Prevention and treatment of malaria in endemic areas of Bangladesh: How are the NGO partners doing?

1

Syed Masud Ahmed Shamim Hossain

June 2009

Research and Evaluation Division, BRAC

Pudit

Introduction

.

Malaria re-emerged as one of the major public health problems in Bangladesh in the 1990s. A population-based survey conducted in the 13 endemic districts¹ found overall malaria prevalence rate to be 3.1% (*P. falciparum* 2.73%, *P. vivax* 0.16% and mixed infection 0.19%) by rapid diagnostic test (RDT) ('FalciVax' Zephyr Biomedicals, India, <u>www.tulipgroup.com</u>). The prevalence was higher in the five south-eastern (SE) districts (7.2%), than the eight north-eastern (NE) districts (0.5%) (with highest concentration in the three hill districts, 11%) and was more common among children under five (Ahmed et al. 2008).

BRAC, an indigenous non-governmental development organization, has been implementing malaria control programme in the hill tract region (3 high endemic hill districts) since 1998 (BHP 2007). The initial activities concentrated mainly on awareness building through health education and referring suspected cases from outreach areas to the government health facilities for diagnosis and treatment. Since then, the programme has evolved to incorporate diagnosis and treatment following national guidelines and expanded to cover all the 25 upagilas of the three hill districts. Currently, BRAC is implementing a comprehensive malaria control programme in the 13 endemic districts in partnership with the Malaria and Parasitic Diseases Control (M&PDC) programme of the government of Bangladesh (GoB) and funding from Global Fund for Aids, TB and Malaria (GFATM) round six (2007-2012) (GoB 2009). BRAC is working in the three hill districts and two upazilas of Moulvibazar directly while the other upazilas in the remaining 10 districts are covered by a BRAC-led consortium of 20 partner non-government organizations (NGOs) selected through competitive bidding. This five-year programme aims to reduce malaria motality by 50% by the year 2010 through early diagnosis and prompt treatment (EDPT), distribution of long lasting insecticide treated nets (LLINs)/insecticide treated nets (ITNs), and surveillance for epidemic preparedness. Under this programme, BRAC helps in capacity-building of the partners in implementing EDPT following a community-based model, ensures logistics and monitoring feed-backs.

 ¹ Five high endemic south-eastern districts (Khagrachhari, Bandarban, Rangamati, Cox's Bazar, Chittagong) and eight low endemic north-eastern districts (Sylhet, Hobiganj, Moulvibazar, Sunamganj, Sherpur, Netrakona, Mymensingh, Kurigram)

Rationale and Objectives

It is nearly two years now since the inception and it is a good time to see how the NGO partners are doing in comparison to BRAC itself in implementing the programme. Thus, this cross-sectional study aims to compare different programme-related activities of the partner NGOs to see whether the programme is being implemented uniformly across the intervention areas. More specifically, it aims to:

- estimate the proportion of households owing at least one ITNs/LLINs in different NGO working areas,
- measure the proportion of children aged under five years and pregnant women who sleep under an ITN/LLIN in different NGO working areas,
- explore the knowledge and practice about the use and maintenance of the insecticidal nets (ITN/LLINs) in different NGO working areas,
- explore the time elapsed from fever-to-diagnosis and diagnosis-to-treatment in different NGO working areas, and
- explore the treatment compliance in different NGO working areas.

Materials and methods

Sampling

A convenient sample of 23 *upazilas* were randomly selected from a total of 70 *upazilas* (of 13 districts) where the programme is being implemented. BRAC is implementing the programme in 23 *upazilas* (21 in Khagrachhari and Rangamati + 2 in Moulvibazar) and a consortium of 20 small NGOs led by BRAC is implementing the programme in the remaining 47 *upazilas*. One *upazila* for each of the partner NGO was selected where the NGO started working earliest. For BRAC, two sadar *upazilas* of Khagrachhari and Rangamati and one *upazila* from Maulvibazar were included. Three *upazilas* from BRAC were included because BRAC worked in about 1/3rd of the total *upazilas*. Annex 1gives a complete list of the sample *upazilas*. Next, three villages from each of the above *upazila* were randomly selected (total villages=69). These villages, again, were among the ones where the NGOs started working earlier. From the selected villages, households having either a pregnant woman or an under-five child were included in the survey. Data were collected from the household head or spouse or any knowledgeable member of the household available on the spot.

