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ABSTRACT 

In the era of internet every device is getting connected to the internet. In this paper, we 

have assumed that IoT devices can share their power consumption history. Based on data points 

collected from real world environment we have conducted experiments to show that IoT can 

be used as a reliable backbone of a short term load forecasting system. In the experiment four 

machine learning algorithms Long Short-term Memory (LSTM), Support Vector Machines 

Regression (SVR), Decision Forest Regression with AdaBoost and Nearest Neighbors 

Regression were used to analyze the performance of the load forecasting system. In the 

experiment Long Short Term Memory Network has given comparatively better result than 

other three machine learning algorithm with a root mean square error of 1.82. 
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CHAPTER 1 

Introduction 

Electrical energy generation and distribution is a complex and costly process. Efficient 

grid management plays a big role to reduce the cost of energy production. Grid management 

comprises of planning for load demand, maintenance of generation units, supply lines and 

efficient load distribution across the supply line. Therefore an accurate load forecast will 

increase the efficiency of planning process of a power generation company. Power generation 

companies do their plan based on data collected manually. Therefore real time prediction is not 

possible. If data can be collected in real time, forecasting in real time will be possible. Strong 

and reliable Internet infrastructure are already present. Every device we use in our daily life 

are gradually getting connected to the internet to facilitate smart home technologies like Google 

Home [1], Amazon Alexa etc. A device connected to internet usually treated as IoT. In general 

a device with sensors, microprocessor or microcontroller which can connect to the internet, 

send and receive information through internet is called Internet of Thing (IoT) [2].  If the 

devices are configured to send energy uses data to the internet, these data can be used to give 

real time forecasting. In this paper we have shown that real time load forecasting is possible 

with the help of IoT and state of the art machine learning algorithms LSTM Network, Nearest 

Neighbors Regression, Support Vector Regression and Decision tree Regression with 

AdaBoost.   

 

1.1 Motivation 

First of all, increased demand of electricity is creating pressure on production 

companies as well as natural resources. We know natural resources which are used to produce 

electricity are limited in nature. Secondly, the byproduct of electricity generation is pollution. 

Again, cost for producers and consumers are increasing day by day. Therefore to ensure 

sustainable development research communities have shown great interest on how to reduce 

electricity demand by efficient use of electricity. One of the important of methods that is used 

to facilitate efficient use of electricity is load forecasting [3]. With the help of load forecasting, 

producers can tune their production plan and consumer can optimized their electricity 

consumption. Existing forecasting system relies on data collected from production and 
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distribution unit. We have shown that with the help of IoT load forecasting can be done in more 

easy, convenient and reliable way. 

 

1.2 Contribution Summary 

The main contribution of this project is to show that IoT can be used as a reliable 

backbone of a load forecasting system. To support our claim we have tested our system with 

real world datasets. Based on this dataset we have done empirical comparison and performance 

evaluation of four machine learning algorithm. This system will help home user to reduce their 

power consumption by early warning of future power use. This will also help the power 

generation company to meet their demand efficiently by planning ahead of time.  

 

1.3 Thesis Outline 

In this paper, Chapter 2 provides the literature review in details including the algorithms 

and techniques used in the system. Proposed model including the algorithms and techniques 

are discussed in Chapter 3. Results and analysis are presented in Chapter 4. Lastly Chapter 5 

gives the conclusion and future work. 
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CHAPTER 2 

Literature Review 

Load forecasting plays an important role to the efficient use of electricity as well as 

efficient production and distribution. Power load forecasting is categorized in three categories 

[4]. They are short term load forecasting (STLF), medium term load forecasting (MTLF) and 

long term load forecasting (LTLF). These categorization is depend on the range of future time 

taken in to consideration to be predicted. Prediction process which give prediction day or week 

ahead is called short term load forecasting (STLF). Medium term load forecasting (MTLF) 

system are built for month ahead prediction and when years ahead predictions are needed long 

term load forecasting (LTLF) system are incorporated. In this project we have built and tested 

a system which can predict a day ahead forecasting. In this chapter we will discuss about the 

algorithms that are used to build the short term load forecasting system. In the past researchers 

have proposed different types of methods for load forecasting. We will also discuss about some 

of them in this chapter. 

Kong, W. contributed in deep learning based method [5] with appliance behavior 

learning for meter level load forecasting which demonstrated an advantageous performance 

through extensive comparison with other predictors. According to this paper, if we can learn 

the lifestyle pattern of certain resident can help us achieve better metering forecasting. His 

work showed that the using appliance measurements in training data can improve the 

forecasting accuracy.  Contextual variables like temperature, humidity, day of the week and 

special events are taken into consideration in this method for better forecasting performance. 

In this paper individual load forecasting is done using LSTM. Long short-term memory 

(LSTM) is one of the RNN structure, the specialty of this RNN is sequence learning. It 

maintains a memory cell in its structure to remember important state in past to reset the memory 

cell it has a forget gate. As mentioned above the learning lifestyle pattern can be done if 

appliance level consumption are directly measured which assists in interpreting in the 

forecasting. So instead of serving aggregated data to the LSTM the inputs are all available 

major appliance energy sequence to train the predictor. Here the dataset is taken from a 

Canadian household and its 19 appliance for a year. Then the current reading is converted into 

Ampere hour for every 30 minutes to imitate the smart meter data. The appliance chosen for 

appliance learning are clothes dyer, clothes washer, dishwasher, heat pump, television and wall 

oven which are manually operated. For resident behavior learning this approach used the 
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measurement of both the whole house-hold consumption and the selected appliance from the 

past several time interval until the current time as inputs. The consumption forecast of 

subsequent time interval is the output. To compare the performance of this proposed method 

feed forward neural network (FFNN) and K-nearest neighbor (KNN) is used. The lowest 

benchmark is set by empirical mean which is the forecasting value of the statistical mean given 

by the time of the day and day type. Here “look-back” input scheme, a system level load 

forecasting which uses measurement of same time interval of the past few days also compared 

referred with suffix “D” suffix “WA” is used to label test cases that use extra appliance 

measurement in training data and suffix “W” for whole house measurement only. This paper 

concluded showing that LSTM-WA outperformed all other methods. And LSTM-WA with two 

look back interval achieved the best overall MAPE scores and the second best LSTM-W 

predictor with a 4.24% MAPE margin. KNN and FFNN the version of extra appliance data 

gave better result compared to whole house consumption. In conclusion, the LSTM based 

forecasting framework gives better accuracy when consumption sequence of major appliance 

is available. 

