
An Application Based Improved Round Robin
CPU Scheduling for

Real Time Operating System

Inspiring Excellencef

Sunervised Bv:

Ms. Suraiya Tairin
Lecturer, Department of Computer Science
and Engineering
BRAC University

Submitted Bv:

Nasif Mahmud

Sadiya Afrin

Fwzana Rahman

Md.Monirujjaman

13101l6l

13101140

14301140

l3t0t t36

Submitted On

April2017

ABSTRACT

CPU scheduling is the primary and very important part ofany operating system. CPU scheduling

criteria is based on multiprogramming operating system. CPU executes one process at a time and

other process is in waiting state to be executed. It prioritizes processes to efficiently execute the

user requests and help in choosing the appropriate process lor execution. Whatever the main goal

of CPU scheduling is to minimize the average waiting time, turnaround time and also the context

switching in order to make the best use of CPU. ln this state, our main goal is to build such

model in which Process with the shortest burst time with a dynamic time quanhrm calculated by

using median formula executed first and so on until the ready queue is not empty. Implementing

this idea, we can minimize the average tumaround time, waiting time and also reduce the context

switch over traditional RR. To implement this idea, we have developed a simulation software to

view the experimental result whether it fulfill our requirement or not. However, we hope that in

fufure we can extend it to a more advanced wav.

ACKNOWLEDGEMENT

Before starting to write this paper, we would like to express our utrnost gratifude to the Almighty

Allah who gives us the Strength with intelligence and determination to build up our thesis. We

want to thank our parents for their support. At the same time, we would very grateful to our

respected faculties and dear classmates for their constant support and motivation. Most

importantly we would like to thank our honorable supervisor Suraiya Tairin miss for her

consistent supervision, guidance and encouragement in accomplishing our thesis work and help

us to execute our idea in a successful way.

Author's Declaration

This thesis work is submitted to the Department of Computer Science & Engineering, BRAC

UNIVERSITY, Dhaka. We hereby, declare that this thesis work is based on the results found by

ourselves. The other helping materials related with our work are found by other researchers

mentioned by reference. This thesis work neither has been previously submitted for any degree.

SIGNATURE OF THE AUTHORS

Nasif Mahmud

ID:13101161

(\

\\,r5(

SIGNATURE OF THE SUPERVISOR

.4r!l:t'r
Ms. Suraiya Tairin

Lecturer, Department of Computer Science and
Engineering

BRAC University.

il o)A^JY- ,'-E-v\ L\-\

M
Sadiya Afrin

ID: 13101140

Fan?ana Q"t*r^n.

Farzana Rahman

ID: 14301140

$af\(
Md.Monirujjaman

ID: 13101 136

Contents

Serial
No.

Content Page No.

1 Introduction

1.1 Motivation

1.2 Objectives

2 Literature Review

2.1 Overview

2.1.1 CPU Scheduling

2.1.2 CPU VO Burst-Cycle

2.1.3 Process State Diagram

2. 1.4 Scheduling Criteria

2. 1.5 Context Switching

2. 1 .6 Optimization Criteria

Z.2Previous Work

2.2. 1 Scheduling Algorithms

2.2.1.1 First Come First Serve Scheduling

2.2.1.2 Shortest Job First Scheduling

2.2.1.3 Priority Scheduling

2.2.1.4 Round Robin Scheduling

J

J

J

5

7

8

8

9

9

11

t4

t6

1

2

Serial
No.

