
Voice Command based Android Java Code Generator

Submitted by:

MD. Shakerul Islam (14101018)

Hosne Mobarak (14101002)

MD. Mominul Islam (14101174)

Department of Computer Science and Engineering

Supervisor:

Suraiya Tairin, Lecturer, Department of Computer Science and Engineering (CSE)

Co-Supervisor:

Md.Saiful Islam, Lecturer, Department of Computer Science and Engineering (CSE)

2

Declaration

We would love to declare that this thesis is based on results we have found by ourselves. Materials

and conclusions from researches that are conducted by world-wide by other researchers are

mentioned in references section.

_______________ _______________

Sign of Supervisor Sign of Co-Supervisor

_______________ _______________ _______________

 Sign of Author Sign of Author Sign of Author

3

Acknowledgement

This topic was chosen by us and encouraged by our supervisor Suraiya Tairin and co-supervisor

MD. Saiful Islam to carry on for our thesis. We are pretty grateful to Almighty Allah (SWT) for

giving us the opportunity, knowledge and patience to complete our thesis project.

We are eternally grateful to our faculties, friends and family who helped us in

every step of the way to complete this research. We would like to express our sincerest gratitude

to our supervisor Suraiya Tairin and Co-supervisor MD. Saiful Islam for their continuous support,

encouragement and guidance in every step of our research. Without them this research would not

have been completed.

Apart from the closely connected people, we got immense amount of help from our friend Monwar

Jahan Mufad regarding the programing part of this thesis project.

4

Abstract

The world is moving toward voiced based interaction with devices. A voice based code generator

can make the work of a developer much easier and faster as well as bring hope for physically

challenged programmers. Moreover, children can learn programming from very early age with the

help of voice based code generator. So, we propose a new approach on mobile based application

“Vocal - A voice based Code Generator”. This voice based code generator is going to be an

Android app so that people can use it whenever they want. Our “Vocal” will take voice based

instructions from the user and then detect the intention of the user. Depending on the commands,

it will create variable, loops, print statement, methods, condition etc. There will be some basic

instructions for the user to make the proper command.

Keywords

Natural Language, Voice, Command, Instruction, Speak, Translate, Compile

5

Table of Contents

Chapter 1 ___ 8

Introduction ___ 8

1.1 Overview ___ 8

1.2 Motivation __ 9

1.3 Project Orientation __ 10

1.4 Impact __ 11

Chapter 2 __ 13

Literature Review ___ 13

Chapter 3 __ 19

Methodologies __ 19

3.1 Choosing the API __ 19

3.1.1 IBM Cloud API ___ 19

3.1.2 iSpeech API ___ 20

3.1.3 Google API ___ 20

3.2 API Integration & Code ___ 21

3.3 Developing the Vocal app ___ 22

3.3.1 Creating the Database __ 22

3.3.2 The methodology of Vocal app__ 22

3.3.3 Keywords and phrases __ 24

3.3.4 Different Functions ___ 25

Chapter 4 __ 30

Experiments and Results ___ 30

4.1 Interacts with voice recognition system ______________________________________ 30

4.2 Functions __ 31

4.2.1 Variable __ 32

4.2.2 Array __ 32

4.2.3 Print __ 33

6

4.2.4 For and While loop ___ 33

4.2.5 Create a class ___ 34

4.2.6 Condition __ 35

4.2.7 Methods ___ 35

4.2.8 Compilation segment ___ 36

4.2.9 Shutdown __ 36

4.3 Problems when interacting with voice recognition system _______________________ 37

4.4 How spoken forms were chosen __ 37

4.5 What was not implemented and why __ 38

4.6 Problems and solutions ___ 38

4.6.1 Selecting the API ___ 38

4.6.2 Creating a Database __ 39

4.7 Observation and analysis ___ 39

4.7.1 Testing in different environments _______________________________________ 40

4.7.2 Testing with different accents __ 41

Chapter 5 __ 43

Future Plan and Conclusion __ 43

5.1 Future Implementation and Extension _______________________________________ 43

5.2 Business Perspective ___ 44

5.3 Research Sector ___ 44

5.4 Conclusion ___ 45

References ___ 46

7

Table of Figures
Figure 2.1: Architecture of Natural Java ... 16

Figure 3.1: Code of API integration ... 22

Figure 3.2: Flowchart of Vocal app ... 23

Figure 3.3: Flowchart for Loop execution ... 27

Figure 3.4: Flowchart for method .. 29

Figure 4.1: Voice recognition system ... 31
Figure 4.2: Vocal's home user interface ...………………………………………………………………………. 32

Figure 4.3: Vocal’s print code generation ... 33

Figure 4.4: Vocal’s loop code generation .. 34

Figure 4.5: Vocal’s condition code generation .. 35

Figure 4.6: Cloud compilation ... 36

Figure 4.7: Accuracy of the APIs ... 39

Figure 4.8: Chart of errors ... 40

Figure 4.9: Accent error per person ... 41

Figure 4.10: Speaking error graph ... 41

8

Chapter 1

Introduction
This section will give overall short idea of our thesis project and work. Apart from our work we

have mentioned how we came up with this idea and what was the motivation behind this thesis

project as well as what can be the possible impact.

1.1 Overview
The whole high tech based world that we are enjoying right now is sitting on just two numbers

which are 0 and 1. These 2 digits are the reason behind super computers, high tech VFX graphics,

self-driving cars, space technology, high tech cameras of 1,000+ FPS (Frames per Second), AI

robots, super complex algorithms, smart devices and so on.

No matter what sort of technology we are enjoying, all of these are developed by programming.

Some technology took 3 days to be developed and some took over 30 years, again some are

developed by one person and some are developed by multi-billion dollar companies that have

employed thousands of programmers.

