on the
Hawking pairs. We can write our matter state |Ψ〉M having a single up and down
spin as

|Ψ〉M =
1√
2

(|↑〉+ |↓〉)

If we consider |Ψ〉M to have no effect on the correlated pairs, the state on the
spacelike slice becomes

|Ψ〉 ≈ 1√
2

(|↑〉M + |↓〉M)⊗ 1√
2

(|0〉c |0〉b + |1〉c |1〉b) (5.3)

Since locality allows some small deviations

|Ψ〉 =
1√
2

(|↑〉+ |↓〉)⊗
(

1√
2

+ ε

)
|0〉c |0〉b +

(
1√
2

+ ε

)
|1〉c |1〉b ; ε 6 1 (5.4)

However, we cannot write a state that is drastically different such as

|Ψ〉 =
1√
2

(|↑〉M |0〉c + |↓〉M |1〉c)⊗
1√
2

(|0〉b + |1〉b) (5.5)

5.2 Quantification of Locality

From (5.3), there is only entanglement between the creation pairs b and c. They
have no correlations with M . Hence, our entanglement entropy is

Sent = −tr(ρ ln ρ) = ln 2 (5.6)

Similarly for (5.4)

Sent = −tr(ρ ln ρ) = ln 2− ε2(6− 2 ln 2) ≈ ln 2 (5.7)

However, (5.5) gives
Sent = 0 (5.8)

Consider the following limits

L

lp
> 1,

L
′

lp
> 1,

L
′

L
> 1 (5.9)

where lp is the planck length. From the first 2 inequalities, we see that length scales
are much greater than the planck length. The third inequality is due to the fact
that the matter M on the spacelike slice is drastically separated from the regions of
pair creation, which have length and time scales in the order of ∼ L.

As stated earlier, the niceness conditions give us ’solar system physics’. Therefore,
from (5.9)

Sent
ln 2
− 1 6 1 (5.10)
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5.3 Traditional Black Hole

The black hole can be described by the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (5.11)

where the coordinate singularity at r = 2M is the horizon. The curvature in the
region of the horizon is of the order R ∼ 1

M2 . We can call this a traditional black hole
as there is no information about the black hole present in the region of the horizon.
We get a time-independent black hole geometry from (5.11). We must make a set of
spacelike slices such that it does not become intersected by the curvature singularity
at r = 0, otherwise the niceness conditions N would no longer be valid everywhere
on the slice.

5.4 Spacelike Slices

We shall now proceed to make a spacelike slice that satisfy the niceness conditions.
For regions r > 4M , the slice is constant at t = t1. The slices inside the region
r < 2M become r = r1 = constant where M

2
< r1 <

3M
2

. Thus, the slice is not close
to the coordinate singularity = 2M .

These 2 parts of the slices can be connected together while still satisfying the nice-
ness conditions with a connector segment C. We shall focus on black holes that
begin with a flat space consisting of a shell of mass M converging to the origin
where r = 0. With a collapsing black hole, we can easily follow the r = r1 part of
the slice to early times and eventually extend it to r = 0 at which point the sin-
gularity has not yet formed. This as a whole can now be considered a spacelike slice.

These spacelike slices will now be evolved over time at a point where a new en-
tangled pair is produced as the previous pair increase in separation distance. For
the evolved slice, at r > 4M , t = t1 + ∆ and r = r1 + δ where δ1 6 M for the
part of the slice where r = constant. δ1 is considered to be very small. Once again,
the constant part of r and t is joined by a connector segment and r = constant is
brought down to r = 0 at early times of the black hole.

As the spacelike slice S1 evolves, there will be no change in the intrinsic geome-
try of the region where t = constant. We can describe the evolution of this part of

the slice with the lapse function N =
(
1− 2M

r

) 1
2 .

Similarly, taking the limit δ1 −→ 0, there is also no change in intrinsic geome-
try of the constant part of r as it evolves from the initial slice to the evolved slice.
As the initial slice S1 evolves to later slices Sn+1, the connector segment between
the 2 constant parts become more and more stretched, which can be interpreted
as the fourier modes present near the horizon becoming stretched to longer wave-
lengths, leading to pair production. The constant parts are pushed away further
over each evolution. Physically, the connector region has dimensions of order M
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(3km). These slices all satisfy the niceness conditions. The figure below provides a
visual representation of the spacelike slice being evolved to a later one, as introduced
in [19].

Figure 5.2: Schematic Set of Coordinates for the Black Hole [19]

5.5 Leading Order Hawking State

We will now focus on the leading order Hawking state of entangled pairs and analyse
the consequences of taking small and order unity corrections. Clarifying the process
of pair production near the black hole horizon, as the initial spacelike slice evolves
to a later one, the connector region stretches and the initial pair of quanta c1,
b1 and the matter |Ψ〉M move away from the region of pair creation, resulting in
the creation of a new pair of quanta c2, b2 via a Schwinger process. There is no
correlation whatsoever between the matter or previously produced quanta pair with
the newly produced pair. There is only entanglement within the pairs of quanta. As
more pairs of quanta are produced, the entanglement continues to increase despite
the introduction of small corrections to the leading order state. The state on the
spacelike slice after a new correlated pair of quanta is produced due to stretching of
the connector region is given by

|Ψ〉 ≈ |Ψ〉M ⊗
1√
2

(
|0〉c1 |0〉b1 + |1〉c1 |1〉b1

)
(5.12)

Calculating the entanglement entropy of b1 with M , c1

Sent = ln 2 (5.13)
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As we evolve the spacelike slices, |Ψ〉M undergoes negligible change as this part of
the slice does not have any evolution. After c2, b2 are produced due to the stretching
of the middle part of the slice, the new state on the spacelike slice is

|Ψ〉 ≈ |Ψ〉M ⊗
1√
2

(
|0〉c1 |0〉b1 + |1〉c1 |1〉b1

)
⊗ 1√

2

(
|0〉c2 |0〉b2 + |1〉c2 |1〉b2

)
(5.14)

The entanglement entropy of the outgoing set of quanta {b1, b2} with the in-going
quanta and matter {c1, c2,M} is

Sent = 2 ln 2 (5.15)

Generalising this for N steps, our state on the spacelike slice becomes

|Ψ〉 ≈ |Ψ〉M ⊗
1√
2

(
|0〉c1 |0〉b1 + |1〉c1 |1〉b1

)
⊗ 1√

2

(
|0〉c2 |0〉b2 + |1〉c2 |1〉b2

)
...

⊗ 1√
2

(
|0〉cN |0〉bN + |1〉cN |1〉bN

)
(5.16)

Whose entanglement between {bi} and M , {ci} is

Sent = N ln 2 (5.17)

The black hole mass Mhole will continuously decrease due to its evaporation, which
is the result of Hawking pairs being produced over the evolution of the spacelike
slices. If we reach a point where Mhole ∼ mpl, then our niceness conditions N will
not all be satisfied as R 6 l−2

p no longer holds. Thus, we will not evolve the slices
any further.

