

DEVELOPMENT OF IoT BASED NETWORK FOR
MONITORING APPLIANCES

BY
S M AZMI HOQUE

16121031
SUVRO DEBNATH

16121036
DEBOKY SAHA

16121049
WASEE AHMED

17321029

 A thesis submitted to the Department of Electrical and Electronic
Engineering in partial fulfillment of the requirements for the degree of

Bachelor of Science in Electrical and Electronic Engineering

Department of Electrical and Electronic Engineering
Brac University

August 2019

i

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac University.

2. The thesis does not contain material previously published or written by a third party, except where

this is appropriately cited through full and accurate referencing.

3. The thesis does not contain material which has been accepted, or submitted, for any other degree

or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

S M Azmi Haque
16121031

Suvro Debnath
16121036

Deboky Saha
16121049

Wasee Ahmed
17321029

ii

Approval

The thesis/project titled “Development of IoT based network for Monitoring Appliances” submitted
by

1. S M Azmi Hoque (16121031)
2. Suvro Debnath (16121036)
3. Deboky Saha (16121049)
4. Wasee Ahmed (17321029)

of Summer, 2019 has been accepted as satisfactory in partial fulfillment of the requirement for the
degree of Department of Electrical and Electronic Engineering on 29-8-2019.

Examining Committee:

Supervisor:
(Member)

 Dr. S. M. Lutful Kabir

Professor, IICT
BUET

Program Coordinator:
(Member)

Dr.Saifur Rahman Sabuj
Assistant Professor, EEE

Brac University

Departmental Head:
(Chair)

 Dr. Shahidul Islam Khan

Chairperson & Professor, EEE
Brac University

iii

Acknowledgement

We would like to thank and show our immense respect to our honorable
supervisor Dr. S. M. Lutful Kabir, Professor, Institute of Information and
Communication Technology, BUET; for his enormous contributions,
incomparable guidance and tireless support which led us to the completion of
this thesis. Without his constant involvement and guidance it would be quiet
difficult to achieve this task. We would also like to thank Engr. Rashedul
Hasan, for his continuous cooperation throughout the research.

iv

Abstract
The whole world these days are widely dependent on industries to sustain the necessities of

the seven billion people that inhabit the planet and all the industries want to become

automated to achieve maximum efficiency. A number of factors determine the level of

productivity in an industry. However, the production level does not increase to great extent

due to several drawbacks. One of the vital issues that are faced by the industries is that the

machine lifetime reduces due to the lack of persistent observation of the appliances. There

can be fatigue failure, tolerance failure, and aging failure in instruments. As a result, the

industry faces equipment based losses such as Unplanned Stops, Planned Stops, Small Stops,

Slow Cycles, Production Rejects, and Startup Rejects. Manual supervising of equipment was

prevalent earlier but the effectiveness of this approach was not up to the mark. A solution to

this problem would be monitoring the condition of the appliances constantly using the

internet which allows access to data from anywhere in the world.

We will be attempting to implement such a mechanism which will allow data from the

machine end to be observed and controlled from remote locations using the internet. As a test

system we will set up two appliances which will be three light bulbs. We will take into

account current flowing through the appliance. Then, we will collect this information from

the equipment by varying the load where light bulbs will act as a load and gather the named

data. To transfer data to and from the server, we will use mainly two protocols which are

MQTT and HTTP. In HTTP protocol, the IP addressing must be held in mind as a dissimilar

IP may prevent the machine from interacting with the server, so a real IP is needed at that

moment. MQTT is the most popular protocol for IoT and thus we will implement in our

project. In MQTT protocol, the issue of changing the IP address with the change of devices

can be solved easily. As publish-subscribe-based messaging protocol, it provides one-to-

many distribution of messages. Furthermore, it is ideal for use in restricted environments

such as Machine to Machine (M2M) communication and Internet of Things (IoT) contexts

where a tiny code footprint is needed. Thus, for efficacious execution of our project MQTT

protocol is better than HTTP protocol. In addition, the data will be stored in the database on

the server. Upon our desire, we can send commands from the server to control the bulbs. The

command will be read using microcontroller and it will automatically turn off the light bulbs.

Lastly, as smartphones are widely in use these days, we have created a mobile application

named “pahara” which will fetch data from the server and as a result we can easily observe

the data from anywhere at any time.

v

Keywords: IoT ; HTTP; MQTT; ACS712; ESP8266

vi

Table of Contents

Declaration……………………………………………………………...………………….….i

Approval……………………………………………………………………………..…….…ii

Acknowledgement……………………………………………………………………...…....iii

Abstract…………………………………………………………………….…………….......iv

Table of Contents…………………………………………………………………………....vi

List of Tables……………………………………………………………………………..….ix

List of Figures……………………………………………………………………………......x

Chapter 1 Introduction………………………………………………………...…………...01

1.1 Introduction……………………………………………………….……………...01
1.2 Objective…………………………………………………………...………….....02
1.3 Motivation…………………………………………….…………………….…....02
1.4 Literature Review…………………………………………….…………….…….02
1.5 Organization of the Thesis………………………………………………………………..04

Chapter 2 Overall Design of our project………………………………...……………...…05

2.1 Concept………………………………………………………...……………..…..05
2.2 Design of the system Implementation………………………,,,………………….06
2.3 Target output……………………………………………………………………..08

Chapter 3 Basic Components in The Appliances End………………………...……….…..9

3.1 Sensor………………………………………………………………………….…..9
 3.1.1 Simulation Code………………………………………………………….10
3.2 Communication at The Appliances End …………………………………………12

3.2.1 ESP8266 Module…………………………………………….…….…......13
3.2.2 AT Commands…………………………………………………………...14

3.3 Relay……………………………………………………………………………...16

vii

Chapter 4 Remote Communication…………………………………………………..........17

4.1 Introduction……………………………………………………………………....17
4.2 HTTP……………………………………………………………………………..17

4.2.1 The Protocol………………………………………………………...……18
4.2.2 Microcontroller side code…………………………………………….......20

4.3 MQTT…………………………………………………………………………….24
4.3.1 The Protocol……………………………………………………………...24
4.3.2 MQTT Packets…………………………………………………………...26
4.3.3 Microcontroller side code…………………………………………….…..33

Chapter 5 Server …………………………………………………………………………...40

5.1 000webhost……………………………………………………………………….40
5.2 CloudMQTT Broker……………………………………………………………...41
5.3 Website interface…………………………………………………………………42
5.4 Server side code for HTTP protocol………………….…………………….…….43
5.5 Server side code for MQTT protocol………………..…………………………...45
5.6 Cronjob……………………………………………………………………….......48

Chapter 6 Mobile Application……………………………………………………………...49

6.1 Creation of pahara app……………………………………………………...........49
6.2 Android file structure and different widgets……………………………………..52
6.3 Code Explanation ……………..………………….……………………………..55

Chapter 7 Results…………………………………………………………………..……….63

 7.1 ACS 712………………………………………………………………………….63

 7.2 MQTT……………………………………………….…………………………….67

Chapter 8 Conclusion………………………………………………………………..……...70

 8.1 Shortcomings…………………………………………………………………….70
 8.2 Future scope………………………………………………………………..........71

 Reference……………………………………………………………….…………….……..72

Appendix A Flowchart…………………………………………………………………..….74

viii

Appendix B List of Acronyms……………………………………………………………...77

Appendix C ACS712……………………………………………………………….…….....78

Appendix D HTTP MCU main code…………………………………………………........79

Appendix E HTTP MCU Library……………………………………………………..…...80

Appendix F MQTT MCU main code…………………………………………………..…..83

Appendix G MQTT MCU Library…………………………………………………….…..85

Appendix H HTTP Server Code……………………………………………………….…..88

Appendix I MQTT Server Side code………………………………………………………92

Appendix J Mobile Application……………………………………………………………93

ix

List of Tables

Table 4.1: Connect Packet (byte 0 to 13)………………………………………………..…...27

Table 4.2: Byte 0 of Connect Packet…...………………………………………..……...……27

Table 4.3: Byte 11 of Connect Packet..28

Table 4.4: Connect Packet (byte 4 to 31)……………………...………………….………….30

Table 4.5: Connect Packet (byte 32 to 45)………..………..…………….…………………..30

Table 4.6: Publish Packet...30

Table 4.7: Byte 0 of Publish Packet ………………………………….……………………...31

Table 4.8: QoS settings ...31

Table 4.9: Subscribe Packet ………………………………………………………………....32

Table 4.10: Byte 0 of Subscribe Packet ………………………………………...…………...32

Table 7.1: Output current and voltage for various loads...….65

x

List of Figures

Figure 2.1: Overall IoT architecture of our system……………………………………............6

Figure 2.2: Overall hardware design of our system…………………………………….……..8

Figure 3.1: Layout of ACS712 module…………………………………………...…………...9

Figure 3.2: Current reading in Atmega32 compared with multimeter reading….…….……..11

Figure 3.3: IoT Protocol Stack………………………………………………………….……12

Figure 3.4: Soldering of ESP8266 in a PCB board……….……………………..…………...13

Figure 3.5: Interfacing ESP8266 with ATmega32……………………………...……….…...15

Figure 3.6: Relay………………………………………………………………………….….16

Figure 4.1: Configuration of system using HTTP…………………………………………....17

Figure 4.2: Communication Sequence in HTTP………………..…………………………....19

Figure 4.3: Configuration of system using MQTT…………………………….………….....24

Figure 4.4: Communication Sequence in MQTT…………………………………………….26

Figure 4.5: Packets in MCU code…………………...……………………………….………36

Figure 5.1: PHP files stored in 000webhost……….………………………...…………….....40

Figure 5.2: CloudMQTT WebSocket…………………………………………….....………..41

Figure 5.3: Interface of the website……………………………………………..………...….42

xi

Figure 5.4: Code of buttons in the website……………...……………………………..….….43

Figure 5.5: Data is shown on our webpage………………...………………………...………44

Figure 5.6: API key coming from the MCU………………………………………..…..……45

Figure 6.1: Creation of Mobile Application project…………...……………………………..50

Figure 6.2: Constructing of an Android virtual device…………...…………………….……51

Figure 6.3: Configuring smartphone for android application……...…………………………52

Figure 6.4: Padding……………………………………………………...…………………...55

Figure 6.5: Margin………………………………………………………...………………….55

Figure 6.6: Splash Screen…………………………………………………...………………..57

Figure 6.7: Appliance list………………………………………………………………….....58

Figure 6.8: Pahara App for ease of monitoring data……………………………………...….62

Figure 7.1: Proteus diagram of ACS712 with Atmega32…………………………………....63

Figure 7.2: Output waveshape from ACS sensor…………………………………………….64

Figure 7.3: Voltage vs current curve. Load (voltage)varied…………………………………65

Figure 7.4: Voltage vs ammeter current curve…………………………….…………………66

Figure 7.5: Voltage vs MCU current curve……………………………………..…………....66

Figure 7.6: ESP8266 communication with CloudMQTT broker …….…………..…………....67

Figure 7.7: Data transfer rate HTTP protocol……………………………………...………...68

Figure 7.8: Data transfer rate for MQTT protocol……………………………...……………69

1

Chapter 1
Introduction

1.1 Introduction

Internet of Things (IoT) points to the ever-growing network of physical objects. In IoT, data

are collected in different ways via sophisticated sensors which communicates with each other

and store this data in the cloud. In IoT, a large number of small blocks from

devices, like numerous sensors, transfer across networks [1]. IoT is revolutionizing the way

people communicate, work and live. It is a system of interconnected computer networks

which allows data transmission without requiring human computer interactions. Moreover,

IoT is also M2M communication system which means machines are able to communicate

without direct involvement of a person. In this paper, we will discuss the system that we have

developed for monitoring appliances remotely. Firstly, a sensor named ACS712 has been

chosen for collecting current value which will serve as our data. For communication part we

have dealt with two protocols HTTP and MQTT and ESP8266 is used to transfer our data.

Furthermore, we have created our own server using PHP and MySQL database. Thus, it gives

us the freedom of a remote communication. Finally, a mobile application has been created

with an aim to monitor data continuously. So, the corresponding IoT architecture is

customized with the mobile application.

2

1.2 Objective

Here our goal is to build a device containing transferring protocol, which will be best for

delivering our data. Data transmission needs to be done in such a way that we do not have IP

addressing issues. We have chosen two protocols and they are HTTP and MQTT. Both have

their own complexity and ways of transferring data. Moreover, a server needs to be created

alongside a database to monitor our data. Later a mobile app will be implemented which will

make monitoring easier for users.

