
A Robust Cursor Activity Control with

Iris Gesture and Blink Detection

Technique

by

Md. Rayhan Al Islam
15101063

Maliha Rahman
15101105

Md. Rezyuan
15101114

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

April 2019

c© 2019. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md. Rayhan Al Islam
15101063

Maliha Rahman
15101105

Md. Rezyuan
15101114

i

Approval

The thesis titled “A Robust Cursor Activity Control with Iris Gesture and Blink
Detection Technique” submitted by

1. Md. Rayhan Al Islam (15101063)

2. Maliha Rahman (15101105)

3. Md. Rezyuan (15101114)

Of Spring, 2019 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on April 25, 2019.

Examining Committee:

Supervisor:
(Member)

Dr. Jia Uddin
Associate Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Amitabha Chakrabarty
Associate Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Md. Abdul Mottalib, PhD
Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract

Using computers for people with very limited or no arm movements is a very tough
task and most of the time impossible. In this paper, we are proposing an iris based
cursor control system developed specifically for physically challenged people. Eye
gaze localization has been a very popular research field for several years. Tobi Eyes,
Gaze Pointer Face Detection with viola-jones are the advanced works in this field but
both have certain limitations such as the infrared ray issues and accuracy deviation
because of unstable frames. In our work, we have developed a model to overcome
these barriers of the state of the art systems. Along with the software model we
are also proposing a hardware model in order to improve the accuracy of previously
mentioned difficulties. In our system, we used Hough circle transform for localizing
the eye gaze. The developed system is tested by multiple users and we achieved
around 89.8% accuracy. This model will help the disabled peoples to get themselves
out from their limited world. Furthermore, the functionality of using the on-screen
keyboard will help them to interact very easily. This system will ensure maximum
user comfort with minimum setup requirements.

Keywords: Cursor Control; Image Processing; Blink Detection; Iris Gesture; Hough
Circle Transform; Window to View port Transformation; Haarcascade Eye Trees

iii

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption. Secondly, We would like to express our sincere
gratitude to our supervisor Dr. Jia Uddin and co-supervisor Rubayat Ahmed Khan
for their highest attention and valuable time. We would also like to thank them
for giving us the opportunity to work on this topic and guiding us all the way
through the process. Moreover, we would like to thank BRAC University Computer
Science and Engineering department for providing us with the facilities to conduct
this research. And finally to our parents with their kind support and prayer we are
now on the verge of our graduation.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Thesis Orientation . 2

2 Background Study 4
2.1 Literature Review . 4

3 Algorithms and System Implementation 7
3.1 System Overview . 7
3.2 Experimental Setup . 7
3.3 Frame Pre-processing . 8

3.3.1 Framing and determining Region of Interest (ROI) 8
3.3.2 BGR to HSV Conversion . 11
3.3.3 Masking . 12
3.3.4 Gaussian Blur . 13
3.3.5 Averaging Blur . 14

3.4 Algorithms . 15
3.4.1 Hough Circle . 15
3.4.2 Data Processing . 18
3.4.3 Iris Adjustment . 18
3.4.4 Window to View port Transformation 20
3.4.5 Cursor Movement Control . 24
3.4.6 Blink Detection for Click Function 26

3.5 Work Flow . 28

v

4 Result Analysis 29
4.1 Evaluate the Accuracy of Cursor Movement 29
4.2 Estimate the Accuracy of Cursor Pointer 29
4.3 Accuracy of Blinks in terms of Distance 32
4.4 Resolution Invariant . 32
4.5 Comparison with Existing System . 32

5 Conclusion and Future Work 34
5.1 Conclusion . 34
5.2 Future Work . 35

Bibliography 38

vi

List of Figures

1.1 Eye fragments . 1
1.2 Statistics of Disabled People . 2

3.1 System Block Diagram . 7
3.2 Web cam (Logitech C270) . 8
3.3 Comparison Between Different View of Web cam 8
3.4 Frame Processing . 9
3.5 Comparison Between Camera Frame and Region Of Interest (ROI) . 10
3.6 Before and After Result of BGR to HSV Conversion 12
3.7 Applying Masking . 13
3.8 Gaussian Blur Filtering . 14
3.9 Comparison Between Gaussian Blur and Averaging Blur 15
3.10 Iris Detection and Adjustment . 16
3.11 Applying Hough Circle Transformation 17
3.12 One Eyed Fixation . 19
3.13 Pixel Transformation . 20
3.14 Window to View port Transformation 21
3.15 Steps of Transformation . 22
3.16 Process of Calibration . 23
3.17 Window of the Cursor . 23
3.18 Different Resolution of Display . 24
3.19 Grid visualization of cursor movement 25
3.20 Blink Detection . 27
3.21 Blink Detection for Click Function 27
3.22 Complete Work Flow . 28

4.1 Estimate the Accuracy of Cursor Pointer 30
4.2 Estimate the Accuracy of Cursor Pointer 30
4.3 Points plotting for X coordinates . 31
4.4 Points plotting for Y coordinates . 31

vii

List of Tables

3.1 Coordinates of Window and View Port 20

4.1 Accuracy of Blinks in terms of Distance 32
4.2 Comparison between Existing System and Our System 33

viii

Chapter 1

Introduction

An eye control based computer system works on determining the cursor position
depending on the focal point of two eyes. One of the major eye region is the Iris.
This thin layer actually regulates a human eye color. This portion also helps to
ascertain the diameter of the pupil. Eye lens passes lights and on the retina’s focal
point, the objects are structured and sent to the nerves in our brain. Usually, the
main focal point is the center of the retina depending on a perfect eye sight. In
Figure 1.1 the fragmentation of eyes are shown.

Figure 1.1: Eye fragments

Accordingly, this center point is also the center of the iris. So, deciding the iris
position or the retina position will work on deciding in which point the person is
focused on. Therefore, the position of iris or pupil is used in all of the systems to
place the cursor position.

1.1 Motivation

As of late there has been a growing interest in improving natural interaction between
human and computer. Several studies for human-computer interaction in universal
computing are introduced [1]. It is a functioning examination field for some spe-
cialists working on disable people who cannot move anything except their eyes. A
statistics from 2018 shows in Figure 1.2, there is almost 5.4 million paralyzed people

1

all over the world [2]. If their knowledge is connected to a computer usage, they can
create a massive turn over in the world.

Figure 1.2: Statistics of Disabled People

From the mentioned figure we can see a major amount of people in the world are
suffering from paralysis. This physical limitation is becoming a burden for their
regular life. Most of these peoples’ have knowledge and creativity but they cannot
express. A boundary creates between their knowledge and their physical limitations.

1.2 Objective

This research aims in developing a system that can aid the physically challenged
by allowing them to interact with a computer system using only their eyes. The
vision-based interface technique extracts motion information without any high cost
equipment’s from an input video image. Thus, vision-based approach is taken to
account as an effective technique to develop human computer interface systems.
Eye movements can be captured and used as control signals to enable people to
interact with interfaces directly without the need for mouse or keyboard input [3].
Moreover, computers can be used by persons with disabilities for communication,
environmental control, source of information and entertainment. Their thoughts
and ideas can be shared through our system. Peoples without hands or legs or other
disabilities will be facilitated through our system and with their eye gesture they
will be able to do all the required computer works. They will be able to share their
thoughts and ideas through our system.