Figure 5.3: Evolution of Spacelike Slices at Region of Pair Production [19]

If a black hole does not evaporate completely and leaves something behind, we
refer to that as a remnant. From [19], it is stated that such a thing referred to as
remnants exist if we have a set of objects that have mass and size less than the
bounds provided below exist

m < mremnant, l < lremnant (5.18)
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and yet these remnants can have an entanglement that can be arbitrarily high with
systems that are far away from the object. An object that can have a number of
possible states similar to or greater than N , then it can have an entanglement like
(5.17) with another system. Therefore, remnants will possess energy and size that
satisfy the bounds stated above, but yet can have unbounded degeneracy.

We shall now discuss the few possibilities that the concept of applying spacelike
slices to describe the activities of the traditional black hole near the horizon entails,
and what problems that arise from such possibilities.

One possibility is that the final state that we are left with after complete evap-
oration of the black hole is a mixed state. This is the result of the set of all emitted
quanta {bi} having an entanglement of Sent ∼ N ln 2 6= 0 even though they have
nothing to be entangled with. This leads to the violation of unitarity as we get a
mixed state after evolution of the spacelike slices even though we initially started
off with a pure state.

The second possibility is the idea of remnants actually existing when the black
hole stops evaporating after a certain point where Mhole ∼ mremnant, which is what
{bi} will have entanglement with. However, the existence of remnants strays from
the expected behaviour of quantum systems and it can lead to loop divergences.

So far, we have shown that as our spacelike slices evolve, pair creation occurs and
our entanglement entropy increases by a factor of ln 2 each time. However, at the
endpoint of the black hole evaporation there can be 2 possibilities, both individually
leading to some violations. We cannot assume which possibility will actually occur
as the niceness conditions N are violated at this endpoint. The evaporation of the
black hole also has a major distinction from the radiation of a normal hot body.
The stretching of spacelike slices for black holes are not applicable to that of a hot
body as the radiation from a hot body is directly leaving from the atoms in the
body and thus, there is a separation of zero between the matter in the body and the
radiation. Whereas for black holes, the matter making the black hole |Ψ〉M after
half the evolution is separated from the region of pair production by a distance of
order

L ∼M

(
M

mp

)2

∼ 1077 light years (5.19)

5.6 Stability of the Hawking State

We have not yet imposed any small corrections to the state (5.16), which should
exist. Therefore, what we have covered so far is just an initial outline of the Hawking
argument. We shall eventually introduce these small corrections which can arise from
small interactions between consecutively produced pairs or instanton effects leading
to |Ψ〉M having some effects on the pairs

Ainstanton ∼ e−Sinstanton , Sinstanton ≈ GM2 (5.20)
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where these effects are exponentially small. Here, the action of the standard instan-
ton is used that is present in black hole physics

ds2 = −
(

1− 2M

r

)
dτ 2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2
2 (5.21)

where τ = τ + 8πGM . When we consider small corrections into the state (5.16),
the entanglement occurring among the set {bi} and M , {ci} still remains and the
paradox is not solved. The conclusion that is reached in the original Hawking argu-
ment does not change. This fact is known as the ”stability of entanglement of the
Hawking state”.

We will now denote the state of the matter shell that fell into the black hole, as
well as all the in-falling quanta c before the time step tn as ΨM,c. The set of all
outgoing quanta produced before this time step is ψb. |ΨM,c, psib(tn)〉 represents the
state of the modes at tn. Evolving the spacelike slice to the step tn+1

|ΨM,c, ψb(tn)〉 → |ΨM,c, ψb(tn)〉 1√
2

[
|0〉cn+1

|0〉bn+1
+ |1〉cn+1

|1〉bn+1

]
(5.22)

Here, the term in the box brackets represent the state of the newly created pair.
We will show that imposing small corrections does not circumvent around the possi-
bilities of having mixed states or remnants at the endpoint of black hole evaporation.

As our spacelike slice evolves, we will get a pair creation in one mode at each step
and the mode can only have an occupation number of 0 or 1. The new region that
is created due to the stretching of the connector part is spanned by 2 vectors with
the basis states

S(1) =
1√
2

(
|0〉cn+1

|0〉bn+1
+ |1〉cn+1

|1〉bn+1

)
S(2) =

1√
2

(
|0〉cn+1

|0〉bn+1
− |1〉cn+1

|1〉bn+1

)
(5.23)

At time tn, we have the state |ΨM,c, ψb(tn)〉 where there is entanglement between the
emitted quanta bi and the shell of matter inside the black hole M , and all in-going
quanta ci up to tn. Now, for the quanta inside the hole we can choose a basis of
orthonormal state ψn and similarly for bi we can choose χn to be its orthonormal
basis. Hence,

|ΨM,c, ψb(tn)〉 =
∑
m,n

Cmnψmχn (5.24)

We can make unitary transformations on ψi and χj

|ΨM,c, ψb(tn)〉 =
∑
i

Ciψiχi (5.25)

The reduced density matrix describing bi is given by

ρij = |Ci|2δij (5.26)
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Thus, at time step tn, the entanglement entropy is

Sent(tn) = −
∑
i

|Ci|2 ln |Ci|2 (5.27)

All the bi quanta that have been produced up to this time step tn is left unaffected as
we evolve the spacelike slice to the next time step tn+1. Otherwise, locality would be
violated since the emitted quanta are too largely separated from the matter inside
the black hole or the in-going quanta. Thus, at tn+1

χi → χi (5.28)

ψi → ψiS
(1) + ψ

(2)
i S(2) (5.29)

ψi evolves to a tensor product to ψi that describes (M, ci) and S(i). This evolved
state represents the state of the new pair that is created. From unitarity of evolution

||ψ(1)
i ||2 + ||ψ(2)

i ||2 = 1 (5.30)

For the leading order evolution

ψ
(1)
i = ψi, ψ

(2)
i = 0 (5.31)

Substituting (5.29) into the state (5.25) at the time step tn+1

|ΨM,c, ψb(tn+1)〉 =
∑
i

Ci

[
ψiS

(1) + ψ
(2)
i S(2)

]
χi (5.32)

We will now compute the entanglement Sent(tn+1) for this state at tn+1 between the
b quanta (which includes all quanta up to the one produced at tn+1) and (M, c)
using (5.27). We can write the state (5.32) as

|ΨM,c, ψb(tn+1)〉 = S(1)

[∑
i

Ciψ
(1)
i χi

]
+ S(1)

[∑
i

Ciψ
(2)
i χi

]

≡ S(1)Λ(1) + S(2)Λ(2) (5.33)

where
Λ(1) =

∑
i

Ciψ
(1)
i χi, Λ(2) =

∑
i

Ciψ
(2)
i χi (5.34)

From normalisation of the state (5.33) consisting of the basis vectors S(1), S(2) that
span the newly created connector region, we get

||Λ(1)||2 + ||Λ(2)||2 = 1 (5.35)

We will now define corrections to be small if

||Λ(2)||2 < ε, ε� 1 (5.36)

If this bound is not satisfied, the corrections imposed will be of the order unity.
Since we are working with the traditional black hole, we know that the effect of the
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b quanta on our spacelike slice is small under the niceness conditions N . Thus, we
can find the S(1) state when a pair is created and the probability for finding the S(2)

state will be a lot less than unity. The above condition for small conditions still
allows the amplitude for S(2) to be large for ψi if Ci is small enough. Hence, if we
have a probability that is close to unity for the newly created pair to be in the S(1)

state, then we can have small corrections consistent with the above bound.

