

Assisting the Visually Impaired People Using Image

Processing

This thesis was submitted in partial fulfillment of the requirement for the

degree of

Bachelor of Computer Science and Engineering

Under the Supervision of

Dr Jia Uddin

Assistant Professor, BRAC University

By

Ferdousi Rahman (15201004)

Israt Jahan Ritun (14101114)

Nafisa Farhin (14101113)

Department of Computer Science and Engineering

July 2018

BRAC University, Dhaka, Bangladesh

Declaration

We, hereby declare that, this paper titled “Assisting the Visually Impaired People using

Image Processing” bases on the results that we have derived ourselves throughout our research.

Materials of work from researches conducted by others are mentioned in the references.

Signature of Supervisor

Dr Jia Uddin

Assistant Professor

Department of Computer Science

and Engineering.

BRAC University.

Signature of Authors

Ferdousi Rahman

ID: 15201004

Israt Jahan Ritun

ID: 14101114

Nafisa Farhin

ID: 14101113

ii | P a g e

Acknowledgement

Our thesis focuses on object and face detection using different algorithms for higher

accuracy by which can support blind people to maximum capacity. Regarding this thesis, our

first and foremost appreciation goes to Almighty and our parents for making us capable to

conduct this thesis.

Moreover, we are very pleased to acknowledge our utmost gratitude to the supervisor of this

thesis, Dr. Jia Uddin, Assistant Professor, Department of Computer Science and Engineering, for

his immense support and guidance throughout the conduct of the thesis. It has been an honor to

work under his supervision and complete out thesis work.

Last but not the least, our special gratefulness to all the faculty members of BRAC

University for sharing their knowledge and assistance for an enriched graduation period of our

lives. They have blessed us with creative concept development and profound understanding.

iii | P a g e

List of Figures

Fig. 2.1 Basic convolutional layers diagram of the system of YOLO algorithm

Fig. 2.2 Comparative Analysis of different Algorithms in the field of Image

 Processing and Detection

Fig. 3.1 Basic Flowchart of Image processing for Identification

Fig. 3.2 CPU Installation of tensorflow through anaconda prompt

Fig. 3.3 Code Simulation Terminal for Customize Dataset Creation

Fig. 3.4 Bounding box color declaration

Fig. 3.5 Code Simulation Terminal for Customize Dataset Creation

Fig. 3.6 Flowchart of the basic identification workflow

Fig. 3.7 Command for training activation in command prompt

Fig. 3.8 Training compilation

Fig. 3.9 Accuracy at the initial stage of compilation of identification

Fig. 3.10 Basic Convolutional Architecture for MTCNN Algorithm

Fig. 3.11 Work Flow of Face Detection and Identification

Fig. 3.12 Different Convolutional Layers declared in the mtcnn_detect class

Fig. 3.13 Code portion to transfer images to convolutional layers

Fig. 3.14 Terminal for taking new face data input

Fig. 3.15 Dataset from our input

Fig. 3.16 Code compilation and Face identification with Name Label and Accuracy Rate

iv | P a g e

Fig. 3.17 Code portion to draw bounded boxes

Fig. 4.1 Basic Block Diagram for the hardware setup

Fig. 4.2 Elements with basic connection wiring

Fig 4.3 Basic functions required for real-time video input and audio the result

output

Fig 5.1 Detected object with name label and accuracy rate

Fig 5.2 Detected face with name label and accuracy rate

Fig 5.3 Detected face with using Pi camera

v | P a g e

List of Abbreviations

FLDA Fisher‟s Linear Discriminant Analysis

FDDB Function Designator Data Base

KVB Kinect Vision Blind

MTCNN Multi-task Cascaded Neural Networking

R-CNN Region-based Convolutional Neural Networks

SPP Spatial Pyramid Pooling

SSD Single Shot Detector

OCR Optical Character Recognition

YOLO You Only Look Once

vi | P a g e

Table of Contents

Acknowledgement…………………………………………………………….. ii

List of Figures……………………………………………………………….. iii

List of Abbreviations……………………………………………………........ v

Abstract……………………………………………………………………… 1

Chapter 1: Introduction

1.1 Motivation………………………………………………………………… 2

1.2 Literature Review…………………………………………………………. 3

1.3 Objective………………………………………………………………….. 4

1.4 Thesis Overview…………………………………………………………... 4

Chapter 2: Background Study

2.1 Different Image Processing Algorithms Versus Preferred Algorithm…... 5

2.1.1 Object Detection Algorithms……………………………………………... 5

2.1.1.1 Single pyramid pooling (SPP-net)………………………………………... 5

2.1.1.2 Faster R-CNN (Region-based Convolutional Neural Networks)………... 6

2.1.1.3 Single Shot Detector (SSD)………………………………………………. 6

2.1.1.4 YOLO (You only Look Once)…………………………………………… 7

2.1.2 Face Identification Algorithms…………………………………………… 8

2.1.2.1 Eigenfaces and Fisherfaces Algorithms………………………………….. 8

2.1.2.2 AdaBoost Algorithms…………………………………………………….. 8

2.1.2.3 MTCNN (Multi-task Cascaded Neural Networking)…………………….. 9

2.2 Different Real-Time Methodologies with hardware implementation…… 9

2.3 User Compatibility and Accuracy analysis………………………………. 10

vii | P a g e

Chapter 3: Object and Image Identification

3.1 Object Detection and Identification Methodology……………………. 11

3.1.1 Environment Setup…………………………………………………….. 12

3.1.2 Detection and Identification processing………………………………. 13

3.1.3 Custom-made Dataset Construction…………………………………... 15

3.1.4 Machine Training……………………………………………………… 16

3.1.5 Accuracy Analysis and Development…………………………………. 18

3.2 Face Identification Methodology……………………………………… 19

3.2.1 Installation Setup……………………………………………………… 19

3.2.2 Customized Dataset Development…………………………………….. 20

3.2.2.1 Argument Parsing……………………………………………………... 20

3.2.2.2 Dataflow Graph……………………………………………………….. 20

3.2.2.3 Face Alignment……………………………………………………….. 20

3.2.2.4 Face-Feature Extraction……………………………………………….. 22

3.2.2.5 Detection using MTCNN……………………………………………… 22

3.2.3 Loading MTCNN Face Detection Model……………………………... 22

3.2.3.1 Proposal Network (P-Net)…………………………………………….. 22

3.2.3.2 Refine Network (R-Net)………………………………………………. 23

3.2.3.3 Output Network (O-Net)………………………………………………. 23

3.2.4 Loading New Face Data……………………………………………… 24

3.2.5 Compilation and Result Display………………………………………. 25

viii | P a g e

CHAPTER 4: HARDWARE SETUP

4.1 Structure Establishment Process………………………………………. 27

4.1.1 Raspberry Pi 3 Model B Installation………………………………….. 28

4.1.2 Raspberry Pi Camera Model v2 and Earphone Connection…………... 29

4.1.3 Input and Output Processing Methodologies and Libraries………....... 29

CHAPTER 5: RESULT ANALYSIS

5.1 Object Identification Result…………………………………………… 31

5.2 Face Identification Result……………………………………………... 32

5.3 Face Detection Result from Raspberry Pi…………………………….. 33

CHAPTER 6: CONCLUSION

6.1 Implementation Challenges…………………………………………… 35

6.2 Future Directions……………………………………………………… 35

REFERENCES………………………………………………………… 37-39

1 | P a g e

Abstract

Visually impaired people face difficulties in safe and independent movement which deprive

them from regular professional and social activities in both indoors and outdoors. Similarly they

have distress in identification of surrounding environment fundamentals. The proposed thesis

suggests of detection of brightness and the major colors in real-time image by using RGB

method by means of an external camera and thus identification of fundamental objects as well as

facial recognition from personal dataset. For the Object identification and Facial Recognition,

YOLO Algorithm and MTCNN Networking are used respectively. The software support is

achieved by using OpenCV libraries of Python as well as implementing machine learning

process. The major processor of our thesis, Raspberry Pi scans and detects the facial edges via Pi

camera and objects in the image are captured and recognized using mobile camera. Image

recognition results are transferred to the blind users by means of text-to-speech library. The

device portability is achieved by using a battery. The object detection process achieved 8-15 FPS

processing with an accuracy rate of 63-80%. The face identification process achieved 80-100%

accuracy. The objective of the thesis is to give blind users the capability to move around in

unfamiliar indoor environment, through a user friendly device by face and object identification

system.

