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Abstract

Internet of Things (IoT) is growing as one of the fastest developing technologies
around the world. With IPv6 settling down, people have a lot of addressing spaces
left that even allows sensors to communicate with each other while collecting data,
leaving alone cars that communicate while travelling. IoT (Internet of Things) has
changed how humans, machines and devices communicate with one another. How-
ever, with its growth, a very alarming topic is the security and privacy issues that
are encountered regularly. As many devices exchange their data through internet,
there is a high possibility that a device may be attacked with a malicious packet of
data. In such cases, the security of the network of communication should be strong
enough to identify malicious data. In other words, it is very important to create an
intrusion detection system for the network. In our research, we propose a compari-
son between different machine learning algorithms that can be used to identify any
malicious or anomalous data and provide the best algorithm for two data-sets. One
dataset is on the environmental characteristics collected from sensors and another
one is network dataset. The first data-set is developed from the data exchanged
between the sensors in an [oT environment and the second dataset is UNSW-NB15
data which is available online.

Keywords: IoT (Internet of Things), Anomaly detection, Intrusion detection, Ma-
chine learning algorithms, Sensor data, Network Data, UNSW-NB15.
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Chapter 1

Introduction

1.1 What is IoT

Internet is the universal system of interconnected computer networks that connects
devices globally by using Internet protocol suite (TCP/IP) . IoT is the short form
for Internet of Things. Internet of things or internet of objects is basically the
concept of connecting embedded devices, computers or sensors through wireless or
wired network to the internet [1]. These devices can be monitored and controlled.
They can also communicate and interact among themselves over the internet and
can exchange data. The devices mentioned include everything from mobile phones,
home security, smart television, vehicles etc [2] and are often called connected or
smart devices as they can communicate through a process known as machine-to-
machine (M2M) communication.
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Figure 1.1: IoT in action

1.1.1 How does IOT work?

Smart-phones have been the most important object and plays a major role in the
[oT as it has its own sensors which it can use to exchange data that it acquires but
also control other ToT devices [3]. An example can be controlling a home security
camera from any part of the world using internet connection. IoT devices contain
sensors and at times also embedded processors that react to the data it collects
from the surrounding. However, all IoT systems must have sensing, processing and
actuating capabilities. Some systems are preferred to have a data storage for the



use of data in the long run. At times, IoT devices can be used to collect data that
can assist machine learning works to build a system for our betterment.

How it works
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Figure 1.2: Mechanism of IoT

1.1.2 How big is the IoT?

Getting bigger every day, there are already around 8.4 billion IoT devices connected
to the internet in 2017 and this is estimated to increase to 20.4 billion within the year
2020. Among this 8.4 billion devices, around 60 percent will be consumer products
and rest will be used in the business sector like service or industries according to
Gartner (January 2017) [4].

1.1.3 Application and advantages

[oT provides several day-to-day advantages not only for consumers sector but for
business sector as well [5]. This technology allows us to view real time information
that was not available before. Business can improve their production efficiency by
reducing material waste and unforeseen downtime. Since Artificial Intelligence is
used, it saves considerable human effort and time. Sensors can be used to build
infrastructure, detect damage to infrastructure. Automated traffic control can help
reduce road congestion and gadgets or sensors can be implemented on the outside
to recognize change in the environment and warn us for any impending natural
calamity. ToT makes our homes, offices and vehicles smarter, more measurable and
this in turn makes our life more pleasing. Smart speakers like Amazon’s echo or
Google home makes it very easy to set timers, get information on the go or be it to
play music. Through home security system, we can monitor our home from other
places remotely and can see what is happening on the inside and outside or talk to
visitors. Smart lighting systems can reduce unnecessary energy consumption as it
stays off if there is no one in the house or smart air conditioners will turn on when
it knows you are on your way to your home.

1.1.4 Disadvantages and Security Issues in IoT

Security in IoT is a double edged sword. Now that we have a system of intercon-
nected devices on a network it makes the system somewhat secure and efficient. [3]
Though connected devices generate colossal amount of data and are constantly be-
ing exchanged between devices so it in turn generates lots of internet traffic. These
data can make the devices useful but this easily accessible nature of the internet
brings up both security and privacy issues. These issues arise for many reasons.
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Figure 1.3: Disadvantages of IoT described

Flaws in software is found very frequently because of the fact that IoT devices lack
the capability to be patched or fixed. This makes them prone to security risks like
DDoS attacks, one of the most common issues, which happens by setting the device’s
password to its default password which are easily crackable by hackers. Ransomware
and Malware both relies on encryption to lock out the users devices completely and
steals the user’s data. Privacy remains among the largest issues of IoT as data is be-
ing transmitted, stored and processed and being harassed by large companies. This
very data is then being sold to various other companies which is violating our rights
for privacy and data security. Home Invasion, one of the scariest threats that IoT
can possess as most of the homes and offices rely on automatic processes that leads
to the use of IoT devices in these places. IP address of these devices are exposed to
hackers who can use it to pinpoint the location and gain access to our personal data
just to sell them to underground sites which are the hives of criminal activities.

1.2  Overview of Intrusion Detection Systems

Intrusion Detection System or Prevention Systems are systems that can be used to
identify anomalies in information systems. Intrusion prevention system is considered
to be a proactive method where as Intrusion Detection System is not. Therefore an
Intrusion Prevention System would take necessary measures to eliminate the threat
upon the discovery of one. However, an Intrusion Detection System would not.

An IDS (Intrusion Detection System) and an IPS (Intrusion Prevention System)
can be network based or host based. This means they can be used to protect an
entire network or just protect an end user. Intrusion Detection System were initially
rule-based systems [6]. Intrusion Detection Systems have evolved to being subject
to algorithms supported by machine learning where the machine can learn itself to
categorize a threat. Over the years, development of IDS has taken place on several
networks and were tested by several algorithms [7].

The question that comes first while applying any machine learning algorithm is
whether it will be supervised or unsupervised. If the data is already labelled, then
the IDS may work fine for that particular data set. But it would not be applicable
to different data sets, specially the new intrusion type data sets [8]. Therefore,



automatic clustering should be done in datasets which are developing now and then.
Unlabeled data should be clustered and labelled where data which are malicious
should be identified and labelled as such. Data which are not malicious should be
labelled like wise. Then, Machine learning algorithms can be applied to train the
Algorithm and IDS systems can be developed. Algorithms for clustering include K-
means clustering, IWC and machine learning algorithms have previously included
Decision Tree C4.5 and C5.0 for implementing the IDS [9].

1.3 Machine Learning

1.3.1 Definition

American pioneer in the field of Artificial Intelligence, Arthur Samuel, is responsible
for introducing the term machine learning in 1959. Machine learning works on pre-
diction using computer and data and also associated with computational statistics.
ML is a sub-category of AI. ML contains different theories, methods and application
domains as it has a strong connection with mathematical optimization.

Machine Learning primarily includes the following four steps [10]:

e Choose the basis attributes or features or values for prediction. e Choose the
appropriate machine-learning algorithm according to the dataset. For example,
among classification algorithm or regression algorithm, which one to choose, high
complexity or faster one. e Training and evaluating model performance based on
different algorithms. e Classify or predict the unknown data, training model is used.

1.3.2 Supervised Learning

Algorithms for supervised learning are used to build a model from a set of data
that has both the desirable inputs and outputs. The data used is training data and
contains training examples that has single or multiple inputs and an output. The
method used is known as supervisory signal.

When dealing with problems regarding supervised signal, first we begin with a set
of training examples with correct labels associated with it. An example is when we
train a supervised learning algorithm which takes thousands of pictures of hand-
written digits with the correct labels containing the correct number for each image
it represents. This enables the algorithm to classify handwritten digits and also
learn the relationship of the images and their respective numbers and also use this
relationship to classify new images without labels that has not been shown to the
machine before.