5.7 Entropy Bounds

We shall now show that even after imposing small corrections to the state (5.33), our
entanglement entropy will continue to increase after every time step as we evolve our
spacelike slice. We will call our entanglement entropy at tn to be S0. We will prove
that the increase in entropy after each step should be close to the value ln 2 − 2e,
considering the bound (5.36) holds.

Let’s consider a system in a pure state that consists of smaller subsystems denoted
by A, B, and C. Then S(A) ≡ −trρA ln ρA gives the entanglement entropy of sub-
system A with the rest of the subsystems B,C. Here, ρA is the density matrix for
the subsystem, A. Likewise, S(A + B) is the entanglement entropy of the system
(A+B) with C.

We shall now work with 3 subsystems. The set b consist of all the outgoing quanta
that are produced up to and including the step tn+1, which we consider to be one
subsystem. The entropy at this step is denoted as S0. The 2nd subsystem is (M, c)
containing the shell of matter in the black hole and all the complement quanta of
the set b that have entered the black hole. The pair created in the next step can
have some weak interactions with this subsystem, leading to entanglements that we
never considered in the Hawking state of leading order. Finally, the 3rd subsystem
is the pair p ≡ (cn+1, bn+1) created in the next step tn+1. We assume that the set of
quanta b does not have any impact on future pair creation and thus, at tn+1 we still
have

Sb = S0 (5.37)

We eventually see that S(b, bn+1) > Sn − 2e, which shows that we still have an
increasing entanglement entropy over time despite imposing small corrections. We
shall now introduce 3 lemmas in order to show this and prove the stability of entan-
glement of the Hawking state of leading order. The proof for the following lemmas
can be found in [19].

Lemma 1: Considering the bound (5.36) be satisfied, the entanglement of the
new pair p with the rest of the system is bounded as

S(cn+1, bn+1) ≡ −trρ(cn+1,bn+1) ln ρ(cn+1,bn+1) < ε (5.38)

Lemma 2:
S(b+ p) > S0 − ε (5.39)

Lemma 3:
Scn+1 > ln 2− ε (5.40)
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As stated before, if at step tn we have entanglement entropy S0, in the next step
tn+1 the Hawking state of leading order can change by a very small amount less
than ε � 1, satisfying our bound (5.36). If so, then the entanglement entropy at
this step of b1, ..., bn+1 is

S(b+ bn+1) > S0 + ln 2− 2e (5.41)

Therefore, considering the bound is satisfied, we will have an increase in entropy
after each step during the evolution. To prove this, we will apply the theorem of
strong subadditivity of entropy for 3 systems

S(A+B) + S(B + C) > S(A) + S(C) (5.42)

Setting A = b, B = bn+1 and C = cn+1, we get

S(b+ bn+1) + S(p) > S(b) + S(cn+1) (5.43)

Using (5.37), (5.40) and S(p) < ε which comes from the proof of lemma 1, we get

S(b+ bn+1) > S0 + ln 2− 2e (5.44)

From this, we have proven that considering that the bound holds, our entanglement
entropy after each step increases by ln 2 − 2e. Therefore, entanglement does not
go down but continues to increase and we still get the issues that arise from the
possibilities of getting remnants and mixed states at the endpoint of black hole
evaporation unless it is possible for us to have order unity corrections.



Chapter 6

Bekenstein-Hawking Entropy

6.1 Quantisation of Space

The simple hypothesis of non-commutative spatial dimension gives rise to a spectrum
that is very similar to that of quantum loop gravity and it resembles a black hole
spectrum. We follow from paper [30], that the quantisation of space has lead to a
discrete spectrum of the black hole area. The discrete spectra is expressed in terms
of 2π~Θ, and it takes the form,

An = 2π~Θ

(
n+

1

2

)
(6.1)

Here, n can be assumed to be the number of quantities of space. However, n is
speculated to be rather the idea of state number instead of space quantities. The
concept of n could be explained but the harmonic oscillator having different energy
states with a zero energy state at the ground.

Assuming the introduction of mass or energy into the space in question would en-
able excitation of its quanta. Hence, we can imply that there is a direct relationship
between the energy absorbed by the space and the discrete area spectrum mentioned
in (6.1). This relationship is described to be

En = αAn (6.2)

where α = kΩ and k is an unknown dimensionless constant, and Ω is introduced in
order to set the dimension.

The average area of space quanta is expressed in the form,

〈A〉 =

∑∞
n=0Ane

−βAn∑∞
n=0 e

−βAn
(6.3)

The dimension of An is of area and the argument (−βAn) is dimensionless, therefore,
the dimension of β should be the inverse of area.

This ensures that we define β as β = α
kBT

where kB and T have their usual meanings,
kB is the Boltzmann constant and T is the system temperature. Also, equation (6.2)
is expressed using the partition function that is

∑∞
n=0 e

−βAn .
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With the incorporation of all of that and simplification, we can express the average
energy equation as,

〈A〉 = ~Θ

(
1 +

2

e2β(~Θ) − 1

)
(6.4)

Furthermore, we can write the relationship between the total area of N quanta
and the average area of each quanta, assuming there exists no interaction between
the space quanta. It will take the form,

A0 = N〈A〉 (6.5)

Since we began with the assumption that the space quanta do not have interactions
among themselves, the partition function of the system can be expressed as,

Z = (Z)N =

(
e−β~Θ

1− e−2β~Θ

)N
(6.6)

6.2 Entropy Calculation

Now, we calculate the entropy of the system using the partition function;

S =

(
kBc

3A0

~G

)
γ(T ) (6.7)

where γ(T ) is defined as

γ(T ) =

(
b

T
−∆

)
with b = kTp and Tp = Planck Temperature

∆ =

(
e
b
T − 1

e
b
T + 1

)
ln
(
e
b
T − e

b
T

)
Now, for specific cases, the entropy equation will show certain characteristics. If we
set the temperature to zero (T −→ 0), entropy tends to go to zero (S −→ 0). The
entropy we defined is a function of temperature and area. On the contrary, however,
Bekenstein-Hawking entropy is a function of the area only. Our task is to conjure
up a connection between these two entropies.
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6.3 Maximum Entropy

Maximising the entropy equation for temperature, we get

∂S

∂T
= 0 =⇒ T =

KTp

ln
(√

5+1
2

)
Putting the temperature value to the entropy equation will get us the maximum
entropy,

Smax =

(
kBc

3A0

~G

)
ln

√
5 + 1

2
(6.8)

where the entropy is a function of the surface area only.

The entropy obtained has similarities with the Bekenstein-Hawking entropy except
the coefficient, which is slightly different. The coefficient for the maximum entropy
is,

ln

(√
5 + 1

2

)
≈ 1

2

This gives us an entropy,

Smax ≈
(
kBc

3A0

2~G

)
(6.9)

6.4 Origin of the Entropy

If the maximised entropy is used to explain the entropy of black holes, then it can be
said that the origin of this entropy is due to the excitation of space quanta. Energy
existing in space is spread out evenly among the space quanta, but since the quanta
of space is in an excited state, the energy may be dividing in different ways.

The source of the black hole entropy is the result of our lack of information about
the possible number of states that space quanta can acquire in the presence of some
external energy.