This shows us the importance of programming behind such massive improvement of technology

and our day to day lives. Programming is one of the hardest task that mankind is ever dealing with

since the invention of programmable computing system. Typing all day long to develop a

functional software or app is a paramount task. Errors and Warning make this task even harder and

painful.

We are hoping for a more convenient way to write codes, that’s where our thesis project comes in.

We named this thesis project “Vocal” which is a voice based programming app that can write

codes by interacting with real human via voice based commands. As this is an Android app we

chose to go with Java programming language to demonstrate our prototype.

Our thesis project prototype “Vocal” is capable of generating Java codes by interacting with human

voice in natural way. One doesn’t need to speak in programming language. He or she can give

9

command just in usual way like, “create a for loop” or “set a variable” etc. Then our app will ask

for the next input like what the starting of loop, what will be the type and value of increment or

decrement and so on. That’s how even a kid can do programming because they don’t need to care

about syntax, comma, semi-colon etc. while generating codes using “Vocal” app.

This is a very futuristic concept of programming which needs way more research to me

implemented in real world for mass use. However, our thesis project prototype is able to

demonstrate the basic commands like initialization, creating variables, creating arrays, creating

loops, making conditions and some other primary level codes in Java language.

1.2 Motivation
The future is moving toward hands free technology which are way more convenient to use for

example wireless headphones, voice assistance on our smartphones, voice based search console,

podcast contents etc. This concept is getting so popular that giant companies are launching voice

based assistants like Amazon Echo (by Amazon), Google Home (by Google), Home Pod (by

Apple), Siri (by Apple for smartphones), Cortana (by Microsoft for PC) etc. On the top of that

Google is getting over 20% (percent) mobile search that are generated by voice and this number

is growing at massive scale [1].

These products and the studies of Google search are clear indication that people are in love with

hands-free technologies. In future, we can see more and more such tech gadgets and assistants that

will help people in day to day life just by taking commands by voice. Robots are one of a kind

assistant to help us but we still need virtual assistants for non-physical tasks.

This voice based trend of technology is our main motivation behind this thesis project. We thought

to make something that will be helpful for the developers using this voice based controlling system.

On the top of that, our thesis project can be immensely helpful to tech programming to the kids as

well as physically disabled programmers. Someone new in programming can easily learn coding

using the natural language and can have in-depth idea of programming way more faster than

traditional method.

10

Forecasting the future and developing products according to that is the most viable way to survive

on this competitive world. Hence, we worked on futuristic idea that may seem nearly impossible

for today but will be a daily usable product in future. We are highly motivated to solve real life

problems that can improve our life styles and increase our ability of performance.

Programming is mainly popular on computer device traditionally, here comes our break through

concept. Before 15 years desktop computers were our main tool to develop software and other

applications. Then laptop came into the play and took the major role, right now most of the

development works are done on laptop. The next generation will be focused on mobile device for

almost all types of works, even now we do most of our image editing, photo retouching, content

writing etc. works on our smart phones. Performance improvement rate of mobile device is

increasing way faster than the performance of computers. Now a days, most of the new

smartphones run on Octa-core processors where else most of the computers are running on Quad

core processors. On the top of that, more and more companies are starting developing mobile chips

[2].

This growth rate and user usability shows that soon people will be using mobile device for

programming purpose which is one of our greatest motivations behind this work.

1.3 Project Orientation
This section of paper will simply provide the basic idea of our thesis project prototype regarding

the technical issues. If you want to know the simple flow of our work then this section will be

immensely helpful.

Our whole thesis project is divided into three major parts just like a computer which are taking

voice based input from user, processing the input and generating the code and compiling the code.

For taking the input from user we are using Google Voice API, where we don’t have much to add

but the next step is our main area of work. Code compilation part is for our future implementation

as it requires huge amount of storage for libraries and JDK data.

We take the voice instructions from the user which gets converted into sentence using Google API

and break down the whole sentence into words. Then our algorithm detect user intention based on

11

keywords and phrases. Later on these keywords and phrases are used to generate corresponding

Java codes using our algorithm. As we have worked on limited amount of functions and syntax on

this prototype, it’s pretty much less complicated but the algorithm will be way more complicated

after it allows to use external libraries, extended methods and other complex programming

sections.

We have discussed the whole work process in detail which can be found in methodologies section

of this paper.

1.4 Impact
No matter what kind of thesis project we are working on, if it has no impact on our real lives then

it’s worthless to invest time in. Hence, having impact is pretty necessary to calculate the success

ratio of any thesis project or task. What we are working on will be beneficial for the developers

and for the kids to have better idea of programming.

Right now the way developers are working just by sitting on their desks is pretty harmful for their

body and health. On the top of that, typing all day long makes the hand palm painful, where else

the errors and warning make it worst. Through voice based programming developers can generate

codes while walking and in most cases they don’t need to check for small mistakes like forgetting

semi-colon, inverted comma, writing wrong syntax etc.

Apart from the developers ease, this thesis project will make programming hands-free and more

comfortable at any situation. Mobile based programming will be the best way to write codes even

a developer is out of his or her usual work station. It will give him fast executional scope to turn

their thoughts into code in real time. Apart from that, it can be greatly useful for the testers, they

can generate the chunk of codes to test it and find bugs. They don’t require any laptop or powerful

computer to execute the codes.

One of the main reason behind this thesis project is to tech programming in much more easier way

to both newbie programmers and kids. Now a days, programming is so important that every kid

must learn coding from their early age [3]. Our thesis project will be highly impactful for the kids

12

to grab basic idea of programming without even knowing about the small complicated stuffs. It

will help them to simulate their chunk of codes and learn from that.