Content Page No

J Propose Model

3.1 Proposed Approach

3.2 Proposed Algorithm

3.3 Implementation

3.4 Result

t9

2t

2l

25

4 Conclusion

4.1Future Scope

4.2 Effectiveness of Proposed Model

30

30

5 Reference 32

Chapter I
Introduction

1.1 Motivation

CPU scheduling criteria is one of the most important issue in operating system. There are so

many traditional criteria of CPU scheduling such as the shortest job fgst (SJF), First come first

serve(FCFS), Priority scheduling and the most important Round Robin(RR) to minimize the

response time, waiting time, turnaround time, number of context switching and maximizing the

CPU utilization. With these concepts, CPU utilization is not occurring properly. To improve

CPU utilization, we are motivated to reduce the tumaround time, average waiting time and the

most importantly context switching issues. We have proposed an efficient technique in process

scheduling algorithm by using dynamic time quantum in Round Robin Scheduling Algorithm. In
order to simulate the behavior of various CPU scheduling algorithm and to improve Round

Robin scheduling algorithm using dynamic time slice concept, we proposed improved CpU

scheduling Round Robin algorithm. Our approach is based on the calculation of time quantum in

single Round Robin cycle. Taking into the consideration of the arrival time, we implement the

algorithm. Experimental analysis shows the better performance of this improved Round Robin

algorithm. It minimizes the number of context switching, average waiting time, average turn-

around time. Consequently the throughput and CPU utilization is better. So, the proposed

algorithm is experimentally proven better than conventional Round Robin Algorithm. The

simulation results show that the waiting time and turn-around time have been reduced in the

proposed algorithm compared to traditional Round Robin.

1.2 Objective

In this present decade due to technology revolution we have to perform a lot of task

simultaneously. As a result CPU overhead is increasing. To save this resource (CPU) we have to

utilize CPU properly to enhance its performance. Whenever the term we use as multitasking

another term Scheduling is come by default which is the main concept of multitasking. From the

very beginning till present there are many CPU Scheduling algorithm are proposed to enhance

the performance of CPU such as the First-come First serve, Shortest job first, Priority scheduling

and the most popular Round Robin (RR)scheduling algorithm. We have deal with this traditional

Round Robin scheduling algorithm. In the traditional RR the time quantum TQ is fixed for all

the processes where the main problem occurs. If the TQ is too less than the processes burst time

the average waiting time the average turnaround time and the most important context switching

will be very high which decrease the performance of CPU. On the other hand if the TQ is high

then there will be a chance to cause starvation the response time will be very low which also

decrease the performance of CPU. So over these limitation of traditional RR we take the

initiative to improve this means to reduce the average waiting time turn-around time and also the

context switching to increase the performance of CPU. We have planned to use a dynamic TQ

for each individual processes based on their burst time which will be optimal. So our main

objective is to improved RR by reducing the average waiting time average turn-around time and

the context switching to enhance the performance of CpU .

For the purpose of this analysis and testing the user first specifies each process along with

information like arrival time, burst time and then the algorithm will produce the output in an

appropriate readability.

Chapter 2

Literature Review

2.1 Overview

2.1.1CPU Scheduling

CPU scheduling is the basis of multiprogramming operating system. By switching CPU among

processes the operating system can make the computer more productive. A multiprogramming

operating system allows more than one processes at a time into an executable memory and share

the CPU using time multiplexing. A reason for using multiprogramming is that the OS itself is

implemented as one or more processes so there must be away to share the CPU befween OS and

application processes. Another reason is for performing the VO operation for normal

computation. Since I/O ordinarily require more time than perform CPU instruction, so

multiprogramming system allocate the CPU to another process whenever a process is invoked

for an VO operation.

Since there are many more available processes than available CPU, so scheduling refers to the

processes to run the available CPU.

2.1.2 CPU VO-Burst Cycle

The success of CPU scheduling depends on the property of the processes. Processes execution is

consisting of a cycle between CPU execution and i/o wait. Processes alternates between these

two states.

3

A process begins with a CPU burst time, followed by anr/o, followed by another Cpu burst,
then again followed by another Vo and goes on. Evenfually the last cpU burst ends with a

system request to terminate the execution process.