1.3 Thesis Orientation

The rest of the thesis is explained as follows-

• Chapter 2 includes literature review with necessary references

2

• Chapter 3 contains algorithms and system implementation

• Chapter 4 shows result analysis

• Chapter 5 includes conclusion and future work

3

Chapter 2

Background Study

2.1 Literature Review

To adapt with the approaches that has been attempted till now which are related to
the topic we have studied several research paper, journals and articles. As technology
is improving day by day it has become one kind of mandatory for all to use computer.
Though there are many people who are physically challenged but they have potential
and demand to work using computer. That’s how scholars have come up with the
idea to retina based cursor control for solving the issues. There are several ways to
make this possible but the common things that come with these ideas are: image pre-
processing, segmentation, feature extraction, classification and evaluation. Working
long time sitting in front of a computer causes musculoskeletal imbalance which is
related to the physical factors and also psychological factors [4]. Even if, the user
has placed the computer to the wrong place where he or she has to extend hands
or shoulder to reach to the input devices of computer such as mouse, keyboard etc.
causes intensive pain in shoulder, and headache however it can also be responsible
for toughness in the neck and shoulder [5].
Moreover, any repetitive actions like this can cause harm permanently to health is
known as repetitive strain injury (RSI). Whenever using input devices of computer
like mouse can cause RSI on wrist.There are many solutions has been added where
many of them are related with external input devices to get rid of above mentioned
diseases. The problem is all of the solution has been related with using external
hardware devices like head mounted heavy devices or glasses for getting the gaze
information [6]. ITU gaze tracer uses Open CV which is developed by a research
group from IT University of Copenhagen which requires additional costly hardware
setup as well as head movements for tracking [7]. But there are people who are not
able to move head. Later on, another system of gaze tracking was developed by
a researcher named Ohno, et al. This system requires three cameras for tacking.
Among them two cameras are positioned at the top and the third one is placed at
the bottom which operates using infrared spectrum [7]. However, many research
have already been showed that IR is dangerous as causing various kinds of diseases
in skin and eye. All those devices are also costly which is beyond imagination for
general people to use.
Another system was proposed in 2014 where the cursor movement was also based
on users gaze information [8]. There some controlling keys were showed on a screen
and after calibration one can combine speech, controlling his atmosphere, type as

4

well as can operate telephone, computers external devices like mouse, run computer
programs and accessing the internet and mail system. Thus the system was based
on image processing using conversion of gray scale, edge detection, using threshold
values and calculation of iris focus point displacement vector [8]. After that, scholars
stepped one step ahead for the improvement of human computer interaction (HCI).
A paper was published where the system was able enough to control the cursor
automatically causing the focus point of eyesight and perform mouse-operation by
performing blinking action [9]. The main purpose of the system was eye based human
computer interaction (HCI) which gives real time tracking of eyes and eye-gaze
information. There are many algorithms for eye detection and in there regression,
Bayesian and discriminative approaches were used. For eye tracking, limbus, pupil
tracking, electrooculography and saccade as well as face detection algorithm were
performed. Those systems were more complicated to detect the eye portion properly
even when the terms of efficiency come it could not be able to take the position.
In terms of face detection, an article published in bio medical soft computing and
human science, we have seen that researchers are using viola Jones algorithm. Ac-
cording to the article, the viola Jones algorithm is working by generating the integral
image. Haar extractors were calculated from the integral image by adding number
[10]. The actual detection happens inside a window where the min and max size
of the window can be chosen and for each window sliding size can also be chosen
corresponding to the size. In each step the window can slide both vertically and hor-
izontally. A set of N- face recognition filters was applied on each window. Whenever
a filter gives positive result there is no need of rest of the filters but if a filter fails
to detect face then rest starts working. The main problem of viola Jones is, at the
very beginning it extracts white band then dark band and then it start matching
patterns related to face as well as it’s working parameter depends on environment,
its mechanism becomes complicated to perform in a live video stream where the
environment is a bit complex.
Another drawback of the previous work was complexity in terms of setup of face-
camera pose (head orientation), resolution of image, illumination and motion dy-
namics etc. One more thing is needed to include that the real image used many
heuristic methods where intensity are becoming more sensitive than the real time
performance. Another paper was found where it describes the various ways for
tracking eye retina [9]. Accordingly it discussed various ways for blink detection
and face detection. They summarized face detection in two categories which are
feature based method and image based method. In feature based method features
are detected at the very beginning like nose, eye and mouth. After that it takes
decision based on the detected features if all those are going to represent the hu-
man face or not from the given image. Next, image based technique is one kind
of template matching which can be simply used for face detection with efficient ac-
curacy. Many researchers have been detected eye blink with the help of Open CV
from python and dlib library. Calculation of eye aspect ratio (EAR) based upon
facial landmark is an elegant solution and easy to perform. Facial landmarks can be
used to localize important regions from face like nose, mouth, eyelash and eye and
from there special areas can be extracted using the indexes. In terms of blink the
region of interest (ROI) is the eye and from the paper it has been stated that six
co-ordinates represent each eye, so the indexes of those co-ordinates are needed to
detect each eye. After that, with the help of an equation eye aspect ratio has been

5

found and it represents a constant value. When the eyes were open the value of the
metric was a pretty stable value. The value drops when the eye is closed that means
a blink has occurred.
In another paper a noticeable thing has been marked which is preprocessing of im-
age or frames for smoothing of contours where the aim is simplicity for successive
contour detection [11]. Unlike image restoration algorithm, the purposes of filters
are not only removing noise but also texture since the latter tends to create problem
for contour detection. There are local and global contour preserving filters which de-
pend on variation of methods and non-linear diffusion. The authors have mentioned
for removing noise low pass filtering is one kind of best solution in terms of accuracy.
Some edges and contour have higher frequency and this becomes problematic too to
process it. Further many techniques have been proposed to overcome it known as
local adaptive smoothing algorithm where it computes the average weight of neigh-
borhood pixels of gray scale depends on various ways of local pattern configuration.
In reviewing paper, another filtering method has come to light which is kalman filter.
In a paper, describing noise removal mentioned about kalman filter which measure
noises, inaccuracies and then produces a value which is near to the actual value and
associated calculated values [12]. It is an algorithm which shows its performance by
making optimal use of imprecise data of linear system even with the Gaussian errors
and continuously updates the best prediction for system’s current state. Kalman
filters work effectively in reducing noise from an image with maintaining underlying
structure of an image. However, it shows efficiency in noise removing for helping
parallel programs to control the detection and movement of cursor.
Our proposed system is based on a simple web cam which is not that much costly
and an infrared free cam. It relieves users from carrying extra heavy devices as well
as increases the accuracy in contrast to others. However, the main problem was
working with low resolution of images and in dark lights. To overcome all those
things, we analyzed a couple of solutions and from there the best techniques have
been applied. To get the desired information from the input we have used advanced
image processing techniques and our own developed methodologies. After that,
one thing come which says how accurately the system supports human computer
interaction (HCI). We have increased our thought one step ahead and accordingly we
tried to make smooth movement of the cursor. In the contrast to many processing
techniques the movement of cursor in our system shows the better performance.
The calibration process in our system is going to help the user in terms of view
port transformation. Moreover, we have designed our system keeping in mind how
we people interact with computer in day to day life. The navigation of computer
has been developed from the movement information of the eyes. Those information
has helped a lot for cursor movements in a more authentic way. Again the average
filtering techniques shows better performance in the interpretation for reducing noise
and smoothing the detection of retina. Our own heuristic calculation for blink
detection allowed the system to control the cursor with better efficiency.

6

Chapter 3

Algorithms and System
Implementation

3.1 System Overview

The block diagram in Figure 3.1 is demonstrating the overall work flow of the pro-
posed system. We are dividing the whole system into several parts which are –
video capturing, frame pre-processing with focal point detection and cursor move-
ment. After capturing the video from camera we detected the iris from eye and find
the focus point, which is used to move the cursor in the screen. The blink detection
system is running in parallel to detect blink and run the click function.

Figure 3.1: System Block Diagram

3.2 Experimental Setup

In terms of improving system accuracy, hardware model plays a vital role. Therefore,
after reviewing the previous works we have found that most of the work’s limitation
is unstable frames. Thus, if we settle down the frame and make it fixed, there will
be huge accuracy improvement in detecting eyes. So, we are using a cap and we
attached a Logitech C270 for the web cam. The camera is placed at the extended
portion of the cap. This helps us to keep our frame stable and fixed. Though the
user moves his head, the frame will remain same.

7

Figure 3.2: Web cam (Logitech C270)

(a) User Web Cam View (b) Hardware Model (c) Hardware Model View

Figure 3.3: Comparison Between Different View of Web cam

We thought about the user comfort so we removed the plastic case of the camera
and positioned only the logic board at the extended portion of the cap displayed
in Figure 3.2. Thus, the camera weight became negligible and the system is very
comfortable to manage for the user.
We tried to implement the system using integrated web cam of the laptop and an
extra web cam over monitor in the desktop shown in Figure 3.3a but we found that,
through that model the accuracy decreases drastically as the video will capture the
whole face first and then eye. So we have planned to have the cam as close as possible
to user eyes so that we can only focus on eyes rather than whole face. In Figure
3.3b our integrated hardware model is shown. Lastly, in Figure 3.3c the hardware
model view is displayed.