Keywords - Visually Impaired, OpenCV, Image Processing, Object Detection, Face

Detection, YOLO Algorithm, Deep Learning, Multi-task Cascaded Neural Networking.

2 | P a g e

CHAPTER 1

Introduction

According statistical analysis study of WHO (World Health Organization) [1],

approximately 285 million people around the world are blind or have amblyopia, 246 million of

whom have serious vision problems. Visually impaired people usually face difficulties in

movement as well as identifying people and avoiding obstacles in their day to day activities. The

conventional solutions to these situations are often seen to be usage of guide canes to detect

obstacles in front of them or relay on vocal guessing for identification of persons. As an

outcome, visually impaired people cannot predict the exact environment features about what

types of objects lies in front of them or whom they are facing presence.

From previous study, many approaches had been discovered and implemented involving

both hardware (wearable gadgets) and software (Smart phone apps) [33] which are discussed in

Literature Review of this paper. But most of the previous methodologies lack the maximum

efficiency of combination among the accuracy of data processed output with the user appliance.

In this paper, the approach is to construct a module to feed the user with vital data such as

individual identification and obstacle detection with better accuracy. Our proposed method is

based on Deep Learning Algorithms and compatible and user friendly hardware for practical

implementation.

This paper is serialized as follows; Chapter 2 contains the former works done which are

familiar to our work plan as well as discuss the previous approaches of the algorithms and

hardware setup notions. Chapter 3 and 4 we have proposed our methodology of software and

hardware implementation respectively. In Chapter 5 we have displayed the practical result of our

work with proper justification and finally a conclusion with the challenges faced and a future

direction in Chapter 6.

1.1 Motivation

For the growing competitive world around, it is quite difficult for a visually impaired person

to move around independently and identify surrounding objectives correctly with ease. With the

3 | P a g e

advancement of technology, there are several solutions but most of them have demerits such as

low acceptance, high cost, difficult to usage etc. [2]. Based on the demand, devises supporting

the visually impaired people has been introduced a long time now. On the other hand, keeping

with pace, the more advanced algorithms and processing devises are introduced and progressing

to higher accuracy and efficiency. This has inspired us to combine the concepts of implementing

a processing devise for serving the blind individuals with a higher efficient methodology.

1.2 Literature Review

In different period of time versatile approaches has been in use for detect objects or identify

people and support visually impaired individuals. This sector is highly involving image

processing technology as visual activity is involved. In 2014, a thesis named Smart Vision

objected to support blind users with the features of movement within unacquainted surrounding

[3]. Another thesis [4] used different individual device portions for indoor and outdoor

movements as well as incorporated GPS to track the coordinates of the position place of the user.

The software implementation was done based on MATLAB. Also there are smartphone based

guiding systems with obstacle identification and multiple modes for convenient user interfacing

modes [5]. This thesis gave us the knowledge of how to handle continuously captured images

and keep processing them for identification results. The process involved usage of GPU for deep

computing method. The algorithm of this thesis is YOLO (You Only Look Once) which is

efficient for real-time robust system development. Here the processing server is separate from

the input device. There has to a negotiation connection over the cellular device and the server

side database which has to be on online mode for maximum continuous facility.

Processing texts from real-time image is also a breakthrough for this field [6]. The thesis

used Tesseract Optical Character Recognition (OCR) for text recognition from object‟s label for

more fitting comfort for the blind users. This approach gave us the idea of pattern recognition

from database provided. In 2017, face recognition from comparing with the database was also an

appreciated paper in the IEEE paper conference [7]. There Kinect Vision Blind (KVB) was

applied; the KVB is a multiyear long-term open-source thesis terminal for advanced application

of technology. Face detection, face recognition and audio output module was merged in a

portable and wearable device. From all these works we have gathered concepts to build our

thesis around it and put image processing in an applicable way to support the visually impaired.

4 | P a g e

With the flow of technology advancement, more efficient algorithms, methods and systems

are proposed and developed for robust service as well as real time detection with minimum delay

and maximum accuracy. OpenCV has been a first-rate approach for image processing and gives

a tranquil solve to our stated problem. In a journal publication [8], using the OpenCV libraries

and basing on AdaBoost algorithm, the images are classified and pattern recognition feature of

this algorithm gives advantage to use Haar Like features and output proper results. Another

publication [9] also used the OpenCV application and emphasized on the object detection based

on hue, saturation and color value (HSV) range. These works were inspirational and prodigious

guidance for our target solution and marked the hindrance that we might face on our progress so

our effort started based on those drawbacks to come up with more progressive solution and

develop a smart system to support the blind people.

1.3 Objective

Our objectives are to implement two different algorithms which are YOLO and MTCNN;

individually for face identification and object detection as well as establish a hardware setup for

hands-on result of the executed software program. We will also state the detailed description of

the steps involved for the coding execution as well as result analysis with accuracy rate after the

system training and testing session.

1.4 Thesis Overview

In our thesis paper, Chapter 1 is for introduction to our thesis concept and implemented

algorithm, motivation and objective overview. Chapter 2 holds the background analysis of

previous works related to the concept and methods. Next Chapter 3 describes the extensive

explanation of the software implementation of the system followed by Chapter 4 that explains

practical implementation of the hardware setup. Then Chapter 5 highlights the results of our

simulation. Finally Chapter 6 is the conclusion of our paper with a future direction.

5 | P a g e

CHAPTER 2

Background Study

The basic concept of facial and object detection system is a very commonly known factor.

Not only for the aiding of visually impaired people, this notion is in implementation in many

sectors such as security and industrial manufacturing. The efficiency and accuracy differs by the

algorithm and processing functions. Different software system models are designed as such that

it firstly takes the input images fetching from the database and implement the deep learning

process to classify and then specifically identify the required result such as objects, facial

identity or expression, forgery etc. for the real-time circumferences, the captured input images

contain several entities and needs more efficient program to extract and derive the specified

category and sometimes for real-time analysis, multiple detection are identified and it is a

challenge to identify correctly. In this chapter we are discussing some of the algorithms and their

proposed methodologies to state the base of our thesis analysis.

2.1 Different Image Processing Algorithms versus Preferred Algorithm

Different algorithms have been used to implement our proposed system in different times

executed with different processing devices. Below are some algorithms pronounced that have

been implemented for our suggested system and our preferred nominated algorithm described

with proper justification of decide on.