Fig: CPU UO-Burst Cycle

4

lorr{, rtrlrF
arlrl rt*rr
t'r,atl fr,:rrrr filo

*;ir hll j '{)

sturr irxrctuertt
Ilrler
lvrih. l+ IiI{.

urir fi+t f,1')

Irratl rtois
adtl srarc
rr.ad h't.l* til*

$',rjt I*r J {)

CPI) r*;rt

Lj',] :i,".1

CrunorC

ffi)h#rfi

CFU brl

l.jl-1 :,r""li

2.1.3 Process State Diagram

Fig: Process State Diagram

A process which is executed has various states. The states ofthe processes are called the status of

the processes. The status includes whether the process has executed or whether the process is

waiting for an VO from the user or whether the process is waiting for the CPU to run the process

after completion of the running process.

lerminaled

l/0 or eventcompletion

runningready

scheduler dispatch

waiting

5

New State

When a user request for a Service from the System, then the System will first initialize the

process or the System will call it an initial Process. So, every new Operation which is Requested

to the System is known as the New Born Process.

Running State

When the Process is Running under the CPU, or When the Program is Executed by the CPU,

then this is called as the Running process and when a process is Running then this will also

provide us Some Outputs on the Screen.

Waiting State

When a Process is Waiting for Some Input and Output Operations then this is called as the

Waiting State. And in this process, is not under the Execution instead the Process is Stored out of

Memory and when the user will provide the input then this will Again be on ready State.

Ready State

When the Process is Ready to Execute but he is waiting for the CPU to Execute then this is
called as the Ready State. After the Completion of the lnput and outputs the Process will be on
Ready State means the Process Will Wait for the processor to Execute.

6

Terminating State

After the Completion of the Process, the Process will be Automatically terminated by the CPU.

So, this is also called as the Terminated State of the Process. After Executing the Whole Process

the Processor Will Also reallocate the Memory which is allocated to the Process. So, this is

called as the Terminated Process.

2.1.4 Scheduling Criteria

Many criteria have been suggested for CPU scheduling algorithms, which characteristics are

used for comparison can make a substantial difference in which algorithm is judged to be the

best. The criteria include the following:

CPU Utilization: To make out the best use of CPU and not to waste any CPU cycle,

CPU would be working most of the time (Ideally I00% of the time). Considering a real

system, CPU usage should range from 40o/o (lightly loaded) to 90Yo (heavily loaded).

Throughput: It is the total number of processes completed per unit time or rather say

total amount of work done in a unit of time. This may range from l0/second to llhour

depending on the specific processes.

Turnaround Time: It is the amount of time taken to execute a particular process, i.e. the

interval from time of submission of the process to the time of completion of the process.

Waiting Time: The sum of the periods spent waiting in the ready queue amount of time a

process has been waiting in the ready queue to acquire get control on the CpU.

Load Average: It is the average number of processes residing in the ready queue waiting

for their tum to get into the CPU.

. Response Time: Amount of time it takes from when a request was submitted until the

first response is produced. Remember, it is the time till the first response and not the

completion of process execution.

2.1.5 Context Switching

In computing, a context sr,vitch is the process of storing and restoring the state (more specifically,
the execution context) of a Process or thread so that execution can be resumed from the same
point at a later time. This enables multiple processes to share a single CPU and is an essential
feature of a multitasking operating system.

2.1.6 Optimization Criteria

Maximum CPU utilization

Maximum throughput

Minimum turnaround time

Minimum waiting time

Minimum response time.

a

a

a

a

o

B

2.2 Previous work

2.2.1 Scheduling Algorithms

CPU scheduling deals with the problem of deciding which process in the ready queue is to be

allocated to the CPU. There are many CPU scheduling algorithms implemented. In this section,

we discuss several of them.

2.2.1.t First-Come First-Serve Scheduling

It is the simplest CPU scheduling algorithm. With this scheme, the process that requests the CPU

first is allocated the CPU first. The implementation of the FCFS policy is easily managed with

FIFO queue. When a process enters into the ready queue its PCB is linked onto the tail of the

queue. When the CPU is free it is allocated to the process at the head of the queue. Then the

running process is removed from the queue.