1.3 Motivation

The significance of IoT in every sector, including health monitoring and home automation

knows no bounds. In building smart city it is having a crucial role. With the help of IoT,

intelligent devices will become convoluted in our life in such a way that devices will take on

a day-to-day job that was accomplished by humans conventionally. Previously, in the

industries we needed individuals who could work all the time to keep an eye on the

equipment for proper maintenance. Thus, it was really difficult for the workers and the cost

of production was high. Therefore, an autonomous system should be built which gives

flexibility along with control to the users. These devices will be both cost effective and time-

saving. Hence, a device with an effective transfer protocol is required for observing.

Furthermore, the server needs to be remote so that users can have access from any place in

the world.

1.4 Literature Review

IoT helps us to handle, manage and store large amounts of data. In recent years, many papers

proposed design and architecture for smart monitoring. [2] Presents an energy efficient

temperature and humidity monitoring system using HTTP protocol. The measured data are

dispatched over the internet using HTTP requests. This whole system is based on a local

3

network which can be a problem if we go for remote communication. [3] Focuses on home

automation using MQTT protocol. Here they have used Adafruit as the MQTT broker and

devices are connected with it. Software like IFTTT is used to access appliances through

mobile. This approach is not cost efficient as we need to buy this software. [4] Discusses

about a system which uses Zigbee based on home automation and focuses on the problem

regarding wired connections. However, Zigbee is not secured like WiFi and has a low

transmission rate. [5] Describes Bluetooth based home automation system, which contains a

mobile host controller and home appliances. The home appliances communicate with the host

controller through Bluetooth devices. In contrast, Bluetooth is useful only in short range

communication and operating devices needs to be in the range. [6] Analyzes proposal of a

system based on automated irrigation by some researchers which will help farmers to monitor

crops and reduce wastage of water. They have made the use of Arduino embedded with

sensors and WiFi. As Arduino has built in library, it is easier to utilize it. Moreover, they

made the system cost effective by using an online based server. However, the use of

Thingspeak as the server has made their data vulnerable and hence can be exploited. In this

paper our proposed system emphasizes on the reception of current from a sensor and the

accumulation of these data in the MySQL database of the server. Remote communication is

possible by the use of MQTT and HTTP protocol. We have used our own online based secure

server and database. Consequently, it has made our project cost effective and secured.

Transmission of data is at a faster rate using ESP8266 and it also consumes less power.

Moreover, we made our own mobile app for monitoring which means we do not have to rely

upon other software.

4

1.5 Organization of the Thesis

The book is organized in eight chapters which are given as follows:

• Chapter-1 is the introduction of our thesis. Along with this, it includes different areas of

past research related to our project. It contains motivation and objective of our work.

• Chapter-2 is divided into three sections. In first one, the concept of our project is given.

Basically, the approach that we are going to follow and a brief idea of the whole system is

described in this section. In the second part, we have discussed about the design or

architecture we followed. In addition, last part includes the target output of our project

along with the results to be obtained.

• Chapter-3 contains the hardware components that we have used. Each component is

divided into different sections and their implantations in the project are explained

alongside the codes used.

• Chapter-4 is about communication part of our project where two protocols have their own

sections. In this chapter we have also explained the microcontroller side codes developed

for both HTTP and MQTT.

• Chapter-5 explains how we have built the server and all other software that has been used

to achieve remote communications. The server side code for both MQTT and HTTP

protocols are discussed in this chapter.

• Chapter-6 is all about building an app so that we can view data from 000webhost in our

smartphones and thus monitoring it continuously.

• Chapter-7 contains the result of Proteus simulation alongside the result of the data transfer

rate obtained using both protocols.

• Chapter-8 concludes the paper by discussing the shortcomings and also the future scope of

the project, which can be done to make the system more effective.

5

Chapter 2

Overall Design of the Project

2.1 Concept

The figure 2.1 depicts the general IoT construction of our system. It is clearly evident from

the figure that Atmega32 is the core element of our prototype. To begin with, light bulb is

connected to relay which in turn is attached to ACS sensor. Similarly, the ACS sensor is

glued with Atmega32. The microcontroller is programmed in such a way that it transfers data

to the broker with the help of an ESP8266 WiFi module as we are following MQTT protocol.

In addition, the broker sends the data to the server. A computer is used to view and control

the turning on and off the device which is essentially our light bulbs. Along with that, a

mobile application is built up to effortlessly monitor data. Now, the main notion behind our

project is described. The current sensor that we have used follows the principle of Hall

Effect. Again, in microcontroller a code has been developed that reads variable DC from

sensors. The ADC of Atmega32 uses 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 for calculation purpose. Besides, ESP8266 uses

AT commands for communication. Initially, for transferring of data in the server, we have

used HTTP protocol. Later, we have switched to MQTT protocol, which follows a different

approach than HTTP protocol. In this protocol, a client can be both publisher and subscriber

which are true for the server as well. The data published in the broker go to the server and the

subscriber connected to the broker in the same topic will receive the message.

6

2.2 Design of the system/Implementation

The figure 2.2 illustrates the hardware implementation of our project. There are two boxes

made of Acrylic board. Inside the boxes there are AVR trainer board, ACS sensor, relay and

ESP8266 WiFi module. In addition, there are three light bulbs attached to a wooden board

and other three bulbs of light bulbs are joined with plastic board. First of all, a series board

containing three light bulbs is assembled. The bulbs represent the appliances and its current

values are altered by switching as they are in parallel. The current values have been obtained

using the RMS calculation for variable DC wave. At the beginning, we have run simulations

in Proteus in search of precise outcome. Then, current values are constantly varied in the

code and later attached with Get request to send this data in the server. Furthermore, the AT

commands will be checked in real term which is a serial terminal that allows us to see

whether our ESP is able to send data in server. Code is set in such a way that if a particular

AT command fails it will loop back into that AT command to check. In case of the server we

2.1 Overall IoT architecture of our System

7

have connected MySQL with PHP, which will enable us to store current data in database. We

will be using a free hosting site to keep our PHP files. Along with it, the hosting site allows

phpMyAdmin to run. As a result, we can create a database. Moreover, we need to keep track

of date and time, so separate fields have been created. Additional feature has been added in

the server webpage which are the buttons that allows the user to turn on and off the light

bulbs from anywhere. Finally, a mobile application has been created for observing data from

remote locations. For communication between different systems we have used to protocols

namely HTTP and MQTT as mentioned earlier. HTTP being an application layer protocol

uses port 80/333 for communicating. The fundamental and safe transport layer protocol

known as TCP protocol are frequently used for transmission. While working with HTTP

protocol it is important to know IP addresses as it changes with WiFi. In contrast, MQTT

solves the issue of regular update of IP address with the change of devices. Moreover, the

control of appliances using MQTT is easier over HTTP due to the fact that the broker uses

different topics for publish and subscription allowing the appliances to receive the message

which is subscribed to the topic. Furthermore, the time of execution for data transfer is much

lesser in MQTT than HTTP. Thus, we can declare that MQTT is more preferable way of

communication than HTTP.

8

2.3 Target output

To start with, our purpose is to look for data with least possible fluctuation in simulation.

Besides, as HTTP is a two way communication which are essentially HTTP request and

HTTP response, we will look into consideration whether they are being transferred and

connections are being established with the server. On the other hand, for MQTT, we will

check the connection establishment of the microcontroller with the broker. Our target is to

compare the rate of data transfer and efficiency for both the protocols. The change of IP

address along with the change in location of the router should be examined for HTTP. In

addition, the data transfer rate should be scrutinized with respect to MQTT. Finally, we have

to look at the response time of microcontroller to receive data from server. In this way, we

will achieve our main objective.

Figure 2.2: Overall hardware design of our system

9

CHAPTER 3

Basic Components in The Appliances End

3.1 Sensor

Sensors are sophisticated devices responsible for measuring physical quantities. It converts a

physical parameter into signals which can be measured electrically. In our case we need to

measure current. The sensor that we have used for measuring current was Asc712. It uses the

principle of Hall Effect, which was discovered by Dr.Edwin Hall. The principal states that

when a current carrying wire is placed in a magnetic field, a voltage is generated which is

proportional to the current. This voltage is DC and proportional to the current. The Hall

voltage is also proportional to the magnetic field. The module is using a RC filter so that it

works fine in low frequency application. The ACS712 comes in three ratings 5A, 20A, and

30A.We have used 30A one in our case.

Figure 3.1: Layout of ACS712 module.

10

3.1.1 Simulation Code

While performing experiments, we have noticed on the oscilloscope that the output wave

shape from the ACS is proportional to the AC current having an offset at 𝑉𝑉𝐶𝐶𝐶𝐶/2 (2.5V in our

case since 𝑉𝑉𝐶𝐶𝐶𝐶 or supply voltage to ACS is 5V). Since the output is an analog signal, hence

we used ADC to convert it to numeric values, thus achieving DC voltage. Here we have used

the formula,

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
2𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑋𝑋 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴………………….3.1

 Here, 𝑉𝑉𝑖𝑖𝑖𝑖 is the voltage inputted in digital format, 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 is the reference voltage, and the

number of bits in ATmega32 is 10, which we have used here, and ADCW is the analog

voltage received. However the value varies, so we needed to convert the varying DC voltage

into its rms value, for it, we have considered the basic AC to RMS conversion formula:

𝑉𝑉𝑟𝑟𝑟𝑟𝑠𝑠 = 1
𝑇𝑇
�∫ (𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜)2 𝑑𝑑𝑑𝑑𝑇𝑇

0 ……………………….3.2

Here, T is the time period of one cycle, 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 is the average value of the voltage, and 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 is

the output voltage form the ACS. The value however is still in voltage and we now to convert

it to current. To do this we need to divide this by the sensitivity of the device. Sensitivity

refers to the ratio of current to voltage of the device provided in the data sheet having a unit

of mv/A. Since we have used ACS712 of 30A, and according to the data sheet, sensitivity for

it is 66 so we have divided it by 66 to get the value of current flowing through ACS.

Code: (in Appendix C)

1) ADC conversion means conversion from analog to digital values. We have used preset

library for ADC here, and used AVCC as reference voltage for conversion. A 10us delay is

11

necessary for the accurate conversion of analog signal by the MCU and at the end, the

function returns the value that it senses.

2) The function “getCurrent()” will produce the value of current in the variable “cur”, which

will be sent to the database. As per equation 3.2, we needed to sum up all the values in one

period. The time period is 20ms for the line frequency is 50hz. Since a 10us gap is

mandatory, so we have recorded values for 200 times, which we looped 10 times, making

it 20000us which in turn is 20ms. The value of the output voltage of ACS has an offset of

2.5Vs, (2.495V in practice) so, a subtraction was needed to get deviation from the mean

position. The values are then squared and added. After having gone through loops, we

have the summation of the squared values of the voltages. The summation was then square

rooted and then divided by the time period to get 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟, afterwards this was divided by the

sensitivity to get the current. The value of current is stored in the variable “cur”, the rest

was part of calibration. We have displayed the result on the LCD which enabled us to

compare the value provided by the MCU and ACS to the ammeter as shown in diagram

below:

Therefore, our Atmega32 can work like an ammeter which proved to be faster than the

multimeter and hence data of current is ready and can be sent now.

Figure 3.2: Current reading in Atmega32 compared with multimeter reading.

12

3.2 Communication at The Appliances End

ESP8266 have integrated TCP/IP protocol stack. TCP and UDP are both transport layer

protocol, which is responsible for flow control, reliability and correctness of data that is being

sent over the network. TCP provides a virtual circuit between sender and receiver, and this

protocol helps retransmit damage frame so no data is lost and we therefore get a secure

connection [8]. In transmitting end TCP causes fragmentation and attaches a sequence

number which is detected by receiver and frames are rearranged according to their order.

Thus, any lost frames are tracked. In TCP/IP model application layer is the top most layer

and allows user interactions with the application. When two application layers want to

communicate, the data is transported in the transport layer. Application layer contains HTTP,

MQTT, FTP etc. Network layer is lowest layer and it is a combination of physical and data

link layer. It identifies how data will be transmitted throughout the network. This layer carries

out mapping of IP addresses into physical ones.

