
Short Term Load Forecasting

Based on

Internet of Things (IoT)

SUBMISSION DATE: 05.04.2018

SUBMITTED BY:

Mahdi Uz Zaman (14101263)

Anisul Islam (13201044)

Nahid Sultana (14301139)

Supervisor:

Amitabha Chakrabarty, Ph.D

Assistant Professor

Department of Computer Science and Engineering

Declaration

We hereby declare that this thesis has been done based on the results we obtained from

our work. Due acknowledgement has been made on text. This thesis neither in parts nor as a

whole have been submitted previously by anyone of any institute or university for the award

of any degree.

Signature of Supervisor Signature of the Authors

___________________________________ ________________________

Amitabha Chakrabarty, Ph.D.

Assistant Professor

Department of Computer Science and

Engineering

BRAC University

Mahdi Uz Zaman

(14101263)

Anisul Islam

(13201044)

Nahid Sultana

(14301139)

i

ABSTRACT

In the era of internet every device is getting connected to the internet. In this paper, we

have assumed that IoT devices can share their power consumption history. Based on data points

collected from real world environment we have conducted experiments to show that IoT can

be used as a reliable backbone of a short term load forecasting system. In the experiment four

machine learning algorithms Long Short-term Memory (LSTM), Support Vector Machines

Regression (SVR), Decision Forest Regression with AdaBoost and Nearest Neighbors

Regression were used to analyze the performance of the load forecasting system. In the

experiment Long Short Term Memory Network has given comparatively better result than

other three machine learning algorithm with a root mean square error of 1.82.

ii

Acknowledgement

First of all we would like to thank the Almighty for giving us mental strength and

patience to complete the research.

Secondly, we would like to thank our supervisor Amitabha Chakrabarty. Without his

help and guidance we could not have finished the project. In this past one year the path was not

easy and filled with lots of ups and downs. Whenever we fall in problem and got depressed he

was always there to show us the right direction. His motivation and inspiration helped us to

achieve success. We are truly grateful to him.

We would like to thank our family members for their support and love throughout this

tough journey. We would also like to thank our friends who have helped us with their valuable

suggestions and experiences. Special thanks to those generous people who had spent their

valuable time to make online tutorial which helped us a lot in this project.

Last but not the least, we would like to thank BRAC University for providing us good

environment and lab support for conducting experiment for this research.

iii

Contents

ABSTRACT ... i

Acknowledgement .. ii

List of Figures ... v

List of Tables ... vi

List of Abbreviations ... vii

CHAPTER 1 ... 1

Introduction .. 1

1.1 Motivation .. 1

1.2 Contribution Summary... 2

1.3 Thesis Outline .. 2

CHAPTER 2 ... 3

Literature Review... 3

2.1 Load Forecasting with Machine Learning ... 5

2.2 Time Series Analysis with Machine Learning ... 6

2.3 Long Short-term Memory Network (LSTM) ... 6

2.4 K-Nearest Neighbors Regression ... 9

2.5 Support Vector Machine – Regression .. 10

2.6 Decision Tree – Regression with AdaBoost .. 11

CHAPTER 3 ... 13

Proposed Model ... 13

3.1 Process ... 13

3.2 Data Collection .. 14

3.3 Preprocessing and Filtering Data ... 16

3.4 Training STLF System ... 19

3.4.1 Architecture of LSTM... 19

3.4.2 Training K-Nearest Neighbors Regression ... 21

3.4.3 Support Vector Regression ... 22

3.4.4 Decision Tree Regression with AdaBoost: ... 25

3.4.5 Root Mean Squared Error ... 26

iv

CHAPTER 4 ... 28

Experimental Setup and Result Analysis ... 28

4.1 Details of Hardware and Software ... 28

4.2 Result Analysis .. 28

4.2.1 Nearest Neighbors Regression: ... 29

4.2.2 Support Vector Regression: .. 29

4.2.3 Decision Tree Regression with AdaBoost: ... 30

4.2.4 Long Short-term Memory Network (LSTM) .. 30

4.3 Comparison and Result Summary ... 32

CHAPTER 5 ... 35

Conclusion and Future Work ... 35

5.1 Conclusion ... 35

5.2 Future Work ... 36

Reference .. 37

Appendix A ... 1

v

List of Figures

Figure 1. LSTM Cell .. 7

Figure 2. Sigmoid and Tanh function graph .. 8

Figure 3. Proposed Model .. 13

Figure 4. Total Power Consumption of 1 year ... 14

Figure 5. Summary of The UK-DALE dataset .. 15

Figure 6. Distribution Graph of Total Power Consumption .. 16

Figure 7. Data Preprocessing ... 17

Figure 8. Dataset after converting to kWh per Day ... 18

Figure 9. Smart plug and Data logger .. 18

Figure 10. Partial screen shot of Final Dataset .. 19

Figure 11. Input Shape of LSTM ... 20

Figure 12. Structure of Neural Network .. 20

Figure 13. Nearest Neighbors Regression, empirical comparison ... 29

Figure 14. Support Vector Machine Regression, empirical comparison 30

Figure 15. Decision Tree Regression with AdaBoost, empirical comparison 31

Figure 16. Load forecasting by LSTM .. 31

Figure 17. Load forecasting of LSTM, empirical comparison .. 32

Figure 18. RMSE of ML Algorithms ... 33

Figure 19. Comparison of four ML Algorithms based on their outputs on same test set 33

vi

List of Tables

Table 1 Summary of The UK-DALE dataset .. 14

Table 2. RMSE of ML Algorithms .. 32

vii

List of Abbreviations

ML- Machine learning

LSTM – Long Short-term Memory

CSV – Comma separated value

IDE – Integrated development environment

STLF – Short term load forecasting

MTLF – Medium term load forecasting

LTLF – Long term load forecasting

RMSE – Root mean squared error

1

CHAPTER 1

Introduction

Electrical energy generation and distribution is a complex and costly process. Efficient

grid management plays a big role to reduce the cost of energy production. Grid management

comprises of planning for load demand, maintenance of generation units, supply lines and

efficient load distribution across the supply line. Therefore an accurate load forecast will

increase the efficiency of planning process of a power generation company. Power generation

companies do their plan based on data collected manually. Therefore real time prediction is not

possible. If data can be collected in real time, forecasting in real time will be possible. Strong

and reliable Internet infrastructure are already present. Every device we use in our daily life

are gradually getting connected to the internet to facilitate smart home technologies like Google

Home [1], Amazon Alexa etc. A device connected to internet usually treated as IoT. In general

a device with sensors, microprocessor or microcontroller which can connect to the internet,

send and receive information through internet is called Internet of Thing (IoT) [2]. If the

devices are configured to send energy uses data to the internet, these data can be used to give

real time forecasting. In this paper we have shown that real time load forecasting is possible

with the help of IoT and state of the art machine learning algorithms LSTM Network, Nearest

Neighbors Regression, Support Vector Regression and Decision tree Regression with

AdaBoost.