Ghulam and Angelos, worked on the applicability and compared the performance of 

Feed-forward deep neural network (FF-DNN) and recurrent deep neural network (R-DNN) 

models on the basis of accuracy and computational performance in the context of time wise 

short term forecast of electricity [6]. Analyzing the data on the time and frequency domain 

independently and subsequently frequency domain components are transformed back to the 

time domain. The parameter which are taken into consideration are weather, time, holidays, 

working days, and lagged load and data distribution effects. This paper collected the dataset 

from ISO New England for duration 2007-2012. The load consumption is recorded at the end 

of every hour of a day and the whole dataset consisted of 52600 records that represented data 

of 6 states of New England, USA. The changing behavior of the dataset is captured during 

analysis in time domain and effects that were captured are temperature effect, working and 

non-working day’s effect, time effect, lagged load effect and data distribution effect. After time 

domain extraction the data is further analyzed in frequency domain. The random signals of 

time domain are converted to different frequencies that are stable and easily predictable which 

improves accuracy. Fast Fourier is performed to determine the dominant frequencies and the 

one with higher magnitude represent the dominant frequencies. Here evaluating the proposed 

models 43824 records from 2007-2011 are used in training dataset and 24 and 168 records for 

days and weeks for test dataset. The RMSE, MAE and MAPE are calculated for four seasons 
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of 2012 and the 5 features extracted from the original features are taken into consideration for 

better accuracy. The result of considering only time domain in both FF-DNN and R-DNN 

varied due to temperature variation in different seasons. The MAPE is 1.30% for R-DNN and 

1.42% for FF-DNN in a year. On the other hand the error are much lower and the accuracy is 

improved in frequency domain analysis where MAPE is 0.067% and 0.057% for FF-DNN and 

R-DNN respectively. So based on the analysis it was shown that weather, time, holidays, 

lagged load and data distribution have most dominant factors and the TF features can be utilized 

for load forecasting. 

Papia Ray, Santanu Sen and A.K. Barisal presented two hybrid methodologies based 

on discrete wavelet transform (DWT) in combination with ANN or SVR for Short Term Load 

Forecasting (STLF) using feature selection [7]. This method was done with the data taken from 

a particular area of New Delhi for a particular month. The data is taken from December 1 to 

February 28. Temperature, humidity, dew point and load consumed for a particular day at a 

particular hour are also taken into consideration. Here data from December 5 to January 31 are 

taken as training data, from February 1 to 28 are used as validation set and the 4days data are 

taken as test set data. Here the feature selection is done through Forward Feature Selection 

(FFS). The analysis was done in two ways one using FFS and other without using FFS and it 

showed that the one done with FSS gave a better result. These analysis was done on monthly 

based, weekly based and daily based and among two hybrid methods DWT-SVM showed an 

error of 0.1% and DWT-ANN showed error of 0.6% which concluded that DWT-SVM showed 

better result than DWT-ANN. 

Taking in consideration of the above mentioned work we have implemented an IoT 

based load forecasting system. The core algorithm of the forecasting system is a machine 

learning algorithm. To select best performing algorithm we have tested performance of several 

machine learning algorithm with a new dataset called “The UK-DALE dataset” [8].  

 

2.1 Load Forecasting with Machine Learning 

Machine learning is the ability of a machine to do certain task without being explicitly 

programed [9]. One of the branches of machine learning is supervised learning. Supervised 

learning is process of turning experience into expertise [10]. In another way when machine 

learn from previous incidents and take decision on unknown incidents is called supervised 

learning. Load forecasting is a complex process due to its nonlinear and always changing 
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nature. If we can teach a machine the user pattern of a certain device which consume electric 

power a good machine learning algorithm can tell the probability of future occurrence. Machine 

learning algorithm produce hypothesis after seeing the data. As hypothesizes are constructed 

based on datasets machine learning hypothesis are adaptable with different scenario and 

circumstances. Therefore we have choose machine learning approach for load forecasting.  

 

2.2 Time Series Analysis with Machine Learning 

In time series data points are collected sequentially with respect to time [11]. There are 

mainly two type of time series. One is discrete time series, where data point are collected with 

a fixed interval of time. One the other hand in continuous time series data points are taken 

continuously without any interval. In the definition of discrete time series it is said that 

difference between two data points must be maintained throughout the whole datasets. The 

datasets we have used in this project is discrete time series. Time series helps to analyze the 

user pattern of electrical devices with respect to time. Time series analysis is a process where 

time series datasets are analyzed to extract features. In this paper we have used machine 

learning approach to analyze time series datasets. We cannot use a time series dataset directly 

for a machine learning algorithm. Different algorithm requires special kind of data preparation. 

In equation 1, y is predicted power consumption in a given time (t) and x is the features of time 

(t-n). Based on features x a machine learning algorithm will predict y. In this paper we have 

used n=1. That means to predict the power consumption of day (t), we have used features of 

day (t-1).  

𝑦𝑡 = 𝑥𝑡−𝑛 (1) 

 

2.3 Long Short-term Memory Network (LSTM) 

Sepp Hochreiter and Jürgen Schmidhuber published a paper [16] in 1997 called “Long 

Short-term Memory” to address the drawbacks of basic RNN Network. They proposed a new 

architecture of RNN Cell. They named the new architecture as LSTM. Specialty of a LSTM 

cell is its memory and three gates. LSTM uses the memory to remember from very deep down 

the sequence. It uses the gates to control the flow of information from memory and to the 

memory. In Figure 1 a schematic of LSTM cell is given.  

Input of LSTM Cell: 
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 Previous cell State (Ct-1): Memory of previous state is forwarded to the current state 

(Ct). Which will then added to the current state by increment. Process of increment is 

given in the description of forget gate. 

 Previous cell output (ht-1): Cell output of previous time step is taken as input in current 

time step. 

 External input (xt): Neural network output of current time step. This output is optional. 

Depend of the need it sometimes give output an sometimes not.  

Output of LSTM Cell: 

 Current cell state (Ct): Current cell state is forwarded to future time step through cell 

state output. 

 Cell output (ht):  After squashing cell state through tanh activation function, cell output 

is forwarded to future time step.  

 External output (ht): Optional Neural Net output. 