Although there are very few physically disabled programmers who are facing problem in their

career due to major accident or nerve related illness, this thesis project has a scope to help these

minor amount of people to brighten their hope for life. Currently, 10% of the world’s population

are facing disability which is roughly 650 Million [5]. This number is astonishing and becoming

liabilities for millions of families in hundreds of countries. If only 1% of these disabled people get

interested in programming then it will be huge number of people who will be helpful with voice

based programming. It’s a great inspiration for us to bring positive change for thousands of lives

using our thesis project.

Keeping above mentioned terms in mind, it’s pretty clear that our thesis project Vocal can be very

impactful for active programmers, disabled programmers and kids.

13

Chapter 2

Literature Review
From the beginning software development has been so much text-oriented and programming

languages have been typewritten. In recent years, there has been an increase in the quantity of PC

software engineers experiencing Repetitive Strain Injury (RSI) which has been a big concern. For

those people, who are fed up with typing thousands of lines of codes, speech recognition is a good

solution to reduce typing more and more codes while programming.

We are not the first who are working on voice based compiler system. A lot of works have done

previously related to our work. Language processing software’s are quite demandable nowadays.

For this thesis project we reviewed many of the conversion topic of language processing such as

voice to text conversion software and text to speech conversion software.

Stephen C. Arnold, Leo Mark, John Goldthwaite proposed a system in their paper Programming

by voice, VocalProgramming [6] that a person who has RSI which is repetitive stress injuries can

do programming without typing. This paper demonstrates a layout for a structure that makes

circumstances that enables people to program by voice and a procedure for choosing whether the

system is productive. It moreover exhibits how this generator can be used to help entering data and

making XML reports.

In "Programming By Voice: A Domain-specific Application of Speech Recognition", [7] Begel

tried to design the language around a natural verbalization of the code as it appears on the screen.

He also tried to balance the ease of use of the language with the ability of algorithms to understand

it. They conducted an experiment in which participants read a one-page pre-existing Java program

out loud and found that there does exist a common vernacular among programmers for speaking

programs despite the diversity of their educational training. This enables them to create a

verbalized programming language definition which will work for most programmers. While doing

this experiment they faced challenges such as punctuation (found in almost every programming

language construct is inconsistently verbalized and is often omitted), homophones (words that

sound alike but are spelled differently), capitalization of words and concatenated words. Based

on these experiments and studies, Begel had developed Spoken Java, a dialect of Java that is more

14

naturally verbalized by human developers along with a command and control language designed

to enable programmers to find and select pieces of code and modify them in high-level linguistic

ways. Besides to support the combination of Spoken Java and an associated command language,

they built an Eclipse IDE plug-in called SPEED (for Speech Editor). This made easier to enable

programmers to use voice recognition for all three programming tasks: composition, editing and

navigation. Their user studies helped inform the design of Spoken Java and help improve its

command language [7]. Begel did not use natural language rather he used programming language

for speech recognition. He had to utter every command part by part whereas we take natural

language from the use and analyze the sentence to generate the code.

 In "An Investigation into Programming by Voice and Development of a Toolkit for Writing

Voice-Controlled Applications", Snell developed an editor called CodeTalker which can work on

any platform with any speech recognition program. The primary goal of the thesis project was a

voice enabled programming editor which provides a toolkit for developing all kinds of voice

controlled software applications besides support programming. The interface of CodeTalker is

controlled by voice. CodeTalker supports HTML and Java where there are more support for HTML

than Java. Though it's an all-in-package, there are some lacking too. One need to install a speech

program and one need to compile code separately in the command prompt. [8]

In Voice language translator [9] includes a voice recognition module, a voice synthesizer, a

speaker, a microphone, and a programmed central processing unit (CPU). A series of words and

phrases stored in the language cartridge along with instructions to the user to speak the words or

phrases as they appear. When the user speaks the words or phrases it process it and convert it to

the text. This invention is directed to language translation and more particularly a voice language

translator for translating words spoken in one language to spoken words in another language.

In the Real-time text-to-speech conversion system, [10] it relates to text-to-speech synthesizers

and more particularly to a software-based synthesizing system which is capable of producing high-

quality speech from text in real time using most of any popular 8-bit or 16-bit microcomputer with

a minimum of added hardware. Richard P. Jacks, Richard P. Sprague describes in their paper that

the system first compares test words to an exception dictionary and if the word is not found therein,

the system applies standard pronunciation rules to the text word. Then in either instance, the text

word is converted to a phoneme sequence. By the use of look-up tables addressed by pointers

15

contained in a phoneme-and-transition matrix, the synthesizer translates the sequence of phonemes

and transitions there between into sequences of small speech segments capable of being expressed

in terms of repetitions of variable-length portions of short digitally stored waveforms. In general,

unvoiced transitions are produced by a sequence of segments which can be concatenated in forward

or reverse order to generate different transitions out of the same segments; while voiced transitions

are produced by interpolating adjacent phonemes for additional memory savings. Pitch can be

varied for naturalness of sound, and/or for intonation chances derived from key words and/or

punctuation in the text, by truncating or extending the waveforms of individual voice periods

corresponding to voiced segments."[5] In this paper , the system does real time text to speech

conversion, which we did in our thesis project by Google speech cloud API and that is pretty

simple and easy than this.

In VoiceGrip: A Tool for Programming by Voice[11], Alain Desilets described that programmers

first utter code using an easy to pronounce pseudo-syntax and then translate that automatically to

native code in the appropriate programming language. It supports the programming languages

C/C++ and Perl and the editors Emacs and MS DevStudio. It is mainly a collection of macros that

change text into code. Using the file extension, it translates from English-like syntax to one of the

supported programming languages. In the paper there is also a feature of evaluating the

performance of the system's symbol translation algorithm. In the experiment done in VoiceGrip,

the system exhibited low error rates in the range of 2.7% when confusion between homophonic

symbols (i.e. symbols that have the same spoken pseudo code form) was ignored and 6.6% when

confusion between homophonic symbols was taken into account. Though VoiceGrip came far

away in addressing the widest range of programming-by-voice problems but VoiceGrip suffers

from awkward, over-stylized code entry, and the inability to exploit the structure and semantic

meaning of the program.[11]

In "NaturalJava : A Natural Language interface for Programming in Java"[12], the authors

describes the system of NaturalJava as they have created NaturalJava, a prototype for an intelligent,

natural-language-based user interface that allows programmers to create, modify and examine Java

programs. Programmers describe programs using English sentences with interface of authors and

the system automatically builds and manipulates a Java abstract syntax tree (AST) in response.