Classification and regression is a part of supervised learning [11]. Algorithms for
classifications are used in cases where outputs are restricted to sets of values which
are limited. Algorithms for regression are used in cases when outputs may have
values which are numerical within a given range.

1.3.3 Unsupervised Learning

Algorithms for unsupervised learning are given sets of data that contain inputs only
and then the algorithm finds clustering of data points or finds structure in data.
Therefore the algorithms learns from non-labeled, non-categorized or non-classified



test data. Unsupervised learning algorithms detect commonalities in the data which
is based on the absence or presence of the commonalities in each new piece of data
instead of a feedback approach.

Grouping, summarizing and finding underlying structure of unlabeled data in a
useful manner is the function of unsupervised learning.

1.3.4 Anomaly Detection

Anomaly detection or outlier detection, in different words, is used for figuring out the
rare observations in events or items, which lead to suspicions due to its differentiation
from the majority of data.

Anomaly detection can be divided into three broad categories. From an unlabeled
test data set, unsupervised anomaly detection algorithms identify anomalies under
the assumption, which tells us that, most of the instances in the data provided are
normal and by observing the data that are least fit to the remaining set of data.
Supervised anomaly detection techniques need to be provided with a data-set which
clearly identifies and differentiates between data that are normal and abnormal.

1.4 Aims and Objectives

With the widespread use of [oT systems, the number of malicious attacks has also
increased [12]. According to Gartner Research [13], the number of IoT devices being
used by 2020 will hit 26 billion. To ensure the system and data are only accessi-
ble to authorized entities such as individuals and process, logical controls are used
as software shields. Intrusion detection and prevention system, passwords, access
control etc. includes logical controls[14]. One logical control against IoT attacks
is to implement an Intrusion Detection System (IDS). If there is a security breach
or an attack on the IoT system, the IDS should be able to identify that an attack
has taken place. The IDS should also be able to send alerts in such cases (Gordon,
2015). Moreover, an IDS is able to detect a fault using two techniques. They are: 1)
Signature based detection 2) Anomaly based detection. Signature based detection
methods are useful when detecting known attacks. Anomaly based detection are
useful against unknown attacks or security breaches [15]. Usually anomaly based
detection systems depend on Al or Machine Learning (ML) algorithms. The idea
is to make the system learn and make it capable to distinguish between normal
and abnormal behavior of the system. Conversely to detect specific patterns of the
attacks that are known by investigating network data or traffic, signature based
detection methods are powerful [16].



Chapter 2

Related Work

In 2015 the number of Internet of Things (IoT) connected devices was 15.41 billion
worldwide. By the end of 2019 it will hit 26.66 billion. In 2025, the number of
devices connected to the Internet will be 75.44 billion, causing the number to rise 5
times in a decade. [17]. These smart devices connected to the Internet are capable
of generating data on its own based on behavior or expected result and share it over
the Internet. This is what constitutes the concept of Internet of Things (IoT). [oT is
a massive group of devices containing sensors or actuators connected together over
wired or wireless networks.

[oT requires intelligent processing and reliable transmission within the network.
Besides all the benefits and positive characteristics that the wireless medium has
brought to [oT, there are vulnerabilities. There are different forms of traffic anoma-
lies and attacks. The most common security threats are intruders, which is generally
referred, as hacker or cracker and the other is virus. This comes with the risk of
personal data being broadcasted to the world and cause more cyber-attacks like
phishing, denial-of-service (DoS), Probe, Remote to Local (R2L) attack etc. Since
these attacks are not common so normal data flow has a pattern which can be more
or less the same. However, when another entity will try to distort or change the
data, the pattern will change and this is where the Intrusion detection techniques
comes into play in the context of internet and specifically in the context of Internet
of Things.

To ensure the system and data are only accessible to authorized entities such as
individuals and processes, logical controls are used as software shields. Intrusion de-
tection and prevention system, passwords, access control etc. include logical controls
[14].

To monitor and detect anomalies or any suspicious behavior, intrusion detection
system (IDS) and intrusion prevention system (IPS) are being used. As diverse
environments and latest technologies are prone to be maliciously attacked, machine-
learning (ML) algorithms are able to detect, analyze and classify intruders in network
accurately and rapidly [18].

Two types of intrusion detection system are there. They are: Anomaly based de-
tection and Signature based detection. Anomaly based detection methods detects
the attacks that are unknown by observing the whole system and the entities in it
such as traffic, objects etc. Anything other than normal behavior is identified as
a potential attack. Conversely to detect specific patterns of the attacks that are
known by investigating network data or traffic, signature based detection methods



are powerful [16].

After researching on specific use cases, data characteristics and system needs, such
a diversity of characteristics has confirmed that there is no unique method that
would provide efficient and accurate intrusion detection for every dataset under the
analysis [18].

2.1 Dataset

Obtaining labeled data in IoT for intrusion detection is quite difficult. KDD (Knowl-
edge Discovery and Data Mining) Cup 1999 dataset published by MoD, as one of the
freely available non-lIoT dataset for intrusion detection [19]. But after a long period
of researching and analyzing, it has been marked as full of error and outdated [9].
In [20] author points out differences in host and network-based intrusion detection
techniques to demonstrate how the two can work together to provide additionally
effective intrusion detection and protection. For that purpose, the main idea is
to analyze the possible role of a set of chosen ML techniques in a way to construct
strong defense mechanism for IoT environments based on dataset/flows for following
two layers: 1. Application Layer (Host based) II. Network Layer (Network Based)

2.2 Application Layer

The application layer uses machine learning, data mining, data processing, and other
analytics to process information from the system and provide an output.

To work on the intrusion detection in application layer, [21] used a freely available
unlabeled IoT dataset from Intel Barkley Research Lab. The dataset contains more
than 2.3 million readings collected from 54 sensors in Intel Berkeley Research lab in
2004 [22].

To use the dataset further in anomaly detection research these unlabeled data require
processing, as it is not primarily aimed for intrusion detection.

2.3 Network Layer

Even though cyber-security research is almost in its peak, there’s a scarcity of proper
dataset. Recently IoT eligible UNSW NB15 dataset has came to rescue modern in-
trusion based researches for network layer. This dataset has a huge number collection
of normal network traffic and malicious network traffic instances [18].

It integrates normal behavior and latest attack instances in traffic. Malicious traffic
is generated for a number of typical, up to date attack types. The lower number of
malicious attack instances than the large number of normal traffic instances makes
the UNSW-NB15 dataset unbalanced. This dataset is providing a good support for
a wide range of networking IDS analysis [23].

2.4 Algorithm Analysis

Some of the relevant algorithms and their limitations are discussed in this section.
In research paper [9], researchers have applied and compared the performances of



several supervised learning algorithms, including SVM (Supervised Vector Machine)
and a range of ensemble classifiers. The ensemble algorithms combine basic clas-
sifiers, which are trained on different subsets of dataset. IDS (Intrusion Detection
System) is capable of differentiating between abnormal behaviors to abnormal be-
haviors based on effective classification model built inside the IDS. An IDS is based
on SVM (Support Vector Machine) and C5.0, which is a widely used implementa-
tion of Decision tree with each nodes, aim to provide an answer with regards to the
specific attributes in the input record. Generally existing IDS fails to detect the
incensement in attacks in critical cases because it is unfamiliar with such attacks
as those attacks are new. Using the combination of C5.0 and SVM, data can be
divided into classes and after being trained; SVM will be able to map data into high
dimensional space [24].

In [9], researcher has talked about an intrusion detection model, which uses MapRe-
duce to process large structured data set into key pairs. It combines SVM with
Fuzzy C-Means (FCM). For clustering data it uses FCM and SVM for classifying
data. It is mentioned in [25] that FCM is useful because unlike non-FCM it allows
data points to belong to multiple clusters. It is also proposed a hybrid intrusion
detection system using two data mining techniques, K-means and Naive Bayes, for
clustering and classifying [9].