This is in regard of when, for example, a finite energy enters the black hole’s horizon.
The space quanta will receive the energy and become excited. However, we do not
know the extent of this excitation. This lack of information leads us to having an
entropy of the black hole and the space-time.

From the above equations, we can see that we arrive with an expression for the
entropy by maximising the temperature. This gives us a maximum entropy. Fur-
thermore, we know from thermodynamics and statistical mechanics that a system
is in equilibrium when it is at its maximum entropy. So, therefore, this maximised
entropy suggests that this system is in thermodynamic equilibrium.
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6.5 Bekenstein-Hawking Entropy

In a paper [9], published by Jacobson in 1995, he showed that Einstein’s gravity
equation can be obtained from thermodynamic equilibrium by incorporating Claus-
sius equation. Jacobson used the Bekenstein-Hawking entropy and incorporated it
into the Claussius equation,

SBH =

(
kBc

3A0

4

)
−→ ∂S =

∂Q

T
(6.10)

where A0 is the area of the horizon.

∂A0 = −
∫
λRabk

akbdλdA

and

∂Q = −
∫
λTabk

akbdλdA

By carrying out a series of calculations, the Einstein Field equation was obtained.

Rab −
1

2
gabR + Λgab =

8πG

c4
Tab (6.11)

However, if we place the entropy equation that we obtained in equation (6.9), we
formulate the Einstein Field equation,

Rab −
1

2
gabR + Λgab =

4πG

c4
Tab (6.12)

If we expand this equation in the case for weak fields, we get the equation for
Newtonian gravity,

F =
GMm

2r2

Except there is a 2-factor in the denominator. We derived the Bekenstein-Hawking
entropy considering maximum entropy, and it shows that if we take a factor of 2〈A〉
instead of 〈A〉, the coefficient issue gets resolved. So, we take

A0 = 2N〈A〉

This leads us to have the equation for Newtonian gravity as follows,

F =
GMm

r2

Now, for the maximum entropy equation, we have

Smax =
kBc

3A0

2~G
ln

(√
5 + 1

2

)

where the constant numerical value corresponds to,

ln

(√
5 + 1

2

)
≈ 1

4
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Furthermore, the entropy that we obtained is very similar to the Bekenstein-Hawking
entropy.

error =
Smax − SBH

SBH
= 0.037

Now, since we get the error to be very minute, we can finally analyse that the en-
tropy we obtained is equal to the Bekenstein-Hawking entropy. By quantising space,
and maximising entropy for thermodynamic equilibrium, we obtain the Bekenstein-
Hawking entropy

Smax = SBH

This paves the way to understanding that gravity is nothing but the excitations of
space quanta.



Chapter 7

Spectroscopy of Quantum Black
Holes

7.1 Quantisation of a Black Hole

In [8], Bekenstein and Mukhanov show that in quantum gravity, for various series of
quanta that are produced near the black hole horizon, they all display characteris-
tics of thermal radiation, which is due to the degeneracy of near levels for quantum
transitions, and that a black hole should give us a discrete mass spectrum. The
spectral lines from the line emission should be broad and separate.

In [8], it is stated that quantum systems that have a finite size usually display
a discrete energy spectrum. Therefore, a black hole should also give us a similar
mass spectrum. The smallest black holes can be compared to elementary particles
and thus, can also be described by some quantum numbers such as mass, charge,
spin, etc. Hence, the horizon area of a black hole can be quantised in integers. As
the black hole gets larger, it becomes more classical. The black hole horizon area is

An = α~n; n = 1,2...,; (G = c = 1) (7.1)

where α is a pure number. (7.1) implies that if we assume the commutativity of
the mass and area operators that is insinuated by the classical relation A = 16πM2,
we should get a discrete mass spectrum for a non-rotating neutral black hole. The
multiplicity (or degeneracy) of an energy level, n, can be denoted by g(n). We can
then indentify the Bekenstein-Hawking entropy of the black hole in the nth level
with the natural logarithm of the multiplicity

αn

4
+ C = ln g(n)

We naturally assume that at the non-degenerate ground state, SBH(n = 1) = 0 and
g(1) = 0, which leads us to choose

g(n) = exp
α(n− 1)

4

=⇒ g(n) = eSBH
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However, g(n) has to be integral so

α = 4 ln k; k = 2, 3, 4...

and
g(n) = e4 ln k

(n−1)
4 = kn−1 (7.2)

Our horizon area can then be written as

An = 4n~ ln(k)

A value of k = 2 is chosen as it is seen to be best fitting for several reasons. For
this value, our entropy spacing for consecutive energy levels becomes 1 bit and our
multiplicity leads to g(n) = 2n−1. Interestingly, this also exactly represents the
number of ways a black hole starting from a horizon area of A = 0 can be raised up
the ladder of levels n in all possible ways. Similarly, a black hole at the level n can
also decay in such number of steps to a horizon area of A = 0 where we cease to
have a black hole. Hence, we get

SBH = (n− 1) ln 2; α = 4 ln 2

For zero charges and spin, mass spectrum is of the form

M ∝
√
n; n = 1, 2, ...

Therefore, the fundamental frequency for the energy spacing between consecutive
energy levels n =⇒ n− 1 in the case of M � ~ is

ω̄ =
dM

~
=

ln 2

8πM
(7.3)

which agrees with Bohr’s correspondence principle, stating that at larger quantum
numbers, we should get oscillation frequencies that are more classical. Our line
emissions should consist of lines concentrated at integer multiples of ω̄. However,
below this fundamental frequency we should get little to no radiation at all, otherwise
we should get effects of quantum gravity above the Planck scale. Also, below this
frequency, the quantum black hole cannot absorb a single quantum.

7.2 De-excitation Probabilities

In order to learn more about the properties of the emissions near the horizon of our
quantum black hole, we shall look at some de-excitation probabilities, as explained
in [8]. We define ∆t to be some interval of time corresponding to a sequence of inte-
gers {n1, n2, ...nj}. Here, nj denotes the number of levels jumped down by the black
hole in the jth jump. After each jump, a particle of some species having energy
nk~ω̄ (k = 1, 2, ..., j) is emitted. For a sequence having zero length {0} (j = 0), the
black hole does not decay at all in ∆t.

For a length j, we can have a corresponding conditional probability P∆t({n1, n2, ...nj} |
j). For normalisation ∑

{n1,n2,...nj}

P∆t({n1, n2, ...nj} | j) = 1 (7.4)
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where all nk are non-zero. P∆t(j) represents the probability that in the duration
of ∆t, there are exactly j jumps occurring. Thus j quanta are also emitted over
this duration. If we can consider P∆t(j) to be small enough, then the decay over
this interval is very little, leaving the black hole to have almost the same mass.
Therefore, we can consider the immediate next interval ∆t to also be equal to the
previous. Hence

P2∆t(1) = P∆t(0)P∆t(1) + P∆t(1)P∆t(0) = 2P∆t(0)P∆t(1) (7.5)

The above simply means that in the interval of 2∆t, we may either have no jumps
in the first half of the interval and a single jump in the second half, or the reverse.
We can generalise (7.5) to any odd j

P2∆t(j) = 2P∆t(0)P∆t(j) + 2P∆t(1)P∆t(j − 1) + ...