3.3 Frame Pre-processing

In the pre-processing part which is shown in Figure 3.4, we have cropped the actual
frame of our actual region of interest. Then the frame was converted to HSV. We
set a lower and lower and upper threshold value to detect the iris region as it is
comparatively darker than other pixels. Furthermore, the noise was reduced using
Blur function. After that, the detection process starts.

3.3.1 Framing and determining Region of Interest (ROI)

OpenCV is defined with enormous powerful video editing functions. In current
scenario, scanning of images, face recognition can be easily done with OpenCV.

8

Figure 3.4: Frame Processing

9

(a) Actual Camera Frame (b) Region Of Interest (ROI)

Figure 3.5: Comparison Between Camera Frame and Region Of Interest (ROI)

Basically, it takes video or recorder clips as input divide it into frames. After that,
any operations can be performed on those saved frames. Some functions related to
computer vision are well popular and can be easily handled with the help of this.
Most often we need to capture live video with the help of camera where camera can
be used from laptop or external camera can also be used. According to our research
we are capturing live video stream with the help of web cam. The size of frame
can vary for different devices. For our perspective the size of frame is 640480. This
system provides quite simple interface to do this. For capturing video using web
cam, the video capture process from OpenCV can be used [13]. However, we can also
use the primary camera that is connected with the computer. Accordingly, we can
also other cameras if they are connected with the device so that better interaction
is possible in between computer and human. After capturing video it will capture
frame to frame. Basically what is means is going to break the video into frame. We
are going to get pictures from that for further processing. From the figure mentioned
below we can see how the frames look after using the method. If we need pause
in between every frame in the video there we can add some delay. Here are some
parameters that can be used to make the best use of the function. Whenever zero is
passed in the parameter the video is going to pause for an infinite amount of time.
That’s why we are adding values in the parameter which is greater than zero.
After that it will capture frame to frame. After reading the video it can be displayed
frame by frame shown in Figure 3.5a.
Here comes one more interesting thing which is very useful for our research that is
sometimes we do not need the whole frame. As we are going to detect the iris at the
very first step so it is necessary for us to identify region of interest which is known
as ROI [14]. That means we can adjust the amount of area we want to use from the
capture video. It can be said in other word, re-sizing the frames of the video. Let’s
take an example that is if we say roi = frame [220: 300, 240: 450] it reflects we are
going to take the amount of area that is shown in the array. From the argument we
can demonstrate it as the left part before comma is for Y-axis and the rest of the
thing is for X-axis. If we change the values of 220 to 100 or 0, the change we will see
is in Y-axis. That means frame will increase along with Y-axis. However, the same
thing happens for the right side also. We can change the value of 240 to any range
according to our criteria. But one thing should be remembered the range should not
exceed the limit of the frame which means the range must be in between the size of
the frame. That’s how we are going to use the concept of ROI in our research. For
us we are going to extend it in a limit so that we can get the detected object per our
interest. So the ROI for us is going to be roi = frame [0: 300, 0: 640]. From that

10

we will get the region where we want to implement further functions for processing
it. In Figure 3.5b we can see how it re-sizes the frame for our region of interest.
After all of these one thing need to remember that is releasing the capture. This can
be done by a single line of code using Open CV that is cap.release() function. As
we all know for every key in the keyboard there is an ASCII value and with the help
of ASCII value we can be solved capture releasing and destroying all windows. 27
is the ASCII value for ‘esc’ key in keyboard. So if the value of key is 27 that means
if we press ‘esc’ key we can release the capture of frames and as well as destroying
all the windows.

3.3.2 BGR to HSV Conversion

HSV (hue, saturation, value) is a different presentation of RGB color model in com-
puter graphics in human vision which reflects color making attributes. Each hue are
re-arranged in a radial slice where the range is from black to white and the range
covers both from the bottom to top. Here both parameters carry specific meaning,
as HSV models how various colors combine together accordingly saturation rear-
range different shades from bright colored. Lastly, value dimension assemble all the
combination of color with the range as mentioned earlier. For HSV the range of hue
is [0,179], saturation ranges from [0,255] and the range of value is [0,255]. Those
scales are varying in different software so if comparing this in OpenCV, the ranges
must be normalized properly [15]. The first step for detecting eyes for our research
is to convert the input frame to HSV color [16], [17]. As the HSV model is known
as a cylindrical presentation of the standard RGB model. In order to convert frame
from BGR to HSV, each and every pixel of the frame is subjected to the following
transformation [18].The max and min values for R, G, and B values are C MAX and
C MIN which should be calculated and their difference M should also be calculated.
Equation 3.1 shows the calculation of hue:

H =


0, C MAX = 0

60×G−B
M

, C MAX = R
60×B−R

M
+ 120, C MAX = G

60×R−G
M

+ 240, C MAX = B

 (3.1)

Equation 3.2 shows the calculation of value:

V = C MIN (3.2)

Equation 3.3 illustrates the calculation of saturation:

S =

{
1× M

C MAX
, C MAX = 0

0, C MAX = 0

}
(3.3)

So, if we calculate the values for each and every pixel we are getting our input frame
in HSV model. Now we know how this color space actually works so let’s take the
perspective of our research where we want to detect black colored object so we have
to go through in some process. First of all, in HSV it is always easier to represent
a color than BGR model. So we have to take the input frame from web cam and
then it should be converted to HSV from BGR color-space. There is a threshold
range for detecting the black color. In python the conversion can be one by writing
a single line as the operation are performed by default.

11

(a) Before BGR to HSV Conversion (b) After BGR to HSV Conversion

Figure 3.6: Before and After Result of BGR to HSV Conversion

With the help of the proposed process, it will convert HSV model into BGR color
space. As well as, here are some parameters and the first one is frame which is
basically the actual which is going to be converted. Any image or any video clips
can also be taken in that parameter. Later on, the next parameter is describing that
the frame basically the source is going to be converted into HSV from BGR color
space. We have shown in Figure 3.6a the previous visualization of the frame before
using BGR to HSV conversion and in Figure 3.6b the after view of the conversion.

3.3.3 Masking

Masking in OpenCV is known as filtering. Basically, this is one kind of filtering
technique which is also known as spatial filtering. So, masking is a filtering operation
which is applied on an image. Here to describe the process of masking involves
setting some pixels value to “0” or in some other values related to the “background”.
Masking can be performed on an image in two different ways [19]. The two processes
are using an image as mask or using ROIs as mask where in terms of ROIs, masking
can be performed on the whole ROI or on the slices of ROIs. It depends on the
desired outcome. To apply masking in an image means using the filtering mask in
each pixel of that image. In each pixel (x, y) the outcome of the mask is shown
by a predefined operational relationship. All the values of the filters are set on
a standard by default [20]. Here, we are performing masking on ROI. Whenever,
performing masking based on ROI there are two ways which are soft masking and
hard masking. In soft masking the resulting intensity depends on how many pixels
are lying under the masking area. If only a small amount of pixels are under the
ROI then the outcome will become close to the background values and if most of
the pixels are under ROI then the result will become be unaffected.
Here, the masking filter is going to be used for sharpness and noise reduction. For
the better outcome of the research it is needed to remove the noise from the frame
for large extraction of object. Then the topic comes is edge detection. For detecting
edges sharpness is to be increased. For sharpness masking can also be performed.
After having the gray scale image masking is going to be applied. The black portion
will have values of “0” and the white portion will get “255”. In the research, first
of all we are converting the frame to gray scale then we are applying masking
technique which is one form of bit wise and operation. In Figure 3.7a the state
of the frame before doing masking and in Figure 3.7b the state after performing
masking is shown.After that, sharpness will be increased as well as noise is going to
be removed and then we are performing further functionality for actual outcome of

12

(a) Before Performing Masking (b) After Performing Masking

Figure 3.7: Applying Masking

the research.