IWC is an amplified version of k-means algorithm. As an input of it, the updated
version of Intel Lab IoT dataset can be used. IWC algorithm clusters data in
the dataset into two sections based on similarities between data records labeled
as ‘normal” and “abnormal”. After that the input data is split into two parts;
training data (70 percent) and testing data (30 percent). The training data is used
to build decision tree, and for predicting the testing data is used. To implement the
algorithms and test the system MATLAB is used [22].



Chapter 3

Data Collection And Processing

3.1 Network Data Pre-processing
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Figure 3.1: Network Data

Labeled dataset for intrusion detection in internet of things (IoT) is something which
is very rare and difficult to find. For our research, we are working with anomaly
detection in IoT for both the application layer and network layer. We are using
UNSW-NBI15 dataset to detect anomaly in the network layer [26].

According to the UNSW-NB15 Testbed figure, the traffic generator IXIA Perfect-
Storm tool was used to create a hybrid of modern normal and synthetic contempo-
rary attacks of network layer in the Cyber Range Lab of the Australian Centre for
Cyber Security (ACCS). The dataset has total 2,540,044 numbers of records divided
and stored in four CSV files. IXIA is divided into two networks I1 (10.40.85.30) and
12 (10.40.184.30) which connects total 3 servers. Server 3 is for spreading malicious
attacks in traffics; in contrary server 1 and 2 is for spreading normal traffics. There
are two routers connected other devices of clients and firewall. To capture 100GB
of network traffic data (Pcap files), Tcpdump tools have been used. Each Pcap file
contains 1000MB of traffic. 12 algorithms have been developed and The Argus, Bro-



IDS tools to generate total number of 49 features with the class label. UNSW-NB15
data set were classified into nine types attacks as in the following points: Fuzzers
Analysis, Backdoor, DoS, Exploit, Generic, Reconnaissance, Shellcode, Worm.

The UNSW-NB 15 data set are characterized into six groups as follows:

1) Flow features: The identifier attributes between hosts, such as client-to-server or
server-to-client are mentioned here.

2) Basic features: This group includes the attributes that are responsible for proto-
cols connectivity.

3) Content features: This includes the attributes of TCP/IP and some attributes of
http services.

4) Time features: Attributes associated with time are present here. This includes
arrival time, start/end packet time and round trip time of TCP protocol.

5) Additional generated features: This category can be further divided into two
categories: (1) General purpose features (no. 36 - 40) in which the feature tries
to protect the service of protocols. (2) Connection features (no 41- 47) are created
from the flow of 100 record.

6) Labeled Features: This section presents the label of each record.

The dataset contains categorical features. There are a total of 49 columns. The
data types are different. They range from being integer, float to time-stamp and
nominal values. It is very important to convert them into numerical values to be
used for machine learning purposes. Machine Learning algorithms work only on
numeric values.

First, the UNSW-NB15 csv files are read into separate dataframes because the
dataset is huge and reading the whole dataset into a single dataframe is very time
consuming. The separate dataframes are then concatenated into a single dataframe.
The dataframe columns that are of integer type is converted to numeric values using
the convert-objects method. In the same way, float type, binary type columns are
converted to their appropriate numeric values. The next step is removing NaN
values for columns that contain them. NaN values are transformed to zero. The
nominal features are then dealt with. Label encoding converts the nominal type
values into their appropriate classes that are represented using numeric values. All
the features are then normalized because UNSW-NB15 contains attributes which
have a mixture of scales. Normalization is a type of scaling where all the values
are converted into a range of 0 and 1. Normalization is done to ensure that all the
attributes follow the same scale. Some algorithms like kNN etc work best when a
scale of 0-1 is followed for all the features. The processed data is then stored in a
separate data.hb file which can be imported before applying the machine learning
algorithms for intrusion detection.

3.2 Application Layer Data Collection & Experi-
mental Setup

On the other hand, we have created our very own dataset for the application layer.
This is a replication of the Intel Lab Data. The whole data collection process is
done in the CSE Research Labs of BRAC University and our own houses for a
period of 2 months. We set up 10 boards in different parts for greatest amount of
variation possible. However, most of the data are similar because the conditions
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Figure 3.2: Block Diagram Of Board Interconnections

are very much the same in each place. Figure. 3.2 shows the block diagram of the
connection between 10 boards placed in 10 different places and the cloud.

Figure. 3.3 represents the block diagram of hardware setup of a single board. Each
board consists a total of 4 sensors which includes temperature sensor, humidity
sensor, light sensor and voltage between batteries. The temperature is in degree
Celsius, humidity is represented as percentage between 0-100 percent, light intensity
in terms LUX where the highest possible intensity is approximately 400 LUX in a
very bright room and lastly, the voltage varied between 2-3 V.

The system is designed in such a way that it takes data as input from the sensors
and then passes the data to the Node MCU (ESP32) respectively. The microcon-
trollers then compute and convert these electrical readings to scaled values like LUX,
humidity (percentage), temperature (degree Celsius) and voltage (Volts) which are
understandable by humans. For measuring the temperature and humidity, we have
used the DHT11 module. The sensor produces a voltage according to the environ-
ment in which it is operating. This is then converted to suitable temperature and
humidity values. The values are processed within the microcontroller. The light in-
tensity is detected using a LDR based sensor module which is used to determine the
amount light in the room in terms of LUX. Furthermore, raw voltage readings from
the battery are passed on to the ESP32 directly. The voltage varies from 2V-3V. All
these data are accumulated and sent to the Adafruit cloud using ESP32 connected
to a WIFI connection. The Adafruit cloud has a maximum data transfer rate of 30
data/minute. The data gets stored in 4 separate feeds from a single board for the
4 features at the same time. For our research, we collected the data for a period of
2 months and then merged all the data in a single CSV file for applying different
anomaly detection algorithms.

For the data collection process, we have used the following hardware devices: 1).
ESP32 2). DHT11 sensor 3). LDR Light Sensor Module 4) Battery (3V)
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Figure 3.3: Block Diagram Of A Single Board Connected To Cloud

3.3 Hardware Connections

Figure. 3.4 shows the original connections of the hardware devices in a single board.
ESP32 is a NodeMCU which is a low cost system on a chip microcontroller with
WIFI and Bluetooth integrated in it. It is primarily used for IoT based projects
that require internet connection for communication of data. As we are sending data
to Adafruit cloud, we are using this particular device for communication. We are
implementing a total of 10 ESP32 microcontrollers, which are placed in separate
parts of the research labs and our houses. One ESP32 microcontroller has connec-
tions with a DHT11 sensor, LDR light sensor module and battery. This chip has
a total of 48 pins which includes Ground (Gnd) and a VCC pin of 3.3V instead
of 5V. There are a total of 18 ADC (Analog to Digital converter) pins and only 2
DAC (Digital to Analog converter) pins. The input channel are of 12 bits, so values
range from 0-4095. 0 refers to OV and 4095 refers to 3.3V. For our research, we have
pins 2, 32 and 35 for connecting DHT11 sensor (temperature and humidity sensor),
battery and LDR respectively.