1.1 Motivation

First of all, increased demand of electricity is creating pressure on production

companies as well as natural resources. We know natural resources which are used to produce

electricity are limited in nature. Secondly, the byproduct of electricity generation is pollution.

Again, cost for producers and consumers are increasing day by day. Therefore to ensure

sustainable development research communities have shown great interest on how to reduce

electricity demand by efficient use of electricity. One of the important of methods that is used

to facilitate efficient use of electricity is load forecasting [3]. With the help of load forecasting,

producers can tune their production plan and consumer can optimized their electricity

consumption. Existing forecasting system relies on data collected from production and

2

distribution unit. We have shown that with the help of IoT load forecasting can be done in more

easy, convenient and reliable way.

1.2 Contribution Summary

The main contribution of this project is to show that IoT can be used as a reliable

backbone of a load forecasting system. To support our claim we have tested our system with

real world datasets. Based on this dataset we have done empirical comparison and performance

evaluation of four machine learning algorithm. This system will help home user to reduce their

power consumption by early warning of future power use. This will also help the power

generation company to meet their demand efficiently by planning ahead of time.

1.3 Thesis Outline

In this paper, Chapter 2 provides the literature review in details including the algorithms

and techniques used in the system. Proposed model including the algorithms and techniques

are discussed in Chapter 3. Results and analysis are presented in Chapter 4. Lastly Chapter 5

gives the conclusion and future work.

3

CHAPTER 2

Literature Review

Load forecasting plays an important role to the efficient use of electricity as well as

efficient production and distribution. Power load forecasting is categorized in three categories

[4]. They are short term load forecasting (STLF), medium term load forecasting (MTLF) and

long term load forecasting (LTLF). These categorization is depend on the range of future time

taken in to consideration to be predicted. Prediction process which give prediction day or week

ahead is called short term load forecasting (STLF). Medium term load forecasting (MTLF)

system are built for month ahead prediction and when years ahead predictions are needed long

term load forecasting (LTLF) system are incorporated. In this project we have built and tested

a system which can predict a day ahead forecasting. In this chapter we will discuss about the

algorithms that are used to build the short term load forecasting system. In the past researchers

have proposed different types of methods for load forecasting. We will also discuss about some

of them in this chapter.

Kong, W. contributed in deep learning based method [5] with appliance behavior

learning for meter level load forecasting which demonstrated an advantageous performance

through extensive comparison with other predictors. According to this paper, if we can learn

the lifestyle pattern of certain resident can help us achieve better metering forecasting. His

work showed that the using appliance measurements in training data can improve the

forecasting accuracy. Contextual variables like temperature, humidity, day of the week and

special events are taken into consideration in this method for better forecasting performance.

In this paper individual load forecasting is done using LSTM. Long short-term memory

(LSTM) is one of the RNN structure, the specialty of this RNN is sequence learning. It

maintains a memory cell in its structure to remember important state in past to reset the memory

cell it has a forget gate. As mentioned above the learning lifestyle pattern can be done if

appliance level consumption are directly measured which assists in interpreting in the

forecasting. So instead of serving aggregated data to the LSTM the inputs are all available

major appliance energy sequence to train the predictor. Here the dataset is taken from a

Canadian household and its 19 appliance for a year. Then the current reading is converted into

Ampere hour for every 30 minutes to imitate the smart meter data. The appliance chosen for

appliance learning are clothes dyer, clothes washer, dishwasher, heat pump, television and wall

oven which are manually operated. For resident behavior learning this approach used the

4

measurement of both the whole house-hold consumption and the selected appliance from the

past several time interval until the current time as inputs. The consumption forecast of

subsequent time interval is the output. To compare the performance of this proposed method

feed forward neural network (FFNN) and K-nearest neighbor (KNN) is used. The lowest

benchmark is set by empirical mean which is the forecasting value of the statistical mean given

by the time of the day and day type. Here “look-back” input scheme, a system level load

forecasting which uses measurement of same time interval of the past few days also compared

referred with suffix “D” suffix “WA” is used to label test cases that use extra appliance

measurement in training data and suffix “W” for whole house measurement only. This paper

concluded showing that LSTM-WA outperformed all other methods. And LSTM-WA with two

look back interval achieved the best overall MAPE scores and the second best LSTM-W

predictor with a 4.24% MAPE margin. KNN and FFNN the version of extra appliance data

gave better result compared to whole house consumption. In conclusion, the LSTM based

forecasting framework gives better accuracy when consumption sequence of major appliance

is available.

Ghulam and Angelos, worked on the applicability and compared the performance of

Feed-forward deep neural network (FF-DNN) and recurrent deep neural network (R-DNN)

models on the basis of accuracy and computational performance in the context of time wise

short term forecast of electricity [6]. Analyzing the data on the time and frequency domain

independently and subsequently frequency domain components are transformed back to the

time domain. The parameter which are taken into consideration are weather, time, holidays,

working days, and lagged load and data distribution effects. This paper collected the dataset

from ISO New England for duration 2007-2012. The load consumption is recorded at the end

of every hour of a day and the whole dataset consisted of 52600 records that represented data

of 6 states of New England, USA. The changing behavior of the dataset is captured during

analysis in time domain and effects that were captured are temperature effect, working and

non-working day’s effect, time effect, lagged load effect and data distribution effect. After time

domain extraction the data is further analyzed in frequency domain. The random signals of

time domain are converted to different frequencies that are stable and easily predictable which

improves accuracy. Fast Fourier is performed to determine the dominant frequencies and the

one with higher magnitude represent the dominant frequencies. Here evaluating the proposed

models 43824 records from 2007-2011 are used in training dataset and 24 and 168 records for

days and weeks for test dataset. The RMSE, MAE and MAPE are calculated for four seasons

5

of 2012 and the 5 features extracted from the original features are taken into consideration for

better accuracy. The result of considering only time domain in both FF-DNN and R-DNN

varied due to temperature variation in different seasons. The MAPE is 1.30% for R-DNN and

1.42% for FF-DNN in a year. On the other hand the error are much lower and the accuracy is

improved in frequency domain analysis where MAPE is 0.067% and 0.057% for FF-DNN and

R-DNN respectively. So based on the analysis it was shown that weather, time, holidays,

lagged load and data distribution have most dominant factors and the TF features can be utilized

for load forecasting.