3.3.4 Gaussian Blur

Image filtering is undoubtedly an important image processing tool where fast and
effective response is required. Moreover, when the kernel increases we need an
efficient filtering method so that the process does not becomes slow in computation.
Gaussian blur is an adaptive method for blurring image using Gaussian function
in image processing. This is basically used for reducing noise and details from an
image which is mostly used in graphics software. The technique of this effect is a
smooth blurring where the image is viewing throughout the translucent screen which
is different from shadow of an object under usual illumination. Mathematically
applying Gaussian filtering is same as smoothing the image with Gaussian function
which reduces the higher frequency of an image as this can be defined as a low pass
filter [21]. This filtering method can use in both one and also in two dimensions
where for one dimension the function is illustrated in Equation 3.4 .

G(X) =
1√

2πσ2
× e

−x2
2σ2 (3.4)

For two dimensions the Equation 3.5 is shown below.

G(X, Y) =
1√

2πσ2
× e

−x2+y2

2σ2 (3.5)

Where X is the horizontal distance from the axis and y is the vertical distance and
both of them are calculated from the origin accordingly is known as the standard
deviation. In two dimensional formula there is going to be a surface where the
contours will be concentric circle with Gaussian distribution and point will be cal-
culated from the center. The values getting from the distribution are going to be
used for building a convolution matrix that will be applied in actual image. Each
pixels of the image will be set to an average value of the neighborhood pixels. The
value of the original pixels will be highest and as the value is going to increase so the
value of neighborhood pixels will be the smallest one. It results blur which contains
boundaries with edges and it is better producing uniform blurring filters [22]. If
you apply the multiple successive Gaussian blurs you will get the same result after
applying the larger single Gaussian blur where radius is the square root of the sum
of the squares of the blur radius. For example, if we apply the successive Gaussian
blur with radius 8 and 6, we are going to get actually 10. So if we perform single

13

(a) Before Using Gaussian Blur (b) After Using Gaussian Blur

Figure 3.8: Gaussian Blur Filtering

Gaussian blur with radius 10 then the response and calculation time will not be that
much longer as it takes in successive Gaussian blur.
For instance, using it in python OpenCV the parameters and the restrictions must
be fulfilled. Basically in the method cv2.GaussianBlur(src, ksize, sigmaX[, dst[,
sigmaY[, borderType]]]). Here each of the parameters carry meanings and first of all
the src is the input image that we want to process, which is processed independently
but it must have the depth in range. Then comes the dst which means the output
image. Later on, ksize reflects the size of the kernel, both the height and width
values need to be set as well as both can be zero where all the values of Gaussian
kernel size is computed from sigma. SigmaX and sigmaY reflects the Gaussian
deviation along with x-axis and y-axis. If sigmaY is set to zero then it means it
is equal to the values of sigmaX. If both of them are set to zero then those values
will be calculated from k-size respectively. Finally, borderType means the pixels
extrapolation method which can be set as BORDER DEFAULT. After performing
this on the frame we can see result mentioned below in Figure 3.8a we showed the
previous version of Gaussian blur filter and in Figure 3.8b the frame after using the
filter.

3.3.5 Averaging Blur

There are so many type of blurring methods in image processing tools as mentioned
earlier and one of them is average blurring. In applying an averaging blurring filter
we consider each pixel of the image one at a time. Here we consider rectangular
shape of pixels around the pixel needed to be filtered out. The group of pixels are
known as kernel and moves with the pixels that is being filtered [23]. The filter
pixels will be in the center always along with the values of kernel and the height
also the width of the kernel must be odd. To apply the filter to a selected pixel, the
values of kernel are averaged and the averaged value becomes the new value for the
filtered pixel. The larger the value of the kernel the image is more accurately blurred
in comparison with the lower value of kernel as the larger values are more factored
into average. To illustrate the process let’s consider a seven by seven segment where
we are going to get seven values in both rows and columns. As this is an averaging
filter so its gong to sum up the entire row separately. Then it’s going to divide the
sum with the no of pixels in the kernel and there will be a new value for the center
pixel. However, the same process will continue to the next pixel and we can compare
it with a while loop as it will stop its function when it will go to the end of pixel of
the actual image [23].

14

(a) After Using Gaussian Blur (b) After Using Averaging Blur

Figure 3.9: Comparison Between Gaussian Blur and Averaging Blur

Now here comes one more interesting thing about this filter and this is what it will
do when we are talking about the pixels which are near to the edge of the image since
the kernel of the actual image may be partially off. Let’s think about an upper-left
corner of an image, how it will process its function. Basically, the default nature of
the filter is to fill the all other missing pixels and it’s going to do the same thing when
it’s going to get an off value for a kernel because it is mentioned earlier that there
is off value for the pixel. If we can fill the missing pixels in a short time then the
response time will be improved accordingly the filter will work more smoothly. There
are built in methods in OpenCV so we do not need to perform any mathematical
operation here for blurring. This blurring method takes two parameters and in
python it is like blurred = cv2.blur (img, (k, k)) [24]. Here the img is the actual
image and second we pass a tuple that describe the kernel which is essential for
blurring of the image. In Figure 3.9a we showed the frame using Gaussian blur filter
and in Figure 3.9b the frame using the averaging blur filter where we can see the
averaging blur filter is more smooth than Gaussian blur.
The two parts of the tuple describes the height and the width of the kernel to use
in pixels and both of them need to be odd so that the blurred is clearly defined
for center pixel. But the thing is both the height and the width of the tuple is
not necessarily to be same and there is also a chance for modifying behavior of the
filter by adding another parameter which is known as replicate function or wrapping
function [25]. This is mainly for the border area of the image.

3.4 Algorithms

In the detection process shown in Figure 3.10, we have run the Hough circle method
over the smooth image done by Open CV blur function. The Hough circle returns
a numpy Nd-array with circle center co-ordinates. Then from the array value we
determined the left and right eye. If one eye is not found, our program will adjust
other eye position calculating the pupil distance. Afterwards, the iris circle position
is converted to actual view port of the system.

3.4.1 Hough Circle

Hough circle transform is a digital image processing technique. It helps to detect
circular objects in a digital image. In two dimensional surfaces, circle is described
by the Equation 3.6.

(x− a)2 + (y − b)2 = r2 (3.6)

15

Figure 3.10: Iris Detection and Adjustment

16

Where (a,b) is the center of the circle, and r is the radius. The total operation is
done by voting. At first the image frames are prepared by Gaussian blur and then
the canny edge detection is done. After that, there are several checks on detecting
and voting the circles. Firstly, all the variables (a,b,r) are set to 0. After that, for
each x and y pixel there is a specified parameter for radius of the circles. Under
the range of circle radius, a specific theta value is given by the user inside method
parameter. Afterwards, the polar co-ordinate of the center calculation is done by
Equation 3.7 and Equation 3.8.

a = x− r × cos(
t× π
180

) (3.7)

b = y − r × sin(
t× π
180

) (3.8)

The detected circles are voted and the local maximum voted circles of accumulator
gives the circle Hough space. On the other hand, the maximum voted circle of
accumulator gives the circle. The returned result is in [a,b,r] format, (a,b) is the
position of the center of the circle and r is the radius. In Figure 3.11, the mentioned
image shows the detected two Hough circles based on the given parameters. The
returned numpy nd-array will provide co-ordinates of detected two iris circles.

Figure 3.11: Applying Hough Circle Transformation

The hough circle method is: cv.HoughCircles(image, circles, method, dp, minDist,
param1 = 100, param2 = 100, minRadius = 0, maxRadius = 0) [26]
This is an OpenCV built-in property. We need to provide the actual parameters
and it will return actual circles with positions. In our system, we have masked the
region of interest by color filtering. We have set lower and upper threshold value to
detect eyes as the iris portion is darker. The dp (inverse ratio of the accumulator
resolution to the image resolution) is set to 1. This means the accumulator has the
same resolution as the input image. The minDist is set to 370 which is the actual
distance between the centers of the detected circles. This is actually the difference
of two eyes focal points. The param1 is the parameter for canny edge. High value
detects less edge and low value detects more edge. To determine only the rounded
iris edge we have placed the value 370. The param2 is the accumulator threshold
value of circle center. The smaller it is, the more false circles will be detected. We
have placed 20 in our case. For the iris localization, we have set a minimum radius
of 40 and maximum of 50. This parameter helps us to skip false or wrong circles in
the frame.