DHT11 is a device which is used to measure temperature and humidity at the same
time. Temperature readings are given in terms of degree Celsius and humidity
readings are given in terms of percentage. There are mainly 3 pins: 1) GND 2)
VCC 3) DATA. The ground is connected to the GND pin of the ESP32, VCC to the
3.3V and DATA pin to pin 2 of the NodeMcu. The operating voltage of DHT11 is
from 3.5V to 5.5V.
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Figure 3.4: Top View Of A Single Board

The light sensor is a photoresistor which can have both digital and analog outputs.
It has parts/pins similar to the DHT11 sensor module. They are : 1) GND 2) VCC
3) OUTPUT. The ground is connected to the GND pin of the ESP32, VCC to the
3.3V and OUTPUT pin to pin 35 of the NodeMcu. It is very important to note that
we have represented light in terms of LUX. As a result, we needed some calculations
to convert the analog reading into LUX. The formulae used are as follows:

VoltLDR = 0.0008057 * analogReading (3.1)
ResistLDR = (10000 * (3.3 — VoltLDR))/(VoltLDR) (3.2)
LUX = (500 % ResistLDR)/64881.00 (3.3)

3.4 Sensor Data Pre-processing

Our data set has 4 features. They are: 1) Temperature 2) Humidity 3) Light
Intensity 4) Voltage. Labeling approximately 70,000 data manually is very time-
consuming. As a result, we used K-means clustering to add appropriate labeling.
There may be subgroups in a data set and the subgroup data points remain close
and form clusters. In our research, there are two types of data. They are 1) Normal
2) Abnormal. As a result, we formed two clusters. The normal cluster is formed
using data that we collected using the hardware setup. There are also abnormal data
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id Temperature Humiidity Light Intengity Valtage

0E3XMZQF2EEJ29R M6 47 246 68 265
OE3XMZTHO4HCOGI chiv 47 227.92 2.52
OE3XMZNIYT515X7 n7 47 23578 263
OE3XMOOMYDCS1YI ch i 47 22645 26
OE3XMOPT 1NYTD? n7 47 21494 268
OE3XMOGROGEG121 ch i 47 268.29 2.66
OE3XMNOFT NIGNIVNI n7 47 247.02 2.56
OE3XMOCWN4ABEFC 16 47 264.92 2.54
DEIXNOFYGMRM1P M7 47 24668 269
OE3XMOKOEGTDYK: n7 47 26145 21
OE3XMOPZCHSGAA! nT 47 219,88 2.54
OE3XMOS4A4GYIG) n7 47 217 66 261

Figure 3.5: Dataset Before Labeling

from the hardware setup. Furthermore, we have also added synthetic data that are
not within normal range and hence they are abnormal too. The abnormal cluster
is formed from these wrong synthetic data and hardware collected data that are far
beyond the range of being described as normal. The value of ‘k’ for our dataset is
two, since we are forming two clusters of ‘Normal’ and ‘Abnormal’. The algorithm
tries to keep the subgroups as far away from one another to avoid overlapping of
data, represented with a centroid for each cluster.

Before applying the machine learning algorithms, we needed to process the data.
First, the data is filtered to a two column dataset, where Light intensity and Voltage
values are discarded. This is because the Light Intensity and Voltage values have
no relation with the other features of the dataset. We then studied the data and
deduced that a correlation exist between Humidity and Temperature of the data.
While that being said, the data also forms clusters between abnormal and normal
values when Humidity against Temperature scatter diagram is plotted. This shows
that forming clusters is only possible based on the relationship shared between
humidity and temperature and not others, as there are no clusters when scatter
diagrams are plotted with other features. Based on this logic, K-means clustering
is done to make clusters. The data that we got from the sensors are classified
as normal. The data that are synthetically generated are labelled as abnormal.
After that, the discarded features are also included back in the dataset for machine
learning purposes. Inclusion of the other features increases the number of unique
rows. This helps in better training and testing and ensures that training and testing
is done on different and unique rows of data. We then filtered out rows which
are similar to each other. We just kept the unique rows. The Figure. 3.6 shows
clusters formed identifying them as normal, abnormal and synthetic (also falls under
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Figure 3.6: Scatter diagram between Temperature and Humidity

Temperature Humidity Light Intensity Voltage Output

31.6 a7 246.68 2.65 1
31.7 a7 227.92 2.52 1
31.7 a7 235.78 2.63 1
31.7 a7 2206.45 2.6 1
31.7 a7 214.94 2.68 1
31.7 a7 268.29 2.66 1
31.7 a7 247.02 2.56 1
31.6 a7 264.92 2.54 1
31.7 a7 246.68 2.69 1
31.7 a7 263.45 2.7 1
29.9 29 2006.03 2.51 0
29.9 59 221 2.51 0

Figure 3.7: Dataset after labelling

abnormal class). Figure. 3.7 represents the dataset after labelling is done. The label
1’ means normal data and label '0’ refers to an abnormal value.
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Chapter 4

Research Methodology

Collection of raw data is very hard to do. Moreover, working with raw data is tough
as it contains many repetitive rows and anomalous values which do not reflect the
true situation. Therefore, raw data has to be filtered and moulded into a dataset
that can be utilized according to the researcher’s purpose. Similarly, our data is
filtered to remove rows that are exactly same. Synthetic values are introduced in
order to reflect better results on the algorithms. Some works such as removing
similar rows, splitting dataset into test and train, are common before running each
algorithm. Each algorithm runs in different conditions and different environments
too.

4.1 Handling Data and Splitting

4.1.1 Sensor Data

Raw data is filtered many times to remove unusually different and abnormal values.
The filtered dataset is then obtained with 76755 rows of data. The 76755 rows of
data contain one of each of Humidity, Temperature, Light Intensity and Voltage
values. Therefore, the set of 4 values defines the uniqueness of each set of data.
There can be many values of temperature alone which could be the same. However,
arow can only be unique if all the 4 values of Temperature, Humidity, Light Intensity
and Voltage together resemble a unique set. Moreover, repetition of rows of data
would cause problems when testing an algorithm because same rows of data would
mean that an algorithm would have a higher chance of being trained and tested with
the same data at the same time. Therefore, it shall give us high yet absurd and
unreliable accuracy. This is what the theory of ”Problem of Overfitting” explains.
Overfitting can occur when an algorithm is trained and tested with the same data
leading to a very high accuracy achieved by the algorithm. The figures below show
how data would differ after removing identical sets of data.

Removal of repetitive rows is necessary for better results. After removal of repetitive
data, 69261 data forms. The next process for all the algorithms is the Train - Test
split of data. This is same for all them. We never test on the data that we have
trained upon. We always try to maintain separate data for training and testing.
80 percent of the entire data is used for training and 20 percent of the entire data
for testing. Train and Test split can be obtained automatically by using a built in
command in python. However, train and test data can also be stored in separate
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Temperature Humidity Light Intensity Voltage Cutput

3l.6 a7 246.68 2.65 1
31.7 a7 227.92 2.52 1
31.7 a7 268.29 2.66 1
31.7 a7 226.45 2.6 1
3.7 a7 226.45 2.6 1
3.7 a7 268.29 2.66 1
317 47 247.02 2.56 1
Figure 4.1: Data having identical rows
Temperature Humidity Light Intensity  Voltage Output

3l.6 a7 246.68 2.65 1
3.7 a7 227.92 2.52 1
3.7 a7 235.78 2.63 1
3.7 a7 226.45 2.6 1
317 a7 214.94 2.68 1
317 a7 268.29 2.66 1
3.7 a7 247.02 2.56 1
3l.6 a7 264.92 2.54 1

Figure 4.2: Data after removal of identical rows

CSV files which could be used while running the algorithm. After these background
work, each algorithm is tested and different metrics are obtained which points out
how successful each algorithm is.

4.2 Support Vector Machine

Support Vector Machine algorithm is also a classification algorithm more commonly
known as SVM. The SVM algorithm classifies the data into different groups which
maximizes the utility for any researcher. Based on the different groups, we can sep-
arate the data belonging to one class from data belonging to another class. SVM
has been applied to places such as time series prediction, face recognition to biolog-
ical data processing [27]. The SVM algorithm draws a hyper plane which is said to
separate the two classes. The hyper plane is just not any ordinary line, but a line
which tends to separate the two classes in such a way, such that the distance from
the line to the closest point of both the classes remain as large as possible. In other
words, it maximizes the distance from the hyper plane to each of the nearest data
point of both the classes. The following equations describe the process on how this
hyper plane is drawn and two different classes are identified.

wxxr—b=0 (4.1)

The equation is of the hyperplane which separates the two classes equally. Here w
is the normal vector to the hyperplane and x can vary for each set of data, b is the
distance between the nearest point to the hyperplane and the hyperplane itself.

wxx—b>=1 (4.2)

If, however the result to this equation is positive and equal to one, then we get the
hyperplane of the positive class, and any value greater than 1 would give data points
of the positive class.

wxr —b<=—1 (4.3)
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Similarly, if the result is equal to -1, then it gives the hyperplane of the negative
class and any value less than -1 would be for data points belonging to the negative
class.