2.1.1 Object Detection Algorithms

2.1.1.1 Spatial Pyramid Pooling (SPP-net)

Generally known as SPP-net, it is an image classification method with the advantage of

generating fixed-length presentation regardless the input image scale [13].This processing

method is significant in object detection. The other R-CNN methods crop or wrap the image

which might not contain the overall object but SPP-net differs as feature maps are generated. In

the paper [13] it has been executed that the feature map computation of the input is done only

once and repetition is avoided, thus faster than R-CNN method still better accuracy achieved on

Pascal VOC 2007.

6 | P a g e

2.1.1.2 Faster Region-based Convolutional Network (Faster R-CNN)

The Faster Region-based Convolutional Network (Faster R-CNN) is an advanced concept of

image processing which has derived from the combine idea of the RPN and the Fast R-CNN

model. An RPN (Region Proposal Network) is a Convolutional Neural Network that takes image

data and derives to a convolutional feature map whereas the Fast R-CNN is developed over

previous concepts but with more efficiency to classify object proposals using deep convolutional

networks [11]. This paper in [11] has worked over a dataset called PASCAL and with the shared

convolutional features, attempted to get maximum accuracy and possible optimization. This

process bases on GPU which results in time proficiency. But usage and availability of GPU is a

challenge as well as expensive also has a trade-off to the accuracy [12].

2.1.1.3 Single Shot Detector (SSD)

Single Shot Multi-Box Detector; also known as SSD, uses a single convolutional neural

network to detect the object in an image [16].While accurate, the above mentioned approaches

have been too computationally exhaustive for embedded systems and, even with high-end

hardware; those are too slow for instantaneous applications compared to SSD. The fundamental

concept of SSD is predicting category scores and box offsets for a fixed set of default bounding

boxes using small convolutional filters applied to feature maps. In the paper [16], for the

detection accuracy, predictions of different measures from feature maps of different scales are

thesised which are explicitly separate predictions by aspect ratio. These design features lead to

simple end-to-end training even on low resolution input data, further refining the speed vs.

accuracy trade-off. Addition of multiple convolution feature layers to the end of the base

network to predict detections at multiple scales has been an effective effort on identification

thesiss and SSD can detect various object categories and Compared to R-CNN, SSD has less

localization error.

7 | P a g e

2.1.1.4 YOLO (You only Look Once)

You Only look Once or also known as YOLO is a real-time object detection algorithm that

uses a single convolutional network and is much more faster compared to the other identification

systems, even in real-time, it performs 150fps, thus it‟s capable of processing live streaming

video with less than 25 milliseconds of latency. Along with the fast processing time efficiency,

this method still holds a respectable measurement of accuracy in identification. In this process, a

single neural network predicts bounding boxes and class probabilities directly from full images

in one evaluation. The basic workflow of YOLO is shown in Fig.2.1 below:

Fig.2.1: Basic convolutional layers diagram of the system of YOLO algorithm

In the paper [17], YOLO has been established particularly fast system as it can process 45

frames per second in real-time also it has been outpacing the previous identification systems for

its time-efficiency. The paper also represents the system as a single convolutional network

instantaneously forecasting multiple bounding boxes and class probabilities for those boxes.

YOLO trains on full images, straight optimizing detection performance. This unified model has

standout from traditional methods of object detection. For training purposes, Darknet Framework

has been implemented. We also came to know some drawbacks of YOLO from this paper which

are, during the processing, each grid cell only predicts two boxes and can only have one class.

This spatial restraint limits the number of predicted nearby objects. YOLO also struggles with

small objects.

8 | P a g e

A more rationalized and efficient approach was introduced in 2017, YOLO9000, which

could detect and identify more than 9000 categories if objects in real-time [18]. This system was

trained with both COCO detection dataset and the ImageNet classification dataset which gave

the system advantage of more precise identification. This version implemented Batch

Normalization which resulted in performance improvement for approximately 2% [18]. Also the

hierarchical view of object classification permits to combine different datasets together. The

combination of datasets is done by WordTree which is a visualization technique for text-based

data through a visual branching structure.

2.1.2 Face Identification Algorithms

2.1.2.1 Eigenfaces and Fisherfaces Algorithms

The Eigenface is the first successful system for face identification. The Eigenface method

uses Principal Component Analysis (PCA) to linearly thesis the data which is image space to a

low dimensional feature space. The Fisherface method is an improvement of the Eigenface

technique that it uses Fisher‟s Linear Discriminant Analysis (FLDA or LDA) for the

dimensionality reduction. The LDA maximizes the ratio of between-class scatter to that of

within-class scatter; therefore, it works better than PCA for purpose of discrimination. The

Fisherface is especially useful when facial images have large variations in illumination and facial

expression. In paper [21], keeping the factor of security and authentication in mind, an

attendance system has been developed implementing the Eigenfaces algorithm using Open CV

2.4.8.The paper also concludes the result that Eigenfaces perform better than Fisherfaces with

higher accuracy number. Another paper [22] reversely stated with broad experimental results

demonstration that the Fisherface method has lower error rates than those of the Eigenface

technique for tests on the Harvard and Yale face databases.

2.1.2.2 AdaBoost Algorithms

Adaptive Boosting, usually known as AdaBoost algorithm, is a machine learning meta-

algorithm used in combination with other types of detection or identification algorithms to

improve overall performance such as higher FPS and identification accuracy. This practical

boosting is used in many real-time approaches to increase the efficiency which is measured by

speed and precision. In paper [25], face is detected from images using the parameter of skin tone

9 | P a g e

color. This approach detects human face in different scales and lightning conditions by removing

noisy regions and extracting the human face region from the images using Cascade Classifiers.

Another paper [27] explains a three staged process where the second stage includes selection of a

small number of critical visual features from a very large set of potential features using

AdaBoost learning algorithm for real-time.

2.1.2.3 MTCNN (Multi-task Cascaded Neural Networking)

Convolutional Neural Network or CNN is an artificial neural networking structure designed

to analyze images and visual dataset. MT-CNN or Multitask Cascaded Neural Networking is an

advanced version of CNN. In paper [26], the proposed model of MTCNN exploits the inherent

correlation between detection and alignment of input frames to boost up the performance. This

major research gave us a lot of idea about the concept of MTCNN. Multi Task Cascaded

Convolutional Network brings relation between detection and alignment. this process achieves

superior accuracy over the state-of-the-art techniques on the challenging FDDB and

WIDER FACE benchmarks for face detection, and AFLW benchmark for face alignment,

while keeps real time performance. It requires bounding box calibration from face detection

with extra computational expense and ignores the inherent correlation between facial

landmarks localization and bounding box regression. Compared to other multi-class objection

detection and classification tasks, face detection is a challenging binary classification task, so it

may need less numbers of filters per layer, by decreasing the filter value this algorithm process

can increase the depth so it will accelerate the performance of this algorithm.

2.2 Different Real-Time Methodologies with Hardware Implementation

Real-time approaches are done implementing Raspberry Pi in different scholar attempts. As

Raspberry Pi is a user approachable and fast processing unit, it is vastly used in these kinds of

methodologies. In paper [19], we studied an approach based on Raspberry Pi and camera to

capture image and identify cars and humans and notify the blind user with an audio signal

output. This paper constructed over the Haar like algorithm as it can work better than pixel-based

algorithm thus deriving into 96% accuracy. Another approach we have taken in knowledge in

paper [20] which works on speeded up robust feature (SURF) algorithm which is efficient in

processing time and identifying feature points of currency notes. For the low vision patients, the

10 | P a g e

Raspberry Pi processor identifies text via image processing and gives audio output to the user

with identified result.