The average waiting time for this FCFS is quite long. Consider the following set of processes

that arrive at time 0, with length of the CPU burst given in milliseconds:

Process Burst time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: Pt, P2 and P3.

I

3027240

The Gantt chart for the schedule is:

P1 P2lpr

o Waiting time for Pl :0,P2:24,P3:27
o Average waiting time (0+24+27)13:17

Suppose that the processes arrive in the order P2, P3, P I .

The Gantt chart for the schedule is:

Waiting time for P1:6, P2:0, P3 : 3

Average waiting time (6+3+0)13:3

The average waiting time under an FCFS policy is generally not minimal and may vary

substantially if the process's CPU burst times vary greatly. In addition, consider the performance

of FCFS scheduling in a dynamic situation. Assume we have one CPU-bound process and many

VO-bound processes. As the processes flow around the system, the following scenario may

result. The CPU-bound process will get and hold the CPU. During this time, all the other

processes will finish their VO and will move into the ready queue, waiting for the CPU. While

the processes wait in the ready queue, the VO devices are idle. Eventually, the CPU-bound

process finishes its CPU burst and moves to an VO device. All the VO-bound processes, which

have short CPU bursts, execute quickly and move,back to the VO queues. At this point, the CPU

10

30

a

a

P2 P3 P1

sits idle. The CPU-bound process will then move back to the ready queue and be allocated the

CPU. Again, all the VO processes end up waiting in the ready queue until the CPU-bound

process is done. There is a convoy effect as all the other processes wait for the one big process to

get off the CPU. This effect results in lower CPU and device utilization than might be possible if
the shorter processes were allowed to go first. The FCFS scheduling algorithm is no preemptive.

Once the CPU has been allocated to a process, that process keeps the CPU until it releases the

CPU, either by terminating or by requesting VO. The FCFS algorithm is thus particularly

troublesome for time-sharing systems, where it is important that each user get a share of the CPU

at regular intervals. It would be disastrous to allow one process to keep the CPU for an extended

period.

2.2.1.2 Shortest Job First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) scheduling algorithm. This

algorithm associates with each process the length of the process's next CPU burst. When the

CPU is available, it is assigned to the process that has the smallest next CPU burst. If the next

CPU bursts of two processes are the same, FCFS scheduling is used to break the tie. As an

example of SJF scheduling, consider the following set of processes, with the length of the CPU

burst given in milliseconds:

Process Burst time

P: 6

P2 8

P3 7

P4 3

11

Using SJF scheduling, we would schedule these processes according to the following Gantt
chart:

The waiting time is 3 milliseconds for process P1, 16 milliseconds for proce ss P2,9 milliseconds

for process P3, and 0 milliseconds for process P4. Thus, the average waiting time is (3 + 16 + 9
+ 0)14: 7 milliseconds. By comparison, if we were using the FCFS scheduling scheme, the

average waiting time would be 10.25 milliseconds. The SJF scheduling algorithm is provably

optimal, in that it gives the minimum average waiting time for a given set of processes. Moving a

short process before a long one decreases the waiting time of the short process more than it
increases the waiting time of the long process. Consequently, the average waiting time

decreases. The SJF algorithm can be either preemptive or non-preemptive. The choice arises

when a new process arrives at the ready queue while a previous process is still executing. The

next CPU burst of the newly arrived process may be shorter than what is left of the currently

executing process. A preemptive SJF algorithm will preempt the currently execute process,

whereas a non-preemptive SJF algorithm will allow the currently running process to finish its
CPU burst. Sometimes, non-preemptive SJF scheduling is also called Shortest Process Next
(SPN) scheduling and preemptive SJF is called Shortest remaining time (SRT) scheduling.