...+ 2P∆t(j/2 + 1/2)P∆t(j/2− 1/2) (7.6)

Similarly, we can do the same for even j

P2∆t(j) = 2P∆t(0)P∆t(j) + 2P∆t(1)P∆t(j − 1) + ...+ [P∆t(j/2)]2 (7.7)

Following from (7.5), for j = 0

P2∆t(0) = P∆t(0)P∆t(0) = [P∆t(0)]2 (7.8)

This is the survival probability of the black hole over the interval 2∆t in a given
level. The solution to (7.8) is given by

P∆t(0) = e−
∆t
τ (7.9)

Here, τ is introduced as a survival timescale that is later defined to be the mean
time between quantum leaps. Substituting the above solution into (7.5)

P2∆t(1) = 2e−
∆t
τ P∆t(1)

which gives us a solution for P∆t(1)

P∆t(1) =

(
∆t

τ ∗

)
e−

∆t
τ (7.10)

Now, for P∆t(2), we can similarly get a functional equation by substitution of (7.9)
and (7.10) into (7.7)

P2∆t(j) = 2e−
∆t
τ P∆t(j) + 2

(
∆t

τ ∗

)
e−

∆t
τ P∆t(j − 1) + ...+ [P∆t(0)]2

which we can solve to get

P∆t(2) =

(
1

2

)(
∆t

τ ∗

)2

e−
∆t
τ (7.11)

From the above solutions, we can assume that for any j

P∆t(j) =

(
1

j!

)(
∆t

τ ∗

)j
e−

∆t
τ (7.12)
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In order to verify this, we substitute (7.9) and (7.12) into (7.6)

P2∆t(j) = 2e−
∆t
τ

(
1

j!

)(
∆t

τ ∗

)j
e−

∆t
τ + 2

(
∆t

τ ∗

)
e−

∆t
τ

1

(j − 1)!

(
∆t

τ ∗

)j−1

e−
∆t
τ

+...+ 2
1

(j/2 + 1/2)!

(
∆t

τ ∗

)j/2+1/2

e−
∆t
τ

1

(j/2− 1/2)!

(
∆t

τ ∗

)j/2−1/2

e−
∆t
τ

=⇒ P2∆t(j) = 2

(
∆t

τ ∗

)j
e−

2∆t
τ

[
1

0!j!
+

1

1!(j − 1)!
+

1

2!(j − 2)!
+ ...

+
1

(j/2 + 1/2)!(j/2− 1/2)!

]
Multiplying by j! we get,

(j!)P2∆t(j) = 2

(
∆t

τ ∗

)j
e−

2∆t
τ

[
1 + j +

j(j − 1)

2!
+
j(j − 1)(j − 2)

3!
+ ...

+
j(j − 1)...(j/2 + 1/2)

2(j/2)!

]
=⇒ (j!)P2∆t(j) = 2

(
∆t

τ ∗

)j
e−

2∆t
τ [2j−1]

2j−1 − 1 = j +
j(j − 1)

2!
+
j(j − 1)(j − 2)

3!
+ ...+

j(j − 1)...(j/2 + 1/2)

2(j/2)!
(7.13)

which is just the binomial expansion of (1 + 1)j. Therefore, (7.12) is correct for all
odd j. In a similar fashion, we can also verify (7.12) for even j. Now, checking the
normalisation for P∆t(j)∑

j

P∆t(j) =
∑
j

(∆t
τ∗

)j

j!
exp

(
−∆t

τ

)

=⇒
∑
j

exp

(
∆t

τ ∗
− ∆t

τ

)
(7.14)

For normalisation, we must set τ ∗ = τ

P∆t(j) =

(
1

j!

)(
∆t

τ

)j
e−

∆t
τ (7.15)

This clearly resembles Poisson’s probability distribution. Hence, we have proven
that the number of quanta j that are emitted during the interval P∆t follows a Pois-
son probability distribution.

As shown in [8], we shall now take a look at one series of quanta and focus on
its probability distribution. P∆t(k | nkω̄) refers to the probability that in the inter-
val ∆t, there will be an emission of k quanta, each of which possess a frequency of
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nkω̄. If there are j jumps occurring over this interval, the many ways that we can
choose k quanta out of j is given by

Cj
k =

j!

k!(j − k)!

where 2−(n1+n2+...+nj−k)(2−nk)k gives the probability for each one of the selections.
Without delving into too much explicit details

P∆t(k | nkω̄, j) =
j!

k!(j − k)!

(
1− 1

2nk

)j (
1

2nk

)k
(7.16)

Multiplying by P∆t(j) and summing over all j > k,

P∆t(j)P∆t(k | nkω̄, j) =
∞∑
j=k

(∆t/τ)j

(j − k)!
e−

∆t
τ

(
1

k!

)
[1− 2−nk ]j[2nk − 1]−k

=⇒ P∆t(k | nkω̄) =

(
1

k!

)
(xnk)

ke−xnk ; xn =

(
∆t

τ

)
2−n (7.17)

Once again, we have arrived at a Poisson probability distribution. However, so far
we have assumed that we should get a thermal distribution. Thus, we shall try to
show that our Poisson distributions can be consistent with that of a thermal one.

We consider a random sub-volume consisting of a certain amount of quanta in a
black-body cavity that is held at temperature, T . We should get a Boltzmann dis-
tribution for every quantum that is extracted from this sub-volume. For a single
quantum that is taken out possessing frequency ω has the probability Ae−

~ω
T . The

probability of taking out k quanta from a series of j drawings of frequency ωk is
given by

Cj
kA

ke−
k~ωk
T Aj−k

j−k∏
i=1

e−
~ωi
T

This is summed over all ωi that are distinct from ωk. Due to normalisation

A
∑
ω

e−
~ω
τ = 1

If ωk is not present in the summation, then there will be a corresponding factor of

1− Ae−
~ωk
τ

in the product. Therefore, we will get a distribution very similar to that of (7.16)

for k, except Ae−
~ωk
τ replaces the term 2−nk .

From this, we can see that (7.17) can indeed be consistent with thermal radia-
tion. Various other series of quanta are looked at in greater detail in [8], which all
give distributions that can be interpreted as thermal radiation.
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7.3 Area Spectrum of Quantum Black Holes

The whole notion of quantising black holes was made due to the inevitable observa-
tion that the horizon area of nonextremal black holes show classical characteristics.
It behaves as though a classical adiabatic invariant. In reference to the Ehrenfest
principle, an adiabatic invariant can be explained as a quantum subject with a dis-
crete spectrum.

We know from Christodoulou’s paper [4], when a nonextremal black hole absorbs an
uncharged particle with negligible radius, the action can be reversed if the particle is
inserted about the radial turning point of its motion. In this regard, the black hole
area remains unchanged and changes in other black hole attributes can be reversed
using other reversible processes. However, the particle will be subjected to disagree-
ments with the Heisenberg uncertainty principle, as it can not be at the horizon
and at a radial turning point of its motion. This way the particle’s momentum and
location will both be known, which clearly is a violation.

From [5], we know that the injection of a neutral particle will definitely contribute
to an increase in the black hole’s horizon area. However, this increase can be mini-
malised if the particle is in such a state where the centre of mass of the particle is
at a finite distance a away from the event horizon.

In that case,
∆Amin = 8πµa (7.18)

where A = black hole surface area, µ = rest mass of the particle.