17

3.4.2 Data Processing

After using Hough Circle Algorithm we find the circles value [X Y R] in a NumPy
nd-array form. From this array we had to differentiate the x and y position values.
For this, at first we converted the array into a list which gives us output in this way
–
[[[CircleOneX, CircleOneY, CircleOneR],[CircleTwoX, CircleTwoY, CircleTwoR]]]

Afterwards, we are taking the first item of each index and creating a new array. For
example- the new two arrays are-

[CircleOneX, CircleTwoX] and [CircleOneY, CircleTwoY]

At last, we are traversing each array and storing the values as stated-
LeftX = CircleOneX
LeftY = CircleOneY
RightX = CircleTwoX
RightY = CircleTwoY

3.4.3 Iris Adjustment

In our system after detecting the circles using Hough Circle algorithm, we get the
values of left and right eye. At this time we faced some problem which are it is not
fixed that which eye will be detected first and stored in the first position as left eye
of the array. We had to differentiate between the eyes values. To solve this problem
we proposed a method which will detect which circle is left eye and which one is
right eye. Also another problem is, if one eye is detected only, how the cursor will
move then. In our system we have developed a process by which these problems can
be solved.

Define Left and Right Eye

After processing the detected circles value, we have to check whether the values are
saved in the right position. When the circles are detected from the video capture, it
is not static that left eye will be perceived first and then right eye. The algorithm
detects circles whenever they find the required values. Nevertheless in our system,
we need to store the left circles value foremost and then right circle’s center position.
Therefore, to check if the values are stored in accurate position or not we are using
the stated technique. In this procedure, we compare between the values of x-axis of
both circles. If the first circle’s x-value is less than second circle’s x-value than the
first circle is stored as LEFT EYE otherwise we need to swap the values as circle’s
x point is less than first circle’s x point.

If Left X <Right X:
DefineLeftEyeRightEye()

DefineLeftEyeRightEye() :
TempX = Right X
TempY = Right Y

18

(a) One Eye Detection (b) One Eyed Fixation

Figure 3.12: One Eyed Fixation

Right X = Left X
Right Y = Left Y

The purpose behind this condition is, as the display screen is divided into pixels,
the left eye’s pixels position must be smaller than the right eye’s pixel position, as
left eye appear first. Because of this reason, we are only checking the x-axis value
of the both centers rather than the y-axis value.

One Eyed Detected

Another problem showed up after detecting the circles is, whenever we are looking
at any corner, our one eye is going out of focus. As a result we are getting only one
circle from the circle detection algorithm. In addition, only one circle’s center value
cannot determine the exact mouse position since we are taking the average of the
both circles midpoint. If only one circle of detected then the system will assume
another circle’s center is (0, 0) and resulting a wrong average of both circles, where
only one circle is found. For instance, if expected cursor position is near (582,720)
then our eye’s position would be near left eye = (350,720) and right eye = (815,720).
But if only one left circle is found, the cursor position will be at near (175,720). As
a result, cursor pointer will be in another direction.
Hence, to solve the problem shown in Figure 3.12a, we have proposed another
method which we named as “OneEyedFixation”. In this method whenever we find
only one circle, the system assumes the other one by calculating the eye distance.
Every person both eyes are positioned at a fixed distance which can never be change.
So when the program starts, we stores the distance of both eye of the user and to
find the accurate value, the user have to look at any point near the middle of the
display screen as we need both circles to be detected. After that whenever only
one circle is detected, another circles is assumed by positioning the centers at the
determined distance. Again there are two possibilities of getting only one circle.
We have to check whether the detected circle if left eye or right eye. The reason of
this condition is if we found left eye, we can add the determined distance with the
left x value and assume that it would the right eye’s center x. But if right eye is
detected, then the distance need to be decremented from the detected center x as
left eye must be in the left side of our detected eye position.

DistanceOfBothEye = RightX - LeftX
RightX = LeftX + DistanceOfBothEye
LeftX = RightX - DistanceOfBothEye

19

Table 3.1: Coordinates of Window and View Port

Window Coordinates View port Coordinates
wx min = Minimum x axis value vx min = Minimum x axis value
wy min = Minimum y-axis value vy min = Minimum y axis value
wx max = Maximum x-axis value vx max = Maximum x axis value
wy max = Maximum y-axis value vy max = Maximum y axis value
(wx, wy) = Selected point (vx, vy) = Mapped value of the point

For this, we need to find out first that which eye is detected. To ensure that the
circles detected was saved in accurate place we compared the values with pixels. We
have fixed the position the ROI frame which is (0, 0) so there is a certain range for
left eye to be appeared. As our frame is fixed for any user, we can check for the left
eye appearance pixel range. If the values detected is in the range then the detected
circle is left eye otherwise it is the right eye. Then again, if the right eye is detected
then we have to call our first method to swap the left and right eye value, because
as only right eye is detected, the value must have been saved in the first position of
the array. By using this two proposed method we can avoid all kind of error position
of our cursor and make it move smoothly. After using the proposed method we can
see the results in the Figure 3.12b.

3.4.4 Window to View port Transformation

In world coordinate area window is defined as the rectangular space which will be
displayed. Window can be smaller or larger than the actual display depending on
the requirements. On the other hand, view port is an area where the frame is
mapped and will be demonstrated. Window to view port mapping is the process
of transforming two-dimensional coordinates into a rectangular screen [27]. The
variables we used in the transformation process are familiarized in Table 3.1.
For instance, if we want to locate a coordinate (wx, wy) from window then view
port places the points on the display. In order to map the window in the view port
some calculations are required as the window may have to increase or decrease the
size according to the view port. This transformation develops formulas to find the
(vx, vy) and this starts with the values of (wx, wy). If (wx, wy) is 45 percent away
from the x-axis of the window port showed in Figure 3.13a then (vx, vy) will also
be 45 percent away from x-axis of the view port which is visualized in Figure 3.13b.

(a) A Point (wx) in Window port (b) Proportional Point (vx) in View port

Figure 3.13: Pixel Transformation

In Figure 3.14 we can see the positions (wx min, wy min), (wx max, wy max), and
(vx min, vy min), (vx max, vy max), are relative in window and view port. If we

20

locate a point (x, y) in window the relative point in view port will be (u, v). There
are three steps in window to view port transformation which are explained below.

Figure 3.14: Window to View port Transformation

Step 1: First we have to translate the window to origin (0, 0) and then the translation
factor will become negative (-Tx, -Ty) as we are moving the values of window to
the left. In Fig 3.13 we can see we moved Figure 3.15a to Figure 3.15b. The lower
left and upper left corner changes respectively (- wx min, - wy min) and (- wx min,
- wy max). Translation factors are shown in Equation 3.9 and Equation 3.10.

Tx =
(wx max× vx min)− (wx min× vxmax)

wx max− wx min
(3.9)

Ty =
(wy max× vy min)− (wy min× vy max)

wy max− wy min
(3.10)

Step 2: In this step the window size is re scaled to view port size using the scaling
factor (Sx, Sy) shown in Figure 3.15c. The scaling factors are illustrated in Equation
3.11 and Equation 3.12.

Sx =
(vx max− vx min)

(wx max− wx min)
(3.11)

Sy =
(vy max− vy min)

(wy max− wy min)
(3.12)

Step 3: The third step is about translation. Window is translated to the view port
size. If the lower left corner of the window is (0, 0) then third step is not required
but if not then the translation factor will be converted into positive (Tx, Ty). In
Figure 3.15d the final translation is showed.
After determining the translation and scaling factor we can map any point of the
window into our view port by the following Equation 3.13 and Equation 3.14.

vx = (Sx× wx) + Tx (3.13)

vy = (Sy × wy) + Ty (3.14)

21

Figure 3.15: Steps of Transformation

Window Port Determination

In our system we have used this transformation for position the cursor in the monitor
screen. Our cursor position is totally dependent on the iris’s midpoint. First, we
had to find the range which is covered by our iris. There is a fixed distance which
can be covered by the midpoint of our iris. As we are taking the average from both
irises, the range or the area of our window would be between our both eyes. To
determine the window of our system we used a calibration method to get the exact
minimum and maximum point of the covered area by our iris.