2.3 User Compatibility and Accuracy Analysis

Different researchers have compared the image processing algorithm‟s performance and

analyzed the accuracy based on particular datasets that has been guidance for us to determine the

algorithm and processing training route for completing the desired thesis aim.Fig.2.2 shows a

speed and accuracy comparison among some renowned algorithms.

Fig. 2.2: Comparative Analysis of different Algorithms in the field of Image Processing and

Detection

11 | P a g e

CHAPTER 3

Algorithm Implementation

Before identifying any object or facial identity from input images or real-time data, it is first

essential to detect and extract the target region from the original picture frames. There are several

extracting algorithms for these sectors of image processing. Also the collection of dataset needs a

pre-processing to normalize the dimensions for better training afterwards that result in improved

accuracy. Below resides the basic workflow that we are maintaining for both object and face

identification:

Fig.3.1: Basic Flowchart of Image processing for Identification

3.1 Object Detection and Identification Methodology

YOLO stands for you only look once. It‟s a jointly trained method for object detection and

classification for real time video. Using this method YOLOv2 is trained simultaneously on the

COCO detection dataset and ImageNet classification dataset. It is basically offering easy tradeoff

between speed and accuracy and for this reason it‟s one of the most efficient algorithms for

object detection in real time. For example YOLOv2 gets 40 FPS at 78.6 mAP on VOC 2007

which is really fast for real time [32].

Yolo divides up the image into a grid of 13x13 cells and each of the cells is responsible for

predicting 5 bounding boxes. A bounding box describes the rectangle that encloses an object.

Yolo also outputs a confidence score that tells how certain it is that the predicting bounding box

actually encloses some objects. Foe each bounding box the cell also predicts a class. The

Dataset
Load

Detection
Pre-

processing
Training Identification

12 | P a g e

confidence score for the bounding box and the class prediction are combined into one final score

that tells the probability that this bounding box contains a specific type of object. Since there are

13x13=169 grid cells and each cell predicts 5 bounding boxes, it ends up with 845 bounding

boxes in total which is a lot. But in final result there will be just those bounding boxes which

have higher score value than the threshold value. Even though there were 845 separate

predictions, they all made at the same time and the neural network just run once and that‟s why

YOLO is so powerful and fast.

Yolo v2, also known as YOLO9000 is a high speed real-time video detection algorithm with

approximately 60 frames per second but with trade-off of accuracy. The first version of YOLO is

effective on huge amount of dataset whereas YOLO9000 uses a limited dataset range which is

well-suited for our indoor object identification for blind people but the advantage of this system

is time efficiency. Our object detection and identification procedure is described in below

multiple steps:

3.1.1 Environment Setup The original version of YOLO was implemented on Darknet

[23] which a Deep learning framework written in C programming language and uses CUDA

[30]. But as this language is not user friendly so we have executed our program in python

language. Python is also compatible with hardware implementation and easy to execute. For our

program development, we used Darkflow framework, Tensorflow version. We have built the

library

Fig 3.2: CPU Installation of tensorflow through anaconda prompt

needed through command prompt. Fig 3.2 has shown CPU Installation of tensorflow through

anaconda prompt. For the initial simulation, we installed python 3.6 version for writing the

program code file. The application that we have used to render our code is Visual Studio Code.

13 | P a g e

There are other rendering applications such as Spyder, Jupyter etc but these are less compatible

in terms of some library usage and generate errors in the simulation. As we are implementing

CPU based program, Tensorflow is outstandingly well-suited open source machine learning

framework. With pip install in command, we setup the Tensorflow in the environment. For

system application, OpenCV (Open Source Computer Vision) which is a library of programming

functions mainly designed for real-time computer vision is required, but as it is not included in

Anaconda, we downloaded separately. After the environment settlement, we download the

prerequisite the weight corresponding file for the dataset. As we are using tinyYOLO dataset, we

collected the weight file and required .cfg file which are tiny-yolo-voc.weights file and tiny-

yolo-voc cfg file from the website of YOLO [23].The weights are loaded from the files to the

system model from command terminal. After completing our environment setting we have

downloaded a short video clip and also rendered the video and added boxes to check our pre

trained model is working or not properly. Here we are calling YOLO from command line and

saved the video so that we can see the result later.

Fig 3.3: Code portion of weight load & package import

3.1.2 Detection and Identification Processing in Real-time YOLOv2 tends to derive

more accuracy still maintaining the time efficiency. The foremost objective is to detect specific

objects from the real-time input taken from a webcam and generate bounding boxes with object

identified labels. For the computation of our model, firstly we imported a program instance from

Darkflow. After that we have import another library called numpy. Numpy is a basic package for

python. Lastly we have import library called time because we want to calculate time, how faster

processing the system. The instance was specified with model, weights load and a threshold

14 | P a g e

which is to specify the confidence factor for generating the bounding box window within an

object named „Options‟. Initially we intended to process a previously saved video input with a

threshold value of 0.3 without training the system. Here we are setting a lower value of threshold

to get more bounding boxes captured from the input video and as we are using CPU, we are

processing 6-7 frames per second time. For the input captured from the camera, a specific value

of width and height of the captured data is declared in the system parameters. Then we have

passed this information as parameter through TFNet in darkflow by creating tfnet. This is going

to initialize our model that going to make prediction. The processing result is structured to

contain the co-ordinates of the frame bounded in the input video images along with the

confidence value and label name of the framed object.

For object detection YOLO create boxes and here for creating different color boxes we are

using this following line. Through this line we will get array of random numbers which is 3

elements long and output is also given below how it looks.

colors = [tuple(255 * np.random.rand(3)) for _ in range(10)]

Fig 3.4: Bounding box color declaration

In our thesis, we have used cv2.VideoCapture() to connect our webcam for real time input

with the support of OpenCV. In this function, we set „0‟ as parameter as we have connected with

only one webcam. Moreover we have set our frame size through these two given line where

width is 1920 and height is 1080.

capture = cv2.VideoCapture(0)

capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)

capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)

15 | P a g e

3.1.3 Custom-made Dataset Construction For our system, we intended to develop

our own personalized dataset created for the elected desired objects for which we collected the

images from Google images. Python has a built-in library dedicated to generate such databases.

After importing the library, we generated instances for each subject with argument of keyword

and limitation number provided as parameters.

Fig.3.5: Code Simulation Terminal for Customize Dataset Creation

After creating our customized dataset we created our annotation files. In our annotation files

we have created xml file of every pictures. Here we import few more libraries like matplotlib,

write_xml. For floating we import matplotlib and RectangleSelector libraries. Rectangle Selector

basically allow us to draw the drag able rectangle on images and how we get the coordinates of

it. Moreover we import write_xml library for generating xml file of every images. For creating

xml file we have specified image folder directory, save directory where our annotated file will be

saved and object name.

First we display our image using ax.imshow() function. Then we created a rectangular drag

able selector tor select the object we want to detect. Then we created a call back, so after

selecting the required object from top left to bottom right by drag able rectangle bounding box if

we hit the “q” botton then a new window will popping up. By selecting object with this drag able

bounding box we will get 3 top left coordinates and 3 bottom right coordinates. Here we

specified name of the object so every time we draw box it put that object name in the list.

For getting xml file we import an xml library. Moreover we import cElementtTree library

and this is our main xml generating library that we gone use to generate our xml file. Also we

have created a function passing some parameters like folder, image, top left, bottom right, save

16 | P a g e

directory and through this function and following libraries our xml file has created. In this xml

file we keep record path of the image, height, width, depth of the images.