Papia Ray, Santanu Sen and A.K. Barisal presented two hybrid methodologies based

on discrete wavelet transform (DWT) in combination with ANN or SVR for Short Term Load

Forecasting (STLF) using feature selection [7]. This method was done with the data taken from

a particular area of New Delhi for a particular month. The data is taken from December 1 to

February 28. Temperature, humidity, dew point and load consumed for a particular day at a

particular hour are also taken into consideration. Here data from December 5 to January 31 are

taken as training data, from February 1 to 28 are used as validation set and the 4days data are

taken as test set data. Here the feature selection is done through Forward Feature Selection

(FFS). The analysis was done in two ways one using FFS and other without using FFS and it

showed that the one done with FSS gave a better result. These analysis was done on monthly

based, weekly based and daily based and among two hybrid methods DWT-SVM showed an

error of 0.1% and DWT-ANN showed error of 0.6% which concluded that DWT-SVM showed

better result than DWT-ANN.

Taking in consideration of the above mentioned work we have implemented an IoT

based load forecasting system. The core algorithm of the forecasting system is a machine

learning algorithm. To select best performing algorithm we have tested performance of several

machine learning algorithm with a new dataset called “The UK-DALE dataset” [8].

2.1 Load Forecasting with Machine Learning

Machine learning is the ability of a machine to do certain task without being explicitly

programed [9]. One of the branches of machine learning is supervised learning. Supervised

learning is process of turning experience into expertise [10]. In another way when machine

learn from previous incidents and take decision on unknown incidents is called supervised

learning. Load forecasting is a complex process due to its nonlinear and always changing

6

nature. If we can teach a machine the user pattern of a certain device which consume electric

power a good machine learning algorithm can tell the probability of future occurrence. Machine

learning algorithm produce hypothesis after seeing the data. As hypothesizes are constructed

based on datasets machine learning hypothesis are adaptable with different scenario and

circumstances. Therefore we have choose machine learning approach for load forecasting.

2.2 Time Series Analysis with Machine Learning

In time series data points are collected sequentially with respect to time [11]. There are

mainly two type of time series. One is discrete time series, where data point are collected with

a fixed interval of time. One the other hand in continuous time series data points are taken

continuously without any interval. In the definition of discrete time series it is said that

difference between two data points must be maintained throughout the whole datasets. The

datasets we have used in this project is discrete time series. Time series helps to analyze the

user pattern of electrical devices with respect to time. Time series analysis is a process where

time series datasets are analyzed to extract features. In this paper we have used machine

learning approach to analyze time series datasets. We cannot use a time series dataset directly

for a machine learning algorithm. Different algorithm requires special kind of data preparation.

In equation 1, y is predicted power consumption in a given time (t) and x is the features of time

(t-n). Based on features x a machine learning algorithm will predict y. In this paper we have

used n=1. That means to predict the power consumption of day (t), we have used features of

day (t-1).

𝑦𝑡 = 𝑥𝑡−𝑛 (1)

2.3 Long Short-term Memory Network (LSTM)

Sepp Hochreiter and Jürgen Schmidhuber published a paper [16] in 1997 called “Long

Short-term Memory” to address the drawbacks of basic RNN Network. They proposed a new

architecture of RNN Cell. They named the new architecture as LSTM. Specialty of a LSTM

cell is its memory and three gates. LSTM uses the memory to remember from very deep down

the sequence. It uses the gates to control the flow of information from memory and to the

memory. In Figure 1 a schematic of LSTM cell is given.

Input of LSTM Cell:

7

 Previous cell State (Ct-1): Memory of previous state is forwarded to the current state

(Ct). Which will then added to the current state by increment. Process of increment is

given in the description of forget gate.

 Previous cell output (ht-1): Cell output of previous time step is taken as input in current

time step.

 External input (xt): Neural network output of current time step. This output is optional.

Depend of the need it sometimes give output an sometimes not.

Output of LSTM Cell:

 Current cell state (Ct): Current cell state is forwarded to future time step through cell

state output.

 Cell output (ht): After squashing cell state through tanh activation function, cell output

is forwarded to future time step.

 External output (ht): Optional Neural Net output.

Figure 1. LSTM Cell

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3)

8

Č𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4)

𝐶𝑡 = 𝑖𝑡 ∗ Č𝑡 (5)

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6)

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) (7)

 𝑊𝑓 : Weight for forget gate layer

 𝑏𝑓 : Bias for forget gate layer

 𝑖𝑡 : Output of input gate layer

 𝑊𝑖 : Weight for input gate layer

 𝑏𝑖 : Bias for input gate layer

 Č𝑡 : Candidate value

 𝑊𝑐 : Weight of tanh layer

 𝑏𝑐 : Bias of tanh layer

 𝑊𝑜 : Weight of output gate layer

 𝑏𝑜 : Bias of output gate layer

Figure 2. Sigmoid and Tanh function graph

Gates of LSTM Cell:

9

 Forget Gate (ft): Overwhelming unnecessary information causes information

morphing to the cell state, as known as memory. Forget gate shorts out most relevant

information by sigmoid layer. In Figure 2 a sigmoid function is given. It squashes the

output between 0 and 1. 1 means completely remember and 0 means completely forget.

Equation 3 [16] shows that with respect to previous cell output and current input it

calculate which part of the previous information need to remember in the current state.

 Input Gate (𝒊𝒕): It is also known as write to the memory. When LSTM cell gets new

external input it needs to decide which part of the memory it will overwrite with new

value. First with the help of sigmoid layer it decides which values it needs to update.

Weighted external input, previous cell output and bias is passed to sigmoid layer

according to Equation 4 [16]. Then a tanh layer select a vector of candidate values by

Equation 5 [16] for the selected values by Equation 4. In Figure 2 a tanh function is

given. A tanh function squashes input between -1 and 1. After multiplying output of

Equation 4 and Equation 5 element wise we get a new cell state or memory state (Ct),

Equation 6.

 Output Gate (ot): Unlike RNN cell output, LSTM cell does not output the exact copy

of cell state. Instead it outputs a filtered version of the cell state. A sigmoid gate

Equation 6 decide which part of the memory will be forwarded to the next state. Present

cell is squashed by a tanh layer to scale it between -1 and 1 multiplied elementwise with

output of equation 6 [16] to produce cell output, Equation 7 [16].

The ability of selectively read, write and remember the events happened in numbers of

previous time steps makes LSTM a robust algorithm for sequence learning.

2.4 K-Nearest Neighbors Regression

K-NN algorithm saves all convenient cases to predict the targeted value based on the

similar values. K-NN is not a new technique, it has been used in 1970’s for statistical estimation

and pattern recognition as non-parametric technique.

KNN regression is used to calculate average of targeted value of k nearest neighbors.

Using inverse distance weighted average of the k nearest neighbors can also be calculated.