Calibration

Calibration is a process of defining some unknown values with the reference of known
values. This procedure ensures the accuracy of the dimensions determined by the
reference value. At the beginning our program four windows will be displayed for
five seconds. These windows show four different points at the corners of the monitor.
Each point of the corners is exhibited for the certain time and meanwhile the user
look at those points. Here, the upper left corner point in Figure 3.16a determines
the minimum value of x-axis and y-axis and the lower right corner point determines
the maximum value of x-axis and y-axis. Since the computer screen pixel values
origin from the upper left corner (0, 0) and ends at the lower right corner ((1920,
1080) for 1k display).
In the meantime, when the user looks at the four points the average values of both
eye irises’ midpoint is stored as the window’s coordinate. When the user gazes at the
upper left point, the average value of the iris’s midpoint is stored as the minimum
x and minimum y for the window. After that, upper left pointer window destroys
and upper right pointer showed in Figure 3.16b window shows. From this window
we can find the maximum x-axis value. After the second window destroys within
another five seconds, the third window with lower left pointer showed in Figure 3.16c
appears which find the value of maximum y-axis.
Subsequently, the fourth window appears with the pointer of lower right showed in
Figure 3.16d and stores the value of maximum x and y-axis. The whole process
took twenty seconds overall. From this calibration we found the area of our specific
window within a short amount of time. Each time the program runs this calibration
process took place to ensure the window coordinates, as the window’s accurate value
results the cursor’s smooth movement. Once we get the accurate window coordinate

22

(a) Upper Left Corner (b) Upper Right Corner

(c) Lower Left Corner (d) Lower Right Corner

Figure 3.16: Process of Calibration

using this calibration method, no further delay is necessary in our system.

Figure 3.17: Window of the Cursor

In the Figure 3.17, we have shown the actual window size where the eye focal point
moves on. As our frame is always fixed the pointer will not go out of screen. The
conversion is handled such a way that, the max x and max y is always inside this
rectangular window. Afterwards, this window is converted to user’s required view
port and the cursor moves on depending on that view port size.

View Port Determination

View port in our system varies, as user can use different size of displays. There are
many display with different resolutions such as- HD (High Definition), FHD 1k (Full
High Definition), QHD 2k (Quad High Definition), UHD 4k (Ultra High Definition)
and Quad UHD 8k which are showed in Figure 3.18. At first our system determines

23

Figure 3.18: Different Resolution of Display

the window size using the calibration method, then it measures the width and height
of the device display.
After determining the window and view port of the system, it uses the window to
view port transformation equation to map the point of our iris’s average midpoint
into the display screen where it appears as the cursor movement. For instance, if
we look at the middle of the display screen our iris’s average middle point will be
at a certain position in the determined window. After the transformation equation
applied, the very same point will be positioned in the view port’s middle point.
Moreover, consuming this conversion we can use the system for any display screen
without any changes.

3.4.5 Cursor Movement Control

Midpoint line drawing algorithm is used to draw lines between any two pixels in a
computer screen. As we need to move the cursor throughout the whole computer
screen arbitrarily, we have carefully chosen this algorithm because it is quite simple,
only requires integer values and straightforward calculations. In this algorithm there
is no multiplications or division which makes it more time efficient [28]. For our
system instead of drawing lines we moved the cursor from one point to another.
Whenever we will move the cursor pointer to the next position, this algorithm can
choose the pixels closest to the actual line with high accuracy, consistency and
straightness. After getting the relative center points of left and right eye in the view
port we have calculated the FocusPoint(x, y) of our eye using Equation 3.15 and
Equation 3.16. The middle point of both centers x-coordinate and y-coordinate is
the main focus point. Initially the cursor is on the (0, 0) position. We stored both
values of cursor, previous pixel and next pixel to move it smoothly from one place
to another. First we had to round up the cursor positions, as the focus point values
can be in floating state after calculation and then the cursor moving algorithm starts
working.

FocusPoint(x) = (
LeftEyeX Coordinate+RightEyeX Coordinate

2
) (3.15)

24

Figure 3.19: Grid visualization of cursor movement

25

FocusPoint(y) = (
LeftEyeY Coordinate+RightEyeY Coordinate

2
) (3.16)

At first, the algorithm finds two possible pixels nearby the line from the previous
cursor’s position. If cursor’s previous and next pointers are respectively (Xp, Yp)
and (Xnew, Ynew) where Xp is less than Xnew then the two possible next pixels
can be E (Xp+1, Yp) and NE (Xp+1, Yp+1), where E and NE represents East and
North East. The middle point of E and NE is M1 (Xp+1, Yp+1/2), which is the
decision parameter for this algorithm. The equation of the initial decision parameter
is Dinit = dy - dx/2.
Here, dx = Xnew – Xp and dy = Ynew – Yp.
If Dinit is greater or equal to zero then chooses NE (Xp+1, Yp+1) otherwise chooses
E (Xp+1, Yp). In this way each pixel between the cursor’s previous and next point
is selected to move the pointer accurately. This is only explained for one zone, which
can be called as zone 0. In Figure 3.19 all the eight zones are shown. These zones
cover every side of the computer screen. We can move the cursor in each direction
accurately. If the (Xnew, Ynew) is less than (Xp, Yp), the cursor will move to
backward which means either it is under zone 2 or zone 3. Depending on the zones
the midpoint algorithm will work accordingly.
In order to determine the zone we have to compare differences between the x and
y-coordinates. For instance if the difference between x-coordinates (Diff X) and
difference between y- coordinates (Diff Y) are both greater or equal to zero then it
is either zone 0 or zone 1. If the Absolute value of Diff X greater than the absolute
value of Diff Y then it is zone 0. In this way first we find the zones and then based
on the decision parameter the cursor move to the exact position pixel by pixel.

3.4.6 Blink Detection for Click Function

The integrated Haar-cascade cannot detect closed eyes. Therefore, we have used the
classifier to detect the closed eye and run the click function based on that. For left
eye closed, the left click function will work and for right eye closed the right click
function will work which is shown in Figure 3.20.
We are using Haar-cascade eye tree eyeglasses classifier to detect eye regions. Haar-
cascade is a classifier which is used to detect objects for which it is trained for. This
training procedure is done on servers and various environments. The Haar-cascade
has a lot of trained sets by which we can detect various objects.
We are using the eyes classifier. This helps us detecting the eyes. One of the feature
of this classifier is it cannot detect closed eyes. This feature has become one of our
advantages. We are detecting the closed eyes state and using it as a blink detector.
When this blink occurs there is a click function called. Haar-cascade Classifier
returns the result with an array. We have analyzed the value of the array and found
that for each eyes it provide some specific value changes in the array. For example,
if we see this two array values [455 157 179 179] and [4 131 198 198], we will see
that the first value is decreased which determines the left eye is closed.
By using this change of values, we have measured the eye’s current state if it is
closed or not. If the left eye is closed we call the left click function and for the right
eye closed we call the right click function. In terms of both eyes found, we do the
mouse release functions. Figure 3.21a shows the open eye is left side so the click
performed would be right click. Similarly in Figure 3.21b shows the detected right

26

Figure 3.20: Blink Detection

eye which means the function would be left click . So based on this, we decided to
measure blink and run click functions.
The reason behind using this library is, this library do not detect the usual blinks.
As we know, usual blink takes 100-150 milliseconds [29]. So, in order to get detected
the minimum times of closed eyes have to be around 1 second. If the left/ right eye
provides the value of closed state for around 1 second then the click function will
occur. Otherwise, that will be measure as normal human blink and that will be
skipped.