3.1.4 Machine Training For identifying the object tfnet plays a vital role. tfnet is mainly

where yolo does all the training process. There are different library to obtain this process. Here

.import help imports a file in a special XML format produced by exporting pages. .import flow is

used here to export and import flow across environment with packaging. import Header,Line

helps to create data in column and rows. Import create_framework is used for manipulating

dataset. Import Darknet is the portion which does the neural networking in C language. After

using all these libraries the TfNet class works with different methods and parameters. _TRAINER

has all the optimizer in a directory. All there optimizer are used to optimize the performance of

the Network. _get_fps method will get the Frame Rate which is the frequency of the video. The

greater the FPS the smoother the video motion will be. _help.say ,this is the program that reads

python programs and carries out their instruction. Help.camera uses to capture images from live

stream trough mobile camera that we are using for real time. Flow.predict is a method which is

used for machine learning in python to make prediction. Low.return_predict returns all these

pretiction. FLAG is very important for new input. extension can use the flags to indicate and test

when a given type structure contains a new feature. .ntrain variable is use to maintain the length

of darknet layer. Graph is the core concept of tensorflw to present compution.

17 | P a g e

Fig. 3.6: Flowchart of the basic identification workflow

They use a tool called protobuf which can generate specific language stubs, that's where the

GraphDef come from. It's a serialized version of Graph. One should read *pb file using

GraphDef and bind the GraphDef to a (default) Graph, then use a session to run the Graph for

computation. State=identity(self.inp) will take the input with tf.placeholder and after traversing

darknet layers by a for loop it will get specific output. In this there are methods for GPU users

but for limitation we had to use only CPU so for us only CPU methods did all the work for

training and identification. Also if there is no tfnet then through these methods a machine can be

trained from the beginning and a tfnet folder can be created with os.makedirs.

For training our own dataset we have changed the number of classes and filter number of

our .cfg file. Then we have also changed our label.txt file where we put all the labels of our

classes. After that we start training our model through this given command line in Fig.3.7.

18 | P a g e

Fig.3.7: Command for training activation in command prompt

And this is how our model is training shown in Fig. 3.8.

Fig.3.8: training compilation

For our output we called capture.read() function which gives Boolean values. When the

camera is on it will give true value and frame it. This frame is sent to TFNet as perameter

through tfnet.return_predict() function. In this way we will get result of identifying objects.

Then for each object we set different boxes of different colors. For each bounding boxes we are

taking values of x and y coordinates by these two commands:-

tl = (result['topleft']['x'], result['topleft']['y'])

br = (result['bottomright']['x'], result['bottomright']['y'])

Then we set label and confidence values on the bounded box. After that for showing the

label we set the text format, size and color of text. Finally we draw the rectangle bounding box

based on frame, tl, br, color and put text on bounding box as label.

3.1.4 Accuracy Analysis and Development Initially after the model establishment, we run

the model with the mobile camera connected to the computer via an application; we passed the

captured data to the processing unit and successfully identified the object in real-time which is

19 | P a g e

shown in Fig.3.9. The accuracy rate is lower as the machine system is not trained to its full

capacity.

Fig 3.9: Accuracy at the initial stage of compilation of identification

3.2 Face Detection and Identification Methodology

Based on the analysis of previous research works and implementation of system based on

dissimilar algorithms, for our robust face identification, we have focused on implementing MT-

CNN. The MTCNN algorithm basically mechanisms in three steps and uses one neural network

for each. The first part is usually called a proposal network. It will predict potential face

positions and their bounding boxes quickly through a shallow CNN. The outcome of this stage is

a large number of face detections and lots of false detections. The second part uses images and

outputs of the first prediction and improves the result to eliminate most of false detections and

aggregate bounding boxes through a more complex CNN. The last part perfects even more the

predictions and adds facial landmarks predictions. In fig 3.10 Basic Convolutional Architecture

for MTCNN Algorithm is shown.

20 | P a g e

Fig 3.10: Basic Convolutional Architecture for MTCNN Algorithm

3.2.1 Installation Setup For our system development, we have chosen python language as it

has more compatibility and accessibility with our next phase of hardware installation of

Raspberry Pi. For the script editing and compilation, we used Visual Studio Code which has

faster processing and compilation efficiency compared to other available open source editors

such as Spyder, Jupyter etc. We also installed OpenCV library to which has been essential for our

image capturing and processing activities. Tensorflow, an open source deep learning framework,

and Numpy, an essential library for python programming language for computing arrays and

matrices; are two basic libraries that has been installed for the proper undertaking of our thesis.

Also, function named math has been imported for computation purposes necessary in different

parameter calculation.

3.2.2 Customized Dataset Development

3.2.2.1 Argument Parsing For user-to-user customization, we have designed the system to

develop with its own dataset collected from the user interface. Using argparse, a built in module

which is an optparse inspired command-line parsing library, produces highly informative usage

messages, also handles both optional and positional arguments. In our thesis, this module is used

with a parameter of mode that controls the decision of when the camera will take new input data

21 | P a g e

to store or only identify. Then with .add_argument particular portion is added with parse input

and store in a variable.

3.2.2.2 Dataflow Graph As per our system code advances, in the main.py code block, the next

stage will go to tf_graph. TensorFlow uses a dataflow graph to represent the computation in

terms of the dependencies between individual operations. This leads to a low-level programming

model in which you first define the dataflow graph, then create a TensorFlow session to run parts

of the graph across a set of local and remote devices. Dataflow is a common programming model

for parallel computing. In a dataflow graph, the nodes represent units of computation, and the

edges represent the data consumed or produced by a computation.

3.2.2.3 Face Alignment The third step we developed is the alignment of the face, for that a

function in the code align_custom will be working. For the alignment, we implemented Dlib face

alignment strategy. The distinctive fact in this method or approach is that it doesn‟t deform the

original image like Dlib usually does. Here the whole face portion gets positioned in three parts,

Right, Left, and Center. As a new input list, a loop runs to make 2 dimensional matrixes and the

created matrix is transposed. The shapes gets computed by Mean and Coefficient of

Variable(cov) . Then Affine transformation is applied on the matrix which basically refers to

combination of linear transformations and translations. The Align face is done in BGR format.

BGR format is the convention for OpenCV. So the term BGR (and BGRA) is a leaky abstraction

where the graphics library is explaining how the integer is logically ordered. This makesour code

more readable as that is directly accessing the color components individually. Size of image, 3D

array which has the pixels that detects face, another 3D array with align and the left, right and

center position of face is stored. Also there are mean parameter stored in (X, Y). Fig. 3.11 shows

WorkFlow of Face Detection and Identification.

22 | P a g e

Fig. 3.11: Work Flow of Face Detection and Identification

mean_face_shape_x = [0.224152, 0.75610125, 0.490127, 0.254149, 0.726104]

mean_face_shape_y = [0.2119465, 0.2119465, 0.628106, 0.780233, 0.780233]

Then padding is added to the points for desired view and all points again are converted in Matrix.

The Matrix rotated with cv2.getRotationMatrix and then cv2.warpAffine(img, rot_mat,

(desired_size, desired_size)) is returned to main class.

 3.2.2.4 Face-Feature Extraction As our system task steps advance, the next step in our

code will result in face_feature. Here we had to import tensorflow and inception_resnet_v1.We

Yes No

23 | P a g e

proposed a deep convolutional neural network architecture codenamed "Inception”. The main

hallmark of this architecture is the improved utilization of the computing resources inside the

network. This was accomplished by a wisely constructed strategy that allows for increasing the

depth and width of the network while keeping the computational budget constant [28]. Here for

tensorflow, tf.placeholder('float', [None,160,160,3]) is provided which is the default input for

tf.nn.l2_normalize. Here we get the data that are already previously trained and stored in model

folder. Previously trained images go through the matrix process and returned to main.py.