KNN classification and KNN regression uses the same distance functions. With the help of the

following functions distance between neighbors are measured [17]:

10

Euclidean

√∑(𝑥𝑖−𝑦𝑖)2

𝑘

𝑖=1

(8)

Manhattan

∑ |𝑥𝑖 −

𝑘

𝑖=1

𝑦𝑖|
(9)

Minkowski

 (∑(|𝑥𝑖 − 𝑦𝑖|)
𝑞

𝑘

𝑖=1

)

1
𝑞⁄

(10)

Hamming Distance

𝐷𝐻 = ∑|𝑥𝑖 − 𝑦𝑖|

𝑘

𝑖=1

𝑖𝑓 𝑥 = 𝑦 𝑡ℎ𝑒𝑛 𝐷 = 0

𝑖𝑓 𝑥 ≠ 𝑦 𝑡ℎ𝑒𝑛 𝐷 = 1

(11)

These equations can only be used for continuous variables. For categorical variables Hamming

distance must be used. This measures the number of instances where different corresponding

symbols are in two strings of equal length.

Inspecting the data the ideal value for K is chosen. With a large K value the noise is

reduced but it becomes harder to detect the distinct features. To determine K value using

independent data set to validate K values, cross- validation is an ideal way. The ideal K for

most datasets is 10 or more which produces better results than 1-NN.

Standardized Distance: Standardizing the training set can overcome the difficulty to

calculate distance measures directly from the training set where there is a mixture of

numerical and categorical variables.

𝑋𝑠 =
𝑋 − 𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛

(12)

Using the standardized distance on the same training set, the unknown case returned a different

neighbors which is not a good sign of robustness.

2.5 Support Vector Machine – Regression

Support Vector Machine can also be used as a method of regression, keeping all the

fundamental elements intact that designate the algorithm (maximal margin). With scarcely

trivial distinction, the Support Vector Regression utilizes the same postulates as the SVM for

11

categorization. Firstly, because it has indefinite possibilities, the prediction of the resulted real

number becomes perplexing. In case of regression, a margin of tolerance (epsilon) is allocated

in approximation to the SVM which would have already arise from the problem. Aside from

this, there is another complication. Thereby the algorithm is further more problematic to be

accepted. Nevertheless, the gist stays the unchanged: diminishing error, singularizing the

hyperplane which maximizes the margin, realizing the part of the error is tolerated. The

followings are mathematical formulation of the kernels used in SVR [18]:

Linear SVR:

 𝑦 = ∑(𝛼𝑖 − 𝛼𝑖

∗). (𝑥𝑖, 𝑥) + 𝑏

𝑁

𝑖=1

(13)

Non-Linear SVR

𝑦 = ∑(𝛼𝑖 − 𝛼𝑖

∗). (𝜙(𝑥𝑖), 𝜙(𝑥)) + 𝑏

𝑁

𝑖=1

(14)

𝑦 = ∑(𝛼𝑖 − 𝛼𝑖
∗). 𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑁

𝑖=1

(15)

Polynomial

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝐾(𝑥𝑖, 𝑥𝑗)
𝑑

 (16)

Gaussian Radial Basis

function

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−
||𝑥𝑖 − 𝑥𝑗||

2

2𝜎2
)

(17)

2.6 Decision Tree – Regression with AdaBoost

Decision tree establishes regression models in the form of a tree structure. It

simultaneously jots down dataset onto smaller and smaller subsets and aligned decision is

incrementally established. The end result is a tree with decision nodes and leaf nodes. A

decision node has two or more sectors, each indicating values for the feature tested. A

numerical target is illustrated by leaf node. The highest decision node in a tree which becomes

equivalent to the leading predictor is called root node. Both categorical and numerical data can

be conducted by decision trees [19]. The key advantages of trees are that they can be rapidly

instructed (say, as distinguished between neural networks) and are non-parametric. The major

disadvantages are that the space has limits that are parallel to the characteristic axes and

12

representation based on powers or products of the features are disapproved. Making decision

surfaces that are oblique to the axes are possible and using so called oblique decision trees

[Bradley and Utgoff (1995), Ittner and Schlosser (1996), Murthy et.al. (1993). Mouth et.al.

(1994)] [20] and as a matter of fact CART has that option. Moreover, in lieu of the input to the

tree being the features, we could have maintained both the products of features and features

raised to some powers. All these alternatives make the constructing of trees prolonged.

13

CHAPTER 3

Proposed Model

The IoT based Short Term Load forecasting system is consist of IoT devices and a

central processing unit. IoT devices are configured to upload power usage data to the server.

The central processing unit is configured to do calculation based on a selected machine learning

algorithm. Based on the calculation and learning process the unit will give prediction. In this

chapter we will give details description about the proposed model and process of implementing

the model.

3.1 Process

There are four steps to give Short Term Load Forecasting. In Figure 3 a pectoral view of

proposed model is given.

 Data collection from IoT devices

 Preprocessing and filtering

 Training machine learning model

 Load Forecasting

Figure 3. Proposed Model

14

3.2 Data Collection

Figure 4. Total Power Consumption of 1 year

Main idea of this project is forecast total power consumption based on the data collected

from the IoT devices. Due to limitations of time and resources we could not configure devices

to upload power uses data to the internet. In this project we have used “The UK-DALE dataset”

created by Jack Kelly & William Knottenbelt [8]. This datasets contains appliance level

disaggregated power consumption record as well as aggregated whole house power

consumption record. In Figure 4 whole house power consumption of last one year is given. We

assumed that all the appliances in this datasets are IoT devices. In Table 1 a short overview of

the whole dataset is given. For training and testing we have used data of house_1 because it

contains maximum number of appliances. Also they have given more emphasis on recording

house_1 data. In Figure 5 shows that house_1 data are more consistent than other houses.

Table 1 Summary of The UK-DALE dataset

House 1 2 3 4 5

15

Number of

occupants

4 2 2 2 2

Description

of occupants

2 adults and

1 dog started

living in the

house in

2006. One

child born in

2011.

Second child

born in 2014.

2 adults. 1 at

work all day;

the other

sometimes

home

1 adult and 1

pensioner

 2 adults

Total number

of meters

54 20 5 6 26

Date of first

measurement

2012-11-09 2013-02-17 2013-02-27 2013-03-09 2014-06-29

Date of last

measurement

2017-04-26 2013-10-10 2013-04-08 2013-10-01 2014-11-13

Figure 5. Summary of The UK-DALE dataset

16

3.3 Preprocessing and Filtering Data

Figure 6. Distribution Graph of Total Power Consumption

Noise and misleading data in any dataset are bad for any model to train on. A misleading

dataset will eventually produce a hypothesis which will not do well in unseen data. Therefore

noise cancellation has done with great care. The dataset contains UML configuration file for

every houses. The file has details description of meter devices and appliances. Each appliance

has upper bound and lower bound of power consumption. Any power consumption beyond that

limit is considered as noise or bad reading. In Appendix A upper and lower bound of every

device recorded in house_1 is given. The main dataset contains five folder. Each folder

correspond to each house. Under each house numbers of CSV files according to number of

devices are given. Each CSV file contains records of power consumption with time. In each

CSV file time is give in format of UNIX time epoch. Interval data recording is six seconds. In

Figure 7 a screenshot of first 10 rows of channel_6 which is the records of power consumption

of dishwasher is given. In Figure 7 we can see CSV file contains two column and column_0

contains time and column_1 contains power consumption record.