24t6

P4 P1 P3 P2

12

90

As an example, consider the following four processes, with the length of the CPU burst given in

milliseconds:

Process Arrival time Burst time

P1 0 8

P2 I 4

P3 .,
9

P4 3 5

If the processes arrive at the ready queue at the times shown and need the identical burst times,

then the resulting preemptive SJF scheduling is as depicted in the following Gantt chart:

Process P1 is started at time 0, since it is the only process in the queue. Process P2 arnves at

time 1. The remaining time for process Pl (7 milliseconds) is larger than the time required by

process P2 (4 milliseconds), so process P1 is preempted, and process P2 is scheduled. The

averagewaitingtimeforthisexampleis((10-1)+(1
-1)+(17-2)+(5-3))14-26146.5

milliseconds. Non-preemptive SJF scheduling would result in an average waiting time of 7.75

milliseconds.

26t7100

P1 P2 P4 P1 P3

13

5

2.2.1.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm. A priorify is
associated with each process, and the CPU is allocated to the process with the highest priority.

Equal-priority processes are scheduled in FCFS order. An SJF algorithm is simply a priority
algorithm where the priority (p) is the inverse of the (predicted) next CPU burst. The larger the

CPU burst, the lower the priority and vice versa. Note that we discuss scheduling in terms of
high pdonfy and low pf.oirty. Some systems use low numbers to represent low priority; others

use low numbers for high priority. This difference can lead to confusion. In this text, we assume

that low numbers represent high priority

As an example, consider the following set of processes, assumed to have arrived at time 0, in the
order Pl, p2... P5. with the length of the cPU burst given in milliseconds:

process Burst time Priority

P1 10 1J

P2 1 1

P3 2 4

P4 I 5

P5 5 2

14

Using priority scheduling, we would schedule these processes according to the following Gantt

chart

The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or externally. Internally defined priorities use some

measurable quantity or quantities to compute the priority of a process. For example, time limits,

memory requirements, the number of open files, and the ratio of average VO burst to average

CPU burst have been used in computing priorities. Extemal priorities are set by criteria outside

the operating system, such as the importance of the process, the type and amount of funds being

paid for computer use, the department sponsoring the work, and other, often political, factors.

Priority scheduling either preemptive or non-preemptive. When a process arrives at ready queue

its priority is compared with the priority of the current running process. A preemptive CPU

scheduling algorithm will preempt the CPU if the priority of the newly arrived process is higher

than the currently running process. A non-preemptive priority scheduling algorithm will simply

put the new process at the head of the ready queue. A major problem of priority scheduling

algorithm is indefinite blocking or starvation. A process is ready to run but waiting for the CPU

can be considered as blocked. A priority scheduling algorithm can leave some low priority

processes waiting indefinitely. In a heavily loaded computer system a steady state of higher

priority processss can prevent the low priority process from ever getting the CPU. Generally, one

I9181,66

P2 P5 P1 P3 P4

15

of two things will happen. Either the process will eventually run or the or the computer system

will eventually crash or lose all unfinished low priority processes.

A solution to the problem of indefinite blockage of low priority processes is aging. Aging is a

technique of gradually increase the priority of that processes that wait in the system for a long

time.

2.2.1.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for timesharing systems. It is

similar to FCFS scheduling, but preemption is added to switch between processes. A small unit

of time, called a time quantum or time slice, is defined. A time quantum is generally from 10 to

100 milliseconds. The ready queue is treated as a circular queue. The CPU scheduler goes

around the ready queue, allocating the CPU to each process for a time interval of up to I time

quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of processes. New

processes are added to the tail of the ready queue. The CPU scheduler picks the first process

from the ready queue, sets a timer to intemrpt after I time quantum, and dispatches the process.

One of fwo things will then happen. The process may have a CPU burst of less than 1 time

quantum. In this case, the process itself will release the CPU voluntarily. The scheduler will then

proceed to the next process in the ready queue. Otherwise, if the CPU burst of the currently

running process is longer than 1 time quantum, the timer will go off and will cause an intemrpt

to the operating system. A context switch will be executed, and the process will be put at the tail

of the ready queue. The CPU scheduler will then select the next process in the ready queue.