3.2.2.5 Detection using MTCNN At this stage, mtcnn_detect function in called by main

class. In this file the images uses Tensorflow implementation of the mtcnn face detection

algorithm. The images go through image pyramid which helps in smoothing and subsampling

images. Here for pyramid representation by default it uses .709 as a parameter. Model path of the

previously trained data also linked in this part. The threshold is of 70%, factor for smoothing is

saved .709 and also scale_factor for scaling images.

3.2.3 Loading MTCNN Face Detection Model

The actual processing portion works on three stages: Proposal Network (P-Net), Refine

Network (R-Net) and Output Network (O-Net).

 3.2.3.1 Proposal Network (P-Net) We exploit a fully convolutional network, called

Proposal Network (P-Net), to obtain the candidate facial windows and their bounding box

regression vectors. Then candidates are calibrated based on the estimated bounding box

regression vectors. After that, we employ non-maximum suppression (NMS) to merge highly

overlapped candidates.

3.2.3.2 Refine Network (R-Net) All candidates are fed to another CNN, called Refine

Network (R-Net), which further rejects a large number of false candidates, performs calibration

with bounding box regression, and conducts NMS.

3.2.3.3 Output Network (O-Net) This stage is similar to the second stage, but in this stage

we aim to identify faces regions with more supervision. In particular, the network will output

five facial landmarks positions.

24 | P a g e

Fig 3.12: Different Convolutional Layers declared in the mtcnn_detect class

In Fig 3.12 the layers of mtcnn_detect class codes are shown. In MTCNN Network, there is

a class for constructing the network; which has input nodes for the network, current list of

terminal nodes, mapping from layer names to layers. If nodes are true, then the resulting

variables are set as trainable data. The network also loads network weights, serializes weights in

numpy by using the current tensorflow_Session. These parameters are then used to execute

graphs or part of graphs. It also allocates resources for results and holds the actual values of

intermediate results and variables. Then four methods are used before putting images into layers

to train and to create bounded box shown in figure 3.13.

defget_output(self):

'''Returns the current network output.'''

returnself.terminals[-1]

defget_unique_name(self, prefix):

'''Returns an index-suffixed unique name for the given prefix.

 This is used for auto-generating layer names based on the type-

prefix.

 '''

ident = sum(t.startswith(prefix) for t, _ inself.layers.items()) + 1

return'%s_%d' % (prefix, ident)

defmake_var(self, name, shape):

'''Creates a new TensorFlow variable.'''

returntf.get_variable(name, shape, trainable=self.trainable)

defvalidate_padding(self, padding):

'''Verifies that the padding is one of the supported ones.'''
assert padding in ('SAME', 'VALID')

Fig 3.13: Code portion to transfer images to convolutional layers

25 | P a g e

After each convolutional layer, it is convention to apply a nonlinear layer (or activation

layer) immediately afterward. Fig 3.8 shows the code portion of transferring imaged into

convolutional layers. The purpose of this layer is to introduce nonlinearity to a system that

basically has just been computing linear operations during the conv layers (just element wise

multiplications and summations).In the past, nonlinear functions like tanh and sigmoid were

used, but researchers found out that ReLU layers work far better because the network is able to

train a lot faster (because of the computational efficiency) without making a significant

difference to the accuracy [29]. Another method called max pooling uses the maximum value

from each of a cluster of neurons at the prior layer. This serves two main purposes- first is that

the amount of parameters or weights is reduced by 75%, thus lessening the computation cost and

second is that it will control overfitting. This term refers to when a model is so tuned to the

training examples that it is not able to generalize well for the validation and test sets. [29]

3.2.4 Loading New Face Data

After completing the above steps, the command portion from part 3.2.2.1 then decides if the

system will take new input or will just recognize who is in front of the camera. In this section we

are going to explain the process how our system registers new person in its dataset. A function

called create_manual_data() is used to create new dataset. With the help of cv2. videocapture

camera will open and wait till it gets the input name of the person. After getting the input it goes

to the facerec_128D.txt and with the support of json.load parameters of a person, face image is

stored. While storing the features of face, it maintains 3 positions which are left, right and center.

The frame we used is for capturing the images of minimum 80x80.But if data of a person already

exists in the dataset then by json.dumps(), the previous features will be removed and new

features will be added. When the user is done registering their data, they will press “q” to close

the window. Fig 3.14 shows the terminal for taking new data input.

26 | P a g e

Fig. 3.14: Terminal for taking new face data input

In the command that was processed in part 3.2.2.1, if there is no “input” portion it will go to

camera_recog() to detect face and will try to identify if the dataset has the person‟s data. If not

then it will show “unknown”. To recognize, the window will open with cv2 and will show

“camera sensor warming up”. The Fig. 3.15 shows the dataset structure from input.

Fig. 3.15: Dataset from our input

3.2.5 Compilation and Result Display

In this portion of the code previously explained codes are being compiled. So if the

face_features matches with any dataset it will show the user name and with accuracy or distance

between points saved in dataset and shown in camera in real time. This function basically does a

simple linear search for the 128D vector with the min distance to the 128D vector of the face on

screen. Here Fig 3.16 shows the code compilation result and Fig 3.17 shows code of drawing

bounding boxes.

27 | P a g e

Fig. 3.16: Code compilation and Face identification with Name Label and Accuracy Rate

Fig. 3.17: Code portion to draw bounded boxes

The first line creates the bounding box and the second shows the name with accuracy on the

box. This is the whole process we maintained for Face detection and Identification with MTCNN

algorithm and using Deep Learning Network.

28 | P a g e

CHAPTER 4

Hardware Setup

4.1 Structure Establishment Process

The central processing unit of our proposed system setup is Raspberry Pi 3 Model B. It is a

single board operating system unit with built-in wireless LAN and Bluetooth connectivity. It is a

vastly used efficient device for the implementation of our proposed method. For the input data

collection of real-time image capturing, Raspberry Pi Camera Module V2 has been used. This

module is resourceful for capturing high definition instantaneous video as well as still

photographs. Raspberry Pi is powered using a portable battery or power bank. For our thesis, the

output result has to be an audio output as the target users are visually impaired. So for user

convenience we have used an earphone. Our thesis has two major individual identifications from

which we are implementing hardware for the face recognition first. The structure establishment

follows the below Fig.4.1 basic step diagram:

Fig.4.1: Basic Block Diagram for the hardware setup

•Capture Real-time
Image

•Transfer to Proccesing
unit

Raspberry Pi
Camera

•Image Processing with
assigned system code

•Region detection,
classification &
Identification

Raspberry Pi 3
Model B •Text-to-Speech end

result generation

•Provide Audio output

Earphone
Audio Output

29 | P a g e

4.1.1 Raspberry Pi 3 Model B Installations

The Raspberry Pi 3 has a required operating system called Raspbian which is a version of

Linux specially developed for the Raspberry Pi. We have installed the Raspbian from NOOBS

(New Out Of Box Software) using external SD card as it has Micro SD port for loading your

operating system and storing data. The Raspberry Pi 3 Model B is the earliest model of the third-

generation Raspberry Pi. It has Quad Core 1.2GHz Broadcom BCM2837 64bit CPU with 1GB

RAM, BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board. The CSI camera

port has given us liberty for connecting a Raspberry Pi camera without any difficulty. The

upgraded switched Micro USB power source up to 2.5A is much efficient and user approachable

[14].As Raspbian is compatible with programming languages like Python, C, C++etc., we have

combined our identification code file within the operating system easily. Fig.4.2 shows the setup

of our thesis implementation.