 

 

Figure 1. LSTM Cell 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) (2) 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) (3) 
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Č𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐) (4) 

𝐶𝑡 = 𝑖𝑡 ∗  Č𝑡 (5) 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh ( 𝐶𝑡 ) (7) 

 

 𝑊𝑓 : Weight for forget gate layer 

 𝑏𝑓 : Bias for forget gate layer 

 𝑖𝑡 : Output of input gate layer 

 𝑊𝑖 : Weight for input gate layer 

 𝑏𝑖 : Bias for input gate layer  

 Č𝑡 : Candidate value 

 𝑊𝑐 : Weight of tanh layer 

 𝑏𝑐 : Bias of tanh layer  

 𝑊𝑜 : Weight of output gate layer 

 𝑏𝑜 : Bias of output gate layer  

 

Figure 2. Sigmoid and Tanh function graph 

Gates of LSTM Cell:  
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 Forget Gate (ft): Overwhelming unnecessary information causes information 

morphing to the cell state, as known as memory. Forget gate shorts out most relevant 

information by sigmoid layer. In Figure 2 a sigmoid function is given. It squashes the 

output between 0 and 1. 1 means completely remember and 0 means completely forget. 

Equation 3 [16] shows that with respect to previous cell output and current input it 

calculate which part of the previous information need to remember in the current state. 

 Input Gate (𝒊𝒕): It is also known as write to the memory. When LSTM cell gets new 

external input it needs to decide which part of the memory it will overwrite with new 

value. First with the help of sigmoid layer it decides which values it needs to update. 

Weighted external input, previous cell output and bias is passed to sigmoid layer 

according to Equation 4 [16]. Then a tanh layer select a vector of candidate values by 

Equation 5 [16] for the selected values by Equation 4. In Figure 2 a tanh function is 

given. A tanh function squashes input between -1 and 1. After multiplying output of 

Equation 4 and Equation 5 element wise we get a new cell state or memory state (Ct), 

Equation 6. 

 Output Gate (ot): Unlike RNN cell output, LSTM cell does not output the exact copy 

of cell state. Instead it outputs a filtered version of the cell state. A sigmoid gate 

Equation 6 decide which part of the memory will be forwarded to the next state. Present 

cell is squashed by a tanh layer to scale it between -1 and 1 multiplied elementwise with 

output of equation 6 [16] to produce cell output, Equation 7 [16]. 

The ability of selectively read, write and remember the events happened in numbers of 

previous time steps makes LSTM a robust algorithm for sequence learning. 

 

2.4 K-Nearest Neighbors Regression 

K-NN algorithm saves all convenient cases to predict the targeted value based on the 

similar values. K-NN is not a new technique, it has been used in 1970’s for statistical estimation 

and pattern recognition as non-parametric technique. 

KNN regression is used to calculate average of targeted value of k nearest neighbors. 

Using inverse distance weighted average of the k nearest neighbors can also be calculated. 

KNN classification and KNN regression uses the same distance functions. With the help of the 

following functions distance between neighbors are measured [17]: 
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Euclidean 

√∑(𝑥𝑖−𝑦𝑖)2

𝑘

𝑖=1

 

 

(8) 

Manhattan 

 
∑ |𝑥𝑖 −

𝑘

𝑖=1

𝑦𝑖| 
(9) 

Minkowski 

 (∑(|𝑥𝑖 − 𝑦𝑖|)
𝑞

𝑘

𝑖=1

)

1
𝑞⁄

 

(10) 

Hamming Distance 

𝐷𝐻 = ∑|𝑥𝑖 − 𝑦𝑖|

𝑘

𝑖=1

 

𝑖𝑓 𝑥 = 𝑦 𝑡ℎ𝑒𝑛 𝐷 = 0 

𝑖𝑓 𝑥 ≠ 𝑦 𝑡ℎ𝑒𝑛 𝐷 = 1 

(11) 

These equations can only be used for continuous variables. For categorical variables Hamming 

distance must be used. This measures the number of instances where different corresponding 

symbols are in two strings of equal length. 

Inspecting the data the ideal value for K is chosen. With a large K value the noise is 

reduced but it becomes harder to detect the distinct features. To determine K value using 

independent data set to validate K values, cross- validation is an ideal way. The ideal K for 

most datasets is 10 or more which produces better results than 1-NN.  

Standardized Distance: Standardizing the training set can overcome the difficulty to 

calculate distance measures directly from the training set where there is a mixture of 

numerical and categorical variables.  

𝑋𝑠 =
𝑋 − 𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛
 

(12) 

Using the standardized distance on the same training set, the unknown case returned a different 

neighbors which is not a good sign of robustness. 

 

2.5 Support Vector Machine – Regression 

Support Vector Machine can also be used as a method of regression, keeping all the 

fundamental elements intact that designate the algorithm (maximal margin). With scarcely 

trivial distinction, the Support Vector Regression utilizes the same postulates as the SVM for 
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categorization. Firstly, because it has indefinite possibilities, the prediction of the resulted real 

number becomes perplexing. In case of regression, a margin of tolerance (epsilon) is allocated 

in approximation to the SVM which would have already arise from the problem. Aside from 

this, there is another complication. Thereby the algorithm is further more problematic to be 

accepted. Nevertheless, the gist stays the unchanged: diminishing error, singularizing the 

hyperplane which maximizes the margin, realizing the part of the error is tolerated. The 

followings are mathematical formulation of the kernels used in SVR [18]: 

Linear SVR: 

 
  𝑦 = ∑(𝛼𝑖 − 𝛼𝑖

∗). (𝑥𝑖, 𝑥) + 𝑏

𝑁

𝑖=1

 

 

(13) 

Non-Linear SVR 

 
𝑦 = ∑(𝛼𝑖 − 𝛼𝑖

∗). (𝜙(𝑥𝑖), 𝜙(𝑥)) + 𝑏

𝑁

𝑖=1

 

 

(14) 

 

𝑦 = ∑(𝛼𝑖 − 𝛼𝑖
∗). 𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑁

𝑖=1

 

(15) 

Polynomial 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝐾(𝑥𝑖, 𝑥𝑗)
𝑑

 (16) 

Gaussian Radial Basis 

function 

 

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−
||𝑥𝑖 − 𝑥𝑗||

2

2𝜎2
) 

(17) 

 

2.6 Decision Tree – Regression with AdaBoost 

Decision tree establishes regression models in the form of a tree structure. It 

simultaneously jots down dataset onto smaller and smaller subsets and aligned decision is 

incrementally established. The end result is a tree with decision nodes and leaf nodes. A 

decision node has two or more sectors, each indicating values for the feature tested. A 

numerical target is illustrated by leaf node. The highest decision node in a tree which becomes 

equivalent to the leading predictor is called root node. Both categorical and numerical data can 

be conducted by decision trees [19]. The key advantages of trees are that they can be rapidly 

instructed (say, as distinguished between neural networks) and are non-parametric. The major 

disadvantages are that the space has limits that are parallel to the characteristic axes and 
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representation based on powers or products of the features are disapproved. Making decision 

surfaces that are oblique to the axes are possible and using so called oblique decision trees 

[Bradley and Utgoff (1995), Ittner and Schlosser (1996), Murthy et.al. (1993). Mouth et.al. 