From this we can see that for a point particle which has a = 0, the change in
horizon area would also be ∆Amin = 0, recalling Christodoulou’s reversible pro-
cesses. Regardless, a quantum particle will inevitably be subjected to quantum
uncertainty, therefore, a(radius of the particle) cannot be smaller than ~

µ
which is

its Compton wavelength.

This would produce a minimal boundary on the increase of horizon area due to
the absorption of a neutral particle. Administering the lower bound on the mini-
malised area equation, we get

∆Amin = 8πµ

(
~
µ

)
So, we can write,

∆Amin = 8πl2p (7.19)

where lp is the Planck length. The Planck length is lp = (G
c3

)
1
2~ 1

2 , and in natural
units G = c = 1.

This lower bound is applicable only for nonextremal black holes, hence, there is
a universal minimum increase in the horizon area for such black holes as soon as
quantum effects are introduced to the equation.
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Apart from neutral particles, a similar lower bound equation was found for charged
particles in [17],

Amin = 4l2p (7.20)

The fundamental physics that excludes the possibility of a complete reversible pro-
cess is the Heisenberg uncertainty principle. For charged particles, however, an-
other physical mechanism must be added. This mechanism is the Schwinger dis-
charge(vacuum polarisation) of the black hole. In QFT, and especially QED, vacuum
polarization is a processs that describes the production of virtual electron-positron
pairs due to an electromagnetic field in the background. These pairs disrupt the
original electromagnetic field by changing the distribution of the charges and cur-
rents. In this case, however, we can sense that the Schwinger discharge mechanism
is the production of paired particles-antiparticles at the event horizon.

The universal lower bound is a clear beckon in favour of a uniformly spaced area
spectrum for quantum black holes. The quantisation condition for the area spectrum
should be of the form,

An = γl2pn n = 1, 2, 3.... (7.21)

where γ is a dimensionless constant.

7.4 Black Hole Background

The black hole perturbations were taken under a wave analysis and it was noted
that, at later times, all perturbations seem to decrease in frequency like that of a
bell that ceases to ring in time.

Therefore, quasinormal modes were introduced. Quasinormal modes would be called
normal modes if the perturbations were to ring forever, but amplitude of oscillation
decays in time. These quasinormal mode frequencies are characteristics of the black
hole itself.

Outside of the black hole horizon, the perturbation fields can follow a Schrodinger-
like wave equation which has some time dependence,

∂2ψ

∂r2
∗

+ [ω2 − V (r)]ψ = 0 (7.22)

where r∗ is the tortoise radial coordinate that can be related with the spatial r by,

dr∗ =
dr

(1− 2M
r

)

and the effective potential is,

V (r) =

(
1− 2M

r

)[
l(l + 1)

r2
+
σ

r3

]
(7.23)
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with µ = black hole mass, l = multipole moment index, σ = 2, 0, 6 for scalar,
electromagnetic, and gravitational perturbations, respectively.

The quasinormal modes which are the black hole’s unperturbed oscillations are the
solutions to the wave equation but with the assigning of some physical boundary con-
ditions. These conditions have completely emitting waves at spatial infinity(r −→
+∞) and completely absorbing waves crossing the event horizon(r −→ −∞).

Pole singularities in the scattering amplitude of the background give rise to quasi-
normal mode frequencies. The ringing oscillations are located at a complex plane
characterised by Im(ω) < 0,

ω = ω′ + iω′′

So, for a given l, there exists a number of quasinormal normal modes, giving way to
decreasing relaxation time.

However, the real part of the frequency tends to become a constant value as n
becomes greater. Bohr’s Correspondence principle states, ”transition frequencies at
large quantum numbers should equal to classical oscillation frequencies.” Hence, the
asymptotic behaviour, when n −→ ∞, of the ringing frequencies is of much impor-
tance.

Taking the ringing frequencies,

ω = ωR − iωI

then τ = ω−1 is the proper time for the black hole to return to an inactive state.
Hence, this relaxation time is generally very small when n −→∞.

Hans Peter Nollert, in his paper [7] found the ringing frequencies of a Schwarzschild
black hole to be,

Mωn = 0.0437123− i

4

(
n+

1

2

)
+O

[(
n+

1

2

)− 1
2

]
(7.24)

The ringing frequencies seem to be mass dependent only. It stays consistent with the
speculation of the damped frequencies are properties of the black hole, independent
of l, σ.

We observe that the limit Re(ωn −→ 0.0437123M−1) matches with the expres-
sion ln 3

8π
. This identification is backed up by statistical and thermodynamic physics

arguments. Using the relations, A = 16πM2 and dM = E = ~ω, we find

dA

dM
= 32πM

dA = 32πMdM

dA = 32πM(~ω)

dA = 32πM(~)

(
ln 3

8π

)
M−1
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and
∆A = 4~ ln 3 (7.25)

Thus, we can make a conclusion that the dimensionless constant, γ from An = γl2pn
is γ = 4 ln 3, and the area spectrum of the quantum Schwarzschild black hole is
An = 4~ ln 3.

In essence of the Boltzmann-Einstein formula, the degeneracy, g(n) = exp(SBH(n))
can be thought of as the amount of microstates referring to a complementing macrostate.
In other words, g(n) = degeneracy of the nth area eigenvalue. As mentioned before,
the known area-entropy relation is sought to be,

γ = 4 ln k k = 1, 2, ..

In [13], it provides the first independent derivation of the value of k. The relation
γ = 4 ln 3 is competent with the area-entropy relation of the black hole, statistical
physics arguments and Bohr’s correspondence principle. Hence, we deduce that the
value of k in the area-entropy relation would be 3, instead of 2, as devised in [13]

7.5 Physical Significance

We have a model which might describe the concept of ln 3 in the area spectroscopy of
quantum black holes. Consider the first infalling matter, generated by pair produc-
tion near the event horizon.The infalling matter will contribute to the evaporation
of the black hole. As soon as the infalling particle enters the horizon, it will decrease
the black hole’s energy, which will eventually decrease black hole mass.

Now, treating them as information subsystems, The Hawking quanta that gets ra-
diated away will carry information of the infalling matter, and the black hole. The
following particles that are produced will also contribute to the decrease of the black
hole mass and hence, they will carry information of the old radiation (black hole
information), and their corresponding Hawking partner.

Conventionally, we devised the entropy of the black hole as N ln 2, where N ac-
counts for the number of Hawking pairs each time step near the event horizon. The

value of k = 2, in the degeneracy g(n) = exp
(
γ(n−1)

4

)
where γ = 4 ln k, is derived

due to the two-way entanglements that were initially thought. However, from [13]
we independently derived the uniform area spacing constant k, where the relation
γ = 4 ln 3 is consistent with area-entropy relations, statistical physics and Bohr’s
correspondence principle.

With this model, we explain the physical significance of ln 3 in the entropy. This
is an outcome of the tripartite entanglement between the Hawking pair information
subsystems and the information subsystem of the black hole.
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Multipartite Entanglement

8.1 Locally Maximally Entangled States

In this chapter of the thesis, we will introduce the main bulk of our own work. We
discuss the tripartite entanglement of qubits and extend it to the entanglement of
multiple qubits using a locally maximally entangled state which we use to describe
the state of our entangled qubits. We will then introduce a toy model in an attempt
to show how the entanglement entropy of a black hole with multiple qubits can lead
to an exponentially decreasing entropy over time.