Figure 3.3: IoT Protocol Stack

13

3.2.1 ESP8266 Module

ESP8266 contains inbuilt TCP/IP protocol stack that gives any microcontroller access to your

WiFi network [9]. All ESP8266 have built in AT commands firmware. Most effective

features of ESP8266 are being cost efficient and they have on board processing capability.

For ease of using it, ESP8266 is integrated in PCB board, so that we can finally get

transmitter, receiver, power and ground. Moreover, it works in 3.3V power supply as 5V

power supply may damage the module. In order to get the information of AT commands in

detail, we have connected ESP8266 WiFi module with FTDI USB to Serial Converter 3V3

and used Software named RealTerm where we have checked all the AT commands.

ESP8266 specifications are [10]:

• 2.4 GHz Wi-Fi (802.11 b/g/n, supporting WPA/WPA2)

• General-purpose input/output (16 GPIO)

• I²C serial communication protocol

• UART (on dedicated pins, plus a transmit-only UART can be enabled on GPIO2)

• Pulse-width modulation

• Serial Peripheral Interface (SPI) serial communication protocol,

Figure 3.4: Soldering of ESP8266 in a PCB board.

14

3.2.2 AT Commands

AT is the abbreviation of Attention and often used to control modem. Some basic tasks that

can be done using AT commands include getting information from mobile phone, getting info

of the subscriber, establishing data connection etc. ESP8266 supports wide ranges of AT

commands that help to interface ESP8266 with microcontroller through UART. AT

commands are involved in controlling operations like connecting to WiFi, restart, mode

selection and many others.

1. AT+CWMODE_CUR=3

This command is used to acquire the existing WiFi working modes. Here, 3 states that it will

work both in Station mode and Access Point mode. AP mode enables us to develop our own

network and connect to it with other devices where Station mode mode enables the ESP8266

to connect to a Wi-Fi network which is generated by our wireless router.

1) Station

2) AP

3) Station AP

 This configuration will not be stored in flash.

2. AT+CWJAP_CUR (JOINT ACCESS POINT) =”ssid”,”password”

This command connects to WiFi router. We need user ID, password and channel for this. In

our project, we have used ssid as “STS” and password “tkd9663sts”.

3. AT+CWLAP

This command will list all the surrounding access points. Finding AP with specific ssid is

important.

15

4. AT+CIPMUX = 0

This command sets the module to multiple connections. CIPMUX=0 means it has single

connection and CIPMUX=1 will represent multiple connections. We have used 1 in our code.

5. AT+CIPSTART = “Type”, “address”, port

This command connects to the website and establishes TCP (type) connection. IP address of

receiving end the server and port number is also important here. The IP address used in this

project is “waseeserver.000webhostapp.com” and port number 80.

6. AT+CIPSEND=”data length”

This command is used to send data from ESP8266 module where number of characters is

specified in this case. In our case, the number of characters is 73.

7. AT+CIPCLOSE

It closes TCP or UDP connections.

Figure 3.5: Interfacing ESP8266 with ATmega32

16

3.3 Relay

Relay is an electromagnetic switch which helps to make or break contact of a circuit. They

achieve this property with help of signal which makes circuit on or off. Relay is used for

controlling high power circuit with the help of low power signal. Relay operates in either NC

(normally closed) or NO (normally open) condition. Normally open means when no signal

given the circuit contacts will be open as relay not energized. Our purpose of using relay is to

control our appliances remotely. From the server side we will send on or off command and

microcontroller will receive signal and act accordingly. We will check for on or off in

“search” function. If any of the condition matches then actions will be taken accordingly. For

example if OFF is matched, then microcontroller will send a signal to relay to open the

circuit.

Figure 3.6: Relay

17

Chapter4

Remote Communication

4.1 Introduction

The application layer directly interacts with the end users, so protocols used here is of great

importance. In TCP/IP model application layer exists on the uppermost part from the client

end which imparts the interface between different applications and the network. Moreover,

this layer performs data formatting and presentation. Application layer being implemented

by browser, contains protocol like HTTP, AMQP, MQTT, CoAP and many others. We also

need a protocol that allows remote communication without using a fixed real IP.

4.2 HTTP

The configuration of the system under HTTP protocol is depicted in figure 4.1 below

Figure 4.1: Configuration of system using HTTP

18

The HyperText Transfer Protocol (HTTP) is used to define how client-server programs can

be written to retrieve web pages from the Web. An HTTP client sends a request and thus an

HTTP server returns a response. The server uses the port number 80. Similarly, the client

uses a temporary port number. HTTP uses the services of TCP which is a connection oriented

and reliable protocol.

4.2.1 The Protocol

 HTTP is the foundation of data communication for the World Wide Web. It follows a client

server structure, message size is usually high. Usually two types of message are prevalent in

HTTP and they are request message and response message. The first section in the request

message is called request line. There are three fields in this line separated by one space and

carriage return. The fields are called method, URL and version. The method defines the type

of message. The client uses GET method to send request where the body of the message is

empty. The post method is used to send some information to the server, which is usually used

to add or modify the web page. After the request line, there are zero or more request header

lines followed by the body. The body contains the command to be sent or the file to be

published on the website. Similarly, the response message consists of a status line, header

lines, a blank line and sometimes a body. The first line in a response message is called the

status line. There are three fields in this line separated by one space and carriage return. The

first field defines the version of HTTP protocol, which is currently 1.1. The status code field

defines the status of the request. It consists of three digits. The codes in the range 100 are

only informational; the codes in the 200 range indicate a successful message. In addition, the

codes in the range 300 range redirects the client to another URL and the codes in the range

19

400 indicate an error on the client site. Finally, the codes in the 500 range indicate an error on

the server site. For response message there are and zero or more response header lines next to

status line. Each header line sends additional information from the server to the client. In

addition, the body contains the document to be sent from the server to the client, which is

present unless there is an error message. Additionally, HTTP comes in handy when we go for

big data collection. In contrast, while working with HTTP the IP addressing needs to be kept

in mind as a different IP might stop device from communicating with the server, hence a real

IP is required at that time.

Figure 4.2: Communication Sequence in HTTP

20

HTTP follows the three-way TCP handshake. This helps to synchronize segment number.

Therefore, no packets will be lost giving a secure data transfer. The device (client) sends a

synchronize packet to the server. The server responds using synchronize/acknowledge packet.

The device (client) site receives the SYN/ACK packet and replies with Acknowledgement

[11].

 4.2.2 Microcontroller side code

This part explains the code running on the microcontroller (AtMega32), which primarily will

send and receive data from the server, in other words communicate with the server. We have

used a switch case structure for this code. Since our task is sequential, this structure provided

us a system where the flow of instructions can only move forward if the previous task was

successful. In main code section, we will explain the cases and their purpose, afterwards in

library section we will explain what the functions do in much more detail.

Main code: (in Appendix D)

1) The library file was added at the beginning, and PORTC.0 will be used to turn on or off

the bulb, it was initially set to 1. The MCU shows “Welcome” at the start where the LCD,

ADC, USART are initialized for proper functionality. We have applied the switch case

structure to carry forward our work. We took PORTC.0 as the led control pin.

2) In each case, specific “AT Commands” will be sent to ESP8266 and the reply will be read.

This is how we communicate with the ESP. From here on “Initializing” will be shown on

the LCD which depicts that the ESP module is being initialized and made ready for us to

start communication. At the start, we send “AT” and if the module is connected, we expect

the reply to be “OK”. If this is such the case, we can move to case 2 otherwise, we will

keep repeating this, which indicates that the module is not detected by the MCU. In case 2,

we set the mode at 3. If this is successful, we will match this by comparing the reply

21

(expected to be OK in this case) using the search function (explained in library section).

Then, we can move on to case 3 which will mainly deal with connection with the WiFi.

Here we have to send the command “AT+CWJAP_DEF?” which asks the module if it is

connected with the WiFi or not. If the reply is “No AP” then we will move to case 4 which

will search and connect to the WiFi. However, if the module is already connected to the

WiFi, it will skip case 4 and move to case 5. In case 4, “AT+CWJAP_DEF=‘user id’,

‘password’ ” was sent to ESP, which will use the information to connect to the WiFi. If

“WIFI CONNECTED” was the return message from the ESP it means that the module has

connected with the WiFi and we can move on to case 5. Our ultimate goal is to reach case

5 and onwards, hence if case 3 is successful, it directly can move to case 5, skipping case 4

which makes the procedure faster.

3) In case 5, we need to set the mux using “AT+CIPMUX=1” and the value to be set is 1

which allows multiple connections. For all of the steps till now, we will only see the words

“Initializing”, and a few dots afterwards to indicate the code moving forward. In Case 6,

we would see the word “Sending”, which means all the previous steps have been

completed and now we can move on to the actual data transfer. This does several tasks,

starting with getting the value of the current flowing through using the “getCurrent”

function (as explained in chapter 3.1.1), the value of the current will be stored in a float

variable “cur”. The function “apiKeyValueUpdate” uses this to generate an API key

which will be used to send data. This case sends the AT command “AT+CIPSTART” and

in it we have sent the type of connection (TCP), the remote IP (domain name of the web

server) and the port number (80). This starts the connection. If the reply is “CONNECT”,

then we can move on to case 7 which basically sends the information about the number of

bytes to be sent using the command “AT=CIPSEND”. This has to be highly specific, and

our API key is about 73 bytes hence 73 was sent. Then we move on to case 8. In the

22

circumstance where we did not find “>” symbol (this will be returned in the case where the

command was successful), we would consider that the connection has been broken,

thereby going straight to case 9 (explained later), restarting the process.

4) With the API key being ready in stage 6 and the number of bytes that would be send is

specified in case 7, in stage 8, we have to send data with the “USART_println(char

*send)” function to the server, where it stores the data and lastly, if this too was successful,

we must close the connection. Closing the connection is what is in case 9 where we have

used the command “AT+CIPCLOSE” which closes the connection.

Thus, one objective has been met which is sending data to the server. The other objective was

to control the light bulbs from the server end. Since our device is in a remote location with a

remote IP, hence sending data from the server is difficult. Here we have used a special

technique to make this possible. As we know, after sending data via HTTP protocol, a return

message is sent from the server side as a response that it has received data which is termed as

“echo”. We have used this to send data from the server. When we wanted to turn on the bulb,

we send “eqp1ON” and “eqp1OFF” if we wanted it off (eqp2 for the other equipment). So at

stage 8 after sending the value of current, we have immediately started to search for the

keywords, and if “eqp1ON” was found, then PORTC.0 is made high, which in other words

would turn on the lamps, and vice versa if “eqp1OFF” was found. After this, in order to send

and receive new data, we have to start from stage 6, that is by re-establishing connection.

Library Files: (in Appendix E)

1) The “void USART_println(char *send)” is one of the most important functions for using in

all the stages and its purpose is to send commands to ESP8266. The while loop will

continue till the data is sent. However, before that it checks if the USART data register is

23

empty or not and if it is empty, it loads the data in UDR, which sends the information to

the ESP module.

2) The “int Search(char *search)” function is probably the other most used functions. Its job

is to check whether the value passed through to the function exists in the array “receive”.

This array holds the reply that the MCU gets from the ESP. When the MCU receives data,

an interrupt is called, and the data from the UDR is stored in the receive array. The

procedure used here is that initially, we count the number of characters that the “search”

function has. Then we match each of the characters of “search” individually and if the

character is the same as in the receive array, “matchFound” variable is incremented. This

goes on till the entirety of the receive array is checked through, and in the end if

“matchFound” is of the same number as “numberofmMatch” then 1 is returned, otherwise

0 is returned, where a return of 1 would mean that the variable passed on exists in the data

send back by the ESP module.

3) The “apiKeyValueUpdate(float value)” function is called on stage 6 and its purpose is to

update the “API_key” array. In the array only 4 values change namely the value of the

current in variable “cur” (00.00) as shown in the array “char API_key[74]”. The value of

the current is initially made an integer and then each of the digits placed individually. For

example, suppose the value of current is 12.09, the first line converts it to 1209. In “API-

key [18]” we need “1”, so 1209 divided by 1000 gives “1” and we have added 48 in each

of the lines since we want the value in ASCII format. The other digits have been converted

to fit each of the digits in the positions required.