Tools development

3.

A pre-tested, semi-structured questionnaire was used in face-to-face interviews by trained field workers. Besides socio-demographic data, the questionnaire elicited information on the availability and use of insecticidal bed nets, time taken from fever-to-diagnosis-to-treatment, and compliance with treatment. A household was defined as a male (or female) head of household and his/her dependents including wives and unmarried children, usually the group of people sharing a cooking pot. An ITN was defined as a conventional net that had been treated within the past 12 months. Pregnancy status was based on self-report. A child or pregnant woman who was reported to have slept under a net the previous night was analyzed as having used the net.

The survey

The survey team comprised of social science graduates with experiences in conducting field surveys and their supervisors. In hilly areas where an ethnic minority language was the primary language, interviewers from respective ethnic groups were recruited to conduct the interviews. A two-day intensive training was organized for the interviewers which consisted of didactic lectures, mock interviews, role play and field practice at community level. Several teams worked simultaneously in different districts. Households were visited on three repeated occasions at intervals before declared failure, if the first attempt was not successful. The field activities were supervised by the researchers providing guidance as and when needed.

Results

The results are presented by the working *upazilas* of the NGOs, and in some instances, by the high endemic SE districts and the low endemic NE districts.

Socio-demographic characteristics of the sample (Table 1)

The mean household (HH) size of the sample was around 5.5. Around 16% of HHs in SE districts² and 13% HHs in NE districts³ had at least one pregnant woman while around 95% of the HHs had at least one under-five child. Ninetcen percent HHs in SE districts and 14% in NE districts were chronically deficit. Seven percent and 5% HHs respectively in SE and NE districts are headed by

² Khagrachhari, Rangamati, Bandarban, Cox's Bazar and Chittagong (high endemic)

³ Sylhet, Hobigonj, Moulvibazar, Sunamgonj, Sherpur, Netrakona, Mymensingh, Kurigram (low endemic)

females. Proportionately, more HH heads from SE districts (35%) than from NE districts (18%) had more than five years of schooling. Majority of the HH heads were engaged in wage-labour (around 35%) for survival.

Table 1: Socio-demog	graphic and econon	ic characteristics	s of the Household	ls (HHs) by progra	mme areas
(%)					

	South-ea	istern (SE)	North-east	tern (NE)
	dist	ricts ¹	distri	cts ²
	n	%	n	%
Characteristics of HHs				
Mean household size (± sd)	5.5 ((±2.2)	5.6 (<u>+</u>	:2.3)
HHs that have at least one pregnant women	547	15.8	478	12.8
HHs that have at least one under- five children	3267	94.5	4353	95.9
Self-rated poverty status of HH				
Always deficit	642	18.6	648	14.3
Occasional deficit	1031	29.8	1703	37.5
Break-even/No deficit	783	51.6	2186	48.2
Characteristics of the HH Head				
Sex of HH head				
Male	3206	92.8	4290	93.8
Female	250	7.2	247	5.4
Formal schooling of HH head (years)				
None	1481	42.9	2669	58.8
1-5	770	22.3	1037	22.9
>5	1205	34.9	831	18.3
Occupation of HH head				
Self-employment (agri.)	333	9.6	846	18.6
Self-employment (non-agri)	767	22.2	914	20.1
Wage-labour	1071	31.0	1765	38.9
Service/trade	713	20.6	574	12.7
Others ³	572	16.6	438	9.7
N	3456	100.0	4537	100.0

¹Khagrachhari, Bandarban, Rangamati, Cox's Bazaar, Chittagong (high endemic); ²Sylhet, Hobiganj, Moulvibazar, Sunamganj, Sherpur, Netrakona, Mymensingh, Kurigram (low endemic); ³beggar, unemployed, too old/sick to work etc.