Fig.4.2: Elements with basic connection wiring

30 | P a g e

4.1.2 Raspberry Pi Camera Model v2 and Earphone Connection

The Raspberry Pi v2 Camera Module has a Sony IMX219 8-megapixel sensor [15] which

has been accommodating in our thesis for the input video. We connected the Pi camera in the

specified slot of the Raspberry Pi. After the installation of the operating system, we have

installed the camera module from the system terminal. Initially the module is rebooted with these

below commands:-

 Then the “sudo raspi-config” command in the prompt opens the menu from where we

enabled the Pi camera. For the setup of the camera input we have used “raspivid” which is

dedicated command line module for video recording via Pi camera. Afterwards, for the audio

output we have connected a headphone, which is a general audio device compatible with most of

the audio output, to the audio output jack of the Raspberry Pi. In the terminal, we installed a

library called espeak for the audio output.

4.1.3 Input and Output Processing Methodologies and Libraries

For our thesis, capturing real-time video and after the processing deliver the identified result

in an audio form by text-to-speech is an essential task. Firstly we identified and test-run the

functions and libraries that are eligible for this task as well as compatible with our processing

code with well-suited versions of programming parameters.

For the video capture installation, we imported picamera which is a package for interfacing

Raspberry Pi camera module and it is used companionable with python 3 versions which we

have used in our identification processing system. The picamera library contains numerous

classes, but the primary one that all users are likely to interact with is PiCamera that we have

also used. Upon construction, this class initializes the Pi camera. The camera_num parameter

defaulting to 0 which means one camera device selects the camera module that the instance will

represent. camera.start_preview() is used to initial start the camera viewing. The resolution and

frame rate are declared. Using PiRGBArray we are collecting the camera input with a proper size

specified which is running in a loop for real-time video capturing.

31 | P a g e

Fig 4.3: Basic functions required for real-time video input and audio the result output

Fig 4.3 shows the complied code portions for the basic functions. For the audio output, we

have to use a function that can covert text result into speech as our target uses cannot see the

label of identified person. A text-to-speech (TTS) system converts normal language text into

speech. For this type of system, there are multiple ways to implement in python. Pyttsx is a

platform for suck speech generation and it is widely used. But in out version of python in which

we developed our system, it is not compatible. So we have used espeak. eSpeak is a compact

open source software speech synthesizer for English and other languages. After importing the

package, it can compile speech from text. For our system, we firstly run the main identification

code set up in the system with proper library and environment installation, then the identified

result label is passed via an object variable to espeak for text to speech conversion from which

the result is passed into the audio device connected with the raspberry pi.

32 | P a g e

CHAPTER 5

Experimental Result

5.1 Object Identification Result

Fig 5.1: Detected object with name label and accuracy rate

33 | P a g e

Fig 5.1 shows the result of our object detection. Here we have seen the bounded box

surrounded a specific object. This specifies the machine has the capability to identify object from

its surrounding. The code has its portion which has the capability to match the confidence factor

with the previously trained dataset. By matching the confidence factor it finds the most

appropriate confidence factor from the pre trained model and thus it represents the name shown

in the figure. As the object‟s name is showing correctly so the identification has done properly.

Next to the name of the object a percentage number is shown, this number represents the

accuracy rate of object identification. This percentage number is subject to maximum matching

of the confidence factor in real time video frame with previously trained model confidence

factor. Also there are values of Frame per Second (FPS) which shows how fast our Algorithm

(YOLO) is able to detect object in real time. The percentage that shows the accuracy of

identification of an object is approximately 63-80% accuracy rate and the FPS is little bit low

about 8-15 because the machine needs to train more on the dataset it has. For not having a GPU

supported machine the system is taking more time to process the whole dataset. To achieve

perfection in accuracy and FPS the system is still on training which will help us to detect and

identify object really fast from real time video.

5.2 Face Identification Result

Fig 5.2 shows the accuracy of face identification. Faces that are in the dataset that was taken

as input matches with the faces in front of the camera. As the machine could match one of its

dataset values with the bounded box it shows the output with accuracy. The bounded box shows

the proper face detection. The percentage is the accuracy that was calculated through code and

the name with the percentage was shown according to the input user typed while giving their

face data. How well the machine is able to detect and recognize depends on the percentage

number that is shown in the figure. As the System uses Deep Learning so more time and data

will be needed to provide more accurate result. As the system is still on improvement the dataset

is small for now, it will have multiple people‟s faces in its set of data and will be able to detect

and recognize multiple people at a time while the video is on real time.

34 | P a g e

Fig 5.2: Detected face with name label and accuracy rate

5.3 Face Detection Result from Raspberry Pi

Fig 5.3: Detected face with using Pi camera

In Fig 5.3 there is a bounded box around the face accumulated through using raspberry pi

camera. This bounded box came because the face identification code was implemented in the

raspberry pi. As we can see the rectangle box detecting the face with proper labeling and

35 | P a g e

satisfying percentage of accuracy so it means our system is able to detect human faces, which

will be the expected output for face recognition process. Also we have used the hardware to let

visual impaired people get the audio of names of those who can be recognized through face

recognition process. For this we have used text to audio process which we are not able to show it

in the paper but from our practical implementation we have witnessed the successful

implementation of the audio output of the identified person‟s name from the database implied in

the model.

36 | P a g e

CHAPTER 6

Conclusion

The proposed thesis proposes of detection and thus identification of major objects as well as

face recognition from personal dataset. For the Object and Facial Recognition, YOLO Algorithm

and MTCNN Networking are implemented respectively. The software is designed using

OpenCV libraries of Python as well as implementing machine learning process. The major

processor of our thesis, Raspberry Pi scans and detects the facial edges via Pi camera and objects

are recognized via mobile camera. Image recognition results are transferred to the blind users by

means of text-to-speech library and an audio device. The object detection process achieved 8-15

FPS processing with an accuracy rate of 63-80%. The face identification process achieved 80-

100% accuracy.

6.1 Implementation Challenges

The first and foremost challenge that we have faced was the generation of modified dataset

creation. As we have customized dataset for specific objects and user-to-user different personal

face dataset, so the dataset for our system has been custom developed. The annotation process

with multiple objects has been a complex process for which the training of machine has been

delayed and accuracy result derivation was halted. Also we face difficulties to merge different

libraries with the programming language due to the version compatibility conflict. The proper

efficient combination of latest algorithm and modern versions of libraries and packages has been

a task for us. Last but not the least our merge of hardware has been an encounter as the raspberry

Pi had to be properly built up with necessary environment setup and accurate installation of the

program code so that the power source connection implies the running mode of the device.

6.2 Future Directions

In our thesis we have worked on the object detection and face identification independently

for maximum efficiency. Also we have set up a hardware implementation system to run our

structure in real-time. For our further advancement of this thesis, we would like to merge these

two portions side-by-side such that they can run in parallel and human 7 object can both be

37 | P a g e

identified. Another development that we have in our future direction is to design the hardware

structure in more user-friendly and easy approachable model for the blind users as our executed

module is a beta version to check the implementation possibility of our software design. It is our

desire in implant Movidius VPU on our hardware structure as this model of Intel processing unit

is faster and appropriate for real-time video processing as well as AI powered. This will make

our model a better performing one and fulfill our target.