24

4.3 MQTT

4.3.1 The Protocol

The configuration of the system under MQTT protocol is illustrated in figure 4.3 below

MQTT stands for Message Queuing Telemetry Transport protocol, which is featherweight

broker based publish/subscribe protocol. MQTT is designed to give advantages to small

processing devices by communicating in low bandwidth [12]. In MQTT protocol broker uses

different topic for publishing and subscribing. Appliances subscribed to the topic will receive

the message. MQTT separates publisher and subscriber in space, time and synchronization. In

this protocol, the publisher or subscriber do not know about each other’s IP address or port.

Moreover, there is no need of the subscriber or publisher to be actively present at the same

time. The speed of sending or receiving messages can be different. This makes control easier

as we can control not only one device like HTTP. Also the time frame to execute task

Figure 4.3: Configuration of system using MQTT

25

decreases. Furthermore, MQTT has built in Quality of Service (QoS) level for message

delivery. It is an agreement between the sender of a message and the receiver of a message

which defines the assurance of transportation for a particular message. There are 3 QoS levels

in MQTT and they are given below:

• At most once (0): The lowest position of QoS is zero where delivery of a message is

not guaranteed. The receiver does not recognize acknowledgment of the message and

the sender does not store and re-transmit the message. QoS level 0 is often referred to

as "fire and forget," providing the exactly similar assurance as the TCP protocol

underlying it.

• At least once (1): QoS level 1 ensures that the receiver receives a signal at least once.

The sender will store the message until the receiver receives a PUBACK packet that

recognizes receipt of the message. Moreover, sending or delivering of a message is

possible numerous times.

• Exactly once (2): In MQTT, QoS 2 offers the highest level of service. This level

ensures that the intended recipients receive each message only once. QoS 2 is the

most secure, but it is slow. The guarantee is given between the sender and the receiver

that there will be at least two request / response flows (a four-part handshake) among

them. The sender and receiver use the original PUBLISH message packet identifier

for coordination in delivery of the message.

In addition, MQTT support intermittent connectivity which means the session may last for

weeks or even months. It uses automatic “keep alive” messages. This means that if a message

is sent using QoS 1 and QoS 2 and the device is not connected, then the message will be

queued for delivery when the device regains connectivity. Furthermore, it supports retained

message which is automatically delivered when a client subscribe to a topic. A single

message per topic is distributed automatically when one subscribes to the topic for the first

26

time if one stays subscribed to the topic, then any changes in the message will be pushed to

the subscriber automatically.

In the above figure, both devices are publishing to Topic1 and the server is subscribed to the

same topic. So whenever the broker receives a data it immediately sends it to the server.

Moreover, for controlling purpose the server publishes to Topic2 and our devices are

subscribed to the same topic. When microcontroller receives any command for turning on or

off, it will act according to it.

4.3.2 MQTT Packets

As like during the communication during HTTP, the MCU needed to be coded to allow us to

communicate with the broker, we will have used the MCU as both publisher and subscriber.

To use the MQTT protocol, we had to use special packets that the protocol uses which is

described below.

Figure 4.4: Communication Sequence in MQTT

27

The connect packet:

This section will cover the connect packet. It is actually a single packet which we have

broken it down to three tables for better understanding. Upon connecting to the broker, the

connect packet must be the first packet that is to be sent from the client to the server, which

should only be sent once over a connection.

CONN RL PLEN PNAME LVL FLAG KA

0 1 2 3 4 5 6 7 8 9 10 11 12 13

16 44 00 06 M Q I s d p 03 194 0 60

The above shows the first 13 bytes of the connection packet. The full form of byte 0 is shown

below.

Bit 7 6 5 4 3 2 1 0

Byte 0 MQTT Control Packet type (1) Reserved

 0 0 0 1 0 0 0 0

In byte 0, the first four LSB bits are reserved with value 0 and the four MSB bits are for

MQTT control packet type. The connect packet being control packet type 1 is fixed and the

lowest bit of the MSB that is the 4th bit is 1 and reset bits are zero. This results in the value of

CONN byte having the value of 16.

Byte 1 named as RL stands for Remaining Length which is in the number of bytes that

prevails in the packet. The total length of our connect packet is 46 but the first 2 bytes are

being used up so the remaining bytes is 44 and hence, in the RL field we provide 44.

Byte 2 and 3 is for the length of the protocol, which is about 6 bytes in our case because the

protocol we have used is “MQIsdp”. This is because since our broker is CloudMQTT and

Table 4.1: Connect Packet (byte 0 to 13)

Table 4.2: Byte 0 of Connect Packet

28

they use this protocol which is the reason for using “MQIsdp” here and the name itself takes

up takes up the bytes 4 to 9.

Byte 10 represents the revision level of the protocol used by the client. The level of protocol

used was 3 by CloudMQTT and hence we have put 3 here. Byte 11 is the flag byte, and its

full form is shown below:

This in decimal is 194 and hence it is our input. This byte is essentially the flag bytes which

will specify the behavior of the MQTT connection.

Bit 1 is for clean session and is used to control the lifetime of the session state. With this bit

being 0, the server must resume communications with the client based on state from the

current session, in a case where there is no session, the server, must create a new session. If it

is 1, the client and server must start a new session, and discard any previous sessions. The

new session will continue as long as the network connection does not fail. We have put 1 here

for continuing the session as long as disconnection does not occur.

The 2nd bit is for will flag. With this being 1, it indicates that if the connect request gets

accepted, a “will message” must be stored on the server and associated with the network

connection. This also must be published when the connection closes unless being deleted by

the server on receipt of a disconnect packet. Along with that, the Will QoS and Will retain

fields will be used by the server, and hence the fields must be present in the payload. With 7th

bit being 0, the “will retain” and “will QoS” must be 0 and must not be present in the

payload, and also, a will message will not be published when this network connection ends.

Bit 7 6 5 4 3 2 1 0

Byte 11 User
Name
Flag

Password
Flag

Will
Retain

Will QoS Will
Flag

Clean
Session

Reserved

 1 1 0 0 0 0 1 0

Table 4.3: Byte 11 of Connect Packet

29

The 4th and 3rd bit specifies QoS level during publishing. If the “will flag” is 0 then “the will

QoS” must be 0 as well, however with “will flag” set to 1, QoS flag can be 1 or 2, however

cannot be 3.

The 5th bit is for “will retain” which specifies whether the “will message” is to be retained

during publishing. When “will flag” is 0, then the will retain flag must also be 0. If “will

flag” is 1 and “will retain” is 0. The server publishes the “will message” as non-retained

message, and when “will retain” is 1, the will message will be published as a retained

message.

The 6th bit is for password, if it is 0, meaning we have no password, and hence a password

should not be present in the payload, however when it is 1, password must be present in the

payload.

Lastly, the 7th bit is for User name flag, when 0. User name should not be present and vice

versa. If the 7th bit is 0, the password field must be 0 as well.

Bytes 12 and 13 represent keep alive flag, which essentially is a 16-bit word which represents

the maximum time between the client finishes transmitting one control packet and starts

sending the next one. We have used 60 here to keep the connection alive for a minute.

This concludes the basic connection packet; the rest of the packet is referred to as the

“payload” as it contains information that is specific to the use. In our case we have the client

identifier, a username and a password, and our payload will comprise of three parts. As a part

of the protocol it is mandatory that the order is, client identifier, will topic, will message,

username and password. We have not used the “will topic” and “will message” here which is

why those will not remain a part of our payload.

30

CIDLEN CID ULEN UNAME

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 6 M I C R 0 1 00 08 n C i h n t a k

So the 14th and 15th byte represents the length of the Client ID which is 6 in our case for

“MICRO1” (MICRO2 for the other module), so the value has been put as such and the bytes

16 to 21 covers the Client ID. In the similar way the Bytes 22 and 23 represents the length of

the user name. Upon setting up the account on CloudMQTT, they have by default provided

us with a user name and a password which goes up here. So with our user name being

“nCihntak” which is of 8 characters, the length was 8 in ULEN field and bytes 24 to 31 was

allotted for this. The password works similarly and our password was “C07AccSWrzZF”

which is of 12 characters so, bytes 32 and 33 represents 12 and bytes 34 to 45 was used up

for the password.

The publish packet:

The publish packet will be used by the MCU to send data to the server, hence data will be the

value of current. The packet as a whole is given below. Here our topic name was “Publish1”

and the message was the value of current (represented here by xx.xx).

PWLEN PWD

32 33 34 35 36 37 38 39 40 41 42 43 44 45

0 12 C O 7 A c c S W r z Z F

PFL RL TLEN TOPIC Message

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

48 15 0 8 P u b l i s h 1 X X . X X

Table 4.4: Connect Packet (byte 4 to 31)

Table 4.6: Publish Packet

Table 4.5: Connect Packet (byte 32 to 45)

31

The full form of byte 0 is as follows

Bit 7 6 5 4 3 2 1 0

Byte 0 MQTT Control Packet type (3) DUP
flag

QoS level Retain

 0 0 1 1 0 0 0 0

For publish packet, it is Control packet type 3 hence, the 4th and 5th bit are 1. Here, bit 3 is

termed as the “DUP Flag” which means duplication flag. It indicates whether the packet is

sent for the first time or a re-delivery. In the instance where the packet will be redelivered is

when the bit should be 1 otherwise it will always be 0.

Bit 1 and 2 are to represent QoS, which indicates the assurance level for delivery of an

application message. The table below shows the definitions of the bits with regards to QoS

settings.

We have used the at most once delivery here.

Lastly, the 0 bit is used for “retain”. If the flag is 0, the server will not store the message, and

must not remove or replace any existing retained message. If the flag is 1, the server must

store the message, so that it can be sent to any future subscribers of the same topic name. In

the case where a QoS is 0, but the retain flag is 1, the server must discard any messages

retained for that topic and stores the new QoS message as the new retained message.

QoS value Bit 2 bit 1 Description

0 0 0 At most once delivery

1 0 1 At least once delivery

2 1 0 Exactly once delivery

- 1 1 Reserved – must not be used

Table 4.7: Byte 0 of Publish Packet

Table 4.8: QoS settings

32

The next byte like in the connect packet is for Remaining Length, and our publish packet size

is 17 bytes, and since 2 have been used up here, so the remaining is set as 15 here.

In addition, the TLEN, which represents Topic Length, since our topics are “Publish1” for the

first module and “Publish2” for the second, the length being of 8 bytes, we have used 8 here.

After this, using the next 8 bytes (from 4 to 11 bytes) we will set the topic name and using the

next 5 bytes (12 to 16 bytes) the message would be sent.

The subscribe packet:

The MCU will also need to be subscribed to specific topics to receive information from the

server side. And to initiate subscription, the subscribe packet needs to be used. The full

packet with the data we have sent is given below.

SUB RL PKTID TLEN TOPIC QS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

130 13 0 1 0 8 S E R V E R 0 1 0

The details of the first byte is given below

Bit 7 6 5 4 3 2 1 0

Byte 0 MQTT Control Packet type (8) Reserved

 1 0 0 0 0 0 1 0

The reserve bits are specific for the subscribe packet and the packet type for subscription is 8,

and thus our input is as it is. The decimal value is 130, which was our input. This is preset in

the protocol.

Just like the previous packets, the next byte is for Remaining Length. The total size of the

packet will be 15 so we will set the RL field to 13 as 2 bytes have been used up already here.

Table 4.9: Subscribe Packet

Table 4.10: Byte 0 of Subscribe Packet

33

Byte 4 and 5 are used for “TPLEN” meaning Topic Length, which like in publish packet,

represents the length of the Topic. The name of our topic is “SERVER01” for equipment 1,

and “SERVER02” for equipment 2 and since both are of length 8, so we set the TLEN as 8.

So the next 8 bytes (from byte 6 to byte 13) will be used to send the topic name.

In the subscribe packet, we will also set the QoS level using the last byte, so we used the last

byte (byte 14) to set it.

4.3.3 Microcontroller side code

As like during the communication during HTTP, the MCU needed to be coded to allow us to

communicate to the broker, we will have used the MCU as both publisher and subscriber. To

use the MQTT protocol, we had to use packets as described previously that the protocol uses.

Main code: (in Appendix F)

1) We have again used the switch case structure, however, a bit unconventionally. We have

used “go” as the variable that the switch case variable, and the cases defined initially. The

variable “go” has been set to “TCPConnect”, “Nextgo” is set to “connectCIP”. So, to start

off, the program starts from the case “TCPConnect”.