(1994)] [20] and as a matter of fact CART has that option. Moreover, in lieu of the input to the 

tree being the features, we could have maintained both the products of features and features 

raised to some powers. All these alternatives make the constructing of trees prolonged. 
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CHAPTER 3 

Proposed Model 

The IoT based Short Term Load forecasting system is consist of IoT devices and a 

central processing unit. IoT devices are configured to upload power usage data to the server. 

The central processing unit is configured to do calculation based on a selected machine learning 

algorithm. Based on the calculation and learning process the unit will give prediction. In this 

chapter we will give details description about the proposed model and process of implementing 

the model. 

 

3.1 Process 

There are four steps to give Short Term Load Forecasting. In Figure 3 a pectoral view of 

proposed model is given. 

 Data collection from IoT devices 

 Preprocessing and filtering 

 Training machine learning model 

 Load Forecasting 

 

Figure 3. Proposed Model 
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3.2 Data Collection 

 

 

Figure 4. Total Power Consumption of 1 year 

Main idea of this project is forecast total power consumption based on the data collected 

from the IoT devices. Due to limitations of time and resources we could not configure devices 

to upload power uses data to the internet. In this project we have used “The UK-DALE dataset” 

created by Jack Kelly & William Knottenbelt [8]. This datasets contains appliance level 

disaggregated power consumption record as well as aggregated whole house power 

consumption record. In Figure 4 whole house power consumption of last one year is given. We 

assumed that all the appliances in this datasets are IoT devices. In Table 1 a short overview of 

the whole dataset is given. For training and testing we have used data of house_1 because it 

contains maximum number of appliances. Also they have given more emphasis on recording 

house_1 data. In Figure 5 shows that house_1 data are more consistent than other houses.  

 

Table 1 Summary of The UK-DALE dataset 

House 1 2 3 4 5 
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Number of 

occupants 

4 2 2 2 2 

Description 

of occupants 

2 adults and 

1 dog started 

living in the 

house in 

2006. One 

child born in 

2011. 

Second child 

born in 2014. 

2 adults. 1 at 

work all day; 

the other 

sometimes 

home 

1 adult and 1 

pensioner 

 2 adults 

Total number 

of meters 

54 20 5 6 26 

Date of first 

measurement 

2012-11-09 2013-02-17 2013-02-27 2013-03-09 2014-06-29 

Date of last 

measurement 

2017-04-26 2013-10-10 2013-04-08 2013-10-01 2014-11-13 

 

 

Figure 5. Summary of The UK-DALE dataset 
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3.3 Preprocessing and Filtering Data 

 

 

Figure 6. Distribution Graph of Total Power Consumption 

 

Noise and misleading data in any dataset are bad for any model to train on. A misleading 

dataset will eventually produce a hypothesis which will not do well in unseen data. Therefore 

noise cancellation has done with great care. The dataset contains UML configuration file for 

every houses. The file has details description of meter devices and appliances. Each appliance 

has upper bound and lower bound of power consumption. Any power consumption beyond that 

limit is considered as noise or bad reading. In Appendix A upper and lower bound of every 

device recorded in house_1 is given. The main dataset contains five folder. Each folder 

correspond to each house. Under each house numbers of CSV files according to number of 

devices are given. Each CSV file contains records of power consumption with time. In each 

CSV file time is give in format of UNIX time epoch. Interval data recording is six seconds. In 

Figure 7 a screenshot of first 10 rows of channel_6 which is the records of power consumption 

of dishwasher is given. In Figure 7 we can see CSV file contains two column and column_0 

contains time and column_1 contains power consumption record.  
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Figure 7. Data Preprocessing 

We have used pandas, a powerful library written in python for data analysis and manipulation. 

Steps for filtering every CSV file is given below.  

 With the help of pandas we converted UNIX time epoch to human readable date and 

time. 

 We dropped all the data record that do not comply with the bound given in Appendix 

A. In Figure 10 a screen shot of noise free reading is given. Now we can say that the 

dataset does not contain any noise according to Appendix A. Power consumption 

records are taken via external meter Figure 9. The meters require some power to operate 

and not factory standard. Therefore error is obvious in their reading. In IoT devices 

power consumption reading capability will be integrated in their internal circuit and 

will not face this kind of error. 

 Goal of this project is to give a day ahead forecast. Therefore we do not need six second 

interval datasets. Six second datasets are then resampled by day. Then total power 

consumption of the day is converted into kWh, Figure 8.  

 House power consumption has good relation with weather condition. Therefore we 

have added average temperature, average humidity and average wind speed of every 

day. 



18 

 

 In Figure 6 distribution graph of total power consumption is given. From this 

distribution we have dropped lower than (mean - 2 *σ) and greater than (mean + 2 *σ). 

According to normal distribution probability of any event outside 2 σ is less than 5%.  

 After completing aforementioned steps all the CSV files are concatenated into a single 

CSV file. Then the date and time was again converted into UNIX time epoch. Reason 

of converting is, date time format changes in different computer due to different version 

of software. UNIX time epoch is an integer number. As a result date and time remain 

intact in every computer that want to work on the dataset. In Figure 10 a partial screen 

shot of final CSV file is given. 

 

Figure 8. Dataset after converting to kWh per Day 

 

 

Figure 9. Smart plug and Data logger 
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3.4 Training STLF System 

3.4.1 Architecture of LSTM  

LSTM networks are renowned for their ability to remember pattern and sequence. 

Human behavior tends to be repetitive. From this intuition we used LSTM Network to learn 

the behavior pattern of power usages. Also, unlike normal datasets time series has a complexity 

of order dependence between items and sequence. Long Short-term Memory Network were 

made to deal with these kind of sequence dependencies. To build LSTM Network, 

programming was done in Python 3.5. Python framework especially Pandas was used to read 

dataset from a CSV file. To make the dataset suitable for LSTM, numPy was used to reshape 

the dataset. We used TensorFlow with a rapper called Keras. 