The average waiting time under the RR policy is often long. Consider the following set of
processes that arrive at time 0, with the length of the CPU burst given in milliseconds:

16

Processes Burst time

P1 24

P2 3

P3 J

If we use a time quantum of 4 milliseconds, then process Pl gets the first 4 milliseconds. Since it

requires another 20 milliseconds, it is preempted after the first-time quantum, and the CPU is

given to the next process in the queue, process P2. Since process P2 does not need 4

milliseconds, it quits before its time quantum expires. The CPU is then given to the next process,

process P3. Once each process has received I time quantum, the CPU is returned to process Pl
for an additional time quantum. The resulting RR schedule is:

The average waiting time is 1713:5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more than I time quantum

in a row. If a process's CPU burst exceeds 1 time quantum, that proces s ts preempted and is put

back in the ready queue. The RR scheduling algorithm is thuspreemptive.

The performance of the RR algorithm depends heavily on the size of the time quantum. At one

extreme, if the time quanrum is extremely large, the RR policy is the same as the FCFS policy. If
the time quantum is extremely small then the RR process is called time sharing and creates the

appearance that each of n process has its own processor running at llnthe speed of real processo

30262218l4100

P1 P2 P3 PI P1 PI P1 P1

17

74

In software, we also need to consider the effect of context switching on the performance of RR

Scheduling. Let's assume we have one process of 10 time units, if the quantum is 12 time units

the process finishes less than 1 time unit with no overhead. If the quantum is 6 time units

however the process requires 2-trme quantum resulting in a context switch. If the time quantum

is I time unit then 9 context switch will occur, slowing the execution process accordingly.

Process time 10

10

Time Quantum

t2

6

1

Context Switch

0

1

9

Fig: Way in which a smaller time quantum increases context switches

1B

Chapter 3

Proposed Model

3.1 Proposed Approach

Our proposed approach is just a mixture of the traditional FCFS, SJF and the round robin

scheduling algorithm. According to the proposed algorithm the process come with burst time and

a time quantum allocate to the ready queue according to the FCFS. After that the Process will

sort according to their burst time and the dynamic time quantum will be calculated using the

median formula. Thus, the process will be executed until queue is empty.

To implement this, we will get a better result as in less no of context switching, minimum turn-

around time and the waiting time is also minimum.

Initially Processes come to the queue as follows:

Process Name Burst Time Time quantum(ms)

1. Pl 25 5

2.P2 t7 5

3. P3 10 5

4. P4 t9 5

19

After sorting the above situation, the Process will be ready for execution in the following order:

The time quantum is calculated by the median formula. That is as follows:

n: total no ofprocess

If n: odd

Thenm:TQ:y*((n+2)12)

If n: even

Then m : TQ : %(y*(n/2) + y * ((L+t)12)

Where y: serial no of the list

M: median TQ

So, the time quantum of the processes is calculated individually by the above formula.

According to the example for:

P3 : Yz * (t*(4t2))+ 1 * ((1+4)t2) : 3.5

P2 : Y, * (2*(412)) + 2 * ((t+4)12) : 7

20

Process Name Burst Time Time quantum(ms)

l. P3 10 3.5

2.P2 l7 7

3. P4 t9 10.s

4. Pl 25 t4

P4 : % * (3*(4/2)) + 3 * (s/2): 10.5

PL: % * (4*(4t2)) + 4 * (512) : t{

3.2 Proposed Algorithm

Step 1: Start

Step 2: Make aready queue of the processes.

Step 3: Allocate processes following the FCFS into ready queue by default

Step 4: Sort all the processes according to their burst time in ascending order

Step 5: Calculate optimal time quanfum as mean dynamic time quantum. Using median formula.

Step 6: Execute processes as default way depending on dynamic time quantum.

Step 7: Repeat step 3 to 6 until ready queue is not empty.

Step 8: If new process come in between running process , the program will restart from step 4.