If each element subsystem is maximally entangled with its complement, we call
this a locally maximally entangled state. Considering a multipart system Hi having
dimensions di. If we take the trace over any one of the subsystems in H in our
system, the reduced density matrix that we obtain after taking this trace will just
be a multiple 1

di
of the identity operator. If this is the case, the state describing the

multipart system is a locally maximally entangled state.

SLME =

{
|ψ〉 ∈ H

∣∣ ρi ≡ tri |ψ〉 〈ψ| =
1

di
I
}

(8.1)

Some common examples of LME states are

• Bell states:

|ψ〉 =
1√
d

∑
i

|i〉 ⊗ |i〉 ∈ Hd ⊗Hd (8.2)

• The Greenberger-Horne-Zeilinger state:

|GHZ〉 =
1√
d

∑
i=0

|i〉 ⊗ .... |i〉 (8.3)

The 3-qubit GHZ state:

|GHZ〉 =
1√
2

(|000〉+ |111〉) (8.4)
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One property of the GHZ state is that when we trace over one of the three systems,
we get

Tr3

(
|000〉+ |111〉√

2

)(
〈000|+ 〈111|√

2

)
which gives us, (

|00〉 〈00|+ |11〉 〈11|
2

)
(8.5)

which is an unentangled mixed state. Therefore, taking the measurement of one
qubit system in the GHZ state leaves the remaining 2-qubit state separable hence
they lose entanglement.

• W state:

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) (8.6)

The W state is not unique to a bi-separable state property. It is one of the two ex-
isting states, the other being the GHZ state. However, these two cannot be turned
to one another, even by certain local quantum operations.
In the W state, if the information of one qubit is lost, the other two qubits stay
maximally entangled with each other unlike what is present in the GHZ state. This
rigidity of entanglement is the unique characteristic of the W state.

8.2 Tripartite Entanglement

Now, according to the model we presented, there happens to be a speculated tri-
partite entanglement between three subsystems which would explain the multiple of
ln 3 in the Bekenstein-Hawking entropy independently calculated in Shahar Hod’s
1998 paper. We think there could be an entanglement entropy present between the
black hole and hawking pairs produced at the event horizon. We argue that the
three subsystems be treated as three information subsystems where subsystem A
is the black hole information, subsystem B is the information of the b quanta that
radiated away, and subsystem C is the information of the c quanta that fell into the
black hole.

We choose the W state to represent this system because, as assumed, the black
hole information is lost, the b quanta and c quanta still remain maximally entan-
gled. This is in contrast to the GHZ state, where as per this information loss, b
quanta and c quanta would lose entanglement, which is not the case.

We define the density matrix to be of the form,

ρ = |W 〉 〈W |

=
1

3
(|001〉+ |010〉+ |100〉) (〈001|+ |010〉+ |100〉)

=
1

3
(|001〉 〈001|+ |010〉 |010〉+ |100〉 〈100|+ |001〉 〈010|+ |001〉 〈100|
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+ |010〉 〈001|+ |010〉 〈100|+ |100〉 〈001|+ |100〉 〈010|)

We define our basis states to be,

|1〉 =

(
1
0

)
|0〉 =

(
0
1

)
The |001〉 vector is just the tensor product of 3 ket vectors,

|001〉 =

(
0
1

)
⊗
(

0
1

)
⊗
(

1
0

)
Similarly,

〈001| =
(
0 1

)
⊗
(
0 1

)
⊗
(
1 0

)
Calculating all the outer product terms,

|001〉 〈001| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0



|010〉 〈010| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



|100〉 〈100| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



|001〉 〈010| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
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|001〉 〈100| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0



|010〉 〈001| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



|010〉 〈100| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



|100〉 〈001| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



|100〉 〈010| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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Calculating our density matrix,

ρ =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

3
0 1

3
1
3

0
0 0 0 0 0 0 0 0
0 0 0 1

3
0 1

3
1
3

0
0 0 0 1

3
0 1

3
1
3

0
0 0 0 0 0 0 0 0


(8.7)

After diagonalisation,

ρdiag =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


(8.8)

Our entanglement entropy is defined as,

Sent = −tr(ρ ln ρ) = ln 1 = 0 (8.9)

Since our state is a pure state, our total entanglement entropy is 0. In order to
obtain the entanglement entropy of the subsystem A with B and C, we take the
partial trace over A,

ρA = trA(ρABC) (8.10)

Which gives us,

ρA =

(
1

3

)
(|01〉BC 〈01|BC 〈0| |0〉A + |10〉BC 〈10|BC 〈0| |0〉A + |00〉BC 〈00|BC 〈1| |1〉A

+ |01〉BC 〈10|BC 〈0| |0〉A + |10〉BC 〈01|BC 〈0| |0〉A)

=


0 0 0 0
0 0 0 0
0 0 1

3
0

0 0 0 0

+


0 0 0 0
0 1

3
0 0

0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

3

+


0 0 0 0
0 0 0 0
0 1

3
0 0

0 0 0 0

+


0 0 0 0
0 0 1

3
0

0 0 0 0
0 0 0 0



=


0 0 0 0
0 1

3
1
3

0
0 1

3
1
3

0
0 0 0 1

3


Diagonalising our reduced density matrix then gives

ρdiag =


0 0 0 0
0 0 0 0
0 0 2

3
0

0 0 0 1
3
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From this, we can thus calculate the entanglement entropy

Sent = −
(

2

3
ln

2

3
+

1

3
ln

1

3

)
= ln 3− 2

3
ln 2 (8.11)

8.3 Multipartite Entanglement

Consider a 4 qubit system consisting of subsystems A, B, C and D represented by
a state,

|Ψ〉 =
1√
4

(|0001〉+ |0010〉+ |0100〉+ |1000〉) (8.12)

Our density matrix has the form,

ρABCD = |Ψ〉 〈Ψ|

=

(
1

4

)
(|0001〉 〈0001|+ |0010〉 〈0010|+ |0100〉 〈0100|+ |1000〉 〈1000|

+ 〈0001| |0010〉+ |0001〉 〈0100|+ |0001〉 〈1000|+ |0010〉 〈0001|
+ |0010〉 〈0100|+ |0010〉 〈1000|+ |0100〉 〈0001|+ |0100〉 〈0010|
+ |0100〉 〈1000|+ |1000〉 〈0001|+ |1000〉 〈0010|+ |1000〉 〈0100|)

Taking the trace over B, C, D using the same basis states,

ρA =

(
1
4

0
0 3

4

)
(8.13)

Calculating the entanglement entropy,

Sent =
1

4
ln 4 +

3

4
ln

4

3
= ln 4− 3

4
ln 3 (8.14)

Similarly for 5 qubits,

|Ψ〉 =
1√
5

(|00001〉+ |00010〉+ |00100〉+ |01000〉+ |10000〉) (8.15)

Taking the partial trace over subsystems B,C,D,E, we get the density matrix,

ρA =

(
1
5

0
0 4

5

)
Which gives us the entanglement entropy,

Sent = ln 5− 4

5
ln 4 (8.16)

Therefore, for generalization if we have a k number of qubits, we get,

Sent = ln (k)− k − 1

k
ln (k − 1); k > 1 (8.17)

We only consider k > 1 since no entanglement can exist when k = 1 or less.
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8.4 Information Loss

As assumed before, the ln k term comes from the entanglement between k number
of qubits. So, evidently total entanglement entropy is supposed to be ln k. However,
we get an extra term of k−1

k
ln (k − 1). We propose that since we take a partial

trace over the rest k − 1 number of qubits (for example, for k = 4, taking partial
trace over subsystems B, C, D) and treat them as one subsystem while operating
an inner product through them, we are avoiding the entanglement that is present
between the individual qubits in the rest k − 1 number of qubits. Hence, what we
get is not wholly an entanglement entropy of ln k, but a part of it which includes
the entanglement that we avoided of the individual qubits subtracted from the total,
and therefore, there is an information loss.