 

 

Figure 10. Partial screen shot of Final Dataset 

 

Input to a LSTM Network is 3D matrix. Datasets we have used in this project is 2D matrix 

which consist of columns and rows. Number of columns corresponds to dimension of feature 

vector and number of rows corresponds to number of data points. Input of LSTM Network 
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consist of another dimension of the matrix, which corresponds to time steps. LSTM network 

use this time steps to keep track of the previous occurrence. In Figure 11 graphical view of the 

input of a LSTM Network is given. Structure of LSTM Model is described below Figure 12.  

 

 

Figure 11. Input Shape of LSTM 

 

 

Figure 12. Structure of Neural Network 

In input layer is used to take output from outside and pass it to LSTM cell. In this layer input 

and out shape are same. 

 Input and output Shape: (Batch Size * Time Step *  Input Vector Dimension) 
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o Batch Size: 10 sequence of samples 

o Time Step: 7. Every sequence consist of today and previous 6 days of power 

consumption reading  

o Input Vector Dimension: 55 

LSTM Cell take input of a 55 dimensional vector and give output of a 16 dimensional vector. 

 Number of LSTM Cell: One.  

 Batch Input Shape: (Batch Size * Time Step *  Input Vector Dimension) 

o Batch Size: 10 sequence of samples 

o Time Step: 7. Every sequence consist of today and previous 6 days of power 

consumption reading  

o Input Vector Dimension: 55 

 Batch Output Shape: (Batch Size * Time Step *  Input Vector Dimension) 

o Batch Size: 10 sequence of samples 

o Time Step: 10. Every sequence consist of today and previous 10 days of power 

consumption reading  

o Output Vector Dimension: 16 

 Activation: tanh  

 Recurrent activation: Hard sigmoid 

 Return Sequence: True 

Output Layer of this network consist of one dense layer which take 16 dimensional vector as 

an input and give output of one dimensional vector. 

To prevent over fitting of the model a threshold was given. A program always keep 

track on difference between loss of training set and loss of test set.  When loss of training set 

is decreasing and loss of test set is increasing and difference is bigger than threshold, it stops 

training the model.    

3.4.2 Training K-Nearest Neighbors Regression 

Neighbors-based regression uses continuous data labels rather than discrete variables. 

The query point is appointed a label which is the average of the labels of nearest neighbors.  

There are two different neighbors regressor that are implemented by scikit-learn those 

are 𝐾𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 where the implementation is done learning the k nearest 

neighbors of each inquiry and k is user specified integer. And 𝑅𝑎𝑑𝑖𝑢𝑠𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 
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is implemented learning about the neighbors in a permanent radius r of the inquiry point and r 

is a floating-point value which is given by user. 

Uniform weights are used by the basic nearest neighbors that is the classification of 

query point is contributed uniformly by each point in local neighborhood. In some conditions, 

to weight points in a way that the neighboring points accord more to regression than distant 

points can give us advantage. This can be done by using the keyword 𝑤𝑒𝑖𝑔ℎ𝑡𝑠. 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =

 ‘𝑢𝑛𝑖𝑓𝑜𝑟𝑚’ is the default value assigned to all points with equal weights and from the query 

points the weights proportional to the inverse of distance is allocated by 𝑤𝑒𝑖𝑔ℎ𝑡 =  ‘𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒’. 

In other way, to compute the weights user can define a function of the distance. 

Brute Force: In machine learning the committed area of research is fast computation 

of nearest neighbors. The most raw neighbor exploration application is the brute-force 

computation of distances among all pairs of points in the dataset. 𝑂[𝐷𝑁²] is scaled where 𝑁 is 

the number of examples and 𝐷 is dimensions. For small data examples brute-force neighbor 

search can be very moderate. However with the increase in the amount of examples 𝑁 the 

brute-force method becomes unworkable. The search by brute-force neighbors in the 

class 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 is limited to the keyword 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 =  ‘𝑏𝑟𝑢𝑡𝑒’ as well as 

computation is done by means of the sequences accessible in 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒. 

We used 15 neighbors (𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 15) i.e. depending on the values 15 neighbors 

it gives prediction. 

 3.4.3 Support Vector Regression 

The function of Support Vector Classification can be extended further to solve 

regression problems. This method is called Support Vector Regression. 

The cost function of building a Support Vector Classification model does not count the 

training points which are beyond specific margin. As a result, the model depends on a subset 

of the training data. Similarly the cost function of building a Support Vector Regression leaves 

out any training data close to the model prediction. For which, the model depends on a subset 

of the training data. 

Even though Support Vector Machines are powerful tools, their compute and storage 

requirements are increasing with the number of training vectors. Scikit-learn has class named 

𝑙𝑖𝑏𝑠𝑣𝑚 [23] which implements SVR. SVR has a quadratic programming problem (𝑄𝑃) core 

which separates support vectors from the rest of the training data. 𝑙𝑖𝑏𝑠𝑣𝑚-based 
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implementation uses the 𝑄𝑃 solver scales between 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
2) and 

𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
3 ) which depends on the efficiency of 𝑙𝑖𝑏𝑠𝑣𝑚 cache (dataset 

dependent). For very sparse data 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 should be replaced by the average number of 

non-zero features in a sample vector. 

In scikit-learn the support vector machines support both dense and sparse sample 

vectors as input. For the efficient performance, 𝐶-ordered 𝑛𝑢𝑚𝑝𝑦. 𝑛𝑑𝑎𝑟𝑟𝑎𝑦 (dense) 

or 𝑠𝑐𝑖𝑝𝑦. 𝑠𝑝𝑎𝑟𝑠𝑒. 𝑐𝑠𝑟_𝑚𝑎𝑡𝑟𝑖𝑥 (sparse) with data type float64 is preferred. 