17

Figure 7. Data Preprocessing

We have used pandas, a powerful library written in python for data analysis and manipulation.

Steps for filtering every CSV file is given below.

 With the help of pandas we converted UNIX time epoch to human readable date and

time.

 We dropped all the data record that do not comply with the bound given in Appendix

A. In Figure 10 a screen shot of noise free reading is given. Now we can say that the

dataset does not contain any noise according to Appendix A. Power consumption

records are taken via external meter Figure 9. The meters require some power to operate

and not factory standard. Therefore error is obvious in their reading. In IoT devices

power consumption reading capability will be integrated in their internal circuit and

will not face this kind of error.

 Goal of this project is to give a day ahead forecast. Therefore we do not need six second

interval datasets. Six second datasets are then resampled by day. Then total power

consumption of the day is converted into kWh, Figure 8.

 House power consumption has good relation with weather condition. Therefore we

have added average temperature, average humidity and average wind speed of every

day.

18

 In Figure 6 distribution graph of total power consumption is given. From this

distribution we have dropped lower than (mean - 2 *σ) and greater than (mean + 2 *σ).

According to normal distribution probability of any event outside 2 σ is less than 5%.

 After completing aforementioned steps all the CSV files are concatenated into a single

CSV file. Then the date and time was again converted into UNIX time epoch. Reason

of converting is, date time format changes in different computer due to different version

of software. UNIX time epoch is an integer number. As a result date and time remain

intact in every computer that want to work on the dataset. In Figure 10 a partial screen

shot of final CSV file is given.

Figure 8. Dataset after converting to kWh per Day

Figure 9. Smart plug and Data logger

19

3.4 Training STLF System

3.4.1 Architecture of LSTM

LSTM networks are renowned for their ability to remember pattern and sequence.

Human behavior tends to be repetitive. From this intuition we used LSTM Network to learn

the behavior pattern of power usages. Also, unlike normal datasets time series has a complexity

of order dependence between items and sequence. Long Short-term Memory Network were

made to deal with these kind of sequence dependencies. To build LSTM Network,

programming was done in Python 3.5. Python framework especially Pandas was used to read

dataset from a CSV file. To make the dataset suitable for LSTM, numPy was used to reshape

the dataset. We used TensorFlow with a rapper called Keras.

Figure 10. Partial screen shot of Final Dataset

Input to a LSTM Network is 3D matrix. Datasets we have used in this project is 2D matrix

which consist of columns and rows. Number of columns corresponds to dimension of feature

vector and number of rows corresponds to number of data points. Input of LSTM Network

20

consist of another dimension of the matrix, which corresponds to time steps. LSTM network

use this time steps to keep track of the previous occurrence. In Figure 11 graphical view of the

input of a LSTM Network is given. Structure of LSTM Model is described below Figure 12.

Figure 11. Input Shape of LSTM

Figure 12. Structure of Neural Network

In input layer is used to take output from outside and pass it to LSTM cell. In this layer input

and out shape are same.

 Input and output Shape: (Batch Size * Time Step * Input Vector Dimension)

21

o Batch Size: 10 sequence of samples

o Time Step: 7. Every sequence consist of today and previous 6 days of power

consumption reading

o Input Vector Dimension: 55

LSTM Cell take input of a 55 dimensional vector and give output of a 16 dimensional vector.

 Number of LSTM Cell: One.

 Batch Input Shape: (Batch Size * Time Step * Input Vector Dimension)

o Batch Size: 10 sequence of samples

o Time Step: 7. Every sequence consist of today and previous 6 days of power

consumption reading

o Input Vector Dimension: 55

 Batch Output Shape: (Batch Size * Time Step * Input Vector Dimension)

o Batch Size: 10 sequence of samples

o Time Step: 10. Every sequence consist of today and previous 10 days of power

consumption reading

o Output Vector Dimension: 16

 Activation: tanh

 Recurrent activation: Hard sigmoid

 Return Sequence: True

Output Layer of this network consist of one dense layer which take 16 dimensional vector as

an input and give output of one dimensional vector.

To prevent over fitting of the model a threshold was given. A program always keep

track on difference between loss of training set and loss of test set. When loss of training set

is decreasing and loss of test set is increasing and difference is bigger than threshold, it stops

training the model.

3.4.2 Training K-Nearest Neighbors Regression

Neighbors-based regression uses continuous data labels rather than discrete variables.

The query point is appointed a label which is the average of the labels of nearest neighbors.

There are two different neighbors regressor that are implemented by scikit-learn those

are 𝐾𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 where the implementation is done learning the k nearest

neighbors of each inquiry and k is user specified integer. And 𝑅𝑎𝑑𝑖𝑢𝑠𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟

22

is implemented learning about the neighbors in a permanent radius r of the inquiry point and r

is a floating-point value which is given by user.

Uniform weights are used by the basic nearest neighbors that is the classification of

query point is contributed uniformly by each point in local neighborhood. In some conditions,

to weight points in a way that the neighboring points accord more to regression than distant

points can give us advantage. This can be done by using the keyword 𝑤𝑒𝑖𝑔ℎ𝑡𝑠. 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =

 ‘𝑢𝑛𝑖𝑓𝑜𝑟𝑚’ is the default value assigned to all points with equal weights and from the query

points the weights proportional to the inverse of distance is allocated by 𝑤𝑒𝑖𝑔ℎ𝑡 = ‘𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒’.

In other way, to compute the weights user can define a function of the distance.

Brute Force: In machine learning the committed area of research is fast computation

of nearest neighbors. The most raw neighbor exploration application is the brute-force

computation of distances among all pairs of points in the dataset. 𝑂[𝐷𝑁²] is scaled where 𝑁 is

the number of examples and 𝐷 is dimensions. For small data examples brute-force neighbor

search can be very moderate. However with the increase in the amount of examples 𝑁 the

brute-force method becomes unworkable. The search by brute-force neighbors in the

class 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 is limited to the keyword 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = ‘𝑏𝑟𝑢𝑡𝑒’ as well as

computation is done by means of the sequences accessible in 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒.

We used 15 neighbors (𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 15) i.e. depending on the values 15 neighbors

it gives prediction.

 3.4.3 Support Vector Regression

The function of Support Vector Classification can be extended further to solve

regression problems. This method is called Support Vector Regression.

The cost function of building a Support Vector Classification model does not count the

training points which are beyond specific margin. As a result, the model depends on a subset

of the training data. Similarly the cost function of building a Support Vector Regression leaves

out any training data close to the model prediction. For which, the model depends on a subset

of the training data.