Furthermore, the information loss itself is a matter of intrigue. From what we
can assume is happening, the partial trace should have given us a subtraction of
ln (k − 1) arising from the ignored entanglement of the rest of the individual qubits.
However, what we get is partially that, with a missing component of 1

k
ln (k − 1).

Additionally, the missing information seems to decrease with respect to the increase
in the number of qubits.

For k = 3;

1

3
ln 2 = 0.2310

For k = 4;
1

4
ln 3 = 0.2747

For k = 5;
1

5
ln 4 = 0.2773

For k = 6;
1

6
ln 5 = 0.2682

Until it converges to zero, For k = 10000;

1

10000
ln 9999 = 0.0009

and so on.

As we keep increasing the number of entangled qubits, we get a graph plot of the
information loss against the number of qubits as follows:
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Figure 8.1: Graph of information loss against number of entangled qubits k

8.5 The Box and Triangle Model

We present a model where we assume the references as follows:

• The triangles represent the b and c quanta pair produced near the event hori-
zon.

• The box represents the black hole information subsystem.

At step 1, considering the initial pair production there is an entanglement between
the information subsystems of the b1 and c1 quanta with the black hole information
after c1 falls into the black hole and b1 is radiated away.

At step 2, a new Hawking pair is produced (b2, c2) near the event horizon. As
there is already an entanglement between the new Hawking pair, the new in-falling
c2 particle gives rise to an entanglement between the new pair and the black hole
information. However, the black hole information was already entangled with the
prior particles that were produced in step 1. Hence, at the end of step 2, we have
an entanglement between the black hole information, b2, c2, and b1, c1.

For simplicity, let’s replace the Hawking pairs and the black hole information sub-
system with our references mentioned above. We assign ∆b1 as information of b1,
∆c1 as information of c1, �BH as information of the black hole information for k
number of quanta produced.

At step 3, the same procedure occurs for the newly produced pair ∆b3 ,∆c3 . The
radiated ∆b3 carries information of ∆c3 , ∆b2 ,∆c2 , and �BH . This occurs because
the black hole information subsystem remains entangled with the prior subsystems,
therefore when the new Hawking particle is radiated away, it will carry information
of its infallen partner and information of the prior entangled particles.



The Box and Triangle Model 58

Figure 8.2: Entanglement of black hole with multiple qubits after each consecutive
step.

After N steps, this draws to a k number of qubits entangled with the black hole
subsystem, giving rise to multipartite entanglements. This paves an abstract way
of information escaping from the black hole.
We consider there to be N steps over a certain duration of time of black hole evapo-
ration. Using (17), we can now calculate Sent of the black hole at each step. Initially,
we start off with 3 subsystems, one representing the black hole information and the
other 2 representing Hawking pairs.

N = 1,

k = 3, Sent = ln 3− 2

3
ln 2 = 0.6365141683

N = 2,

k = 5, Sent = ln 5− 4

5
ln 4 = 0.5004024235

N = 3,

k = 7, Sent = ln 7− 6

7
ln 6 = 0.4101163183

N = 7,

k = 15, Sent = ln 15− 14

15
ln 14 = 0.2449300268

N = 17,

k = 35, Sent = ln 35− 34

35
ln 34 = 0.1297406947

N = 49999,

k = 99999, Sent = ln 99999− 99998

99999
ln 99998 = 0.000125130356

and so on.
After each consecutive step, there is an increase of total entangled subsystems, k by
2 due to each newly produced Hawking pair. At N = 1, there is a sudden rise of
Sent. Evidently, as N increases, Sent decreases exponentially right after N = 1.
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Figure 8.3: Graph of entanglement entropy against k qubits over time, showing a
decreasing exponential entropy as number of entangled subsystems increase.

8.6 Subadditivity of Entropies

As mentioned in [16] ,consider a multipartite state of N subsystems, represented by
ρ1...N ≡ tr2...N(ρ1...N), whose corresponding entropy is given by S1...N ≡ S(ρ1...N) ≡
−tr[ρ1...N log(ρ1...N)]. In the case of 2 subsystems, according to the subadditivity
of entropy, S12 6 S1 + S2. This can be further generalised for N > 2 subsystems
where,

S1...N 6
N∑
n=1

Sn (8.18)

The equality holds ⇐⇒ ρ1...N =
(∏⊗)N

n=1
ρn, i.e., if all subsystems are uncorre-

lated.

From (8.10),

ρA ≡ ρB ≡ ρC =

(
1
3

0
0 2

3

)
Applying the subadditivity of entropy for subsystems where k = 3,

SA ≡ SB ≡ SC = −tr[ρA log(ρA)] = log 3− 2

3
log 2 (8.19)

SA + SB + SC = 3

(
log 3− 2

3
log 2

)
= 1.909542505 (8.20)
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As our W state is a pure state, our total entropy,

SABC ≡ S(ρABC) ≡ [ρABC log(ρABC)] = 0

as shown in (8.9).

Evidently,
SABC 6 SA + SB + SC (8.21)

which satisfies the subadditivity of entropy.

For higher values of k,

k = 5, S1 + S2 + S3 + S4 + S5 = 5

(
ln 5− 4

5
ln 4

)
= 2.502012118

k = 7, S1 + ...+ S7 = 7

(
ln 7− 6

7
ln 6

)
= 2.870814228

k = 15, S1 + ...+ S15 = 15

(
ln 15− 14

15
ln 14

)
= 3.673950402

k = 35, S1 + ...+ S35 = 35

(
ln 35− 34

35
ln 34

)
= 4.540924315

k = 99999, S1 + ...+ S99999 = 99999

(
ln 99999− 99998

99999
ln 99998

)
= 12.51291047

and so on.

The value of the sum of the individual entanglement entropies of each subsystem
with the rest of the subsystems continues to increase with k. As the total entropy
S1...N for any value of k is always 0 due to our pure state, (8.18) is always satisfied
for all values of k.



Chapter 9

Conclusion

This paper has established a new take on viewing entanglement entropies of black
holes. This has been possible because of the review of the preliminaries in the prior
chapters.

However, there are still many gaps that could be filled in this thesis and make im-
provements. The surfacing of the information loss is still a matter of question and
can be interpreted in various ways. It may be because of polygamy of the entropies,
leading to a loss in entanglement and eventually information. Also, we notice a
sharp fall in the entanglement entropy from the very first emission of quanta, which
is not what we expected. Nevertheless, the Black Hole Information Paradox is still
a field that is yet to be exercised and solved.
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