Possession of insecticidal bed nets

Overall, 66% of the HHs possessed at least one insecticidal bed net (LLIN/ITN) (See Annex Table 1) whereas in BRAC programme areas, this peaked to 84% (Annex Table 2). This or higher level was achieved in the working areas of Ekota, Ghoroni, Mamata, NUS (SE districts) and Sajida

064 @

Foundation (NE districts) only. In some of the NGO working areas, e.g. Mukti in SE districts, and Hitaishi and Rasdo in NE districts, this was found to be as low as 30-40%. Treatment of bed nets with insecticides (ITN) within past six months was poor (e.g., <10% in ACLAB, IACIB and Rasdo, VARD) except in few instances e.g., Ghoroni (60%), Mamata (71%).

Use of insecticidal bed nets

Overall, 61% of the under-five children (69% and 56% respectively in the SE and NE districts) slept under an insecticidal bed net the night before while only 50% of the pregnant women (57% and 44% respectively in the SE and NE districts) did so (Annex Table 1). It is interesting to observe that around 80-90% of the under-five children slept under an insecticidal bed net (LLIN/ITNs) in the night before the day of survey in some of the NGO's working areas such as Ekota (91.5%), Mamata (81.5%), and Sajida (81.5%) while in case of some other NGOs', it was found to be very low such as in the case of Hitaishi (28.2%) and Mukti (30.1%) (Annex Table 3). On the other hand, the percentage of pregnant women who slept under an insecticidal bed net in the night before the day of survey varied from around 20% (in IACIB and SSS's working areas) in the NE districts to 35% (in Mukti's working area) in the SE districts; the highest (83%) being observed in the Ekota's working area in the SE districts. Even in BRAC areas, this was 60%. There was also poor knowledge with respect to hanging of insecticidal bed nets at appropriate time (just before evening) among the different NGO working areas, with few exceptions e.g., Ghoroni (83%), Sajida Foundation (62%), and PRDS (56%). In BRAC areas this was 24%.

Washing insecticidal bed nets by working areas of the partner NGOs

In some of the NGO's working areas, the ITNs were washed twice in the previous three months e.g., Ekota (8.4%), Bandhan (2.7%), Heed (5.7%), Sajida Foundation (2.9%) and Shimantik (4.2%) (Annex Table 4). In some cases, the ITN bed nets were even washed for more than twice in previous three months e.g. Ekota (1.2%) and Shimantik (2.8%).

Knowledge on the use of insecticidal bed nets by working areas of the partner NGOs

The respondents' knowledge on different aspects of proper use of the insecticidal bed nets was universally very poor (Annex Table 5). Thirty percent of the respondents from the working areas of

Ghoroni, 26% from NUS, 19% from SKUS and 21% from Sajida Foundation could state all the norms of using LLIN/ITNs.

Treatment of malarial illnesses in the working areas of the partner NGOs

In BRAC working areas, malaria was mainly diagnosed by RDT while in most of the other NGOs' working areas, microscopy remained the main diagnostic tool e.g., Ghoroni (71%), Mukti (89%), FIVDB (100%), and Hitaishi (100%) (Annex Table 6). The time interval between onset of illness and diagnosis, and diagnosis and initiation of treatment varied widely in the working areas of the different NGOs. In the case of illness-to-diagnosis interval, the mean time varied from 9 hours for Mukti to 168 hours for Shimantik and 104 hours for BRAC. In the case of diagnosis-to-treatment initiation interval, the mean time varied from one hour (Ghoroni, SSS, Shimantik) to 48 hours (SKUS). However, the compliance with full treatment was encouraging: 100% compliance was achieved in the working areas of 12 NGOs while around 80% was achieved in another four NGO working areas. In this respect, VARD (64%) and HEED (75%) were poor performers.