(a) Right Click (b) Left Click

Figure 3.21: Blink Detection for Click Function

27

3.5 Work Flow

Here, all the above work flows are merged in Figure 3.22. After capturing the video
frame, the detection process and the blink detection for click function will work in
parallel processes. Therefore, the users will be able to move the cursor along with
clicking their desired applications.

Figure 3.22: Complete Work Flow

28

Chapter 4

Result Analysis

We let some group of people to use our system to perceive the accuracy. Therefore,
to analyze the precision of cursor movement and blink detection we fixed some
task and calculated the time for each group who would accomplish those tasks.
Correspondingly we compared our system with the actual system which is using
mouse.

4.1 Evaluate the Accuracy of Cursor Movement

On the way to evaluate the accuracy of cursor movement we selected three types of
tasks to perform. These three tasks are – case 1, case 2 and case 3.In case 1, the
user have to select a folder from desktop and then in that he has to delete a file.
In case 2, the task which is going to be performed is to go to the windows defender
and run a quick scan. Lastly, in case 3 the user have to refresh 2 times continuously.
We tested these cases on three groups of people- teenage(13-19), adult(20-40) and
old (40 and above). In each group we took 10 people for the testing. After that we
stored the number of seconds they took while completing the tasks.
In Figure 4.1 we can see that, the same tasks performed by all groups took diverse
amount of time. In order to perform case 1, teenager group took around 6.87 seconds,
adult group took around 6.5 seconds and finally old group took 7.5 seconds. We
can see that, adults took less time than other two groups. Although teenagers were
little faster to cope up with the system than old group. There is also the comparison
between our system and the actual system. We also performed the tasks by using
our hands to see the actual time and compared it with the best value we got from
previous evaluation which was stored by adult group.

4.2 Estimate the Accuracy of Cursor Pointer

In this investigation, we tried to show the cursor pointer accurateness. We stored
the values of some selected points using the mouse. These points were selected by
using some folders kept in the desktop. We noted down the values of the cursor
when it select the folders. We took 10 values for this examination. Then we ran
our system and tried to select those folders again with our eyes. For instance, if a
folder is at the left corner of the monitor screen in desktop, using mouse we select
the folder at pixel (18, 1074), And using our system we can select the folder at pixel

29

Figure 4.1: Estimate the Accuracy of Cursor Pointer

(17, 1065). The comparison between both the results are shown in Figure 4.2.

Figure 4.2: Estimate the Accuracy of Cursor Pointer

When we select the folders using our system, it did not give the same values as the
mouse but both the results were close. The accuracy of individual x-coordinates
and y-coordinates are also presented. In Figure 4.3 the accurateness of x-pointers
and in Figure 4.4 the y-pointers are displayed.
Form the collected values of X-coordinates we can calculate the accuracy. The Equa-
tion 4.1 we can use to calculate the accuracy is:

30

Figure 4.3: Points plotting for X coordinates

Accuracy =
true value− system value

true value
× 100% (4.1)

After using this equation we are going to get the accuracy for x-axis and after that
if we take the average value then we can end up with only one value. The value is
indicating the accuracy for x-coordinates. However, after that we are getting 91.7%
accuracy for the x-coordinates.

Figure 4.4: Points plotting for Y coordinates

Again for y-coordinates we are using the same equation which has been used for
calculating the accuracy of x-coordinates. So, whenever we are going to averaging

31

Table 4.1: Accuracy of Blinks in terms of Distance

Distance No. of Clicks No. of Attempt Accuracy
2.5 ft 15 18 83.30%
2 ft 15 17 88.23%
1.5 ft 15 17 88.23%
1 ft 15 16 93.75%

it the value of accuracy becomes 90.8%.

4.3 Accuracy of Blinks in terms of Distance

To evaluate the blink accuracy in terms of distance we performed click function
staying at difference distances. For instance, the user sat at a distance of 2 ft and
used our system. We tried to get 15 perfect clicks and to do so we had to click a little
more. At a distance of 2 ft the user clicked 17 times to get perfect 15 clicks. Again,
at a distance of 2.5 ft the user had to click 18 times to get the desired numbers of
click. The values from this examination is shown in the Table 4.1. In the left most
column we have showed distance, in the next column number of clicks performed is
displayed and then number of attempts is showed. Lastly, we showed the accuracy
at different distances.
As we can see from Table 4.1 in 2.5 ft the blink accuracy is 83.30%, in 2 ft the
accuracy is 88.23%, in 1.5 ft the accuracy is 88.23%, in 1 ft the accuracy is 93.75%.
As previously we have stated that distance does not matter in our system as the
camera is fixed in position. From this evaluation we can state that, no matter where
or how the user is sitting from his monitor, the accuracy will not be affected by the
distance. It totally depends on the blink detection.

4.4 Resolution Invariant

We are using a calibration for all available screen and available systems. So, whatever
the resolution is. it will not affect our system stability. For all kinds of display with
various resolutions it will work completely fine. That’s why this developed system
is resolution invariant. We have worked on a PC in our research lab which has a
1080p monitor. We have placed a folder in a specific portion of the monitor and
we tried to select and enter that folder. We measured the required time for that
and was around 3.5 seconds. On the other hand, in our home we have 4k and 2k
displays on which we have tested the same process and it took around 5 seconds and
4.2 seconds. So, from this test we can say that the system is not resolution specific.
It took almost same time for all the operations and it is resolution invariant.

4.5 Comparison with Existing System

As there have been many previous work in this field, we ran a comparison with the
previous existing system so show the improvements in our system. In Table 4.2 we
showed comparison between Gaze Pointer system and our system. In Gaze Pointer

32

Table 4.2: Comparison between Existing System and Our System

Functionalities Gaze Pointer Our System
Distance flexibility N/A Available
OS independent N/A Available
Screen size independent Available Available
Detection over eye-glass Available Less Accurate
Calibration process Lengthy Short and simple
One eye usability N/A Available

the system is not distance flexible, as the user have to be in a fixed position to
train the cursor pointer. Where in our system we used a cap with web cam, which
gives the user the flexibility to move freely. The user do not need to be in a certain
position to train or use the system, which is makes our system more user friendly. In
terms of OS compatibility, we know that python is a platform independent language
and it can be used in any of our operating systems. As we are using python, if
python is installed in the machine this system will work on that. We have tested
our system on windows, mac and ubuntu OS and it works completely fine but so far
the latest version of gaze pointer is in windows variant only. Both the systems are
screen size independent, which means whether it is a 1k or 2k display, the system
will not be affected by the resolution.
Moreover, Gaze Pointer can work over eye glass, where our system is less accurate in
this part. To improve this accuracy we need to use a better web cam, as the web cam
we are using currently is not focused enough.The reason behind the limitation of
our system is. the camera is low budget and it cannot overcome the glass reflections
over eyes. So, the betterment of the camera with improved camera focus, our system
will be able to overcome this limitation and provide a better result. Lastly, the
calibration process is much simpler and short in our system. The user only need to
spend few seconds to calibrate the system as he just need to determine the window
of his iris by using the 4 image of calibration we mentioned in section 3.4.4.

33

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The system mainly emphases on the development of human computer interaction
(HCI). Trying to make a hands free system that controls cursor is not a recent
invention as many researchers are working on this from decades. However, the latest
progression and accessibility in technological sector helps us with an advantage to
introduce the system as a cost effective system. This cursor control system will
add a new dimension of accessibility for the disabled people. They do not have to
stay in bed whole day without doing anything. So far, we have tried to provide
them a solution that is able to cooperate with computer. Eye pointer evaluation
is a process in computer navigation system where the navigation system of the
computer becomes a real time process. The main intention and focus of the research
is building a system which will be hands free and cost effective. However, we have
faced many challenges in terms of designing the system and we have solved problems
such as: improving the detection of eyes from region of interest (ROI) after framing,
enhancing the accuracy rate of cursor movement as well as detecting the condition
of both eyes as they are on or off. Moreover, when we were designing the system
our goal was to prepare a system which is fit in every condition and also for every
user. One of the important obstacles that have been removed which is, the system
works perfectly in low light and in low intensity there is no problem in terms of the
detection of iris area. The mouse pointer is operated along with the eyes. The most
noteworthy thing of the system is user does not need to wear any kind of heavy
wearable instruments. This feature has made the system more enjoyable and user
friendly. One thing should be added which is mouse clicking events. Mouse clicking
events has been implemented by eyes blink. In contrast with other available systems,
the proposed system here can work perfectly without using the facial landmarks.
When the light was not that much bright, the accuracy rate was fluctuating in terms
of detecting the closed eyes. The challenge can be solved by using more advance
camera where the focusing is more accurate. Finally, it can be stated that the
system can improve human computer interaction in future by showing its accuracy
in different environment with different ages of users.