Even though Support Vector Machines are powerful tools, their compute and storage

requirements are increasing with the number of training vectors. Scikit-learn has class named

𝑙𝑖𝑏𝑠𝑣𝑚 [23] which implements SVR. SVR has a quadratic programming problem (𝑄𝑃) core

which separates support vectors from the rest of the training data. 𝑙𝑖𝑏𝑠𝑣𝑚-based

23

implementation uses the 𝑄𝑃 solver scales between 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
2) and

𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
3) which depends on the efficiency of 𝑙𝑖𝑏𝑠𝑣𝑚 cache (dataset

dependent). For very sparse data 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 should be replaced by the average number of

non-zero features in a sample vector.

In scikit-learn the support vector machines support both dense and sparse sample

vectors as input. For the efficient performance, 𝐶-ordered 𝑛𝑢𝑚𝑝𝑦. 𝑛𝑑𝑎𝑟𝑟𝑎𝑦 (dense)

or 𝑠𝑐𝑖𝑝𝑦. 𝑠𝑝𝑎𝑟𝑠𝑒. 𝑐𝑠𝑟_𝑚𝑎𝑡𝑟𝑖𝑥 (sparse) with data type float64 is preferred.

In the library of scikit-learn three different implementation of SVR is given. They are:

 𝜀 − 𝑆𝑉𝑅

 𝑁𝑢𝑆𝑉𝑅

 𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑉𝑅

A faster implementation is possible in 𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑉𝑅 than 𝜀 − 𝑆𝑉𝑅 as it only considers linear

kernels. We have implement 𝜀 − 𝑆𝑉𝑅 in our dataset. Mathematical formulation of 𝜀 − 𝑆𝑉𝑅 is

given below:

Assuming a set of training points,{(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} where 𝑥𝑖 is a feature vector and

𝑥𝑖 ∈ 𝑅𝑛 and 𝑦𝑖 ∈ 𝑅1 is the target output. If the given parameters 𝐶 > 0 and 𝜀 > 0 then

according to Vapnik [18] Support Vector regression is

min
𝑤,𝑏,ξ ,ξ ∗

1

2
𝑤𝑇𝑤 + 𝐶 ∑ ξ i

𝑛

𝑖=0

+ 𝐶 ∑ ξ 𝑖
∗

𝑛

𝑖=0

(18)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑇𝜙(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + ξ 𝑖,

 𝑦𝑖 − 𝑤𝑇𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀 + ξ 𝑖,

 ξ𝑖 , ξi
∗ ≥ 0, 𝑖 = 1, … , 𝑛.

24

The twofold problem is

min
𝛼,𝛼∗

1

2
(𝛼 − 𝛼∗)𝑇𝑄(𝛼 − 𝛼∗) + 𝜀 ∑(𝛼𝑖 + 𝛼𝑖

∗)

𝑛

𝑖=0

+ ∑ 𝑦𝑖(𝛼 − 𝛼∗)

𝑛

𝑖=0

(19)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑒𝑇(𝛼 − 𝛼∗) = 0

 0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1, … , 𝑛

 𝑊ℎ𝑒𝑟𝑒 𝑄𝑖𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗) ≡ 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗) 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

After solving the above equation, the approximate function is

∑(−𝛼𝑖 + 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥)

𝑛

𝑖=0

+ 𝑏

(20)

In the above equation notations are,

𝑤 = 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑤𝑇𝑥 = 𝑏

𝜉 = 𝑠𝑙𝑎𝑐𝑘 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙𝑜𝑤 𝑓𝑜𝑟 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐶 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑑𝑒 𝑜𝑓𝑓 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑎𝑛𝑑 𝑚𝑎𝑟𝑔𝑖𝑛

𝑒 = [1, … ,1]𝑇

In scikit-learn these constraints can be retrieved through 𝑑𝑢𝑎𝑙_𝑐𝑜𝑒𝑓_ which contains

the change between 𝛼𝑖, 𝛼𝑖
∗, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑣𝑒𝑐𝑡𝑜𝑟𝑠_ which holds the support vectors, in

addition 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡_ which holds the autonomous term 𝑏.

The fit method trains the model which takes as argument vectors 𝑋, 𝑦 where 𝑦 is likely

to have floating point values. We used default parameters of library for implementation of SVR

where Penalty parameter 𝐶=1.0, 𝜀 =0.2 (states the epsilon-tube inside which no penalty is

linked in the training loss function with points forecasted inside a space epsilon from the real

value), 𝑑𝑒𝑔𝑟𝑒𝑒 = 3 (only for Gaussian Radial Basis function and Polynomial kernel).

25

 3.4.4 Decision Tree Regression with AdaBoost:

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 is a class capable of carrying out regression on a dataset.

Like with other regressions, 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 takes as input two arrays. An array 𝑋

of dimensions [𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠] of the training points, and an array 𝑦 of integer values

having dimensions 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 of the class tags for the training points.

An efficient implementation for the construction of decision tree is offered by scikit-learn. By

presorting the features before training and keeping the label count the total cost of the algorithm

becomes 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)). This is optional for all tree based algorithms.

Tree algorithms: In 1986 Ross Quinlan developed ID3 (Iterative Dichotomiser 3).

This algorithm creates a multiway tree in which finds the categorical feature for each node that

yields the major information gain for categorical target. These trees are developed as big as

possible and then pruned to increase the capability of the tree to simplify to unobserved data.

C4.5 descendant of ID3. The trained trees are converted to sets of if-then rules by C4.5. The

precision of each instruction assessed to decide the sequence in which they should be useful.

Removing an instruction’s prerequisite if the precision of the instruction improves without it is

done by pruning. CART (Classification and Regression Trees) is same as C4.5 but it does not

compute rule sets and it supports numerical target variables. Binary trees are constructed using

the feature and starting point that yield the major information gain at each node. Optimized

version of CART algorithm is used by scikit-learn.

Mathematical Formulation: Assuming training vectors 𝑥𝑖 ∈ 𝑅𝑙 , 𝑖 = 1, … , 𝑛 and

targeted values containing vector 𝑦 ∈ 𝑅𝑛, partition of the space is made recursively such that

the samples with the same labels are in a group.

Suppose the data at node 𝑘 be represented by 𝑃. Splitting is done using 𝜃 = (𝑗, 𝑡𝑘)

having of an attribute 𝑗 and threshold 𝑡𝑚. After partitioning the data is kept into 𝑃𝑙𝑒𝑓𝑡(𝜃) and

 𝑃𝑟𝑖𝑔ℎ𝑡(𝜃) subsets 𝑃𝑙𝑒𝑓𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 ≤ 𝑡𝑘 and 𝑃𝑟𝑖𝑔ℎ𝑡(𝜃) = 𝑃 ∖ 𝑃𝑙𝑒𝑓𝑡(𝜃). Noise at 𝑘 is

calculated using a function 𝐻() which calculates impurity. The choice of function depends on

the method of solving (classification or regression)[19].