Discussion

This study was done to investigate how the different partner NGOs are doing in implementing the programme two years since inception, and compare with that of BRAC (the lead NGO). Due to constraints in time and resources, a convenient sampling was done to represent the working areas of each of the partner NGOs including BRAC. Findings reveal a mixed picture: in some indicators such as compliance with treatment, the performance was encouraging while in many other indicators, large gaps remain.

The wide variation observed among the working areas of the different NGOs deserves special mention. A number of different reasons may be responsible for this variation. Investigation reveals that the NGO partners entered into the programme at different time, from May 2007 (13 in 2007) to May 2008 (7 in 2008) (See Annex). The distribution of the RDTs and LLINs was done in 2008, sometimes as late as September and the re-treatment of ITNs were done in 2008, sometimes as late as October. This should be kept in mind while interpreting the results.

The households' possession of bed nets (41 to 66%), percentage of under-five children (36 to 61%) and pregnant women (30 to 50%) sleeping under an ITN/LLIN bed net increased since June 2008

U<u>K</u><u>K</u>

(Ahmed and Hossain 2008). However, there is wide variation in the working areas of the different NGOs in the consortium with respect to possession, coverage of under-five children and pregnant women, knowledge of proper use of insecticidal bed nets and treatment of malaria. For reaping the 'herd immunity' benefit from distribution of insecticidal bed nets, coverage has to be 'sufficiently high' (> 80%) and for a family size of five, three bed nets are recommended (Teklehaimanot et al. 2007). The programme is yet to achieve these targets. Also, knowledge and practice regarding proper use and maintenance of the insecticidal bed nets were found to be poor. However, compliance with acceptance and use of insecticidal bed nets are influenced by other factors such as climate, work, evening social activities etc. besides knowledge and awareness on malaria (Atkinson et al. 2009). Thus, further research is needed to understand the situation in Bangladesh.

Except BRAC, in most of the other NGO working areas microscopy remained the main diagnostic tool. RDT is yet gain a foothold in these areas. The mean time interval for illness-to-diagnosis (lowest 9 hours) and diagnosis-to-treatment initiation (lowest 1 hour) was uneven, and sometimes unacceptably prolonged (highest 168 hours and 48 hours respectively). The Abuja declaration (Roll Back Malaria/WHO 2003) stipulates that 60% of the patients with malaria should have treatment started within 24 hours. Thus, more efforts are needed for prompt diagnosis and early initiation of treatment, and more use of RDT may help.

Insecticidal bed net coverage of the under-five children (61%) was better than the pregnant women (50%), but far short of target, and is uneven among the different NGO working areas. Efforts are needed to eliminate these discrepancies. It is encouraging to note that the NGOs performed uniformly well with respect to compliance with treatment. This is not surprising as it has been shown earlier that pre-packaging of malarial drugs improves compliance (Qingiun et al. 1998, Yeobah-Antwi et al. 2001).

Recommendations

- Different NGOs started working at different time. Differential efforts should be given to bring them on a level-playing ground, e.g., streamlining supplies and logistics, and intensifying supervision in the working areas of the late-starters, etc.
- IEC campaigns need to be strengthened to improve knowledge and practice on different aspects of malaria uniformly across the working areas of the partner NGOs. This is needed

for increasing uptake of preventive (e.g., proper use and maintenance of bed nets) and curative services (e.g., seeking early diagnosis and treatment) within a reasonable period of time. Also, measures to increase the coverage and number of bed nets are needed.

- Concerted effort to expand the use of RDT in the working areas of partner NGO is
 warranted for ensuring early diagnosis and initiate treatment promptly. For this, programme
 needs to identify barriers (e.g., problems with supply of RDT or training of the health
 workers in its use) and overcome these so that the NGOs perform uniformly.
- As the leader of the consortium, BRAC itself also needs to revisit its programme operation to improve performance e.g., increasing the bed net coverage for pregnant women or reducing the time gaps for diagnosis and treatment initiation.