In the library of scikit-learn three different implementation of SVR is given. They are: 

 𝜀 − 𝑆𝑉𝑅 

 𝑁𝑢𝑆𝑉𝑅 

 𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑉𝑅 

A faster implementation is possible in 𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑉𝑅 than 𝜀 − 𝑆𝑉𝑅 as it only considers linear 

kernels. We have implement 𝜀 − 𝑆𝑉𝑅 in our dataset. Mathematical formulation of 𝜀 − 𝑆𝑉𝑅 is 

given below:  

Assuming a set of training points,{(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} where 𝑥𝑖 is a feature vector and 

𝑥𝑖 ∈ 𝑅𝑛 and 𝑦𝑖 ∈ 𝑅1 is the target output. If the given parameters 𝐶 > 0 and 𝜀 > 0 then 

according to Vapnik [18] Support Vector regression is  

 

min
𝑤,𝑏,ξ ,ξ ∗

1

2
𝑤𝑇𝑤 + 𝐶 ∑ ξ i

𝑛

𝑖=0

+ 𝐶 ∑ ξ 𝑖
∗

𝑛

𝑖=0

 

 

(18) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑤𝑇𝜙(𝑥𝑖) + 𝑏 −  𝑦𝑖 ≤  𝜀 + ξ 𝑖, 

 

 

                          𝑦𝑖 − 𝑤𝑇𝜙(𝑥𝑖) − 𝑏 ≤  𝜀 + ξ 𝑖, 

 

 

            ξ𝑖 , ξi
∗ ≥ 0, 𝑖 = 1, … , 𝑛. 
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The twofold problem is 

min
𝛼,𝛼∗

1

2
(𝛼 − 𝛼∗)𝑇𝑄(𝛼 − 𝛼∗) + 𝜀 ∑(𝛼𝑖 + 𝛼𝑖

∗)

𝑛

𝑖=0

+ ∑ 𝑦𝑖(𝛼 − 𝛼∗)

𝑛

𝑖=0

 

 

(19) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝑒𝑇(𝛼 − 𝛼∗) = 0 

 0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1, … , 𝑛 

                 𝑊ℎ𝑒𝑟𝑒 𝑄𝑖𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗) ≡ 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗)  𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

After solving the above equation, the approximate function is  

∑(−𝛼𝑖 + 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥)

𝑛

𝑖=0

+ 𝑏 

 

(20) 

In the above equation notations are, 

𝑤 = 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑤𝑇𝑥 = 𝑏  

𝜉 = 𝑠𝑙𝑎𝑐𝑘 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙𝑜𝑤 𝑓𝑜𝑟 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠      

𝐶 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑑𝑒 𝑜𝑓𝑓 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑎𝑛𝑑 𝑚𝑎𝑟𝑔𝑖𝑛                   

𝑒 =  [1, … ,1]𝑇                                                                                                                  

In scikit-learn these constraints can be retrieved through 𝑑𝑢𝑎𝑙_𝑐𝑜𝑒𝑓_ which contains 

the change between  𝛼𝑖, 𝛼𝑖
∗, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑣𝑒𝑐𝑡𝑜𝑟𝑠_ which holds the support vectors, in 

addition 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡_ which holds the autonomous term 𝑏. 

The fit method trains the model which takes as argument vectors 𝑋, 𝑦 where 𝑦 is likely 

to have floating point values. We used default parameters of library for implementation of SVR 

where Penalty parameter 𝐶=1.0, 𝜀 =0.2 (states the epsilon-tube inside which no penalty is 

linked in the training loss function with points forecasted inside a space epsilon from the real 

value), 𝑑𝑒𝑔𝑟𝑒𝑒 = 3 (only for Gaussian Radial Basis function and Polynomial kernel). 



25 

 

 3.4.4 Decision Tree Regression with AdaBoost:   

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 is a class capable of carrying out regression on a dataset. 

Like with other regressions, 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 takes as input two arrays. An array 𝑋 

of dimensions [𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠] of the training points, and an array 𝑦 of integer values 

having dimensions 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 of the class tags for the training points. 

An efficient implementation for the construction of decision tree is offered by scikit-learn. By 

presorting the features before training and keeping the label count the total cost of the algorithm 

becomes 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)). This is optional for all tree based algorithms.  

Tree algorithms: In 1986 Ross Quinlan developed ID3 (Iterative Dichotomiser 3). 

This algorithm creates a multiway tree in which finds the categorical feature for each node that 

yields the major information gain for categorical target. These trees are developed as big as 

possible and then pruned to increase the capability of the tree to simplify to unobserved data.  

C4.5 descendant of ID3. The trained trees are converted to sets of if-then rules by C4.5. The 

precision of each instruction assessed to decide the sequence in which they should be useful. 

Removing an instruction’s prerequisite if the precision of the instruction improves without it is 

done by pruning. CART (Classification and Regression Trees) is same as C4.5 but it does not 

compute rule sets and it supports numerical target variables. Binary trees are constructed using 

the feature and starting point that yield the major information gain at each node. Optimized 

version of CART algorithm is used by scikit-learn. 

Mathematical Formulation: Assuming training vectors 𝑥𝑖 ∈ 𝑅𝑙 , 𝑖 = 1, … , 𝑛 and 

targeted values containing vector 𝑦 ∈  𝑅𝑛, partition of the space is made recursively such that 

the samples with the same labels are in a group.  

Suppose the data at node  𝑘 be represented by 𝑃. Splitting is done using 𝜃 = (𝑗, 𝑡𝑘) 

having of an attribute  𝑗 and threshold 𝑡𝑚. After partitioning the data is kept into  𝑃𝑙𝑒𝑓𝑡(𝜃) and 

 𝑃𝑟𝑖𝑔ℎ𝑡(𝜃) subsets  𝑃𝑙𝑒𝑓𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 ≤ 𝑡𝑘 and 𝑃𝑟𝑖𝑔ℎ𝑡(𝜃) = 𝑃 ∖ 𝑃𝑙𝑒𝑓𝑡(𝜃). Noise at  𝑘 is 

calculated using a function 𝐻( ) which calculates impurity. The choice of function depends on 

the method of solving (classification or regression)[19]. 

𝐺(𝑃, 𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑁𝑘
𝐻 (𝑃𝑙𝑒𝑓𝑡(𝜃)) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑘
𝐻 (𝑃𝑟𝑖𝑔ℎ𝑡(𝜃)) 

 

(21) 

To minimize impurity parameters are selected using  
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𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐺(𝑃, 𝜃) 

 

(22) 

 

It is continued for subsets  𝑃𝑙𝑒𝑓𝑡(𝜃∗) and  𝑃𝑟𝑖𝑔ℎ𝑡(𝜃∗) until the maximum depth is reached 

where 𝑁𝑘 < 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑟 𝑁𝑘 = 1. 