𝐺(𝑃, 𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑁𝑘
𝐻 (𝑃𝑙𝑒𝑓𝑡(𝜃)) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑘
𝐻 (𝑃𝑟𝑖𝑔ℎ𝑡(𝜃))

(21)

To minimize impurity parameters are selected using

26

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐺(𝑃, 𝜃)

(22)

It is continued for subsets 𝑃𝑙𝑒𝑓𝑡(𝜃∗) and 𝑃𝑟𝑖𝑔ℎ𝑡(𝜃∗) until the maximum depth is reached

where 𝑁𝑘 < 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑟 𝑁𝑘 = 1.

The boosting algorithm AdaBoost is included in the module 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 which was

introduced by Freund and Schapire in 1995. The main principle of AdaBoost is to fit a sequence

of weak leaners (i.e., small decision trees) on data that are modified various times. To produce

the final decision the prediction from all are combined by a weighted majority vote. The data

is modified at each boosting iteration by applying weights 𝑤1,𝑤2, 𝑤3, … , 𝑤𝑁 to every training

samples. In the start the weights are fixed to 𝑤𝑖 = 1
𝑁⁄ so that firstly it trains the weak leaner

on the real data. In each iteration sample weights are adjusted one by one in addition learning

algorithm is reapplied to the reweighted data. At a point the weights are increased of the

training samples that were forecasted inaccurately by the boosted model at the prior step and

the weights are decreased for those were forecasted accurately. The samples that are difficult

to forecast keeps increasing. Every successive weak learner is hence involuntary to focus on

the samples that are unused by the prior ones in the sequence.

The parameter 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 controls the number of weak learner. The contribution of

the weak leaners in the final combination is controlled 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 parameter. By default,

weak learners are decision stumps. Through the 𝑏𝑎𝑠𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 parameter different weak

learner can be specified. To tune to obtain good results the parameters are 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 and

the complexity of the base estimators.

Decision Tree Regression with AdaBoost is a powerful model. For parameters we used

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 16 for Decision Tree Regression. That is, the depth of tree can be maximum

16. For boosting parameter 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 300 is used. That is, 299 decision tree is

compared with a single tree regressor. If we increase this number, the regressor can fit more

details.

3.4.5 Root Mean Squared Error

The most frequently used measures of the differences between predicted values by an

estimator and the actual values is the Root Mean Square Error (RMSE). The example standard

deviation of the differences between predicted and observed values is represented by the

27

RMSE. When these individual differences are calculated over the data sample used for

prediction then they are called residual and when computed out of sample then they are call

prediction errors.

The RMSE of an approximation 𝜃 ̂with respect to a real value 𝜃 is defined as the square root

of the mean square error:

𝑅𝑀𝑆𝐸(𝜃) = √𝑀𝑆𝐸(𝜃) = √𝐸 ((𝜃 − 𝜃)
2

)
(23)

The RMSE of predicted data 𝑦𝑖̂ for survey of 𝑖 , for variables 𝑦𝑖 is calculated for 𝑛 numbers of

cases using the following formula:

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑛

𝑖=1

𝑛

(24)

Then RMSE is normalized using:

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

(25)

Scikit-learn has a class to measure mean squared error of a model which

is 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠. 𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟. Its takes input of array 𝑦_𝑡𝑟𝑢𝑒 containing

original values and 𝑦_𝑝𝑟𝑒𝑑 containing predicted values of a model then gives a floating number

value as output which is MSE of the model. Then we used 𝑠𝑞𝑟𝑡() function to calculate RMSE

as RMSE is square root of MSE.

28

CHAPTER 4

Experimental Setup and Result Analysis

 In this chapter will give details of the hardware, software used in this project. Then we

will discuss about the experimental results of every algorithm used to build short term load

forecasting in this project. At the end will give a comparison of performance of four machine

learning algorithm.

4.1 Details of Hardware and Software

Configuration of Computer

 Processor: AMD FXtm-8300 Eight-Core Processor, ~3.3GHz

 RAM: 16384MB RAM

Programming Languages

 Python 3.5

Editors and Integrated Development Environment

 PyCharm

 Jupyter Notebook

List of Frame Work and Libraries based on Python

 ScikitLearn [24]

 Tensorflow

 Keras [25]

 Pandas

 numPy

 MatplotLib

4.2 Result Analysis

As our goal is to predict the power consumption of the house the next day depending

on the power usage of the appliances of the present day. Model is evaluated on test set. The

error result is obtained from test set. For preprocessing we scaled the data using the library

29

function 𝑠𝑐𝑎𝑙𝑒(). We used 𝐾𝑓𝑜𝑙𝑑 splits for splitting the dataset as it’s a time series dataset.

Later we trained out model on train set and the error rate is acquired by evaluating the models

against our test set. We used all the default settings of the library and few changes in parameters

of few algorithms. We used an API out of 3 APIs of the library to measure our trained model’s

performance. The API scoring parameter contains model-evaluating tools using cross-

validation depends on an internal scoring strategy. We used this API to find the MSE of our

models then used square root to find out RMSE and we compared the algorithms based on the

result of the API.

4.2.1 Nearest Neighbors Regression:

Nearest Neighbors has RMSE of 1.9331727. As our goal is to predict the total power

consumption of a house of the next day depending on the usage of the today’s power

consumption of the appliances, for which we are getting this much higher RMSE value. In

Figure 13 the comparison of the real value and the predicted value of the trained model Nearest

Neighbors Regression is given.

Figure 13. Nearest Neighbors Regression, empirical comparison

4.2.2 Support Vector Regression:

The kernel RBF performs better than other kernels. RBF kernel performs better in this

context because of the data. The higher the degree, the performance of other kernels are worse

30

than RBF. SVR using kernel polynomial and Gaussian Radial Basis function with degree of 3

has RMSE of 2.1229618 and 1.8341087 respectively. But kernel linear performs slightly lesser

than RBF but better than the polynomial as it has a degree of 1. It has RMSE of 1.8474361.

For having the lowest RMSE among the kernel function, we preferred the kernel function RBF

for SVR. In Figure 14 the performance of Support Vector regression (kernel RBF) is shown by

comparing the true value with predicted value. The predicted power consumption is the output

of the model.

Figure 14. Support Vector Machine Regression, empirical comparison

4.2.3 Decision Tree Regression with AdaBoost:

The RMSE of this model is 1.9202281. As we restricted the depth to 16 and we selected

all the features to train the model we are getting much high RMSE. In Figure 15 Evaluation of

the model Decision Forest Regression with AdaBoost is shown by comparing predicted and

real value.

4.2.4 Long Short-term Memory Network (LSTM)

In experiment we used single cell LSTM network. We have tested with LSTM network

with up to 3 LSTM cell stacked top of one another. Stacking more than one LSTM cell made

computation heavier but did not give better result. In some cases it went bad.

We have also experimented with length of look back. Here look back is how many

samples is given as an input in each time step. We have tested variable length of look back.