References

Ahmed SM and Hossain A (2008). Distribution and utilization of ITN/LLINs among rural people in malaria endemic districts of Bangladesh: are we doing enough? (Unpublished Report).

Ahmed SM, Islam MA, Haque R, Hossain M (2008). Malaria Baseline Prevalence and Socioeconomic Survey 2007. Dhaka: BRAC, ICDDR,B and Government of Bangladesh.

Atkinson J, Bobogare A, Fitzgerald L, Boaz L, Appleyard B, Toaliu H, Vallely A (2009). A qualitative study on the acceptability and preference of three types of long-lasting insecticide-treated bed nets in Solomon Islands: implications for malaria elimination. *Mularia J* 8:119. doi:10.1186/1475-2875-8-119.

BHP (BRAC Health Programme) (2007). Annual report 2007: Reaching millions through community actions. Dhaka: BRAC.

National Malaria Control Programme. (2009). Annual Report May 2007-June 2008: NGO component supported by GFATM. Dhaka: BRAC.

Qinguin L, Jihui D, Laiyi T, Xiangjun Z, Jun L, Hay A, Shires S, Navaratnam V (1998). The effect of drug packaging on patients' compliance with treatment of *Plasmodium vivax* malaria in China. *Bull WHO* 78 (Suppl. 1): 21-27.

Roll Back Malaria/WHO. (2003). The Abuja declaration: African summit on Roll back Malaria, 25th April, 2000. Available from: <u>http://www.rbm.who.int/docs/abuja_declaration.pdf</u> (accessed 16th June 2009)

Tekelehaimanot A, Sachs JD, Curtis C (2007). Malaria control needs mass distribution of insecticidal bednets. *Lanet* 369: 2143-2146.

Yeboah-Antwi K, Gyapong JO, Asare IK, Barnish G, Evans DB, Adjei S (2001). Impact of prepackaging antimalarial drugs on coast to patients and compliance with treatment. *Bull WHO* 79(5): 394-9.

Annexes

Annex Table 1: Distribution of households with insecticidal net, and under-five children and pregnant women sleeping under an insecticidal net the previous night, by programme areas %

×

	SE districts	NE districts	All
% HHs with at least one LLIN/ITN	48.3	51.7	66.2
% under-five children who slept under LLIN/ITN last night	69.0	55.6	61.1
% pregnant women who slept under LLIN/ITN last night	56.8	43.6	50.5

ssion of bed nets by the partner NGOs involved in malaria programme
nnex Table 2: Information on possession of b

.

14			30.0	Distric	tts					IN	L' DISUT	cts						Both			1.
	TUL	EK	GH	NLA	NIU	SUN	SKU	Ϋ́Ρ	BA	BDS	ц	ΕĦ	HIT	I.	PRD	RAS	S	Y ^z	SHI	VAR	
	AB	OT	OR	ALA	ГЛ		S	SA	DZ	C	Ι	ED	AIS	AC	S	DO	S	ſ	NLA	Ω	
		Y	INO	TA	I				HA		AV A		IH	1			S	IDA	HZ		
									Z		B			B					IK		
with at least	7.66	7.06	96.8	99.2	98.5	96.9	92.2	98.4	95.3	95.4	97.2	97.8	96.7	98.5	96.5	98.1	94.9	98.8	001	89.7	
net																					
with at least N	50.7	92.4	51.6	71.0	34.1	59.2	37.1	53.1	37.2	31.1	24.7	55.1	14.5	43.2	44.5	43.7	33.7	71.8	40.5	52.5	
with at least	9.5	38.4	60.1	71.0	0.0	56.4	42.5	36.5	49.7	38.3	57.5	16.4	23.8	9.7	31.8	8.7	25.1	40.2	0.44	5.9	
(bed net arb insecricide																					
st six months)																					
with at least N/ITN	52.7	93.6	80.3	83.0	34.1	81.5	71.3	62.1	71.9	53.4	71.9	. 65.0	33.3	46.8	68.5	44.7	48.0	84.0	63.0	53.4	
et treated with	7.8	35.8	60.1	71.0	0.0	55.7	12.2	36.3	49.7	38.3	56.6	16.4	23.8	9.7	31.5	8.7	24.9	40.2	43.7	5.6	
les in																					
months																					
	204	344	376	389	273	422	275	133	360	350	320	323	366	329	346	412	350	326	341	341	

071

.