The boosting algorithm AdaBoost is included in the module 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 which was 

introduced by Freund and Schapire in 1995. The main principle of AdaBoost is to fit a sequence 

of weak leaners (i.e., small decision trees) on data that are modified various times. To produce 

the final decision the prediction from all are combined by a weighted majority vote. The data 

is modified at each boosting iteration by applying weights 𝑤1,𝑤2, 𝑤3, … , 𝑤𝑁 to every training 

samples. In the start the weights are fixed to 𝑤𝑖 = 1
𝑁⁄  so that firstly it trains the weak leaner 

on the real data. In each iteration sample weights are adjusted one by one in addition learning 

algorithm is reapplied to the reweighted data. At a point the weights are increased of the 

training samples that were forecasted inaccurately by the boosted model at the prior step and 

the weights are decreased for those were forecasted accurately. The samples that are difficult 

to forecast keeps increasing. Every successive weak learner is hence involuntary to focus on 

the samples that are unused by the prior ones in the sequence. 

The parameter 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 controls the number of weak learner. The contribution of 

the weak leaners in the final combination is controlled 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 parameter. By default, 

weak learners are decision stumps. Through the 𝑏𝑎𝑠𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 parameter different weak 

learner can be specified. To tune to obtain good results the parameters are 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 and 

the complexity of the base estimators. 

Decision Tree Regression with AdaBoost is a powerful model. For parameters we used 

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 16 for Decision Tree Regression. That is, the depth of tree can be maximum 

16. For boosting parameter 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 300 is used. That is, 299 decision tree is 

compared with a single tree regressor.  If we increase this number, the regressor can fit more 

details. 

3.4.5 Root Mean Squared Error 

The most frequently used measures of the differences between predicted values by an 

estimator and the actual values is the Root Mean Square Error (RMSE). The example standard 

deviation of the differences between predicted and observed values is represented by the 



27 

 

RMSE. When these individual differences are calculated over the data sample used for 

prediction then they are called residual and when computed out of sample then they are call 

prediction errors. 

The RMSE of an approximation 𝜃 ̂with respect to a real value 𝜃  is defined as the square root 

of the mean square error: 

𝑅𝑀𝑆𝐸(𝜃) = √𝑀𝑆𝐸(𝜃) = √𝐸 ((𝜃 − 𝜃)
2

) 
(23) 

The RMSE of predicted data 𝑦𝑖̂ for survey of 𝑖 , for variables 𝑦𝑖 is calculated for 𝑛 numbers of 

cases using the following formula: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

(24) 

Then RMSE is normalized using: 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

(25) 

Scikit-learn has a class to measure mean squared error of a model which 

is 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟. Its takes input of array 𝑦_𝑡𝑟𝑢𝑒 containing 

original values and 𝑦_𝑝𝑟𝑒𝑑 containing predicted values of a model then gives a floating number 

value as output which is MSE of the model. Then we used 𝑠𝑞𝑟𝑡() function to calculate RMSE 

as RMSE is square root of MSE.  
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CHAPTER 4 

Experimental Setup and Result Analysis 

 In this chapter will give details of the hardware, software used in this project. Then we 

will discuss about the experimental results of every algorithm used to build short term load 

forecasting in this project. At the end will give a comparison of performance of four machine 

learning algorithm. 

 

4.1 Details of Hardware and Software 

Configuration of Computer  

 Processor: AMD FXtm-8300 Eight-Core Processor, ~3.3GHz 

 RAM: 16384MB RAM 

Programming Languages 

 Python 3.5 

Editors and Integrated Development Environment 

 PyCharm 

 Jupyter Notebook 

List of Frame Work and Libraries based on Python 

 ScikitLearn [24] 

 Tensorflow 

 Keras [25] 

 Pandas 

 numPy 

 MatplotLib 

 

4.2 Result Analysis 

As our goal is to predict the power consumption of the house the next day depending 

on the power usage of the appliances of the present day. Model is evaluated on test set. The 

error result is obtained from test set. For preprocessing we scaled the data using the library 
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function 𝑠𝑐𝑎𝑙𝑒(). We used 𝐾𝑓𝑜𝑙𝑑 splits for splitting the dataset as it’s a time series dataset. 

Later we trained out model on train set and the error rate is acquired by evaluating the models 

against our test set. We used all the default settings of the library and few changes in parameters 

of few algorithms. We used an API out of 3 APIs of the library to measure our trained model’s 

performance. The API scoring parameter contains model-evaluating tools using cross-

validation depends on an internal scoring strategy. We used this API to find the MSE of our 

models then used square root to find out RMSE and we compared the algorithms based on the 

result of the API. 

4.2.1 Nearest Neighbors Regression:  

Nearest Neighbors has RMSE of 1.9331727.  As our goal is to predict the total power 

consumption of a house of the next day depending on the usage of the today’s power 

consumption of the appliances, for which we are getting this much higher RMSE value. In 

Figure 13 the comparison of the real value and the predicted value of the trained model Nearest 

Neighbors Regression is given. 

 

Figure 13. Nearest Neighbors Regression, empirical comparison 

4.2.2 Support Vector Regression: 

The kernel RBF performs better than other kernels. RBF kernel performs better in this 

context because of the data. The higher the degree, the performance of other kernels are worse 
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than RBF. SVR using kernel polynomial and Gaussian Radial Basis function with degree of 3 

has RMSE of 2.1229618 and 1.8341087 respectively. But kernel linear performs slightly lesser 

than RBF but better than the polynomial as it has a degree of 1. It has RMSE of 1.8474361. 

For having the lowest RMSE among the kernel function, we preferred the kernel function RBF 

for SVR. In Figure 14 the performance of Support Vector regression (kernel RBF) is shown by 

comparing the true value with predicted value. The predicted power consumption is the output 

of the model. 

 

Figure 14. Support Vector Machine Regression, empirical comparison 

4.2.3 Decision Tree Regression with AdaBoost: 

The RMSE of this model is 1.9202281. As we restricted the depth to 16 and we selected 

all the features to train the model we are getting much high RMSE. In Figure 15 Evaluation of 

the model Decision Forest Regression with AdaBoost is shown by comparing predicted and 

real value. 

4.2.4 Long Short-term Memory Network (LSTM) 

In experiment we used single cell LSTM network. We have tested with LSTM network 

with up to 3 LSTM cell stacked top of one another. Stacking more than one LSTM cell made 

computation heavier but did not give better result. In some cases it went bad. 

We have also experimented with length of look back. Here look back is how many 

samples is given as an input in each time step. We have tested variable length of look back. 
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Most significant were 7 for 7 days, 15 for 15 days, 30 for 1 month. Length of look back between 

7 and 15, have given better result than longer look back like 30. We have found best result in 

look back length 7.   