The margin that is drawn can sometimes be a large margin, or a narrow margin
which depends upon the equation below [28]. If the value of C is very high , then
it becomes a narrow margin. The narrower the margin the better the separation. If

C ever
N

minHwH2+C’*Zei (4.4)
If the value of C is very high , then it becomes a narrow margin. The narrower
the margin the better the separation. If C is ever infinite, then it is called a hard
margin. Thus it means, with variation of C, the degree to which constraints are
being maintained can be measured. Thus C is called the Regularization Parameter.

4.2.1 Implementation of SVM on Application Layer Data
set

SVM is tested in our application layer data set. Since we have a lot of data, it is
arranged in a continuous manner. The SVM algorithm can not work very nicely if
the data is very continuous, meaning even with a very narrow margin , it would still
make mistakes. Our specific kernel has been tested and the kernel that supports the
best with the given set of data has been applied for the implementation of data. For
this data set we have used a sigmoid kernel to draw the hyper plane. The figure 4.3
shows how our data would look after applying SVM classifier algorithm.
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Figure 4.3: Implementation of SVM on our Data

4.2.2 Implementation of SVM on Network Layer Data set

SVM creates another hyperplane on the data for the network layer. Just like the
application layer data set, the network layer data set is also run using the sigmoid
curve. The sigmoid curve separates the data into two classes. A pre-processed
normalized data set was used in order to run the algorithm, as computation power
required to run the algorithm on the actual data set would be really high. Based
on the input features, the hyperplane is drawn to separate the maximum between
the two classes, attacking and non-attacking. The input features include source and
destination IP addresses and port numbers, protocols and many more.

4.3 Logistic Regression.

Logistic Regression uses multi-variable analysis which uses multiple variables as
features to predict a single outcome [29] In logistic regression, the dependent variable
is a binary variable. In simple words, if a function of Y is developed in terms of X,
then logistic regression simply finds the probability of P(Y=1) in terms of X. For
that the logistic regression uses a sigmoid function to map these data to a probability
score. The probability scores are placed in a distribution graph which identifies the
two fields of data. The figure 4.4 shows the difference between linear and logistic
regression and how it basically operates. The sigmoid function is also known as the
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logistic function. The logistic function is calculated by the equation given below.

logit(Y)=n/1—m (4.5)

where pi represents the probability of any outcome and on the basis of this function,
a threshold value of probability is set which acts as the border to different classes.
Based on the multiple features

o
—

Linear Regression

Logistic Regression
Figure 4.4: Difference between Linear and Logistic Regression

4.3.1 Implementation of Logistic Regression on Application
Layer Data

Logistic Regression is used as a key algorithm to correctly identify abnormal and
normal values of application layer data. The success of Logistic Regression tells
us the fact that it is trained with multiple features in our data set which are the 4
columns Temperature, Humidity, Light Intensity and Voltage. In our data set, there
are two classes. The logistic regression model is trained using the logistic function.
Therefore, a threshold value in probability is set which ultimately determines the
two classes. The figure 4.5 shows how Logistic Regression is applied in our data set
and how it separates the two classes in our data set.
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Figure 4.5: Implementation of Logistic Regression on Application layer Data set

4.3.2 Implementation of Logistic Regression on Network
Layer Data

Just like the application layer data, data from the network layer is used to build a
logistic regression function. The logistic regression uses multiple features to train
itself on and then decides whether it is an attack or not an attack. The features to
train upon include IP addresses, Protocols, Port numbers and others. And the result
column just predicts whether this is an attacking packet, or this is a normal packet.
To work with the data set, we have first imported a pre-processed normalized data
set. The actual data set is very tough for implementing any sort of work because it
is really heavy to process.
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Figure 4.6: Implementation of Logistic Regression on Network layer Data set

The Figure. 4.6 shows how the sigmoid curve is plotted on the last 50,000 data
of our data set. The last 50000 data are chosen because it contains a fair equal
numbers of attack and non-attack packets. The entire data set could not be used as
it takes too much of CPU power to compute.

4.4 K-Nearest Neighbour

kNN is an easy to implement supervised algorithm used in machine learning. It is
useful in solving problems related to regression, prediction and classification. It is
supervised machine learning algorithm that depends on labelled data taken as input
to learn a function and then produces an appropriate output when a new unlabelled
data is given. kNN algorithm works well across all parameters of considerations. It
is mostly used for ease of interpretation and its low time of calculation. K nearest
neighbour algorithm assumes that similar things exist in close proximity and works
based on minimum distance from the query instance to the training samples to
determine the nearest neighbours. The kNN prediction of the query instance is
based on how close it is to the instances of the nearest neighbours. kNN algorithm
stores all available cases and classifies new or upcoming cases by a majority vote of
its k neighbours and compiles them into well-defined groups.



4.4.1 Implementation of kNN on Application Layer Dataset

Determining the value of k plays a significant role in determining the efficiency of
the model. Value of K determines how well the data can be segregated to generalize
the result of the kNN algorithm. A higher value of k has advantages that lowers
the variance due to outlier values of data. The cons or side effect is developing a
bias as the learner tends to ignore smaller patterns which may have useful data. For
our dataset, we first found the value of ‘k’ that best suited our case. We initially
classified with kNN using ‘k’ as 5. However, this had no real logic behind it. As a
result, we decided to find the optimal value of ‘k’ that will give better and correct
accuracy. This is done using GridSearchCV. It works by training our model on a
range parameters and then finds out the best result based on comparison. In our
case, we provided a range of values of k neighbors from 1 to 25 and checked which
value of k neighbor provided the most accurate and reliable output. It is seen that
k=2 best suited our data set.

After determining the value of k, we load the data set. Duplicate rows with same
values for all the four features are dropped to avoid training the same data over
and over again. It also prevents testing and training with same dataset, avoiding
accuracy levels that are unrealistic. Next, we split the data into train and test. 80
percent of the sample is train set and 20 percent of the data is test set. The 80
percent data is trained with kNN classifier with k initialized as 2. We then test the
20 percent data. It is done by calculating the Euclidean distance between instances
of the clusters or classes formed. The distances are then sorted in ascending order.
The top k rows are then selected and the most frequent class of these rows are then
returned. Finally, we calculated the accuracy and it was very high.

4.4.2 Implementation of kNN on Network Data

For implementing the kNN algorithm, we first imported the pre-processed normal-
ized dataset. The most important part during the implementation of kNN is deter-
mining the value of 'K’. Initially, we set the value to 5 and started our experiment.
We got an accuracy of 90.8 percent. However, this is not a logical approach. As a
result, we decided to find the optimal value of ‘k’ that will give a credible accuracy.
This is done using GridSearchCV. It works by training our model on a range pa-
rameters and then finds out the best result based on comparison. In our case, we
provided a range of values of k neighbors from 1 to 25 and checked which value of k
neighbor provided the most accurate and reliable output. It is seen that k=16 best
suited our data set. We received a better accuracy when we used k=16 and it was
93.3 percent.