When the user is finished, the AST is automatically converted into Java source code. The Java

16

code is being displayed simultaneously during the programming process. As a result, the

programmer can see the code as it is being generated. The interface exploits three subsystems. The

Sundance natural language processing system accepts English sentences as input and uses

information extraction techniques to generate case frames representing program construction and

editing directives.

Figure 2.1: Architecture of Natural Java

This is the architecture of NaturalJava[12]. There are some limitations in this system. NaturalJava

supports a large and incomplete subset of Java. It does not support array declarations because the

required case frames and associated logic to Sundance and PRISM have not been added. Similarly,

it does not support nested classes because the required AST support into TreeFace have not been

built. The system need for compiler and debugger feedback to be coordinated with the AST

interface. Moreover, it needs to generalize PRISM and add more case frames to increase the

vocabulary of Sundance.

VoiceCode is a thesis project begun primarily by the National Research Council of Canada

(Désilets, et al. 2006). It works with Dragon NaturallySpeaking which is a commercial speech

recognition program and Emacs which is an editor. In this version of VoiceCode, programmers

can code by speaking fairly English-like pseudocode into a microphone. VoiceCode had a new

release in Decemebr 2006 which has extensive support for Python, C/C++ and a less support for

Java, JavaScript and PHP. (Appendix 1: Online Resources). Many types of Java statements were

supported by the code for "c-style languages" (C/C++, Java, JavaScript, Perl, and PHP). Another

developer added a small amount of Java-specific support (define-language statement, editor-

specific code for language identification, and a template for Java import statements). We found

another author, Christine Masuoka who published a paper named "Java Programming Using Voice

Input: Adding Java Support to VoiceCode"[13] in 2008. He added Java supports to VoiceCode

17

and some other features in his paper. He added commands (loop templates etc.) and their spoken

forms to the VoiceCode program in his paper. He kept the spoken forms for Java consistent with

spoken forms in other languages. He also built in another common commands (println, main

method) and set them up to do a lot of automatic typing for the user. There are some limitations in

VoiceCode and two important of them are the complexity of installation and the amount of hand

use involved in startup. In order to limit the amount of typing and mouse use required to start

VoiceCode, Christine Masuoka has created a batch file to start Dragon NaturallySpeaking and

VoiceCode. [13]

We found another paper named " A Speech Recognition based Approach for Development in C++

"[14] by Mubbashir Ayub and Muhammad Asjad Saleem where they proposed a methodology for

C++ programming language where a programmer will speak and code in C++ will be written

accordingly. Their system is divided into three parts- Graphical User Interface (GUI), voice to text

converter and code generator. GUI gives the visual appearance of all the function to the user. Voice

to text converter includes Windows Speech Recognition to take voice input and Microsoft

Speechlib API which converts the voice to text. Code generator is the module which generates

C++ code from listened words.[14] This system is for personal computer and pretty similar with

our one.

We came across with another paper "An Empirical Evaluation of a Vocal User Interface for

Programming by Voice" by Amber Wagner and Jeff Gray where they developed a VUI(Vocal

User Interface) for a GUI(Graphics User Interface) based application. This app is basically

developed for the disabled people who cannot use keyboard or mouse. Mapping process has been

completed using MYNA.[15]

There is a major difference in all the mentioned previous works with our Vocal app. All the above

mentioned works for voice to code are developed for web/computer platform whereas our vocal

app is developed for mobile platform. There are many reasons behind this. Now-a-days with the

advancement of technology, the world is getting closer than ever. People are getting attached to

mobile phones or tablets than Personal Computers. People can carry mobile/tablets at any places

they want because of light weight whereas moving PC's is quite difficult. In addition, people can

afford smart phone because of its low budgets these days while we need to save a healthy amount

18

of money to buy a computer which is not easy for all. We can notice that kids of these days get

tablets for playing video games or watching cartoons. They can practice coding through our vocal

app beside playing videos games and watching cartoons. As a result they can get interested in

coding from an early age which will help them in future to be good coder. In all the paper we

mentioned here, we saw that in all their systems they do take voice input through microphone

whereas in our vocal app we take voice input through Google API in mobile devices. In our

previous paper reviews we did not find any paper where they develop any voice to text system for

mobile device.

19

Chapter 3

Methodologies
3.1 Choosing the API
As we are developing a voice based compiler application, first of all we needed to choose the better

voice based API. We did research with many API's. Later, we picked three voice based API's for

the final pick which are IBM Cloud API, iSpeech API and Google API.

3.1.1 IBM Cloud API
The IBM Speech to Text service provides Application Programming Interfaces (APIs) that add

IBM's speech recognition capabilities to applications. The service transcribes speech from various

languages and audio formats to text with low latency. The service returns and actively updates

notes with the hearing of more speeches. The Speech to Text service offers three interfaces for

speech recognition:

1) A WebSocket interface, for establishing persistent, full-duplex connections with the service.

2) An HTTP REST interface, that supports both session-less and session-based calls to the service.

3) An asynchronous HTTP interface, that provides non-blocking calls to the service.