2) From the TCPConnect case, we will see the word “connecting” appear. Here the MCU

would first use “AT+CIPSTART” at command to establish connection to CloudMQTT

using the 14944 port (as provided by the broker). We will search for the word,

“CONNECTOK” (if the connection is first time, this should be the reply from the ESP),

and for "ALREADY CONNECTED" (if connection was established earlier) using the

“search” function we have created. (will be discussed at the end of this chapter). If

connection is successful, we should get either of the two messages and can move on to

the next case. Otherwise the program will keep trying to connect and hence remain in this

case.

34

Here the next case would be “ClosedOrNot” and this is going to be the most used, and

important step of the code. The purpose of this case is simple but very important as this

check whether connection is broken or not. Here, we would search for the word

“CLOSED” for after closing of the connection and this word is sent back by the ESP

module. So if this has occurred, means we need to reconnect hence we need to go back to

“TCPConnect” case and so the value of “go” will be “TCPConnect”. If the value of

“lastgo” is “SearchAndOutput” it means that the flow of the code has come here from the

“SearchAndOutput” case (described later) and we need to go to “connectCIP” case after

“TCPConnect”. If this did not occur it means that the connection is stable till now and we

can move on to the next stage, which is the name of the case held by the variable

“nextgo”. The value of “nextgo” was initialized as “connectCIP” in the beginning the so

we will move to that case.

The case “connectCIP” is the initial step of sending the connection packet, using which

we can start the communication. Using the AT command “AT+CIPSEND=46”, where 46

represents the length of the data that will be sent. The value of “nextgo” is set to

“sendConnectPacket” , and go is set to “ClosedOrNot”. This will be the structure of every

case where “nextgo” will be set to the case that it should move to, and “go” will always

be set to “ClosedOrNot” to recheck connectivity. This rechecking is performed to ensure

stability of the system. If the connection is stable, at the end of the “ClosedOrNot” case

the value of “go” will be set to “nextgo”, that is the next case. Otherwise, “go” shall be

set to “TCPConnect” to restart the connection.

3) In the “sendConnectPacket” case, we send the connection packet using the

“connectSend()” function (described later). We have given it a time of 1 second to be sent

and then after rechecking connection and finding it to be stable, the program moves to the

“subscribeCIP” stage. With the connection packet sent, means we can now subscribe to

35

publish to the broker. We start off by subscribing first. So to subscribe we need to send

the subscribe packet, and in this case, we send the length of the data to be received using

the AT+CIPSEND command, which is 15 in this case.

After this, we move on to “sendSubscribePacket” case. Here the subscription packet will

be sent using the “subscribeSend()” function (described later), and again wait for 1

second. We have now successfully subscribed to the topic, and will now be receiving

data. After this, we move on to the next case, namely “searchAndOutput” case where we

will search data, and take necessary action.

4) Till now, “Connecting” will be shown on the LCD, however, when we move onto

“searchAndOutput” case this shall not be the case. Notice that in the previous case

(“sendSubscribePacket” case) the variable “subdisplayFlag” has been set to 1 which

indicates that we have sent the subscribe packet, and hence the device is now subscribed

to the broker and to reflect this, “Subscribed” will be shown on the MCU. So after this,

we will search for the keywords used to control the bulbs and thus used the search

function. When we send the command to turn on the blubs we send “SERVER01ON1”

and “SERVER01OFF1” when we want to turn off the bulbs which are the two words that

are searched for (“SERVER01ON2” and “SERVER01OFF2” for the other equipment).

Upon finding “SERVER01ON1”, PORTC.0 will be made high and vice versa. After this

case itself runs 100 times, defined in the “If” statement in line 74, we move onto

publishing data. A 10ms delay is provided and with the case running 100 times means

that we publish data every 1 second. So after every second “nextgo” would be set to

“publishCIP” (the next stage) and the program moves to the “publishCIP” case.

36

5) The last two cases are for publishing data to the broker. In “publishCIP” case, we set the

value of “nextgo” to “sendPublishPacket” and use the “getCurrent” function to calculate

the value of the current. The function “publishValueUpdate(cur)” updates the publish

packet that is to be sent (described later). Lastly, the number of bytes to be sent (17 in this

case) is sent using “AT+CIPSEND” command.

With connection still being viable, we move onto the case “sendPublishPacket”. Its

purpose is simply to send the publishing packer using the “publishSend()” function.

During this time, along with “Subscribed”, we would see the words “Publishing” on the

LCD letting us that it is now a data has been published to the database. With this,

publishing would be complete, and after this, ideally (considering the connection to still

be stable) we would move back to the search “searchAndOutput”, so continually search

of there is any controlling commands (turning the light on or off) coming from server.

Library Files: (in Appendix G)

Most of the library functions, that we have used have already been discussed in the previous

chapter (HTTP MCU code), so, here we will only discuss the new functions created for

MQTT protocol.

1) The “connectSend()”, “publishSend()”, and “subscribeSend()” functions each sends their

respective array. For connecting, “connectSend()” function sends the “connect” array

which is the connect packet. Similarly “publishSend()” function sends the publish array

and “subscribeSend()” sends the subscribe array. Here the “connect” and the “subscribe”

packets will remain the constant, however for publish, the value of current will have to

be updated (described later).

 Figure 4.5: Packets in MCU code

37

In the connectSend() function, we first cleared the buffer, which was necessary to avoid

data corruption or overwriting data and afterwards, loading the connect array into UDR

which would send the data. Here the while loop goes on for 46 times, for the connect

packet of length 46. The “publishSend” and “subscribeSend” functions work exactly in

the same manner with the difference in the number of times the while loop will run which

will be 17 and 15 for “publishSend” and “subscribeSend” functions respectively.

2) The “publishValueUpdate(float value)” function is like the “apiKeyValueUpdate()”

function and it updates the new current value into the publish array, and works exactly in

the same fashion as previously discussed (in the “apiKeyValueUpdate()” function in

chapter 4.2.2).

3) Search Function

When data arrives into MCU it arrives in the receive buffer of the microcontroller UART. Let

us assume that we have a receive buffer named “Receive” of size 11 that means Receive[11];

If information called “Hello world” arrives into our empty receive buffer it will look like

something shown in below :

If we want to search a word like “world” it will work as shown below.

H e l l o W o r l d

38

 0 Receive[11] 10

H e l l o W o r l d

Step1 W o r l d

Step2 W o r l d

Step3 W o r l d

Step4 W o r l d

Step5 W o r l d

Step6 W o r l d

Step7 Match Found W o r l d

When it finds the match it returns “1” otherwise “0” .This helps us to enter and exit from any

condition and make decisions. That is how program flow can be controlled of the state

machine with the help of search function.

When “Receive” buffer receives data it places the data into next array variable by replacing

the existing. When array reaches its maximum value, it starts from the beginning and

continue the process. That means it stores data by circulating. This mechanism of data storing

creates a situation like below. If we want to search “Hello” from the array below, we will not

be able to find it following the old searching method.

o W o r l d H e l l

That’s why we have introduced a circular array searching mechanism. It is nothing but

adding the same “Receive” buffer side by side twice into a new array and search from the

new array. The mechanism that it follows is given below:

1. Elements of new array (0-21) can hold 22 elements. It has been constructed by putting

two “Receive” buffer side by side.

2. Our search keyword is “Hello”, it will search step by step like before.

3. Match has been found in step 9.

39

 0 Receive[11] 10 0 Receive[11] 10

0 NewArray[22] 21

o W o r l d H e l l o W o r l d H e l l

Step-1 H e l l o

Step-2 H e l l o

Step-3 H e l l o

Step-4 H e l l o

-------------------------------------- ---

Step-9 H e l l o Match Found

Here the concept of “NewArray” is theoretical. In reality, it has been developed with

controlled program and searching the “Receive” buffer twice. This is how we can resolve the

issue and make our search function work properly.

In “clear section” of the search function everything remains as it is, but when clear is “1” (It

can be either “1”or “0”). It clears the search key from “Receive” array. As example if search

“Hello” when clear “1”

 W o r l d

“Hello” has been removed from the “Receive” buffer. Thus “Search with clear” has many

great applications regarding output and control of the state machine.

40

Chapter 5

Server

5.1 000webhost

In order to view real time data from sensor, we need a live server with a database. To develop

this, initially we had created a local server for ourselves to test out the concept before going

remote. For this we are using XAMPP which is an Apache distribution containing Perl, PHP

and MariaDB. XAMPP acts as a local server, allowing us to create database with

phpMyadmin and operate the MySQL database [13]. After testing everything on local host

we uploaded the PHP files on 000webhost which is a free domain hosting website, hence

getting space for free. 000webhost also supports to PHP and MySQL database. Thus using

this, we had created our very own remote server.

Figure 5.1: Php files stored in 000webhost

41

5.2 CloudMQTT Broker

To create the system of remote communication with MQTT protocol we were in need of an

online broker with real IP. CloudMQTT is such an online broker, which was available for us

to use which assures us with high probability of message transfer. It is a mosquito-based

broker, which means that our work now is not only limited to CloudMQTT itself, rather we

can use it on any mosquito-based broker. CloudMQTT can operate in 3 modes which

includes fire-and forget, exactly once and at least once [14]. We can even use websocket

client of CloudMQTT to view publish messages on different topics directly, without the need

of any other devices. This enables us to do test runs and whether our broker is connected with

other devices.

Figure 5.2: CloudMQTT WebSocket

42

5.3 Website interface

Since we have an online server, we have created a webpage that will allow us to handle

things as we with graphical user interface (GUI) and basically will be the introductory page

on our server. This page contains various utilities such as, the manual override for the bulbs,

we have the option of turning on or off any of the two equipment using the buttons available.

We can view the data of the two devices with the buttons “Equipment1” or “Equipment2”

this would show the all of the readings of current that arrived and is stored on the database of

the device. In addition, we have added a search option to allow us to see particulate data. We

can directly search data by either ranges of “current” of by “date and time”. The website can

not only showing data but also print it as well using the print option. The final page looks as

follows:

Figure 5.3: Interface of the website

43

5.4 Server side code for HTTP protocol (in Appendix H)

This section will cover the coding and the concepts behind the server. The entire system was

written in PHP language and the files stored on 000webhost as mentioned earlier. It begins

with the index page, and the relevant functions, or other PHP files explained later.

1) Index:

In the index page, the first portion is HTML coding which was used to create the interface,

with title, refresh button and “<input ….. />” holds the information of the button, with the

writing on top of the button given through “value” and the information it passes given by

“name”. Such arrangement is created for all next buttons. The picture below portrays all the

buttons used.

2) Data Viewing:

The “Equipment1” and “Equipment2” button’s job is to show the values of current, with the

time and date of entry. So when the button is pressed, for example “Equipment1” information

is passed on. This is then detected, and the function “showAllData ($tableName,

$dataBaseTableName, $curValtoStr,$curValfromStr) “ is called.

Figure 5.4: Code of buttons in the website

44

3) The function showAllData:

The function takes input variable of the name of the table (the heading that will appear above

the table), the database table name (source of the data), cur value to and cur value from

represents the ranges of data to be shown. The rest of it just shows the data as we please with

the table lines, the column names, etc. which basically web is designing. The output is as

follows:

4) Server-side Control:

With the part regarding observation of data done, the second task was to control the bulbs.

Four buttons have been programed to perform this operation. For example, when “LED ON”

of equipment 1 is pressed, “LED1_ON” data is passed which is picked up by

“isset($_GET['LED_ON'])”, So whenever this is called, it updates the “command” database.

From here data is sent to the microcontroller following the same link that is used when data

enters (data sent by using echo from the message coming in). We have done this through a

database to ensure faster and smoother communication without any data loss.

Similar technique has been used for the other buttons, with the variables “LED1_ON”, and

“eqp1ON” changing as per requirement.

Figure 5.5: Data is shown on our webpage

45

5) Data Entry:

As like others, there is no button for data entry as data will come from other sources. In our

case, data will be sent from the microcontroller by using the API key and data extracted from

it. The API key that MCU sends looks something as follows:

As we can see there is a variable “cur”, which triggers the if segment shown above. Using the

“$query” and “INSERT INTO”, data is made to enter the database.

6) Database connection:

The “require_once('mysql_connect.php')” command is needed to be used every time database

interaction is needed. Its job is to connect to the MySQL database to extract or provide

inputs. It has been made in a separate PHP file so that it is accessible by several files which

we required. To connect, we simply used “@mysqli_connect(DB_HOST, DB_USER,

DB_PASSWORD, DB_NAME)” which is a built in function with the required parameters

that is host, user name, password, database name respectively which was defined initially .