1	-		
	-	۳	

.

mex Table 3: Use of LLIN/ITNs in the study areas by the partner NGOs involved in malaria programme

			SE	Distric	ts					NE	District	s						Both			
	AC LA B	A OT K	GH ON ON	MA MA TA	NU KT I	NU S	SK US	YT S.A	BA ND HA N	BD SC	ч VD В	EDE	HIT AIS HI	I AC B	PR DS	RA SD	sss	SA J A ID	SHI MA NT IK	VA RD	BR AC
r-five children who slept LIN/ITNs yesterday	53.9	91.5	78.7	81.5	30.1	69.5	67.0	55.6	63.4	50.9	66.7	55.5	28.2	43.9	67.2	45.2	40.0	81.5	57.3	44.4	77.3
1ant women who slept LINs/ITNs yesterday	60.0	83.3	64.6	73.6	34.8	59.7	57.8	47.8	50.0	37.1	48.9	34.2	41.3	20.8	56.2	30.9	20.0	60.6	47.9	45.9	59.6
that hang LLINs/ITNs ist before evening efore sleep	7.8 92.2 294	18.6 81.4 344	82.6 17.4 376	1.3 98.7 389	5.4 94.6 273	34.8 65.2 422	34.7 65.3 275	15.7 84.3 422	0.8 99.2 360	11.0 89.0 350	51.8 48.2 320	1.0 99.0 323	45.8 54.2 366	9.9 90.1 329	56.1 43.9 346	23.0 77.0 412	4.4 95.6 350	62.4 37.6 326	3.3 96.7 341	11.9 88.1 341	23.8 76.2 1034

			SE	District	s					NE	District	s						3oth			
	AC LAB	A OT A	GH OR I	NLA NLA TA	NIU KT I	NU S	SK US	YP S.A	B.A ND H.A N	BDS C	F VD B	HE ED	HIT AIS HI	I AC B	PR DS	R.4S DO	ννν	S.A J ID.A	SHI NLA NT IK	VA RD	BR
nes insecticidal nets wash	bot																				
ce months																					
) washing	63.2	35.4	88.4	14.6	65.6	91.9	90.3	85.5	83.4	82.4	78.7	76.2	91.8	80.5	88.2	100.0	89.3	38.0	71.2	81.3	81.4
ished once	35.5	55.0	10.6	84.8	34.4	7.6	9.2	12.2	13.5	17.6	20.9	18.1	7.4	19.5	11.8	0.0	8.3	59.1	21.9	17.6	16.1
ished two times	1.0	8.4	0.7	0.6	0.0	0.3	0.5	1.9	2.7	0.0	0.4	5.7	0.8	0.0	0.0	0.0	1.8	2.9	4.2	1.1	2.1
ished >rwo times	0.0	1.2	0.3	0.0	0.0	0.3	0.0	0.4	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	2.8	0.0	0.4
	294	344	376	389	273	422	275	122	360	350	320	323	366	329	3-46	412	350	326	341	341	1034

nnex Table 4: Treatment of ITNs in the study areas by the partner NGOs

073

•

S	
õ	
2	
r V	
ne	
art	
d a	
the	
by	
ea.	
are	
dy	
stu	
e	
E-	
.9	
Ž	
II	
7	
E	
T	
oto	
ISe	
le l	
th	
uo	
25	
ed	
[MO	
nc	
$\tilde{\mathbf{x}}$	
5 2	
pla	
Ta	