The service also provides a customization interface where anyone can expand the vocabulary of a

base model with domain-specific terminology or adapt a base model for the acoustic characteristics

of anyone's audio. SDK's are also available that simplify using the service's interfaces in various

programming languages.[16] The systems where IBM cloud API are used are embedded devices,

vehicle accessories and voice control of applications, dictating email messages and notes, and

transcribing meetings and conference calls etc. The Speech to Text API consists of the following

groups of related calls: models, webSockets, session-less, sessions, asynchronous, custom

language models, custom audio resources etc. The IBM cloud API uses HTTP basic authentication.

Without embedding their service credentials in every call, applications can also use tokens to

20

establish authenticated communications with Watson services. The accuracy rate of IBM Cloud

compared to iSpeech API and Google API is 55-65%.

3.1.2 iSpeech API
The iSpeech API allows developers to implement Text-To-Speech (TTS) and Automated Voice

Recognition (ASR) in any Internet-enabled application. Any device that can record or play audio

that is connected to the Internet can use the iSpeech API. The API can be used with and without a

software development kit (SDK). It needs internet connection, HTTP protocol, request/responses

and API key. The iSpeech services cannot work without an internet connection. The iSpeech API

follows the HTTP standard by using GET and POST. Requests can be in URL-encoded, JSON, or

XML data formats. We can specify the output data format of responses. For TTS, binary data is

usually returned if the request is successful. For speech recognition, URL-encoded text, JSON, or

XML can be returned by setting the output variable. An API key is a password that is required for

access. iSpeech API features are text to speech, automated speech recognition, position markers

and visemes. In text to speech we can we can synthesize spoken audio through iSpeech TTS in a

variety of voices, formats, bitrates, frequencies, and playback speeds. Math markup language

(MathML) and Speech synthesis markup language (SSML) are also supported. In automated

speech recognition we can convert spoken audio to text using a variety of languages and

recognition models. And it can create custom recognition models to improve recognition quality.

In position makers, we can get the position in time when words are spoken in TTS audio. In

visemes we can get the position in time of mouth positions when words are spoken in TTS audio.

For authentication all calls to the API require an API key as an parameter.[17] We found the

accuracy rate of iSpeech API compared to IBM Cloud and Google API is 60-70%.

3.1.3 Google API
Google Cloud Speech API converts sound to text by applying capable neural system models in a

simple to utilize API. The API recognizes over 110 languages and variants which helps to get

connected with more people globally. We can also filter inappropriate content in text results. For

speech recognition, it applies the most advanced neural network algorithms to our user's audio

21

with unparalleled accuracy. Speech API accuracy improves over time as Google improves the

internal speech recognition technology used by Google products. Speech API returns text results

in real-time. Speech API can return recognized text from audio stored in a file. Speech recognition

can be customized to setting by giving a different arrangement of word clues with every API call

which is helpful particularly for device/application control use cases. Moreover, we don’t need

advanced signal processing or noise cancellation before sending audio to Speech API because the

service can successfully handle noisy audio from a variety of environments. Last but not the least

Google speech API works with apps across any device. It supports any device that can send a

REST or gRPC request including phones, PCs, tablets and IoT devices (cars, TVs, speakers).[18]

we found the accuracy rate of Google Cloud Speech API compared to IBM Cloud and iSpeech is

75-85%.

After doing research and testing, we found that Google API gives the most accurate result among

the three API's we described here. Being the most recognized, authentic, incompatible and secured

company we used Google Cloud Speech API in our Vocal app.

3.2 API Integration & Code
For API integration to our vocal application, first we need to create a Recognizer Intent by setting

necessary flags such as ACTION_RECOGNIZE_SPEECH – Simply takes user’s speech input and

returns it to same activity LANGUAGE_MODEL_FREE_FORM – Considers input in free form

English.

22

Figure 3.1: Code of API integration

3.3 Developing the Vocal app
3.3.1 Creating the Database
After choosing the API, we began to develop our vocal app in Android. Initially we used firebase

database in our thesis project to store the conditions, commands and methods etc. As firebase

database is an online database and it needs internet connection every time to access it, our

application was getting slow. That is why, we moved from the firebase database and created our

own database in the application. We loaded all our conditions, commands and methods in app

database. When the user installs the application on their mobile devices the database will be

automatically setup there.

3.3.2 The methodology of Vocal app
First of all the application will take voice input via Google cloud speech API from the user. Then

we processed the user command and break down the whole sentence into words. As we are in the

entry level of this application, we stored some keywords and phrases in our app database. Our

algorithm detect user intention based on found keywords and phrases. Later on these keywords

and phrases are used to generate corresponding Java codes using our algorithm. Then finally it will

23

show outputs in the application interface. As we have worked on limited amount of functions and

syntax this prototype, it’s pretty much less complicated but the algorithm will be way more

complicated after it allows to use external libraries, extended methods and other complex

programming sections. After generating the code, it can be compiler and run via remote cloud

server. As all the apps of Android OS runs on Dalvik virtual machine it’s not possible to compile

the code on the mobile device. On the top of this, even if we use NDK for compiling the codes

inside the mobile device it will required huge space and processing power, which is not even

possible on many low end mobile devices. Hence, we chose to compile the code on cloud server.

In our project, we have use an open source cloud compiler server which compiles the codes and

sends back the output to our app.

Figure 3.2 Flowchart of Vocal app

24

Algorithm

3.3.3 Keywords and phrases
In our application database, we stored some of the keywords and phrases so that we can operate

the app smoothly in our thesis project. The keywords are "print"," int", ''char", "for'', "while","

greater"," great", "less"," void"," return", "shutdown". And the phrases are "Create an Array",

"Create a loop", "Create a class", " Greater than", " less than". We will add more keywords and

phrases in our app database.

voice = input voice

array[]words = split_voice_to_words(voice)

if words contains keywords

 detect_user_intention

 generate_java_syntax

 display

 finish

else

 kill process //for no redundancy/recursion

 restart process

25

3.3.4 Different Functions
We have added many functions in our vocal application. They are variable, array, print, for/while

loop, creating class, condition, methods etc. In the variable segment, we can create two types of

variables, one is integer "int" and other one is character "char".