4.5 Decision Tree

Decision Tree is a supervised machine-learning algorithm. It can be used for both
classification and regression. It works on the basis of building a tree. Decision of a
decision tree is based on the principle of dividing the data into smaller parts until
everything falls under the same category. In our case, the data sets are continuous.
As a result, the tree itself converts them into discrete values before building up the
tree. First, the entropy of target is determined. Next, the dataset is split on the
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attributes and the sum of entropy for all the classes in the attributes is calculated.
The resulting entropy is then subtracted from the target entropy before splitting.
This is called the information gain. The attribute with the highest information gain
is chosen to split the dataset. This process is repeated over and over again until we
get a pure classification. The entropy is calculated using the following formula:

C

Entropy(S) = Z —p(i)logp(i) (4.6)

Here, “c” is the number of classes of an attribute. “pi” is the fraction of examples

Wen

of the class “i
Gain(S, A) = Entropy(S) — Entropy(A) (4.7)

Here, S is the parent and A is the attribute that we want to split. Information
gain is basically the decrease in entropy due to partitioning of data set based on an
attribute. Decision tree is split based on attributes with higher information gain.

4.5.1 Implementation of Decision Tree on Application Layer
Data

First, the root of the tree is built by placing the best attribute. For our dataset, it can
be seen that humidity is the best attribute. The training set is broken into subsets.
We repeated the process over and over again until we reach the leaf node which
contains the exact classification. The attribute with highest priority is chosen as the
root and the priority of attribute decreases as we go down the tree. This priority
is based on the information gain which is dependent on the entropy. Initially, we
got highest information gain for the attribute humidity. As a result, the algorithm
start building the tree using humidity as the root node. As we go down the tree,
the priority of the attributes decrease until we get the exact classification which is
either normal or abnormal.
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Figure 4.7: Decision Tree for Application Data

4.5.2 Implementation of Decision Tree on Network Data

The figure 4.8 represents the decision tree that is generated for our dataset. In our
case, the splitting started with the attribute X [0] which is the first column, showing
that it is the attribute with highest priority. The decision continued growing with

the other attributes.

It grew until we reached a leaf node which represented the

class Normal/Non-Attack or Abnormal/Attack. The root of the tree is built by
placing the best attribute.The training set is broken into subsets. We repeated the
process over and over again until we reach the leaf node which contains the exact
classification. The attribute with highest priority is chosen as the root and the
priority of attribute decreases as we go down the tree.
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Figure 4.8: Decision Tree for Network Data

4.6 Random Forest

Random Forest is a simple, yet powerful, supervised machine-learning algorithm. It
can be used for both classification and regression. In random forest, we grow multiple
trees as opposed to a single tree. To classify a new object based on attributes,
each tree gives a classification. The forest chooses classification which is the most
supported (higher in number) over others in the forest. Additionally, in case of
regression it takes average of the output by different trees. Random forest works in
4 basic steps. First of all, samples form the dataset are selected randomly. Next,
decision tree is generated for each sample. From each sample, a prediction is made
by each decision tree. A vote is performed between all the decisions. The prediction
with the highest is vote is the outcome.

4.6.1

For our paper, the algorithm first grows multiple trees as opposed to a single tree.
To classify whether the data is normal or abnormal based on the attributes, each
tree gives a classification. The forest chooses classification which is most supported
(higher in number) over others in the forest. We first read the data set using the
built in read method. Next,we split the data into train and test. 80 percent of the
sample is train set and 20 percent of the data is test set. The data is trained with

Implementation of Random Forest on Application Layer
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Figure 4.9: Random Forest Block Diagram

Random Forest Classifier and later the accuracy is tested. Using Random Forest,

we have received the best accuracy among all the other algorithms used.

4.6.2 Implementation of Random Forest on Network Data

Just like how the algorithm grew numerous decision trees on the application layer
data, here it will do the same thing. Voting occurs among the decisions made by
each tree and the classification with the highest vote is chosen as the final outcome.
All these give a more reliable, credible and accurate output for Random Forest. In
our research, one of the challenges was finding algorithms which can handle large
datasets. Random forest algorithm can handle large dataset with higher dimen-
sions, because the higher the number of trees, the higher is the accuracy. Another
important advantage of random forest algorithm is that it can handle missing val-
ues and maintains accuracy for missing data. This characteristic comes handy while

handling huge dataset.
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Chapter 5

Result Analysis

5.1 Machine Learning Algorithms on Application
Layer

Algorithm Accuracy | Time
SVM 72 percent 45 s
Logistic Regression | 90.5 percent | 0.27 s
Decision Tree 94.97 percent | 0.28 s
kNN 97.7 percent | 0.3 s
Random Forest 99.2 percent | 3.8 s

Table 5.1: Comparison Between Algorithms on Application Layer Data

We have considered two parameters while analyzing the different machine learning
algorithms on the sensor dataset.They are accuracy in terms of percentage and time
in terms of seconds. The experiment is carried using Spyder (Python 3.6)in Windows
environment on 4GB RAM and 2.4 GHz Intel Core i5. After carrying out several
supervised algorithms, we have come to present all our findings here. We carried
out Logistic Regression, SVM, k-NN, Random Forest and Decision Tree algorithms
on our data-set. The results are described in the table. We have done the test
procedure with 20 percent data which is equal to 13583 data.

From the table, we can see that the poorest algorithm for anomaly detection on this
dataset is SVM. First of all, its accuracy is very low compared to other algorithms.
Moreover, the execution time is also very large. As the complexity of the kernel
increases, the algorithm begins to get slower. The other algorithms are more or
less same in terms of their execution time. Random Forest has the second highest
execution time due to the fact that it builds numerous tree before coming to a
conclusion or decision.
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5.1.1 Analysis of SVM
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Figure 5.1: The confusion matrix for SVM

The figure 5.1 shows the confusion matrix for SVM. Out of the total data, 80 percent
is used to train the data. The remaining data is used to test the data. From the
figure, we can see that 8703 data are True positive. These are the data rows whose
labels are labelled as normal or 1 and are also identified as normal or 1. Similarly
3868 data are true negative. These are data that are identified as abnormal or 0 and
are actually labelled as 0 or abnormal. The 861 data which are actually abnormal or
0 are predicted to be normal or 1. Similarly, 421 data that are actually normal or 1
are predicted to be abnormal or 0. This gives SVM a lower accuracy rate compared
to the other algorithms, which is about 72 percent.

The reason for this low accuracy is due to the fact that the hyperplane that is drawn
can not separate the two classes accurately. We have used a sigmoid hyperplane to
separate these data into their according classes for which the sigmoid line does not
perform very well at separating the abnormal and normal data. Other kernels of
Linear lines will not perform well because our data is very continuous rather than
discrete. Since it is spread out everywhere randomly, we preferred to choose a
sigmoid curve.
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5.1.2 Analysis of Logistic Regression
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Figure 5.2: Confusion Matrix of Logistic Regression

Logistic Regression works using multiple classifying features to map into a single
decision. The features are all fit into a Sigmoid function which then plots the
probability of outcome belonging to each case. The figure 5.2 shows how logistic
regression performs as an algorithm on our application layer data set. The total
data set is divided into a 80-20 percent split, where 80 percent of the data is used
to train the algorithm and 20 percent of the data is used to test the data set. 13583
sets of data is used to test the algorithm. Out of 13583 data, 8732 data is identified
as True positive, which means, that they are originally labelled as Normal or 1 and
are also identified as normal or 1. 3656 data are originally labelled as abnormal
and 0, and are also identified as abnormal or 0. Therefore, it gives us a very high
accuracy of about 90.4 percent.

Logistic regression works better with multiple features as input. Since our data set
has 4 classes of features, the algorithm works well. The accuracy also depends on
how many classes the logistic regression algorithm has to convert it to. In our case,
the logistic function has to map between two classes. In binary logistic regression
implementation, the value set as the threshold value for the boundary between two
classes can be high which means that it can separate between different sets of data
more accurately.On the other hand, there would have been multiple thresholds for
each set of output classes if there were more than 1 group of outputs. Thus, each
threshold would have been lesser in value and the difference between one threshold
value for one class and another threshold value of another class would also be lower.
This can eventually lead into more errors. Thus, for binary logistic regression, the
chances of making mistakes is lower. Therefore, logistic regression in our case has a
high value of accuracy.
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5.1.3 Analysis of Decision Tree
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Figure 5.3: The confusion matrix for Decision Tree

Figure. 5.3 represents the confusion matrix for Decision Tree. Out of the 13583
data, 4326 data are true negative. These are data whose true labels are abnormal
and they are identified correctly. 8831 data are true positive which means that they
are predicted as normal and the predictions are correct. Furthermore, a total of 696
data are false positive and false negative respectively.