5.5 Server side code for MQTT protocol (in Appendix I)

The server side for the MQTT protocol mostly the same as the server side for HTTP as

explained earlier like with the database creation, database linkup, the interface of the

webpage etc. Only a few adjustments were needed to establish MQTT protocol here and in

this section we shall only the parts that were changed in the communication system. That is,

sending and receiving data. We here used the library file “phpMQTT.php” to publish (send

information from the server) and subscribe (to receive data).

Figure 5.6: API key coming from the MCU

46

1) Publishing data:

Since the server has to be able to control the bulbs, it needs to be able to send data, to the

MCU. Thus sending, that is publishing data to the microcontroller. If we carry on with the

example form the HTTP side, upon hitting the “LED ON” button of equipment 1, LED1_ON

is detected, hence the if statement is activated. Line number 170 creates an object of $MQTT,

with host, port number and a client name. Afterwards we connect to CloudMQTT by

providing user name and password, in the 3rd and 4th parameter. After a successful

connection, it publishes data using the “publish ("SERVER01", "ON1", 0)” where,

“SERVER01” is the topic and “ON1” is the message. With publishing done, we close the

connection afterwards to complete transmission. This sends data to CloudMQTT, and the

subscribed device (MCU in our case) will receive the message with the topic (we have

already seen how the microcontroller uses the message to control the bulbs). The other

buttons use the same technique to send data.

2) Data Entry:

Data reception is made to work through subscription to topics, thus, the subscribed device

will always receive data from when the broker gets new data. The connection establishment

is identical to when we were publishing data that is an object of $mqtt is created with host,

port number and a client name. A subscription connect message is sent using user name and

password. After that, we need to subscribe to a topic. For this to happen, we used the $mqtt

object and used the “subscribe (“array”, 0)” function of the “phpMQTT.php” library. For the

array part, it is quite a special array, as shown in line 29. Here the topic we will be

subscribing to is “device”, that is the topic name that we are subscribing to for both the

devices, with the other parameters “qos” being 0 which is constant, and a function “procmsg”

(explained later).

47

With our server now being subscribed, it is now possible for data to enter the server. The

broker will automatically send data to the server, we will however need to detect it and to do

this, a while loop is run, which runs to detect data. We will run the loop for 58 seconds by

using “!hasTimedout()” function (explained later). Upon entering the loop, the $mqtt object is

run through the “proc()” function of the library, which detects new data, so for 58 seconds,

we will be continuously searching for new data. If new data is found, the “procmsg” function

is called which changes the value of the flag to 1 and so enters the “if segment”, where data is

stored to MySQL. In the “procmsg” function, values for “$eqp” and “$cur” will be set.

“$eqp” represents which equipment has sent the data, and “$cur” being the value of the

current. So, by setting up a “if” statement with “$eqp”, we distributed the value of current in

the correct database. Thus, topic for data entry became a single entity. So as long as the page

is running and the program is running, we will get new data stored in our database, which

will essentially become one of the biggest problems, the page needs to be running on some

web browser, which continually be needed to get refreshed after getting timed out.

3) Other functions:

As mentioned earlier, the “procmsg” function is called as soon as data is sent by the broker.

This function is declared in the array when topic was declared. The when “$mqtt->proc()”

runs, and new data is detected, this function is called and the topic and the message is passed

through. Upon entering, the flag bit is turned to 1 to indicate that data has entered, and hence

get data into the database. The message that arrives here is from the MCU, and the message is

constructed to our benefit. For example if equipment 1 has the value of current 12.09A, the

published message would be “E112.09”. In the server end, the message is stored in an array

and we have programmed it so that from the first two positions of the array will indicate the

equipment and the others the current. Since now we know what equipment it is from and we

keep it in the variable “$eqp”, and the last 5 characters were stored it in variable “$cur”.

48

using an “if” statement upon “$eqp”, and comparing whether the value of “$eqp” is “E1” or

“E2”, we make the value of current enter their respective tables.

The “hasTimedout()” function returns 1 when it is done, otherwise 0. when the time is above

58, and thus the while loop as mentioned earlier exits. Since in the while loop (in the previous

code) its “!hasTimeout()” so when it gets 1 which is false for the loop, it will break.

5.6 Cronjob

As we have already seen we needed “main.php” to be running for data to enter the database.

However, this is not feasible for a remote server as we cannot keep running a webpage all the

time. Cronjob helped in solving our problem, because what we needed was running the page

in the background. It is essentially a software (however, in our case it is a website) that can

run some web page or a website at scheduled time. To set it up we first had to open an

account there, and then simply add the URL of the page that needed to be run automatically

and set up the time interval after which it shall be called. Since what we needed was

continuous communication, we set it as low as possible which was 1 min. The reason for

running the loop for 58 seconds was, since cron job ran the program every minute, if we run

the program itself of 58 seconds, that is collecting data for the mentioned time, we would get

data all the time (the 2 sec gap was left intentionally considering loading time etc.).

49

Chapter 6

Mobile Application

6.1 Creation of pahara app

The “pahara” app is created for constant monitoring of data from 000webhost (server) on our

smartphones. Due to the popularity of smartphones, many people uses it to keep pace with

the modern technology. As smartphones are available in almost every household, we have

introduced a mobile app so that we can easily avail the opportunity of tracking our appliances

from anywhere. For building the app, we have used android studio.

Android Studio is an integrated development environment (IDE) for Google's Android

operating system which is built on JetBrains' IntelliJ IDEA software and designed

specifically for Android development. It is accessible for download in different operating

systems such as Windows, Mac OS and Linux.

In addition, Android is a mobile operating system developed by Google, based on Linux

kernel. It is used for smart phones, tablet, computer and TV. Our primary focus is on

smartphones. There are different version of android along with code name, version number

and API level. In our case, our minSdkVersion is 23 which means it can be installed on any

version of android starting from Marshmallow. Moreover, the targetSdkVersion for our

application is 28.

To begin with, a project needs to be created and the name of Application is given “pahara”.

The following procedure needs to be followed for creation of the project.

50

To run an Android application, a hardware device or virtual device is needed. Virtual device

is a configuration that defines the features of an Android phone, tablet, Wear OS, Android

TV or Automotive OS device we want to replicate in the Android Emulator. The following

approach needs to be followed for constructing an Android virtual device.

Figure 6.1: Creation of project

51

A smartphone can also be used to view and observe the properties of an Android application.

For this, we have to connect our smartphone with the laptop containing Android studio

software with the help of a USB cable.

The procedure for connection is given below

Figure 6.2: Constructing of an Android virtual device

52

6.2 Android file structure and different widgets:

Types of files:

1) Manifest

• All the activity will be there in manifest file

• When an application runs, it starts from manifest file

• There is a launcher activity from where the activity begins

• Program starts with that activity that has intent filter on it

2) Java file:

Android Studio makes a Java document with skeleton code that can be altered.

Figure 6.3: Configuring smartphone for android application

53

3) Res

We get the following files in res:

• Drawable: this is the directory where all the drawable resource and images are

stored.

• Layout: xml file will be there in layout, we can design the UI here.

• Mipmap: images of different size will be present here. Depending on the size of

the device, images are set.

• Values: there are colors, strings and styles present here

• Colors: different colors are set using key value pair.

• String: strings are stored in this file using key value pair. We can declare different

string.xml file for localization purpose depending on the country code.

• Styles: this is the file where different style for different views are declared. we can

use style for the Views in XML that specified in the layout.

Program execution:

Manifest java xml

View group:

A ViewGroup is a special view that can contain other views (called children.) The view

group is the base class for layouts and views containers. For example, Linear Layout,Relative

Layout, Table Layout, Frame Layout, Web View, List View, Grid View. We have used

LinearLayout in our project.

The LinearLayout determine whether their children will appear horizontally or vertically. The

root LinearLayout is vertical and its child LinearLayout is horizontal. The order in which

children are defined determines the order in which they appear on screen. In a vertical

54

LinearLayout, the first child defined will appear topmost. In horizontal LinearLayout, the

first child defined will be leftmost.

View:

• It does not contain other views.

• Widget Attributes

• What is displayed in a mobile screen is widget

The android: layout_width and android: layout_height attributes are required for almost every

type of widgets. They are typically set to either wrap_content or match_parent:

• wrap_content: view will be as big as its content requires.

• match_parent: view will be as big as its parent

For the root LinearLayout, the value of both height and width attributes is match_parent .The

other widgets have their widths and heights set to wrap_content.

• sp stands for scale-independent pixels. Sp is used for text size because but it is

scaled by the user’s font size preference.

• dp stands for density-independent pixels. This attribute tells the widget to add

specific amount of space to its contents when determining its size.

• Padding: using this attribute the text goes away from the left corner of the screen.

• Margin: The rectangle pushes its surrounding contents from itself by the

dimension specified in the margin attribute. Here, the surrounding content will be

the screen of the mobile

55

6.3 Code Explanation: (Appendix J)

1) Manifest File in our project:

Manifest file handles all the activity and has a description of each activity. There are about

three activities in our project. The <intent-filter> is only present at SplashScreenActivity

determines which activity will be launched first. That is, when our application will be

opened, we will see this activity at first followed by ApplianceListActivity and

ApplianceDetailsActivity.

2) Creation of Splash Screen

When the app is going to be starting a Splash screen will appear for 500ms.

A java class SplashScreenActivity is created which is the child class of AppCompatActivity.

AppCompatActivity is a subclass of Android’s Activity class that provides compatibility

Figure 6.4: Padding

Figure 6.5: Margin

56

support for older version of android. Moreover, it contains important methods including the

commonly used methods named onCreate(Bundle savedInstanceState) and findViewById .

The onCreate(Bundle) method is called when an instance of the activity subclass is created.

When an activity is created, it needs a user interface to manage. To get the activity its user

interface the Activity method setContentView is used. This method inflates a layout and puts

it on screen. When a layout is inflated, each widget in the layout is instantiated as defined by

its attributes.

An integer type variable named SPLASH_DISPLAY_LENGTH is used to initiate the time of

display of splash screen. The activity starts with splash screen. This is because the main

intent start activity is included here. An object of Handler class is created. A handler enables

other background thread to communicate with the UI thread. This is helpful for android as it

does not allow other threads to interact directly with the thread of the UI. For stopping the

backward navigation of splash screen from ApplianceListActivity class, finish() method is

used.

activity_splash_screen.xml file:

In this file, the UI of splash screen is created. The background color is set to magenta. A text

“Welcome to Pahara App” is added in <TextView/>. Along with that, the size is made to

26sp and the color of the text is white. The text style is made bold.

57

3) Creation of activity_appliances_list

Xml file:

The UI of the activity represents that two buttons are created respectively by using the button

class in android studio. To execute an action, this user interface component can be taped or

clicked. In the button, text “APPLIANCE 1” is inserted. Similarly, for second button

“APPLIANCE 2” is added. To retrieve information later with View.findViewById android:id

is used to provide an identifier name for this perspective. This must be a resource reference

which is usually set to create a new ID resource using the @+ syntax. For example:

@+id/appliance_one_button which enables us to findViewById(R.id.my I d) to retrieve the

perspective later.

Figure 6.6: Splash Screen

58

Java file of Appliance list Activity:

The android SDK comes with a listener interface named View. OnClickListener that provides

an event to be listened whenever button is pressed.

Changing from one activity to another:

Intent class helps to navigate from one activity to another activity. An object of intent class is

created and, in its constructor, the current activity should be added followed by the activity

desired activity it has to progress. In this case the current activity is ApplianceListActivity

and the activity it will go is ApplianceDetailsActivity. Data is transferred when moving from

ApplianceListActivity to ApplianceDetailsActivity by using putExtra method. The putExtra

method inputs two parameters which are a key and a value. The ApplianceDetailsActivity

receives it by creating a variable of Bundle class. The startActivity method takes object of

intent class as parameter.

Figure 6.7: Appliance list

59

4) Construction of Appliance Information class:

This is a model class. As we are going to show date, time and value of current we have

declared this class with the following properties date, time and current with a constructor and

corresponding setter and getter methods. When we will get the response from the server

(000webhost) we will map the response with is ApplicanceInformation class. The date, time

and value of current are initialized as String and setter getter methods are used to successfully

place the values of date, time and current and retrieve that information after connecting to

000webhost.