We can create one dimensional array in this app giving the command "create an array". The

application will ask the size of the array. After giving the size of the array the application will

create an array with the given size.

User can also print his/her result using the command "print".

We can create a class by giving the command “Create a class”. Then the application will ask for

the class name. And we have to give a name for the class. By this way, a class can be created in

our vocal application.

In the for/which loop there are some conditions in our application. Firstly, we will give voice input

"Create a loop". It will ask "for/which" loop. If we give either for or which loop, it will ask for

counter number which is how long the loop will continue. After giving the counter number, the

application will ask greater than or less than. After that it will ask logic number which is the

number of increment or decrement. After that, vocal app will ask the loop will increase or decrease.

Telling the increase or decrease, our vocal application finally will show the full loop.

26

27

Figure 3.3: Flowchart for Loop execution

28

Algorithm of Loop function

do create loop

while validating

set loop type

do

if for/while

if validated

 set for/while

 count number

 if counter validated

 set counter number

 if greater/lesser

 validate greater/lesser

 set greater/lesser

 logic number

 if validating logic

 set logic number

 increase/decrease

 validate

 set increase/decrease

 display

29

We can also create methods in our vocal application. For this the user has to give the command

“Create a Method”. Then the application will ask the user what kind of method he/she wants. For

the void method the user has to give command “Void” or for the non-void methods the user has to

give command “Return”.

Figure3.4: Flowchart for method

30

Chapter 4

Experiments and Results
At present very little research has been carried out in the field of programming by voice but, as

voice recognition software continues to improve and basic entry-level computers are able to cope

with the computational demands of such software is increasing. In the USA alone there are in the

region of 3 million people who are unable to use a computer via normal methods, but could interact

with one by voice [8]. Enabling such people to programmer would open the door to the fastest

growing industry in the world. So far our thesis project is on the entry level. With this level of the

thesis project we did some observation.

4.1 Interacts with voice recognition system
First of all the application will take some specified commands from the user. After that the

application will match the commands with its database. Then it will proceed to the next step by

completing the commands. Each time the application “Vocal” take the input from the user by voice

and after matching the input with its database it show the outputs in the display. In this thesis

project we used Google API for taking input.

31

Figure 4.1: Voice recognition system

4.2 Functions
As the thesis project is at an entry level that is why we added some of the basic functions in it.

After completing the full search we can add more functions and feature in the application.

Voice Input

Matching with
the databse

Completing
the

commands

Showing
results on

display

32

4.2.1 Variable
In this application, we can create variable. At this level, we only added two types of

variable. One is “int” and the other one is “char”. By giving commands we can create

different types of variable.

4.2.2 Array
In this level we only implemented the one dimensional array. In the application “Vocal”

when the user gives the command “Create an Array”, the application will ask the user the

Figure 4.2: Vocal’s home user interface

33

size of the array. After giving the size of the array the application will create an array with

the given size.

4.2.3 Print
User also can print his/her outputs in the output part of the mobile display. For this the

command is “Print”. After that the application will print the result of the previous input in

the mobile display.

Figure 4.3: Vocal’s print code generation

4.2.4 For and While loop
By this application, we can create for or while loops. For this the command is “Create a

loop”. Then the application will ask the user what kind of loop he/she wants. After

confirmation the application will create that loop.

34

Figure 4.4: Vocal’s loop code generation

4.2.5 Create a class
The user can create a class by giving the command “Create a class”. Then the application

will ask for the class name. Next the user has to give a name for the class. By this way, a

class can be crated in the application.

35

4.2.6 Condition
In the application “Vocal” we added some basic conditions. For example, greater than or

less than. After giving the command “Greater/Great/Greater than” or “Less/Less than” the

user can choose the conditions.

Figure 4.5: Vocal’s condition code generation

4.2.7 Methods
In our application “Vocal” we added the method function. For this the user has to give the

command “Create a Method”. Then the application will ask the user what kind of method

he/she wants. For the void method the user has to give command “Void” or for the non-

void methods the user has to give command “Return”.

36

4.2.8 Compilation segment
This is an important segment in our application “Vocal”. All the outputs will be compiled

on a remote cloud server. After that, cloud compiled output will be sent back to the app

with Error status and even denoting the exact error. We have used cloud compiler because

usually compiling on Android device is not possible because the apps run on Dalvik virtual

machine and Android do not support compilation on this virtual machine.

Figure 4.6: Cloud compilation

4.2.9 Shutdown
Out final feature in the application is to shut down the full application by giving a

command. And that is “Shutdown”. If any user gives this command the application will

shut down immediately and come back to the mobile homepage.

37

4.3 Problems when interacting with voice recognition

system
 Voice recognition software is not 100% accurate. Any software development needs to be

robust enough to deal with this [8].

 Once the software has recognized a word, it will send the complete text of that word to the

application regardless of what the application does. For example, any error message will

be ignored until the complete command has been sent. We have to think about it when we

are handling the error.

 The application fully depends on the voice input. That is why we have to test it in all the

fields. Sometime a simple gap can make the full command meaning less. For example, if

we give the command “Greater”>>gap>>”Than” the application may not work properly.

We have to give the commands properly.

4.4 How spoken forms were chosen
The mathematical precision of programming language sometime becomes curse. It is a curse for

verbal entry of the programs because humans do not speak punctuation or capitalization,

sometimes they drop their voice and sometime give gap in their commands. To avoid this kind of

problem we experiments a lot. For example to create a loop the user can give commands in

different ways, like loop/create loop/ create a loop etc. So, it may create problems in the

application. That is why we choose some forms of the commands so that our application can get

the right command perfectly. Here we choose the word “Loop”. Whenever the application gets the

“Loop” word in the command it create a loop. Same thing happens in the condition part. For

example the user can give command “Great/Greater/Greater than” etc. When the application gets

the word “Great” in the commands it will proceed to the “Greater than” condition.