Decision Tree gives an accuracy of 94.97 percent. The reason for this accuracy is
because decision tree assigns specific values to outcomes and decisions. Moreover,
the high priority attributes are chosen for making decisions. In our case, the feature
humidity has a very high priority, which is why we can see an impressive accuracy.
There is a significant decrease in ambiguity and increase in reliability and accuracy.

5.1.4 Analysis of K-Nearest Neighbour

Figure. 5.4 represents the confusion matrix of kNN algorithm. From the Table
1, we can see that kNN has an impressive accuracy of 97.7 percent which is more
than that of SVM, Decision Tree and Logistic Regression. When the dataset is
well separable into their respective classes, kNN works very well in those situations.
Figure. 5.5 shows the scatter diagram of our dataset. It depicts that the data is
very well separated in their respective classes and hence the accuracy of kNN is
very high compared to SVM. Moreover, the reason why kNN is having a greater
accuracy than decision tree is due to the fact that the dataset is continuous rather
than discrete or categorical. All the features have continuous values. kNN groups
together data well when the dataset is continuous. For discrete data, decision tree
generally works better.
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Figure 5.5: Scatter diagram

5.1.5 Analysis of Random Forest

In the case of Random Forest, we can see that we have achieved the highest accu-
racy of around 99 percent. There is a reason behind this. Random Forest is the
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Figure 5.6: The confusion matrix for Random Forest

extension of Decision Tree. In Decision Tree, only a single tree is drawn for making
a classification or decision. However, in the case of random forest, several trees are
drawn. The decision from each tree is taken and the decision with the highest vote
from the trees is chosen as the output and hence, the highest accuracy. Figure. 5.6
represents the confusion matrix for Random Forest.

In our research, one of the challenges was finding algorithms which can handle
large data sets. We have used Random forest algorithm because it can handle
large data set with higher number of dimensions, because the higher the number
of trees, the higher is the accuracy. Another important reason of using random
forest algorithm is that it can handle missing values and maintains accuracy for
missing data. This characteristic comes handy while handling huge data set. After
classifying our own application layer data set using random forest algorithm, we got
99.2 percent accuracy rate.
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5.2 ML Algorithms on Network Layer

Algorithm Accuracy | Time
SVM 93.8 percent | 505 s
Logistic Regression | 94.7 percent | 1.32 s
Decision Tree 89.6 percent | 1.86 s
kNN 93.3 percent | 20.2 s
Random Forest 98.2 percent | 23.5 s

Table 5.2: Comparison Between Algorithms on Network Data

We have considered two parameters while analyzing the different machine learning
algorithms on the network dataset.They are accuracy in terms of percentage and
time in terms of seconds. The experiment is carried using Spyder (Python 3.6)
in Windows environment on 4GB RAM and 2.4 GHz Intel Core i5. Moreover, for
the network data, if we see the labels, there are two labels, ’0" and '1’. Unlike the

application layer data, here 0 refers to Normal/Non-attack and 1 refers to Abnor-
mal/Attack.

5.2.1 Analysis of SVM
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Figure 5.7: The confusion matrix for SVM
SVM tries to separate the classes of groups by drawing a hyperplane in the middle.
Just how the application layer was analyzed, we have used a Sigmoid function as

a hyperplane to separate the data of two classes. The SVM algorithm gives us an
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accuracy of 93.8 percent while using a sigmoid kernel. This means that the data
can be accurately grouped into two classes of probability. Moreover, the classes that
they are grouped to, are mostly correctly defined. Out of 646554 data used to test,
580646 which are assigned as 0 are correctly identified as 0. Similarly, 25860 data
are correctly identified as 1, which are originally assigned as 1. Therefore, from this
high accuracy, we can say that the SVM algorithm has correctly discovered and
grouped data into classes as they needed to be. However, SVM’s problem is that it
has a very high execution time. Even with a very high accuracy, the poor execution
time is a major drawback for the algorithm. The reason why the algorithm is slow
is because our dataset is huge with a lot features and dimensions. The higher the
complexities, the more is the execution time. Furthermore, we have used the sigmoid
kernel which increased the time complexity even further.

5.2.2 Analysis of Logistic Regression
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Figure 5.8: The confusion matrix for Logistic Regression

Logistic Regression takes multiple classes as input features and then models them
into logistic function which is basically a sigmoid function. The more the features
the better the logistic function will work. Since there are plenty of features to be
trained upon and many training data, the logistic function is trained and set in such
a way that it performs very well, giving us an accuracy of about 94.7 percent. From
the figure above, we can see that 586808 data that are labelled as 0 are correctly
identified as 0 by the algorithm. 25949 data that are labelled as 1, are correctly
labelled as 1. Moreover, it takes just 1.32 seconds to run the entire algorithm. This
gives us a very good accuracy compared to how fast it takes to execute. The time
taken is less as it is not very tough to compute and build a logistic function from
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the given data with so many input features. Thus, it is an algorithm which balances
both accuracy and time in a favorable position.

5.2.3 Analysis of Decision Tree
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Figure 5.9: The confusion matrix for Decision Tree

Decision Tree has an accuracy of nearly 90 percent. The reason for this accuracy is
because decision tree assigns specific values to outcomes and decisions. Moreover,
the execution time is only 1.86 seconds, which is second only to Logistic Regression.
The time of execution completely depends on how fast the tree can be grown. If
the combination of dataset and algorithm requires a huge tree to be built, then it
will take a lot of time. However, a smaller tree will mean that the execution time
decreases by a huge amount. In our case, the dataset and number of features are
huge, but the tree which is built is small, meaning that the execution time decreases
by a big amount and this is what is reflected in the table. Furthermore, the algorithm
is greedy as it has a tendency of lowering the cost. The confusion matrix of Decision
Tree shows us that 551847 data are actually normal and predicted correctly. 27780
data are true negative data. The rest of the data in the test procedure are predicted
wrongly. There is a total of 66927 wrong predicted data.

5.2.4 Analysis of kNN

kNN has an accuracy of 93.3 percent which is very good. However, when we consider
the execution time, it is high. On average, the time is 20.2 seconds. It is not suitable
for huge datasets as the time complexity can be expensive. kNN does not learn
using functions rather it memorizes everything which is why it has big execution
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Figure 5.10: The confusion matrix for kNN

time. Figure. 5.10 represents the confusion matrix. 574827 data are true positive.
28537 data are actually abnormal and predicted correctly. The rest of the data that
underwent the test are wrongly predicted.

5.2.5 Analysis of Random Forest

Although Random Forest is the best in terms of accuracy, but it has the second most
poor execution time. It is 23.5 seconds. This is very poor in terms of large datasets.
The reason for this huge delay is due to the fact that random forest builds numerous
tree at a time. Then the decision of these trees are checked and the decision with
the highest vote is selected. In the process of building these huge number of trees
and then completing the voting procedure, a lot of time is wasted. This is why we
can see a very large execution time. The confusion matrix shows us that out of all
the test data, only a total of 11758 data are wrong predicted. They fall under the
false negative and false positive classes.
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Figure 5.11: The confusion matrix for Random Forest
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Chapter 6

Conclusion

6.1 Conclusion And Future Direction

Internet of things or objects is where devices which has embedded processing ca-
pabilities or even basic sensors are connected to one another through the internet
which could be both wireless and wired. The fundamental feature of IoT is that
these devices that are connected to one another can communicate among themselves,
exchanging data over the internet. This process is also called machine-to-machine
communication. With the rapid growth of technology and introduction of smart
phones along with the gradual shift from [Pv4 to IPv6, the number of IoT devices
connected to the web is greater than the entire world’s population. With IPv4, it
was only possible to assign 4.2 billion addresses but with IPv6 in to action, the ad-
dress space becomes quite large and for this almost all smart devices to come in the
future can be connected to the internet. Now, these devices work through acquiring
data from sensors and process them with an embedded processor. This can be used
to build better system for us with the aid of machine learning algorithms.