Step 9: End

3.3 Implementation

3.3.1 Source Code

public void optimalTimeQuantum0 {

int n : ProcessName.size0;

double m:0.0;

21

if(nYo2::0)

{lleven

for(inti:O ; i<ProcessName. size0 ; i++)

{

m: .5*((i*(r/2)) + (i* ((1+n)12)));

SortedMedian.add(m);

)

)

else

{llodd

for(inti:0 ;i<Proces sName. size0 ; i++)

t
t

m: i*((n+2)12);

SortedMedian.add(m);

)

)

double highestBT : Collections.max(BurstTime);

for(inti:0 ;i<SortedMedian. size0 ;i++; 1

double otq : (highestBT + SortedMedian.get(i)) / 2;

dTimeQuantum. add(otq) ;

)

)

public void NewModelRun0

22

{

totalTime:0;

int size : NewCPU.size0;

while(siz*0)

{

for(inti:0 ;i<newR. lenglh ; i++;

t

double tq: (double) newR[i][2];

double bt: (double) newR[i][1];

i(bt>tq&&bt>0)

totalTime: totalTime + tq;

bt: bt-tq;

newR[i][1]:bt;

newR [i][3] : totalTime;

int switching: (Integer)newR[i][5] + 1;

newR[i][5] = switching;

)

else if(bt<:tq&&bt>0)

{

totalTime: totalTime + bt;

bj: bt-tq;

{

23

newR[i][1]:bt;

newR [i][3] : totalTime;

size:size- I ;

int switching: (Integer)newR[i][5] + 1;

newR[i][5] : switching;

)

24

3.4 Results

Result after first test:

Fig: Simulation Software

25

-ox

!i!llEslE-.

lltlqr-Ur 5

AdT.W.hC ltrr 1?60

t-! s.ra

&.cll,rr Elhl.:al2'3t6

Aircwl r|TIr.: l?.le

So, we got the better result from traditional round robin scheduling algorithm'

The comparison is as follows:

3m

250

2m

l$

m

50

0

Comparison Between Traditional& 0ur Proposed Model

AnrqeTumArrundTim Aw{e[{laitingTint

I Tnditiqral Round Robin r lmruvtd R0und Robln

Fig: Simulation Graph

26

Result after second test:

Fig: Simulation Software

27

:

PrE..rlH

-ox

Roalt! llma: D

HPr6TtI

Ardlha: 89 lh.Otrlnr il I u,t* I

sorta PrE $ Ida

Srd Rl.rrrr*a|l hI.lfrll.
40
t3.0
0t.0
e0.0

t50
a6.0

47.0

{8.0

1A 630 580

5S.0

59.0

590

2 B l0
3 C 90.0

.D

Awraga Tunaoud Iimi. 177 5

aaralp Wdng Tirx: 116 0

c4oxl srltcfi0

,taratr Tutwurd llm.r l!a.0

ar.t w*r,Tlm0tz5

_ Cdan$t!

A2
D2
c?

Here, we also got the better result from traditional round robin scheduling algorithm.

The comparison is as follows:

Fig: Simulation Graph

13

Comparison Graph For Average Turn Arcund
Time

180

160

140

1?0

I roo

FBo

60

40

20

0

Round Robin Proposed Round Robin

Algoritlrnt

28

ig Round Robin Comparison

Comparison Graph For Average Waiting Time

120

110

100

90

80

70
IU

=6n
50

40

30

?0

10

0

Proposed Round Robin

Algoritlm

Fig: Simulation Graph

29

Chapter 4

Conclusion

4.1 Future Scope

The proposed model of our thesis is basically a part of pure computer science and much

theoretically analyzed. The accuracy and real life implementation of this model is so challenging.

Still we are hopeful extend our work with real life. Our future plans would be the following:

o Implement the proposed model with Linux kernel in real life.

r Perform various test (real life application) to measure accuracy of this model.

. Write paper documentation for future reference.

. Publish this model for public uses.