38

4.5 What was not implemented and why
In the application we did not implement the “Edit” option. Because every time we give a command

the cursors move to the next line. So we cannot edit the previous line of the codes. To do this we

need more research in this section.

At this level of the work we did not add the “Delete” function. Because every method is related or

connected with each other. If we delete one method the full code cannot be run. Same thing for the

variables. If a user deletes a variable from a method but the variable is used in another method,

there will be error. That is why we did not add this function.

“Copy and Paste” function is not added in the application “Vocal”. Because to copy the code we

need the permission to use the phone memory. For security purpose, it is hard to access to the

memory. On the other hand, if we copy a code from other places and paste the code in our

applications, there may some error because it may not match with the in the application database.

4.6 Problems and solutions
In every phase of this thesis project we faced some problems. By solving those problems we moved

to the next stage. Some of them are discussed below.

4.6.1 Selecting the API
To convert voice to text we need a voice based API. For this we tried many APIs. For

example IBM cloud, iSpeech, Google etc. We do some research about all of this. We do

many experiments with those APIs in different situations. We found this accuracy

API Name Accuracy (%)

IBM Cloud 55-65

39

iSpeech 60-70

Google 75-85

Figure 4.7: Accuracy of the APIs

By this way we find out that Google API gives the most accurate result. This is why we

choose to use Google API in our thesis project.

4.6.2 Creating a Database
At the beginning, we used firebase database [19] in our thesis project to store the methods,

conditions, commands etc. Firebase database is an online database. That is why we need

internet connecting every time to access it. But our main goal is to make the full system

easy and comfortable. If the application need internet every time it will become slow and

it will fully depend on the surroundings.

That is why, we moved from the firebase database and create our own database in the

application. We load all our methods, conditions, commands in app database. When the

user installs the application on their mobile devices the database will be automatically setup

there. It will take 3-4 MB space in the mobile storage. By moving to the in app database,

we solved the database problem.

4.7 Observation and analysis
To complete the thesis project we do some observation and analysis to find out the results. Some

of them are given below.

40

4.7.1 Testing in different environments
We test our application “VOCAL” in different environments with different surroundings.

For this we give this application to 10 of our university mates to test it in their class and

then in their homes.

Figure 4.8: Chart of errors

From the figure (4.8) we can see that most of the errors occur in the classroom. Because

we all know that the classrooms are bit noisy places. Our application fully depends on the

voice. We need clear voice input to run the application properly. That is why the number

of errors are more in the classrooms. On the other hand we can see that there are less errors

showing in the home. The reason behind it that our houses are more silent place than our

classrooms.

0

1

2

3

4

5

6

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Number of errors

Class Home

41

4.7.2 Testing with different accents
We tested our application in different accents. For this testing we used Asian accent,

American accents and British accents. For the American and British accents we use voice

recorder device to find out the results.

Accent Error per person

Asian 21

American 7

British 9

Figure 4.9: Accent error per person

Here we can see most of the error occurs in Asian accent. Because Google API mainly

build on the American and British accent. That is why the numbers of errors are less in

those accents. We did an experiment in native English speaker and non-native English

speaker.

Figure 4.10: Speaking error graph

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Test 1 Test 2 Test 3 Test 4

Speaking Error

Native English Non-Native English

42

Test 2 seemed to have the less speech recognition errors for non-native English speakers, but

the most speech recognition errors for native English speaker. This highlights that word

pronunciation differs for each user. One native English speaker experienced zero speech

recognition errors throughout all four test programs, which illustrates the accuracy of the

speech recognition is based on articulation and pronunciation.

43

Chapter 5

Future Plan and Conclusion
Future is committed to no one hence there is no limit of growth and prosperity. Every successful

product, service or company must learn to adopt and evolve to be fit for future market and demand.

Same thing goes for our thesis project prototype Vocal.

Right now it’s a prototype which is not suitable to be launched in market at this moment. Thus this

thesis project needs way more improvement and finalization before being fit for the end

consumers. Apart from the consumer product, it can play a great role in research mostly for natural

programming language.

5.1 Future Implementation and Extension
There is no end of development while working on programming related thesis projects. The one

we worked on is just the prototype and needs huge amount of work and future implementation to

make it complete or even useable for end users.

We will be moving for more natural language detection for perfect code generation. Right now,

we are dependent on Google voice API for getting input from user but it has noticeable amount of

error rate when it comes to detecting non-native English speaker. That’s where we need way more

development for our thesis project to be market fit all over the globe. According to the survey of

HackerRank there is not even a single native speaking country within top 10 [4] in the list of best

developer’s country, that simply shows non-native speakers are way more important when it comes

to programming. We will either search for more advanced voice API that can detect all types of

English accent or we need to develop one for ourselves by giving extra priority to non-native

speaker’s accent.

On the top of that, we can make it act like an AI by integrating neural network instead of keywords

and phrases based algorithm. That’s how our thesis project will reach at its maximum potential of

being the most advance natural language processor and code generator that can execute based on

human voice input.

44

5.2 Business Perspective
Every product needs to have a business value to sustain and evolve. There are basically two types

of business which are mostly seen in our economy which are B2B (Business to Business) and B2C

(Business to Consumer). There are very few product lines in the world which are perfect for both

type of market and luckily Vocal is one of those.

There are lots of paid compiler like IntelliJ IDEA, Codenvy, Sublime Text and so on which simply

shows that there is a big market for paid IDEs despite having lots of free one. Software firms and

development companies mostly choose the paid IDEs due to having dedicated support while they

stuck. On the top of that, sometime companies may need proprietorship extensions for their

business and only such big IDEs owners can provide such service. Hence we can clearly, observe

a big B2B market for our Vocal which can reduce programmers day to day pain of sitting at one

place and typing codes.