Though smart devices have made our lives a lot easier and comfortable, the risk of
privacy and security still pose a threat. Since internet is the space through which the
data is being exchanged and due to the open accessible feature of internet, in many
instances, this data can be used for criminal activity. The number of widespread ma-
licious attacks like phishing, denial-of-service (Dos) or distributed denial-of-service
(DDoS), Probe Remote to Local (R2L) has increased with the increased use of IoT
systems. In order to make the system and data more secure so that it can only
be accessible and used by authorized entities, logical controls are being used as
software guards. Logical controls can be Intrusion detection, passwords, or access
control. Among these logical controls Intrusion Detection System is implemented
to fight against [oT attacks, as mentioned before. Intrusion Detection System is
designed in a way that it should be able to identify that an attack has taken place
in case of a security breach and should be able to respond by sending alerts to the
authorized entities. IDS uses two techniques to detect faults and they are Signa-
ture based detection which works best at detecting attacks which are known and
Anomaly based detection which depends on machine learning algorithms as it works
best for attacks that are unknown. The technique we are working on is Anomaly
based detection, where the system will train itself so that it can distinguish between
stable and unstable or abnormal behavior of the system.

Since we are working with Anomaly based intrusion detection techniques, this re-
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quires that the system to identify threats that are known as well as unknown.
Anomaly based detection is a supervised learning technique so it needs data set
to train its system. We are using choosing to construct a defensive system for both
Application Layer, which is host based and Network Later which is network based
for a set of chosen machine learning algorithms. Since acquiring data set of labeled
data in IoT for intrusion detection is tough so for the application layer data set,
which is a replication of Intel Lab Data, we made our own board with 4 sensors
to collect data in our houses and CSE Research Lab of BRAC University and at
our respective homes for 2 months. Each sensor board contains temperature sensor,
humidity sensor, light sensor and voltage between the batteries. Due to condition
of the labs being similar most of the data that we collected are similar. As for the
network layer data set, we are using UNSW-NB15 data set that contains categorical
features. These features are identifying attributes between hosts, attributes repre-
senting protocol connections, attributes of TCP/IP, attributes of packet’s start/end
and round-trip time, general features like protection of the service of protocols and
connection features and lastly labeled feature. On these data sets the machine
learning algorithms are then implemented.

Support Vector Machine algorithm is a classification algorithm that classifies data
into groups that augments the utility for researchers. Using SVM we can split data
according to its classification. SVM cannot work well on data that is continuous too,
because if the regularization parameters are set high, it shall still form a very thin
hyper plane to set the data even when it is continuous. Since we have lots of data
and it is arranged in a continuous manner after implementing SVM on the data set,
it shows a run-time accuracy of 72 percent in 45s. Similarly, SVM is tested on the
network layer data where it classifies by creating a hyper plane to separate attacking
and non-attacking classes. Since the computational power required on the actual
data set was high, we ran it on a pre-processed data set and where it concluded with
an accuracy of 93.8 percent but took 505s to finish.

Logistic Regression was also used and it works by using multi-variable analysis as
it predicts a single outcome from multiple variable features. Our application layer
data set has 4 features (Temperature, Humidity, Light Intensity and Voltage) and
has two classes. The model is trained by using the logistic function which sets a
threshold value in probability that finally determines the two classes. This algorithm
shows an accuracy of 90.5 percent in 0.27s. Logistic regression is implemented on the
network layer and input features that were trained was IP, protocols, port numbers
etc. After the algorithm was tested the result column predicts whether the packet
is an attacking packet or not and shows 94.7 percent accuracy in just 1.32s.
Another easy to implement algorithm was tested on both application and network
layer is kKNN. K-Nearest Neighbour is a supervised learning algorithm which is useful
in predicting and classifying and depends on labelled data to work. It uses the
labeled data to learn a function to give an appropriate output. It works well for
all parameters and has low computational time. It assumes similar things in close
proximity belong to similar class. Determining the value of k is a difficult job and
plays a vital role in the accuracy of the output. Though higher value means less
variance and exclusion of outlier value but the downside is it ignore smaller patterns
where useful data might reside. For our case optimal value of k was found to be 2
for application layer data and for network layer data we used GridSearchCV to find
out the best suitable value of k and it was 16. For application layer the accuracy
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came to be 97.7 percent in 0.3s and for network layer it was 93.3 in 20.2 percent.
Decision tree algorithm is another supervised machine learning algorithm where it
divides data into smaller parts until all parts fall under similar class. For application
layer the best attribute was humidity and it was selected as root of the tree. The
tree is made with the root having the highest priority and priority decreases as we go
down. This priority is based on the information gain which is dependent on entropy.
The result of decision tree for application layer is 94.97 percent with a run-time of
0.28s. As for network layer the first column is where the splitting began with the
attribute X [0] and this was the root of the tree and progressed as explained before
by splitting until it reached the class Normal or Abnormal. The accuracy of decision
tree in the network layer came out to be 89.6 percent in 1.86s.

The last algorithm that is used on both network and application layer is Random
Forest. It is a powerful yet simple supervised ML algorithm that can applied for
both classifying and regression problems. Unlike decision tree where a single tree is
made from the entire data set, this algorithm makes multiple trees. The algorithm
samples out data randomly and generates a decision tree for each sample. A vote
is performed among the decisions and the best or highest vote is the result. For
our application layer data set we split the data into 80 percent train and 20 percent
test data from the entire sample. Then running the algorithm the accuracy was
99.2 percent in 3.8s. Just like the application layer it works exactly in the same
way for network layer and since network layer data set is quite large random forest
is perfect for handling this sort of data set. More the number of trees higher the
accuracy. It can handle not only large data set but also missing values and maintains
its accuracy. Application of Random Forest in our network layer data set brought
an accuracy of 98.2 percent in 23.5s.

Overall, this research paper describes the analysis of five different machine learning
algorithms on the collected sensor data and existing UNSW NB15 network data. In
our research, we have implemented machine learning algorithms to detect anomalies.
There were previous works on intrusion detection using machine learning algorithms.
However, most of the works were on the network data [18]. We have done our
research on both network and application layer data. Moreover, the previous works
on the application layer data in the paper titled ” A Model for Anomalies Detection
in Internet of Things (IoT) Using Inverse Weight Clustering and Decision Tree” [21]
used only a single machine learning algorithm whereas we are using five machine
learning algorithms and comparing the accuracy. Furthermore, paper [30] worked
on application layer data. However, the data was collected from Kaggle and it
was synthetic data set. Our data is non synthetic and made from real life setup.
Another important addition to our research is the analysis of the time taken by each
algorithm to execute itself.

For the application layer data set and running environment, it can be concluded that
Random Forest is the best algorithm in terms of accuracy and Logistic Regression
is the fastest algorithm. Moreover, SVM’s run time and accuracy is very poor in
terms of anomaly detection. Hence, it can be excluded while detecting intrusions.
Furthermore, for the network layer, logistic regression has a very decent accuracy
with least execution time.

Although we have achieved very good accuracy with the five algorithms, there are
other IoT data sets with more features and different complexities where these algo-
rithms might not detect anomalies with great precision. On those data sets, other
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machine learning algorithms or intrusion detection techniques might work better.
Lastly, the anomaly detection is done on the end devices. We can carry out this
detection on the cloud or server in the near future.
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