5) Designing App class:

For network call using Volley, we need to prepare a layer. Volley is an HTTP library that

facilitates and, most importantly, quicker networking for Android apps. App class makes

network call by preparing itself first. RequestQueue is there in the volley library which

enables the entire request to come in FIFO format and get executed. The method

getInstance() return objects of class App. In addition, addToRequestQueue method can send

String request, JSONArray request or JSON object request due to the usage of generics.

6) Building ApplianceDetailsActivity class:

Android offers a widget that implements the swipe-to-refresh design pattern, enabling the

user to activate a vertical swipe update. This is done with the SwipeRefreshLayout widget

that detects the vertical swipe, shows a unique progress bar and triggers callback methods in

the app. The method onRefresh() is used when a gesture of swipe triggers refreshment.

Several datas will be received from 000Webhost. For this reason, we have created ArrayList

named items. An object of adapter class is created as adapter converts data so that it can be

shown in recyclerView. An object of class RecyclerView sets layoutManager for showing

60

data. The method named setAdapter is used for making connection with recyclerView and

adapter.

A method named fetchArray is used to extract the data from 000Webhost. It contains two

variables of String type named tag and URL. To execute the request, a progress dialog is

used. As long as the request is executing, the loader will not be cancelled. A String request

of post type is created. If the request is successful, it will receive response of String type.

From the String, an object of JSONArray class is created every time the loop runs. The JSON

object contains current, time and date which is extracted and put in object of type

ApplianceInformation. The object is then passed to the adapter. Furthermore, after processing

of data, refreshing of datas gets cancelled. When new data are added, the adapter gets its

information by calling method notifyDataSetChanged().

On the other hand, when there is an error, the progress dialog is hidden. Map is of String type

and request is going as parameter. The valueTo and valueFrom are set to 0.0 as set in the

web. A method named getBodyContentType() is used to know the type of the available

content and is form-urlencoded type same as that of web. Consequently, the request is added

in the getInstance() method of app class.

7) Designing ApplianceAdapter class:

In Android, Adapter is a bridge between the element of the UI and the source of information

that helps us fill in the element of the UI. It holds the information and sends the information

to a perspective of the adapter, and then view can take the information from the perspective

of the adapter and display the information on various perspectives such as ListView,

GridView, and Spinner. We can use the base adapter or custom adapters for further

customization in Views.

61

We have created an adapter named ApplianceAdapter which is extending from

RecyclerView.Adapter<RecyclerView.ViewHolder> which takes a

RecyclerView.ViewHolder as it is of generic type. As we extended RecyclerView.Adapter

we need to provide implementation of few methods.

The method onCreateViewHolder(ViewGroup parent, int viewType) is used to provide the

layout that is going to be inflated from an XML layout file and will be shown in the UI.

Furthermore, from the implementation of the onCreateViewHolder(@NonNull ViewGroup

viewGroup, int i) we are returning return new ApplianceAdapterViewHolder(v) which is then

passed to the onBindViewHolder(@NonNull RecyclerView.ViewHolder viewHolder, int

position)

The method onBindViewHolder(VH holder, int position) is called for every single item in the

RecyclerView. This method binds the data with the RecyclerView.ViewHolder.

In addition, the method getItemCount() returns the number of items to be shown in the

RecyclerView. Moreover, the method addItem(ApplianceInformation appliance) can not be

overridden. We have used this method to add items in the recycler view whenever we want.

Whenever we are extending RecyclerView.Adapter<RecyclerView.ViewHolder> we need to

provide an implementation of RecyclerView.ViewHolder. So we have created an inner class

like this.

8) Conversion of 000Webhost List File to JSON format:

JSON is brief for JavaScript Object Notation and is an easy-to-access way to store data. To

retrieve complex data from the server end to android application JSON is essential. The

information in the server end is converted to JSON format and in the client side we have to

convert it into java. We have used json_encode converts PHP value to json value.

62

Figure 6.8: Pahara App for ease of monitoring data.

63

Chapter 7

Results

7.1 ACS 712

Proteus simulation:

The Proteus simulation is shown for three light bulbs where they are connected in parallel,

which allowed us to change the value of current as we would in the practical scenario. This

helps us to test out the code before practical implementation. Readings of ammeter are

compared to microcontroller in Proteus to observe if our calculation method is correct. We

checked output voltage of ACS and of the current using oscilloscope. All of this helped us to

give a rough idea before hardware implementation. The figure below shows the Proteus

diagram of the setup.

Figure 7.1: Proteus diagram of ACS 712 with Atmega32

64

The simulation shows us that the output from the ACS should be a proportional. However, a

varying DC voltage that matches with the frequency of the current flows through the

ACS712, with the Voltage value significantly smaller than the input. For now we have the

idea of how the sensor behaves, we went on to test the device practically to compare.

Hardware implementation

To test the sensor, we used several loads to vary current through the sensor, and using the

oscilloscope, we tried to observe the output of the ACS712 sensor. This was done to check

whether sensor was giving consistent readings with regards change of current flow. Although

this was provided in the datasheet, we retested it to ensure if it works well in our conditions

or not.

Figure 7.2, shows an example of the output wave shape from the ACS712 where we have

measured the peak to peak voltage and found it to be 0.88V. As per division voltage is 0.5V,

so real peak to peak voltage is 1.76V (0.88x2). This was for a load of 1000W.

Figure 7.2: Oscilloscope graph in Proteus

65

Following this method, we calculated peak to peak for various loads. Afterwards the same

testing was done with MCU to compare the output value of the current from the MCU to the

value of the ammeter. This helped us to check the reliability of our system.

Readings for different loads

Loads/W 0 150 500 1000 1500

Peak to peak
Voltage/mv

0 0.20 0.95 1.76 2.33

Ammeter
I/A

0 0.69 2.09 4.49 6.06

MCU
I/A

0 0.69 2.12 4.46 6.12

The curve below shows the nominal sensitivity and transfer characteristics of the ACS712-

30A sensor powered with a 5.0V supply.

Figure 7.3: Output waveshape from ACS sensor

Table 7.1: Output current and voltage for various loads

66

0

2

4

6

8

10

12

0 5 10 15 20 25 30

Vo
lta

ge
/m

V

Current/A

0

2

4

6

8

10

12

0 5 10 15 20 25 30

Vo
lta

ge
/m

V

Current/A

From the graphs we can see that both the curves are almost identical meaning that the MCU

has now been properly integrated with the MCU and provides us with reliable value of

current.

Figure 7.4: Voltage vs ammeter current curve

Figure 7.5: Voltage vs MCU current curve

67

7.2 MQTT

Before integrating ESP8266 with microcontroller, we tested the AT commands in serial

terminal. This enabled us to check whether we are able to communicate with broker. For

testing purpose, we are sending the message “hellowasee” with topic “buetwork” from serial

terminal. At the same time we can see CloudMQTT broker receiving this message. The figure

below illustrates the communication of ESP8266 with CloudMQTT broker.

Figure 7.6: ESP8266 communication with CloudMQTT broker

68

Data transfer rate protocols:

In communication, the two most important factors by which a system is judged is speed and

reliability of data transfer. Having worked with two protocols, it allowed us to observe and

deduce advantages and disadvantages which helped us to compare between them. The tables

below show the rate of data entry to the database for HTTP and MQTT.

For HTTP protocol, we could send data approximately for about every 5 seconds and if any

packet drops, it would have to be a 10 second interval. Moreover, we could only send the

command to control the light bulbs every 5 seconds as well since it is dependent on data entry

and so, in an occurrence of any packet being dropped, it the MCU that would get the message

about 10 seconds later from the server. In our experiments we have observed several packets

being dropped which lead to a slow system.

Figure 7.7: Data transfer rate HTTP protocol

69

In case of MQTT protocol, we could send data every 2 or 3 seconds. In our tests, there were

very few instances where packets got dropped. With regards to control of the light bulbs, the

process is almost instantaneous and since this is independent of data entry, we could do this

anytime we wanted. Overall in our view, MQTT is far superior, for transmission and

consumes less data which is ideal for using this in remote locations. The system is far simpler

with the broker handling data transfer.

Figure 7.8: Data transfer rate for MQTT protocol

70

CHAPTER 8

Conclusion

8.1 Shortcomings

In our whole projects we faced few difficulties. Firstly, we are using a free hosting site to

host our sever and it may fail if they are having maintenance. There were situations when the

site was down for a few days and we could do nothing. As a result, the server did not allow

access of our files during that time. Secondly, Cron job is another website which calls our

PHP files which is necessary to send data to our server. However, they call the files after one

minute, and sometimes it also fails. This causes loss of our data and we can get instances

where data is lost for a few minutes. Thirdly, the wires used for connections in hardware side

tend to get damaged for prolonged use. At that time whole system fails and microcontroller

sends anomalous reading. Moreover the ESP8266 12e after soldering in PCB does not

function properly.

Solutions

The free hosting site problem can be solved by using our own server. We can make a PC our

server and access it from anywhere. This will give us a server which will be live all the time.

Moreover, any problem in the server can be solved whenever we want. Next is the issue with

the Cron job. As we will be using our own server no external website is needed to call the

files. Lastly, regarding the wire issues, we can solder everything in a PCB board. This will

save us from damaging wires and enable us to use our microcontroller for a longer period of

time. ESP8266 WiFi adapter can be used to avoid soldering issue. Otherwise, we can go for

Wemos D1 in which the ESP8266 chip is integrated with microcontroller.

71

8.2 Future scope

There are other protocols like CoAP, AQMP which have their own benefits. Experiments on

these protocols can be done to bring a more efficient transmission model. For instance, CoAP

have similar features like HTTP but it uses UDP in transport layer. They require low power

and small packets used which means faster communication [15]. Similarly, AQMP is in

application layer and is message oriented. This protocol consists of three components,

Exchange, Message queue and Binding [16]. Firstly, Exchange part gets the message and puts

them in Queue. Secondly, message Queue stores the message until client app gets it safely.

Finally, Binding forms the bridge between Message Queue and Exchange. Next comes server

part, here we can use Python instead of PHP as it creates maximum value in the long term.

Few more advantages of Python include being beginner friendly, shorter codes and clear

syntax [17]. Furthermore, experiments can be done using Zigbee, Bluetooth, GSM to

compare the data transfer rate. As IoT is still a growing sector, there is still a lot of scope for

development.

72

References

[1] T. Yokotani and Y. Sasaki, "Transfer protocols of tiny data blocks in IoT and their

performance evaluation," 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT),

Reston, VA, 2016, pp. 54-57.

[2] G. Mois, Z. Szilagyi, T. Sanislav and S. Folea, "An HTTP-based environmental

monitoring system using power harvesting," 2017 21st International Conference on

System Theory, Control and Computing (ICSTCC), Sinaia, 2017, pp. 845-848.

[3] S. K. Vishwakarma, P. Upadhyaya, B. Kumari and A. K. Mishra, "Smart Energy Efficient
Home Automation System Using IoT," 2019 4th International Conference on Internet of
Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India, 2019, pp. 1-4.

[4] Rana, Jitendra, and Sunil N. Pawar. "Zigbee Based Home Automation." (2010).

[5] R. Piyare and M. Tazil, "Bluetooth based home automation system using cell

phone," 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE),

Singapore, 2011, pp. 192-195

[6] H. Benyezza, M. Bouhedda, K. Djellout and A. Saidi, "Smart Irrigation System Based

Thingspeak and Arduino," 2018 International Conference on Applied Smart Systems

(ICASS), Medea, Algeria, 2018, pp. 1-4.

[7] https://mafiadoc.com/engineering-instrumentation-

andsimulation_59a573b21723dd08400c3ee9.html

[8] TCP/IP model: https://www.javatpoint.com/computer-network-tcp-ip-model

[9] “WiFi Module - ESP8266 - WRL-13678 - SparkFun Electronics", Sparkfun.com.

[Online]. Available: https://www.sparkfun.com/products/13678. [Accessed: 01- Dec-

2018].

https://mafiadoc.com/engineering-instrumentation-and%0dsimulation_59a573b21723dd08400c3ee9.html

73

[10] https://en.wikipedia.org/wiki/ESP8266

[11] Murphy, S. L., & Shankar, A. U. (1991). Connection management for the transport

layer: service specification and protocol verification. IEEE Transactions on

Communications, 39(12), 1762-1775.

[12] Aziz, B. (2016). A formal model and analysis of an IoT protocol. Ad Hoc Networks, 36,

49-57.