At the same time, now a days smarts parents are aware how important programming is and for this

reason they want their children to learn basic programming at very early age. There are already

many apps, games and even hardware based tool-kits to teach programming to kids. Our vocal app

can bring new horizon to this sector by opening new way of learning programming by giving voice

based instructions.

5.3 Research Sector
Every single technology has its own limits and requires huge research and development to

overcome the limits. In some cases, research for one particular issue may come up with solutions

that can be applied in many other sectors or industries. Since the invention of programming

language people have been doing research and as a result we got advanced programing languages

like C++, Java, Python, JavaScript and so on. Same sort of research is need to make this voice

based code generator way more efficient, faster and accessible.

Apart from voice input, its processing section has huge research scope where AI and machine

learning can be implemented for more accurate identification of voice instruction.

45

5.4 Conclusion
Actually there is no end of tech based solution, there is nothing called 100% perfect solution of

any problem because every single product, service, research thesis project etc. has more rooms to

grow and expend.

Our thesis project is a small prototype of what future programming will look like and what can be

done to improve this thesis project even further. Our main work relies in the instructions processing

part and will be glad to work on the cloud compiling section in future.

Programming is always a paramount task for human being but voice based programing can make

it way easier and simple to code. Even business minded people or other non-engineering people

can do programming with the help of voice based programming method. There was always a gap

between 100% natural human language and programming language, our thesis project can be the

starting of dispelling this gap and make programming even more fun.

46

References
1. G. S. (2016, May 24). Google says 20 percent of mobile queries are voice searches.

Retrieved February 15, 2018, from https://searchengineland.com/google-reveals-20-

percent-queries-voice-queries-249917

2. Norris, J. (2014, February 13). Android processors: The past, present and future of

smartphone chip design. Retrieved February 15, 2018, from

https://www.greenbot.com/article/2095485/android-processors-the-past-present-and-

future-of-smartphone-chip-design.html

3. Crow, D. (2014, February 07). Why every child should learn to code. Retrieved February

20, 2018, from https://www.theguardian.com/technology/2014/feb/07/year-of-code-dan-

crow-songkick

4. Trikha, R. (2017, July 14). Which Country Would Win in the Programming Olympics?

Retrieved February 20, 2018, from https://blog.hackerrank.com/which-country-would-

win-in-the-programming-olympics/

5. Disability Statistics: Information, Charts, Graphs and Tables. (2018, March 16). Retrieved

February 25, 2018, from https://www.disabled-world.com/disability/statistics/

6. Arnold, Stephen, Mark, Leo and Goldthwaite, John. Programming By Voice, Vocal

Programming. In the Proceedings of the ACM 2000 Conference on Assistive

Technologies. November 2000.

7. Begel, A. Programming By Voice: A Domain-specific Application of Speech Recognition.

AVIOS Speech Technology Symposium–SpeechTek West (2005).

8. Snell, Lindsey. An Investigation Into Programming By Voice and Development of a

Toolkit for Writing Voice-Controlled Applications. M.Eng. Report. Imperial College of

Science, Technology and Medicine, London. June, 2000.

9. Voice Language Translator. Publication number US4984177 A. Publication type Grant.

10. Real-time text-to-speech conversion system. Publication number US4692941 A.

Publication type Grand. Application number US 06/598,882

11. Desilets, Alain. VoiceGrip: A Tool for Programming by Voice. International Journal of

Speech Technology, 4(2): 103-116. June 2001. Price

47

12. D. et al. NaturalJava : A Natural Language interface for Programming in Java. In Proc. of

the Int. conf. on Intelligent User Interface (2000).

13. Masuoka, Christine. Java Programming Using Voice Input: Adding Java Support to

VoiceCode . University of Maryland at College Park

14. Ayub, Mubbashir and Asjad, Muhammad. A Speech Recognition based Approach for

Development in C++.

15. Wagner, Amber and Gray, Jeff . An Empirical Evaluation of a Vocal User Interface for

Programming by Voice.

16. Speech to Text basic example updated · watson-developer ... (n.d.). Retrieved March 18,

2018, from

https://www.bing.com/cr?IG=CA894C9FFDC24300B3B71B93BA60C425&CID=0B2185

A1633E6FA7169E8E6662916ECF&rd=1&h=Y3YUlHL83QLBmPMoV7AZd5RIYZc94

9T1lPYx0D6KJ1s&v=1&r=https://github.com/watson-developer-cloud/node-red-

labs/commit/acf066f262c81c36d6927d5fc38521de4fbe4bf4&p=DevEx.LB.1,5072.1

17. API Reference - iSpeech.org. (n.d.). Retrieved March 20, 2018, from

http://www.bing.com/cr?IG=078B26B7659F4097AFE22C609E251353&CID=2EF2A4D4

101767793525AF1311B8666D&rd=1&h=x9E41uC2_uVg4GNCod1A5JpPoE8mDUSDO

4D-9j0iB9g&v=1&r=http://www.ispeech.org/api/&p=DevEx.LB.1,5070.1

18. Speech API - Speech Recognition | Google Cloud. (n.d.). Retrieved March 23, 2018, from

https://www.bing.com/cr?IG=7918FE4B6D4541DAAC08072C7298318F&CID=067C29

EA79DC6555278F222D7873646E&rd=1&h=h0gGmapXw3Q-

E9iKFGvcjre02FUfkVQAXydQLiqCW1g&v=1&r=https://cloud.google.com/speech/&p=

DevEx.LB.1,5503.1

19. A. S. (2017, April 24). An introduction to Firebase - the easiest way to build powerful,

cloud-enabled Android apps. Retrieved March 23, 2018, from

https://www.androidauthority.com/introduction-to-firebase-765262/