We would like to state that, working and implementing a working model to support the

visually impaired people by face and object identification. Our thesis work has been a successful

attempt to our target and we would like to work in the project in future to develop more user

friendly model and precise accuracy gain.

38 | P a g e

References

[1] Global Data on Visual Impairments 2010. Available online:

http://www.who.int/blindness/ GLOBALDATAFINALforweb.pdf (accessed on 23

April 2017).

[2] M.Goria, G.Cappaglia, A.Tonellia, G.Baud-Bovyb, S.Finocchiettia; “Devices for

visually impaired people: High technological devices with low user acceptance and no

adaptability for children; Neuroscience and Bio behavioral Reviews”; vol. 69, pp. 79-

88, 2016.

[3] F.Henriques, H.Fernandes, H.Paredes, P.Martinsand, J.Barroso ; “A prototype for a

blind navigation system; 2nd World Conference on Information Technology;”

[4] Prof.R.R.Bhambare, A.Koul, S.Mohd Bilal, S.Pande; “SMART VISION SYSTEM

FOR BLIND; International Journal of Engineering and Computer Science”, ISSN:

2319-7242, vol. 3(5), pp. 5790-579, May 2014.

[5] B.Shing Lin, C.Che Lee and P.Ying Chian; “Simple Smartphone-Based Guiding

System for Visually Impaired People; Sensors 2017, 17, 1371; doi:10.3390/s17061371;

Received: 23 April 2017; Accepted: 9 June 2017; Published: 13 June 2017.

[6] Rajesh M., K Bindhu Rajan, A. Roy, K. Almaria Thomas,

Ancy Thomas, B. Tharakan T, C Dinesh; “Text recognition and face detection aid for

visually impaired person using Raspberry PI”; International Conference on circuits

Power and Computing Technologies [ICCPCT]; 20-21 April 2017.

[7] L. Britto Neto, F. Grijalva, V. Regina, M. Lima Maike, LuizC´esar Martini, D.

Florencio, M. Cec´ıliaCalani Baranauskas, A. Anderson Rocha, S. Goldenstein, “A

Kinect-Based Wearable Face Recognition System to Aid Visually Impaired Users” ;

IEEE Transactions On Human-Machine Systems, vol. 47, No. 1, February 2017.

[8] Prof. P Y Kumbhar, Mohd Attaullah, S. Dhere, S. Kumar Hipparagi; “Real Time Face

Detection and Tracking Using OpenCV”; E-ISSN: 2349-7610; International Journal

For Research In Emerging Science And Technology, vol-4(4), Apr-2017.

[9] Nidhi; “Image Processing and Object Detection”; IJAR 2015; 1(9): 396-399 Online:

www.allresearchjournal.com; Received: 02-06-2015 Accepted: 05-07-2015.

39 | P a g e

[10] [Online]: https://www.cs.toronto.edu/~kriz/cifar.html (Accessed on: 31th March,

2018).

[11] Ren, S., He, K., R. Girshick, , J. Sun, “Faster r-cnn: Towards real-time object detection

with region proposal networks. In Advances in neural information processing systems”,

pp. 91-99, 2015.

[12] [online].https://www.mathworks.com/help/vision/examples/object-detection-using-

faster-r-cnn-deep-learning.html# (Accessed 7
th

 July 2018)

[13] He K., X. Zhang, S. Ren , J. Sun, “Spatial Pyramid Pooling in Deep Convolutional

Networks for Visual Recognition”, “Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds)

Computer Vision – ECCV 2014”, Lecture Notes in Computer Science, vol 8691.

Springer.

[14] [Online]. https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ (Accessed on :

10
th

 July 2018)

[15] [Online]. https://www.raspberrypi.org/products/camera-module-v2/ (Accessed on :

10
th

Jult 2018)

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, F.Cheng-Yang, C. Alexander

Berg; “SSD: Single Shot MultiBox Detector”; version-5,2016,Cornell University

Library.

[17] J. Redmon, S. Divvala, R. Girshick, A. Farhadi; “You Only Look Once: Unified, Real-

Time Object Detection”; 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR); Electronic ISSN: 1063-6919; Published on: 12 December 2016.

[18] J. Redmon, A. Farhadi; “YOLO9000: Better, Faster, Stronger; 2017” IEEE Conference

on Computer Vision and Pattern Recognition (CVPR); Print ISSN: 1063-6919;

Published on: 09 November 2017.

[19] Nada, A. Mashaly, Samiaand , A. Fakhr, Mahmoud, S.Ahmed, “Human and Car

Detection System for Blind People”; Conference: The 4th International Conference on

Biomedical Engineering and Biotechnology – ICBEB 2015, Shanghai, China.

[20] C.Ezhilarasi, R. Jeyameenachi, Mr.A.R. Aravind; “A Raspberry Pi based Assistive Aid

for Visually Impaired Users”; International Journal of Advance Research and

Innovative Ideas in Education; ISSN(O)-2395-4396; Vol-3(2) 2017.

40 | P a g e

[21] A. R. S. Siswanto, A. S. Nugroho and M. Galinium, "Implementation of face

recognition algorithm for biometrics based time attendance system," 2014 International

Conference on ICT for Smart Society (ICISS), Bandung, 2014, pp. 149-154.

[22] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, "Eigenfaces vs. Fisherfaces:

recognition using class specific linear thesision," in IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, Jul 1997.

[23] [Online]. https://pjreddie.com/darknet/yolo/ (Accessed on: 14
th

 July 2018).

[24] A. I. Arrahmah, A. Rahmatika, S. Harisa, H. Zakaria and R. Mengko, “Text-to-Speech

device for patients with low vision,” 2015 4th International Conference on

Instrumentation, Communications, Information Technology, and Biomedical

Engineering (ICICI-BME), Bandung, 2015, pp. 214-219.

[25] Y. Wu and X. Ai, “Face Detection in Color Images Using AdaBoost Algorithm Based

on Skin Color Information,” First International Workshop on Knowledge Discovery

and Data Mining (WKDD 2008), Adelaide, SA, 2008, pp. 339-342.

[26] K. Zhang, Z. Zhang, Z. Li and Y. Qiao, “Joint Face Detection and Alignment Using

Multitask Cascaded Convolutional Networks,” in IEEE Signal Processing Letters, vol.

23, no. 10, pp. 1499-1503, Oct. 2016.

[27] P. Viola and M. J. Jones, “Robust real-time face detection. International journal of

computer vision,” vol. 57, no.2, pp. 137-154, 2004.

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, A. Rabinovich, “Going

deeper with convolutions, In Proceedings of the IEEE conference on computer vision

and pattern recognition”, pp. 1-9,2015.

[29] [Online]. https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-

Convolutional-Neural-Networks-Part-2/ (Accessed on 19
th

 July 2018).

[30] [Online]. https://www.tensorflow.org/ (Accessed on 29
th

 July 2018).

[31] D. Impiombato, S. Giarrusso, T. Mineo, O. Catalano, C. Gargano, G. La Rosa, F.

Russo, G. Sottile,

[32] S. Billotta, G. Bonanno, S. Garozzo, A. Grillo, D. Marano, and G. Romeo, “You

Only Look Once:Unified, Real-Time Object Detection,”Nuclear Instruments and

Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, vol. 794, pp. 185–192, 2015.

41 | P a g e

[33] J. Hu, L. Peng and L. Zheng, "XFace: A Face Recognition System for Android Mobile

Phones," 2015 IEEE 3rd International Conference on Cyber-Physical Systems,

Networks, and Applications, Hong Kong, 2015, pp. 13-18.