 

Figure 15. Decision Tree Regression with AdaBoost, empirical comparison 

 

 

Figure 16. Load forecasting by LSTM 
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In table we can see LSTM has given lowest RMSE scour. Reason of the lowest scour 

is ability of a LSTM to process sequence of samples rather than a single sample. In Figure 16 

we can see that predicted data points by a LSTM almost catches the pattern of electricity 

usages. In Figure 17, point by point comparison of 10 test and predicted data point is given.  

 

Figure 17. Load forecasting of LSTM, empirical comparison 

 

4.3 Comparison and Result Summary  

Table 2. RMSE of ML Algorithms 

 

 

 

 

 

 

 

 

Algorithms                         Error 

Root Mean Squared Error 

Nearest Neighbors  Regression                            1.93 

Support Vector Machines 

Regression 

                           1.83 

Decision Forest  Regression 

With AdaBoost 

                           1.86 

Long Short Term Memory                            1.82 
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Figure 18. RMSE of ML Algorithms 

 

 

Figure 19. Comparison of four ML Algorithms based on their outputs on same test set 
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In Figure 19 an overall summary of the outputs of four algorithm is given. Day by day our 

processors are getting stronger and less power hungry. Also in recent days processors are 

coming with dedicated core for neural net and artificial intelligence. As a result cost and 

computational power required for training a neural network will not be problem in the future.  

Neural networks like LSTM has the ability to adopt with a great variety of patterns and the 

ability of recognize those pattern. According to our experiment LSTM has given better result 

Figure 18 with compared to Support Vector Machines Regression, Decision Forest Regression 

with AdaBoost and Nearest Neighbors Regression. 
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CHAPTER 5 

Conclusion and Future Work 

 

5.1 Conclusion 

Future power consumption prediction plays an important role in power saving and efficient 

power use. First of all, forecasting gives electricity Generation Company an opportunity to do 

advance planning on maintenance and distribution. It also helps end electricity user to optimize 

their electricity use by providing advance warning of future power consumption.  In this paper 

we have presented a system which can give prediction based on data collected from IoT 

devices. To prove the reliability of the system we have tested the system with real world data 

sets. We have conducted several experiments to evaluate the performance of four machine 

learning algorithms and concluded the experiment with a comparison of RMSE loss score.  

Long Short Term Memory network has given lowest RMSE in the experiment. LSTM has 

given better result because it can trace sequence. We have used sequence of seven days when 

training LSTM. After examining the dataset we have found that human nature of using 

electricity is related to week days. Therefore seven days look back has given better prediction 

of next day’s power consumption. On the other hand other three algorithms used in this project 

has trained with one day look back. We also found that too much long look back, for example 

fifteen or thirty days does not improve prediction. Lookback longer that ten days overwhelmed 

the calculation of LSTM cell and as a result performance goes down. Decision tree maximum 

depth is restricted to 16 as the processing power and the risk of overfitting. Nearest Neighbor 

regression can be improved by increasing number of neighbors i.e. value of K but there is a 

risk of overfitting the model. SVR model has performed well because the Gaussian Radial 

Basis function. Kernel polynomial performed worse than the other kernels as the model tends 

to over fit if we raise the degree from 3 to higher. In dataset there are some missing days where 

the appliance power consumption is not recorded. As we performed our experiment on times 

series data missing values is a big concern. Results would have been better if there were no 

missing values. We also added holidays and weather data to the dataset. Because power 

consumption pattern changes in holidays and weekends. In our experiment we also found that 

power consumption is also related to weather condition. Such as temperature, humidity, wind 

speed. Addition of weather and holiday increased prediction accuracy.  
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5.2 Future Work  

The system described in this paper worked on data collected from IoT devices. This system 

can be implemented for home managements and grid managements. We performed analysis 

using power consumption data using data grouping based on the time (day). Models can be 

improved if the data grouping is based on the time interval of hours. This might reduce the 

error of the models. In future we are looking forward to compare models using different 

regression based ML algorithms. Privacy is a big concern here. In future we also want to 

work on the security side of this system. Predictions can be improved selection of features 

and changing the parameters.  
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Appendix A 

List of Devices 

Channel 

ID 

Name Min Power 

(Watt) 

Max Power 

(Watt) 

Type 

2 boiler 70 4000 Apparent 

3 solar_thermal_pump 43 4000 Apparent 

4 laptop 70 4000 Active 

5 washing_machine 20 4000 Active 

6 dishwasher 10 4000 Active 

7 tv 10 4000 Active 

8 kitchen_lights 50 4000 Apparent Sub meter 

of channel 25 

9 htpc 20 4000 Active 

10 kettle 2000 4000 Active 

11 toaster 1000 4000 Active 

12 fridge 50 4000 Active 

13 microwave 200 4000 Active 

14 lcd_office 40 4000 Active 

15 hifi_office 9 4000 Active 

16 breadmaker 500 4000 Active 

17 amp_livingroom 25 4000 Active 

18 adsl_router 6 4000 Active 

19 livingroom_s_lamp 16 4000 Active 

20 soldering_iron 50 4000 Active 

21 gigE_&_USBhub 5 4000 Active 

22 hoover 1200 4000 Active 

23 kitchen_dt_lamp 13 4000 Active 

24 bedroom_ds_lamp 26 4000 Active 

25 lighting_circuit 40 4000 Apparent 

26 livingroom_s_lamp2 86 4000 Active 

27 iPad_charger 7 4000 Active 
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28 subwoofer_livingroom 15 4000 Active 

29 livingroom_lamp_tv 13 4000 Active 

30 DAB_radio_livingroom 300 4000 Active 

31 kitchen_lamp2 20 4000 Active 

32 kitchen_phone&stereo 5 4000 Active 

33 utilityrm_lamp 35 4000 Active 

34 samsung_charger 4 4000 Active 

35 bedroom_d_lamp 45 4000 Active 

36 coffee_machine 1000 4000 Active 

37 kitchen_radio 2 4000 Active 

38 bedroom_chargers 2 4000 Active 

39 hair_dryer 1600 4000 Active 

40 straighteners 170 4000 Active 

41 iron 1700 4000 Active 

42 gas_oven 11 4000 Active 

43 data_logger_pc 12 4000 Active 

44 childs_table_lamp 14 4000 Active 

45 childs_ds_lamp 10 4000 Active 

46 baby_monitor_tx 15 4000 Active 

47 battery_charger 20 4000 Active 

48 office_lamp1 14 4000 Active 

49 office_lamp2 10 4000 Active 

50 office_lamp3 7 4000 Active 

51 office_pc 100 4000 Active 

52 office_fan 20 4000 Active 

53 LED_printer 400 4000 Active 
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