L

			ST:	Distric	ts					Z	: Distric	ES						Both			
	AC	EK	GH	MA	NIU	NN	SK.	YP	B.1	BD	L	HE	E	-	PR	RA	s	5.4	SFII	F-1	BR
	LA	OT.	OR	ALA	KT	S	SN	S.A	AZ	SC	I	ED	IAI	AC	DS	SD	S	Γ	NLA	RD	AC.
	В	F.	NO	ΤA	I				HLA		Ð		IHS	Ι		0	S	D,	IZ		
			I			1000			Z		B			В				Ł	IK.		
t rules of use of						Ĩ															
			2		ALC: NUMBER	1000 1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 100															
Ns to be hanged just	29.9	12.5	59.6	7.7	23.1	36.7	33.1	9.7	0.3	12.9	50.9	0.0	13.1	6.7	45.1	10.4	20 0	66.9	1.5	9.4	20.8
ning starts												÷									
: washes in a year	39.8	21.2	1.01	72.8	26.4	59.5	+0+	24.4	10.6	14.9	+6.3	6.2	23.5	15.8	44.2	10.2	2.9	73.0	1.8	18.2	31.1
directly in the pond or	25.5	68.3	54.3	73.8	15.0	66.1	61.5	29.6	5.6	+0.0+	30.0	9.9	21.3	37.1	41.6	30.8	0.6	53.1	5.6	30.8	38.1
in the sun after	6.8	63.4	+'++	75.1	7.0	55.7	54.5	28.4	55	24.9	12.7	6.5	3.6	18.2	6.1	25.0	3.7	34.7	5.9	15.0	36.5
e rules of use of LLINs	1.0	5.5	30.1	7.2	0.0	25.6	19.3	3.6	0.0	9.4	5.6	0.0	1.0	1.8	0.6	1.7	0.0	20.9	0.0	2.9	4.3
	294	344	376	389	273	122	275	122	360	350	. 320	323	366	329	346	412	350	326	341	341	103

074 M

.

			SE	Distric	ts		·			NE	Distric	ts						3oth			
	AC LA B	EK OT A	GH ON I	MLA NLA TA	MU KT I	NU S	SK US	YP SA	BA ND HA N	BD SC	F VD B	HE ED	HI TAI SHI	I AC I B	PR DS	RA SD O	sss	SA J A	SHI MA NT IK	VA RD	BR AC
nber of the HH had fever with darial fever in the last two weeks	3.7	7.3	1.9	4.6	3.3 773	0.5 177	0.4	6.1 272	0.0	0.3	0.6	1.2	0.3 366	3.3	1.7 346	12.1	0.3	1.5	0.3	3.2	0.5
		5	20				C 4				0-0							070	E	5	6 +
a fever, method of diagnosis					i																0.00
	36.4	48.0	0.0	0.0	11.1	50.0	0.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	9.1	80.0
scopy	54.5	32.0	71.4	27.8	88.9	0.0	0.0	25.0	0.0	0.0	100. 0	50.0	100. 0	36.4	0.0	36.0	0.0	60.0	100. 0	36.4	20.0
τ.	9.1	20.0	28.6	72.2	0.0	50.0	100. 0	62.5	0.0	0.0	0.0	50.0	0.0	63.6	0.0	64.0	100. 0	40.0	0.0	54.5	0.0
hours) elapsed from starting of liagnosis (mean)	11.7	31.5	79.8	20.3	9.1	84.0	48.0	76.0	0.0	72.0	22.0	89.5	24.0	74.7	43.0	89.6	48.0	28.4	168. 0	41.0	104. 0
hours) elapsed from diagnosis on of treatment (mean)	00	4.6	11	9.4	1.89	2.5	48.0	5.5	0.0	2.0	10.0	10.0	4.0	11.0	3.8	14.8	1.0	3.6	1.0	2.9	4.4
ed full course of treatment	100. 0	83.3	100. 0	86.7	100.	0.001	100. 0	100. 0		100.	100. 0	75.0	100. 0	100.	83.3	90.0	0.0	0.00	0.00	63.6	80.0
	11	25	2	18	6	01	1	∞	0	-	5	4	-	11	9	50	-	5	_	=	5

mex Table 6: Treatment of malarial illnesses in the study areas by the partner NGOs