[13] Murdan, A. P., & Gunness, L. (2017). An Internet of Things based system for home

automation using Web Services and Cloud Computing. Journal of Electrical

Engineering, Electronics, Control and Computer Science, 3(1), 29-36.

[14] https://www.CloudMQTT.com/

[15] https://www.oreilly.com/library/view/analytics-for-the/9781787120730/ee557386-c97f-

48ee-82c8-625b495fffba.xhtml

[16] https://www.ubuntupit.com/top-15-standard-IoT-protocols-that-you-must-know-about/

[17] https://www.probytes.net/blog/python-vs-php-which-is-better/

74

APPENDIX:

Appendix A: Flowchart

1) HTTP MCU main code

75

2) MQTT MCU main code

76

3) Search function of MQTT

77

Appendix B:

List of Acronyms

• IoT Internet of Things

• ADC Analog to Digital Converter

• RTC Real Time Clock

• LCD Liquid Crystal Display

• IC Integrated Circuit

• RMS Root Mean Square

• MCU Microcontroller Unit

• UART Universal Asynchronous Receiver Transmitter

• ESP Espressif

• AT Attention

• USART Universal Synchronous Asynchronous Receiver Transmitter

• HTTP HyperText Transfer Protocol

• MQTT Message Queuing Telemetry Transport

• AMQP Advanced Message Queuing Protocol

• CoAP Contrained Application Protocol

• HTML Hypertext Markup Language

• QoS Quality of Service

• PHP Hypertext Preprocessor

• TCP Transmission Control Protocol

• IP Internet Protocol

• SQL Structured Query Language

78

Appendix C: ACS712

1) Built in ACD function

2) Function getCurrent which calculates and stores the value of current in variable “cur”

79

Appendix D: HTTP MCU main code:

1) Initialization of the main code

2) Case 1 to 4

3) Case 5 to 7

80

4) Case 8 and 9

Appendix E: HTTP MCU Library:

1) Function which sends data to ESP

2) The search function

81

3) Function that generates API Key

4) Variables used and the built-in library files included

5) Initialization functions

82

6) Interrupt used for USART

7) Library Link

83

Appendix F: MQTT MCU main code:

1) Initialization of the main code

2) Cases TCPConnect, ClosedOrNot and conenctCIP

84

3) Cases sendConnectPacket, subscribeCIP and sendSubscribePacket

4) Case searchAndOutput

85

5) Cases publishCIP and sendPublishPacket

Appendix G

MQTT MCU Library

1) connectSend, publishSend and subscribeSend functions

86

2) publishValueUpdate Function

3) Variables and Built in functions

4) Initialization Functions

87

5) Search Function

88

6) Interrupt used for USART and USART_println used in communicating with ESP module

7) “thesis.lib” Library Linker File

89

Appendix H: HTTP Server Code.

1) HTML coding used to design the interface

2) Buttons to show data

90

3) Function that shows the data in a tabular format

91

4) If statement executed when the control of lights is used

5) Statement executed when API bring new value of current

6) Database Linkup file

92

Appendix I: MQTT Server Side code:

1) Publish

2) Subscribe

93

3) procmsg and hasTimedout Functions

Appendix J : Mobile Application

1) Manifest file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="HTTP://schemas.android.com/apk/res/android"
package="com.example.deboky.paharaapp">
<uses-permission android:name="android.permission.INTERNET" />
<application
 android:name=".App"
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:usesCleartextTraffic="true"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".ApplianceDetailsActivity"></activity>
 <activity android:name=".SplashScreenActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".ApplianceListActivity"></activity>
</application>
</manifest>

2) Splash Screen

package com.example.deboky.paharaapp;
import android.content.Intent;
import android.os.Handler;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

94

public class SplashScreenActivity extends AppCompatActivity {
 private static final int SPLASH_DISPLAY_LENGTH = 500;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_splash_screen);
 new Handler().postDelayed(new Runnable(){
 @Override
 public void run() {
 Intent mainIntent = new Intent(SplashScreenActivity.this,
ApplianceListActivity.class);
 startActivity(mainIntent);
 finish();
 }
 }, SPLASH_DISPLAY_LENGTH);
 }
}

XML file of splash screen

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="HTTP://schemas.android.com/apk/res/android"
xmlns:app="HTTP://schemas.android.com/apk/res-auto"
xmlns:tools="HTTP://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".SplashScreenActivity"
android:gravity="center"
android:background="@color/colorMagento">

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#ffffff"
 android:textSize="26sp"
 android:textStyle="bold"
 android:text="Welcome To Pahara App"/>

</LinearLayout>

3) Creation of activity_appliances_list.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="HTTP://schemas.android.com/apk/res/android"
 xmlns:app="HTTP://schemas.android.com/apk/res-auto"

95

 xmlns:tools="HTTP://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical"
 android:padding="10dp"
 tools:context=".ApplianceListActivity">

 <Button
 android:id="@+id/appliance_one_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="10dp"
 android:text="Appliance 1"/>

 <Button
 android:id="@+id/appliance_two_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="10dp"
 android:text="Appliance 2"/>

</LinearLayout>

Appliance list Activity :

ApplianceListActivity

Java file

package com.example.deboky.paharaapp;
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.Button;

public class ApplianceListActivity extends AppCompatActivity {
 private static final String TAG = ApplianceListActivity.class.getSimpleName();

 Button applianceOneButton;
 Button applianceTwoButton;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_appliance_list);

 applianceOneButton = findViewById(R.id.appliance_one_button);

96

 applianceTwoButton = findViewById(R.id.appliance_two_button);

 applianceOneButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Intent intent = new Intent(ApplianceListActivity.this,
ApplianceDetailsActivity.class);
 intent.putExtra(ApplianceDetailsActivity.EXTRA_EQUIPMENT_NAME,
"Equipment1");
 startActivity(intent);
 }
 });

 applianceTwoButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Intent intent = new Intent(ApplianceListActivity.this,
ApplianceDetailsActivity.class);
 intent.putExtra(ApplianceDetailsActivity.EXTRA_EQUIPMENT_NAME,
"Equipment2");
 startActivity(intent);
 }
 });

 }
}

4) Construction of Appliance Information class

package com.example.deboky.paharaapp;
public class ApplianceInformation {
 private String current;
 private String time;
 private String date;
 public ApplianceInformation(String current, String time, String date) {
 this.current = current;
 this.time = time;
 this.date = date;
 }

 public String getCurrent() {
 return current;
 }

 public void setCurrent(String current) {
 this.current = current;
 }

 public String getTime() {
 return time;

97

 }

 public void setTime(String time) {
 this.time = time;
 }

 public String getDate() {
 return date;
 }

 public void setDate(String date) {
 this.date = date;
 }
}

5) Designing App class:

package com.example.deboky.paharaapp;
import android.app.Application;
import android.text.TextUtils;
import com.android.volley.Request;
import com.android.volley.RequestQueue;
import com.android.volley.toolbox.Volley;

public class App extends Application {

 public static final String TAG = App.class.getSimpleName();

 private RequestQueue mRequestQueue;
 private static App mInstance;

 @Override
 public void onCreate() {
 super.onCreate();
 mInstance = this;
 }

 public static synchronized App getInstance() {
 return mInstance;
 }

 public RequestQueue getRequestQueue() {
 if (mRequestQueue == null) {
 mRequestQueue = Volley.newRequestQueue(getApplicationContext());
 }
 return mRequestQueue;
 }

 public <T> void addToRequestQueue(Request<T> req, String tag) {
 req.setTag(TextUtils.isEmpty(tag) ? TAG : tag);

98

 getRequestQueue().add(req);
 }
}

6) Building Appliance Details Activity class:

 equipmentName = getIntent().getStringExtra(EXTRA_EQUIPMENT_NAME);
 fetchArray(equipmentName);
 setUpSwipeRefreshListener();
 }

 private void setUpSwipeRefreshListener(){
 swipeRefreshLayout.setOnRefreshListener(new
SwipeRefreshLayout.OnRefreshListener() {
 @Override
 public void onRefresh() {
 if(swipeRefreshLayout.isRefreshing()){
 fetchArray(equipmentName);
 }
 }
 });
 }

 private void fetchArray(final String equipmentName) {
 String applianceRequestTag = "json_array_req";
 String url = "HTTP://waseeserver.000webhostapp.com/list.php";

 final ProgressDialog pDialog = new ProgressDialog(this);
 pDialog.setMessage("Loading...");
 pDialog.setCancelable(false);
 pDialog.show();

 StringRequest stringRequest = new StringRequest(Request.Method.POST, url, new
Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 try {
 JSONObject jsonResponse = new JSONObject(response);
 String totalCount = jsonResponse.getString("TotalRecords");
 JSONArray jsonArray = jsonResponse.getJSONArray("Results");
 for(int i=0; i<jsonArray.length(); i++) {
 JSONObject object = jsonArray.getJSONObject(i);
 String current = object.getString("current");
 String time = object.getString("time");
 String date = object.getString("date");
 ApplianceInformation applianceInformation = new
ApplianceInformation(current, time, date);
 adapter.addItem(applianceInformation);
 }

99

 pDialog.hide();
 swipeRefreshLayout.setRefreshing(false);
 adapter.notifyDataSetChanged();
 } catch(Exception ex){

 }
 }
 }, new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 String message = error.getLocalizedMessage();
 pDialog.hide();
 swipeRefreshLayout.setRefreshing(false);
 Log.d(TAG, ""+error.getLocalizedMessage());
 }
 })

 {
 @Override
 protected Map<String, String> getParams() {
 Map<String, String> params = new HashMap<String, String>();

 if(equipmentName.equals("Equipment1")){
 params.put("Equipment1", equipmentName);
 }
 else if(equipmentName.equals("Equipment2")){
 params.put("Equipment2", equipmentName);

 }
 params.put("valueTo", "0.00");
 params.put("valueFrom", "0.00");
 return params;
 }
 @Override
 public String getBodyContentType() {
 return "application/x-www-form-urlencoded";
 }
 };
 App.getInstance().addToRequestQueue(stringRequest, applianceRequestTag);
 }
}

7) Designing ApplianceAdapter class:

package com.example.deboky.paharaapp;
import android.support.annotation.NonNull;
import android.support.v7.widget.RecyclerView;
import android.view.LayoutInflater;

100

import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;
import java.util.ArrayList;

public class ApplianceAdapter extends RecyclerView.Adapter<RecyclerView.ViewHolder>
{

 private ArrayList<ApplianceInformation> items;

 public ApplianceAdapter() {
 items = new ArrayList<>();
 }

 @NonNull
 @Override
 public RecyclerView.ViewHolder onCreateViewHolder(@NonNull ViewGroup
viewGroup, int i) {
 View v = LayoutInflater.from(viewGroup.getContext()).inflate(R.layout.appliance_item,
viewGroup, false);
 return new ApplianceAdapterViewHolder(v);
 }

 @Override
 public void onBindViewHolder(@NonNull RecyclerView.ViewHolder viewHolder, int
position) {
 ApplianceInformation appliance = items.get(position);
 ApplianceAdapterViewHolder mHolder = (ApplianceAdapterViewHolder) viewHolder;
 mHolder.serialNumberTextView.setText(""+appliance.getCurrent());
 mHolder.currentTextView.setText(""+appliance.getTime());
 mHolder.timeTextView.setText(appliance.getDate());
 }

 @Override
 public int getItemCount() {
 return items.size();
 }

 public void clear() {
 items.clear();
 }

 public void addItem(ApplianceInformation appliance) {
 items.add(appliance);
 }

 class ApplianceAdapterViewHolder extends RecyclerView.ViewHolder {
 TextView serialNumberTextView;
 TextView currentTextView;

101

 TextView timeTextView;

 public ApplianceAdapterViewHolder(@NonNull View itemView) {
 super(itemView);
 serialNumberTextView = itemView.findViewById(R.id.serial_number_text_view);
 currentTextView = itemView.findViewById(R.id.current_text_view);
 timeTextView = itemView.findViewById(R.id.time_text_view);
 }
 }

}

8) Conversion of 000Webhost List File to JSON format:

	Approval
	Chapter 1
	Introduction
	Chapter 2
	Overall Design of the Project
	Chapter 5
	Server
	Chapter 6
	Chapter 7
	Results

	[8] TCP/IP model: https://www.javatpoint.com/computer-network-tcp-ip-model