34

5.2 Future Work

Our system is already able to serve all computer functionality. In future, we have a
plan to use a better camera which will improve the system stability. Furthermore,
with an integration of better camera this system can serve iris based security system
too. Gesture based unlock system can be implemented using this system. There
is also a plan to integrate machine learning along with this system which will give
user suggestions about the randomly used applications. For example, if a user keeps
checking mail in the morning, at the start up the system will give a small pop-
up in the window so that with a blink he can open his required application. We
believe that, this system will help people in the long run and serve their all desired
purposes.

35

Bibliography

[1] S. Naveed, B. Sikander, and M. S. H. Khiyal, “Eye tracking system with blink
detection”, Journal of Computing, vol. 4, no. 3, pp. 51–60, 2012.

[2] C. D. R. Foundation, “Paralysis statistics.”, Stats about paralysis, Available
Online at https://www.christopherreeve.org/living-with-paralysis/stats-about-
paralysis, 2019.

[3] A. Poole and L. J. Ball, “Eye tracking in hci and usability research”, in En-
cyclopedia of human computer interaction, IGI Global, 2006, pp. 211–219.

[4] J. Wahlström, “Ergonomics, musculoskeletal disorders and computer work”,
Occupational Medicine, vol. 55, no. 3, pp. 168–176, 2005.

[5] A. Cooper and L. Straker, “Mouse versus keyboard use: A comparison of
shoulder muscle load”, International Journal of Industrial Ergonomics, vol. 22,
no. 4-5, pp. 351–357, 1998.

[6] M. Kowalik, How to build low cost eye tracking glasses for head mounted sys-
tem, 2010.

[7] Y.-S. Yeung, “Mouse cursor control with head and eye movements: A low-cost
approach”, Master’s Thesis, University of Applied Sciences Technikum Wien,
Available Online at http://www. asterics. eu/fileadmin/user—upload/Thesis—
Yat-sing% 20Yeung—final. pdf, 2012.

[8] R. Ramesh and M. Rishikesh, “Eye ball movement to control computer screen”,
Journal of Biosensors & Bioelectronics, vol. 6, no. 3, p. 1, 2015.

[9] S. S. Wankhede, S. Chhabria, and R. Dharaskar, “Controlling mouse cursor
using eye movement”, International Journal of Application or Innovation in
Engineering & Management, vol. 36, pp. 1–7, 2013.

[10] T. PAUL, U. A. Shammi, M. U. Ahmed, R. Rahman, S. Kobashi, and M. A. R.
Ahad, “A study on face detection using viola-jones algorithm in various back-
grounds, angles and distances”, International Journal of Biomedical Soft Com-
puting and Human Sciences: the official journal of the Biomedical Fuzzy Sys-
tems Association, vol. 23, no. 1, pp. 27–36, 2018.

[11] G. Papari and N. Petkov, “Edge and line oriented contour detection: State of
the art”, Image and Vision Computing, vol. 29, no. 2-3, pp. 79–103, 2011.

[12] S. Priyanka and N. Kumar, “Noise removal in remote sensing image using
kalman filter algorithm”, Int. J. Adv. Res. Comput. Commun. Eng, vol. 5,
pp. 894–897, 2016.

36

[13] A. Saha, “Read, write and display a video using opencv (c++/ python)”,
Read, Write and Display a video using OpenCV (C++/ Python), Available
Online at https://www.learnopencv.com/read-write-and-display-a-video-using-
opencv-cpp-python, 2019.

[14] CVisionDemy, “Extract roi from image with python and opencv”, Extracting
a ROI (Region of Interest) using OpenCV and Python, Available Online at
https://cvisiondemy.com/extract-roi-from-image-with-python-and-opencv,

[15] A. K. Alexander Mordvintsev, “Changing colorspaces”, Opencv-python-tutroals.
readthedocs.io, Available Online at https://opencv-python-tutroals.readthedocs.
io/en/latest/pytutorials/pyimgproc/pycolorspaces/pycolorspaces.html, 2013.

[16] M. S. Manjare and M. S. Chougule, “Skin detection for face recognition based
on hsv color space”, International Journal of Engineering Sciences & Research
Technology, vol. 2, no. 7, pp. 1883–1887, 2013.

[17] P. M. B. Ong and E. R. Punzalan, “Comparative analysis of rgb and hsv color
models in extracting color features of green dye solutions”, in DLSU Research
Congress, 2014, pp. 1500–20.

[18] I. S. P. James, “Face image retrieval with hsv color space using clustering
techniques”, The SIJ Transactions on Computer Science Engineering & its
Applications (CSEA), vol. 1, no. 1, 2013.

[19] X. S. Ltd, “Image masking”, Masking images, Available Online at http://www.
xinapse.com/Manual/masking.html, 2015.

[20] T. point, “Concpent of masking”, Masking techniques, Available Online at
http://www.xinapse.com/Manual/masking.html, 2015.

[21] E. S. Gedraite and M. Hadad, “Investigation on the effect of a gaussian blur in
image filtering and segmentation”, in Proceedings ELMAR-2011, IEEE, 2011,
pp. 393–396.

[22] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, “Hypermedia image process-
ing reference”, England: John Wiley & Sons Ltd, 1996.

[23] S. C. Foundation, “Blurring images”, Blurring images, Available Online at
https://mmeysenburg.github.io/image-processing/06-blurring/, 2016-2018.

[24] A. K. Alexander Mordvintsev, “Smoothing images”, OpenCV-Python Tutori-
als 1 documentation. (2019), Available Online at https://opencv-python-tutroals
.readthedocs.io/en/latest/pytutorials/pyimgproc/pyfiltering/pyfilter ing.html,

[25] P. S. Patil, “Iris recognition based on gaussian-hermite moments”, Interna-
tional Journal on Computer Science and Engineering, vol. 4, no. 11, p. 1794,
2012.

[26] O. D. Team, “Hough circle transform”, Hough Circle Transform, Available
Online at https://docs.opencv.org/2.4.13.7/doc/tutorials, 2018.

[27] P. Joshi, “Window to viewport transformation.”, Window to viewport transfor-
mation, Available Online at https://www.ques10.com/p/11199/define-window-
and-viewport-derive-window-to-view-1, 2016.

[28] S. Pradhan, “Mid-point line generation algorithm”, Mid-Point line drawing
algorithm, Available Online at https://www.geeksforgeeks.org/mid-point-line-
generation-algorithm, 2018.

37

[29] A. Rasmussen and D.-A. Jirenhed, “Learning and timing of voluntary blink re-
sponses match eyeblink conditioning”, Scientific Reports, vol. 7, no. 1, p. 3404,
2017, issn: 2045-2322. doi: 10.1038/s41598-017-03343-2. [Online]. Available:
https://doi.org/10.1038/s41598-017-03343-2.

38

https://doi.org/10.1038/s41598-017-03343-2
https://doi.org/10.1038/s41598-017-03343-2

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective
	Thesis Orientation

	Background Study
	Literature Review

	Algorithms and System Implementation
	System Overview
	Experimental Setup
	Frame Pre-processing
	Framing and determining Region of Interest (ROI)
	BGR to HSV Conversion
	Masking
	Gaussian Blur
	Averaging Blur

	Algorithms
	Hough Circle
	Data Processing
	Iris Adjustment
	Window to View port Transformation
	Cursor Movement Control
	Blink Detection for Click Function

	Work Flow

	Result Analysis
	Evaluate the Accuracy of Cursor Movement
	Estimate the Accuracy of Cursor Pointer
	Accuracy of Blinks in terms of Distance
	Resolution Invariant
	Comparison with Existing System

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