4.2 Effectiveness of the proposed model

This paper is supposed to be an analytical paper which compares and analyze the traditional

scheduling algorithm with the proposed algorithm. Unlike all the traditional algorithm our

proposed algorithm we can optimize the processor using the dynamic time quantum of rypical

round robin scheduling algorithm. Except this, in our proposed model the turnaround time and

the average waiting time is minimum and the context switching is also less over traditional RR

30

which are the most crucial part of any scheduling algorithm. We have done till this. Hopefully it

will be implemented with the Linux kernel with the real time.

31

1.

References

A. R. Dash. S. K. Sahu and S. K. Samantra, An optimized Round Robin cpU

Scheduling Algorithm with Dynamic Time Quantum,ln ternational Journal of
Computer science, Engineering and Information Technologt AJCSEIT), vol. 5,

No.1, February 2015.

Manish Kumar Mishral and Dr. Faizur Rashid," An Improved Round Robin CpU

Scheduling Algorithm with Varying Time Quanfum", International Journal of
Comptrter Science, Engineering and Applications, Vol.4, No.4, August 2014

Goel N., Garg R. 8., "Improvised optimum Multilevel Dynamic Round Robin

Algorithm for Optimizing CPU Scheduling", International Journal of Computer

Applications , ISSN 0975 - 8887, Volume - No., August 2015.

Rajput I., Gupta D., "A Priority based Round Robin cpU Scheduling Algorithm

for Real Time Systems", IJIET, Vol. I Issue 3 Oct.2012

Abbas Noonl, Ali Kalakech2, SeifedineKadry, "A New Round Robin Based

Scheduling Algorithm for operating Systems:Dynamic euantum Using the Mean

Average", IJCSI International Journal of computer Science Issues, vol. g, Issue

3, No. l, May 2011 ISSN (Online) t694-08t4.

Rakesh Mohanty, H.S. Behera and et. al, Design and Performance Evaluation of a

new proposed Shortest Remaining Burst Round Robin(SRBRR) scheduling

algorithm, Proceedings of the Intemational Symposium on Computer Engineering

and Technology(ISCET), March, 2010.

2.

a
J.

4.

5.

6.

32

7. Rami J. Matameh, "Self-Adjustment Time Quanfum inRor:nd Robin Algoriftm

Deeendtng on Burst Time oftreNow Running Procases", American Joumal ofAppliedSciences,

Vol6,No.l0,2W.

8. Abdulrazak Abdulrahim, Saleh E. Abdullahi & Junaidu B. Sahalu, (2014) ,,A

New Improved Round Robin (NIRR) CPU Scheduling Algorithm", Intemational

Journal of Computer Applications, Vol. 90, No. 4,pp 27-33.

9. M Lavanya & s. Saravanan, (2013) "Robust euantum Based Low-power

Switching Technique to improve System Performance", International Journal of
Engineering and Technology, Vol. 5, No. 4, pp 3634-3638.

l0.Mehdi Neshat, Mehdi Sargolzaei, Adel Najaran & Ali Adeli, (2012),.The New

method of Adaptive CPU Scheduling using Fonseca and Fleming's Genetic

Algorithm", Journal of Theoretical and Applied Information Technology,yol. 37,

No. 1, pp 1-16.

1 1. Debashree Nayak, Sanjeev Kumar Malla & Debashree Debadarshini, (2012)

"Improved Round Robin Scheduling using Dynamic Time euantum,,,
lnternational Journal of computer Applications, vol. 3g, No. 5, pp 34-3g.

lnternational Joumal of Computer Science, Engineering and Applications

(IJCSEA) Vol.4, No.4, August 2014.

12. M.K. Srivastav, Sanjay Pandey, Indresh Gahoi & Neelesh Kumar Namdev,

(2012) "Fair Priority Round Robin with Dynamic Time Quantum", International

Journal of Modern Engineering Research ,yol. 2,Issue 3, pp g76-gg 1.

33