-

075 🔊

•

-

15

-

SL	District	Sele	cted Upazila	Selected NGO	NGO/Working upazila
1	Rangamati	1	Rangamati sadar	BRAC	BRAC (10)
2	Khagrachari	1	Khagrachari Sadar	BRAC	BRAC (5)
3	Bandarbon	1	Lama	Ekota	Ekota (2), BRAC
					(1)
4	Cox's bazaar	1	Cox's bazaar Sadar	MUKTI	Mukti (2),
		2	Chakoria	ACLAB	Hitaishi (1), ACLAB (2)
5	Chittagong	1	Rangunia	YPSA	YPSA(1),
		2	Potia	NUS	- Ghoroni (2), NUS (3),
		3	Bashkhali	GHORONI	MAMATA (1),
·		4	Sitakundu	SKUS	(2), RASDO (1), (1), (1), (1), (1), (1), (1), (1),
		5	Chndalaish	MAMATA	Hitaishi (1)
6	Habiganj	1	Madhobpur	SSS	SSS (2)
7	Sunamganj	1	Bishwvampur	FIVDB	FIVDB (1),
		2	Chatok	BANDHAN	Sajida (1), VARD
		3	Dhormopasha	SAJIDA FOUND	(2), BDSC(1)
8	Moulavi bazaar	1	Rajnagar	BDSC	VARD(1), SSS
		2	Sreemongol	BRAC	BRAC (2)
9	Sylhet	1	Goainghat	VARD	Heed (1),
		2	Jiontapur	HEED	VARD(2)
		3	Kanaighat	SHIMANTIK	
10	Mymensingh	1	Haluaghat	HITAISHI	RADSO (1), Hitaishi(1)
11	Netrokona	1	Kolmakanda	PRDS	PRDS (2)
12	Sherpur	1	Sreebordi	RASDO	RASDO(2)
13	Kurioram	1	Roumari	IACIB	IACIB (2)

Annex: List of selected Upazilas

076 Ø5

SI.	NGO name	Date of signing contract with BRAC as a partner	Month of commencing use of RDT in the working area	Month of commencing distribution of LLIN in the working area	Month of commencing bed net treatment with insecticides (ITN) in the working area
1	N.Z. Ekata	May 2007	March 2008	August 2008	September 2008
2	Mukti Cox'sbazar	May 2007	April 2008	March 2008	September 2008
3	VARD	May 2007	February 2008	March 2008	September 2008
4	GHARONI	May 2007	March 2008	March 2008	September 2008
5	ACLAB	June 2007	March 2008	March 2008	July 2008
6	BDSC	June 2007	March 2008	March 2008	October 2008
7	IACIB	June 2007	April 2008	March 2008	September 2008
8	PRDS	June 2007	April 2008	March 2008	September 2008
9	RASDO	June 2007	March 2008	March 2008	September 2008
10	SSS	June 2007	April 2008	March 2008	September 2008
11	SKUS	July 2007	February 2008	March 2008	February 2008
12	NUS	July 2007	March 2008	March 2008	September 2008
13	Hitaishi	July 2007	April 2008	March 2008	September 2008
	Bangladesh				
14	BANDHAN	July 2007	April 2008	March 2008	September 2008
15	SHIMANTIK	April 2008	September 2008	September 2008	September 2008
16	SAJIDA	May 2008	September 2008	September 2008	October 2008
	Foundation				
17	МАМАТА	May 2008	August 2008	September 2008	September 2008
18	FIVDB	May 2008	September 2008	September 2008	September 2008
19	YPSA	May 2008	September 2008	September 2008	September 2008
20	HEED	May 2008	September 2008	September 2008	September 2008
	Bangladesh				

Annex: Inception of NGO partner activities

^

077