31

Most significant were 7 for 7 days, 15 for 15 days, 30 for 1 month. Length of look back between

7 and 15, have given better result than longer look back like 30. We have found best result in

look back length 7.

Figure 15. Decision Tree Regression with AdaBoost, empirical comparison

Figure 16. Load forecasting by LSTM

32

In table we can see LSTM has given lowest RMSE scour. Reason of the lowest scour

is ability of a LSTM to process sequence of samples rather than a single sample. In Figure 16

we can see that predicted data points by a LSTM almost catches the pattern of electricity

usages. In Figure 17, point by point comparison of 10 test and predicted data point is given.

Figure 17. Load forecasting of LSTM, empirical comparison

4.3 Comparison and Result Summary

Table 2. RMSE of ML Algorithms

Algorithms Error

Root Mean Squared Error

Nearest Neighbors Regression 1.93

Support Vector Machines

Regression

 1.83

Decision Forest Regression

With AdaBoost

 1.86

Long Short Term Memory 1.82

33

Figure 18. RMSE of ML Algorithms

Figure 19. Comparison of four ML Algorithms based on their outputs on same test set

34

In Figure 19 an overall summary of the outputs of four algorithm is given. Day by day our

processors are getting stronger and less power hungry. Also in recent days processors are

coming with dedicated core for neural net and artificial intelligence. As a result cost and

computational power required for training a neural network will not be problem in the future.

Neural networks like LSTM has the ability to adopt with a great variety of patterns and the

ability of recognize those pattern. According to our experiment LSTM has given better result

Figure 18 with compared to Support Vector Machines Regression, Decision Forest Regression

with AdaBoost and Nearest Neighbors Regression.

35

CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

Future power consumption prediction plays an important role in power saving and efficient

power use. First of all, forecasting gives electricity Generation Company an opportunity to do

advance planning on maintenance and distribution. It also helps end electricity user to optimize

their electricity use by providing advance warning of future power consumption. In this paper

we have presented a system which can give prediction based on data collected from IoT

devices. To prove the reliability of the system we have tested the system with real world data

sets. We have conducted several experiments to evaluate the performance of four machine

learning algorithms and concluded the experiment with a comparison of RMSE loss score.

Long Short Term Memory network has given lowest RMSE in the experiment. LSTM has

given better result because it can trace sequence. We have used sequence of seven days when

training LSTM. After examining the dataset we have found that human nature of using

electricity is related to week days. Therefore seven days look back has given better prediction

of next day’s power consumption. On the other hand other three algorithms used in this project

has trained with one day look back. We also found that too much long look back, for example

fifteen or thirty days does not improve prediction. Lookback longer that ten days overwhelmed

the calculation of LSTM cell and as a result performance goes down. Decision tree maximum

depth is restricted to 16 as the processing power and the risk of overfitting. Nearest Neighbor

regression can be improved by increasing number of neighbors i.e. value of K but there is a

risk of overfitting the model. SVR model has performed well because the Gaussian Radial

Basis function. Kernel polynomial performed worse than the other kernels as the model tends

to over fit if we raise the degree from 3 to higher. In dataset there are some missing days where

the appliance power consumption is not recorded. As we performed our experiment on times

series data missing values is a big concern. Results would have been better if there were no

missing values. We also added holidays and weather data to the dataset. Because power

consumption pattern changes in holidays and weekends. In our experiment we also found that

power consumption is also related to weather condition. Such as temperature, humidity, wind

speed. Addition of weather and holiday increased prediction accuracy.

36

5.2 Future Work

The system described in this paper worked on data collected from IoT devices. This system

can be implemented for home managements and grid managements. We performed analysis

using power consumption data using data grouping based on the time (day). Models can be

improved if the data grouping is based on the time interval of hours. This might reduce the

error of the models. In future we are looking forward to compare models using different

regression based ML algorithms. Privacy is a big concern here. In future we also want to

work on the security side of this system. Predictions can be improved selection of features

and changing the parameters.

37

Reference

[1] P. Dempsey, “The Teardown: Google Home personal assistant,” Eng. Technol., vol.

12, no. 3, pp. 80–81, Apr. 2017.

[2] B. Dorsemaine, J.-P. Gaulier, J.-P. Wary, N. Kheir, and P. Urien, “Internet of Things:

A Definition & Taxonomy,” in 2015 9th International Conference on Next Generation

Mobile Applications, Services and Technologies, 2015, pp. 72–77.

[3] C. Fischer, “Feedback on household electricity consumption: a tool for saving

energy?,” Energy Efficiency., vol. 1, no. 1, pp. 79–104, Feb. 2008.

[4] H. K. Alfares and M. Nazeeruddin, “Electric load forecasting: Literature survey and

classification of methods,” International Journal of Systems Science., vol. 33, no. 1,

pp. 23–34, Jan. 2002.

[5] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, “Short-Term Residential Load

Forecasting Based on Resident Behaviour Learning,” IEEE Trans. Power System.,

volume 33, no. 1, pp. 1087–1088, Jan. 2018.

[6] G. M. U. Din and A. K. Marnerides, “Short term power load forecasting using Deep

Neural Networks,” in 2017 International Conference on Computing, Networking and

Communications (ICNC), 2017, pp. 594–598.

[7] P. Ray, S. Sen, and A. K. Barisal, “Hybrid methodology for short-term load

forecasting,” in 2014 IEEE International Conference on Power Electronics, Drives

and Energy Systems (PEDES), 2014, pp. 1–6.

[8] J. Kelly and W. Knottenbelt, “The UK-DALE dataset, domestic appliance-level

electricity demand and whole-house demand from five UK homes,” Sci. Data, vol. 2,

p. 150007, Mar. 2015.

[9] P. Louridas and C. Ebert, “Machine Learning,” IEEE Software, vol. 33, no. 5, pp. 110–

115, Sep. 2016.

[10] A. Singh, N. Thakur, and A. Sharma, “A review of supervised machine learning

algorithms,” in 2016 3rd International Conference on Computing for Sustainable

Global Development (INDIACom), 2016, pp. 1310–1315.

38

[11] C. Chatfield, Time-series forecasting. Chapman & Hall/CRC, 2001.

[12] “Understanding LSTM Networks -- colah’s blog.” [Online]. Available:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed: 05-Mar-

2018].

[13] “Written Memories: Understanding, Deriving and Extending the LSTM - R2RT.”

[Online]. Available: https://r2rt.com/written-memories-understanding-deriving-and-

extending-the-lstm.html. [Accessed: 17-Mar-2018].

[14] A. Graves, “Supervised Sequence Labelling with Recurrent Neural Networks,” p. 18.

[15] F. A. Gers, F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget:

Continual Prediction with LSTM,” NEURAL Comput., vol. 12, pp. 2451--2471, 1999.

[16] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol.

9, no. 8, pp. 1735–1780, Nov. 1997.

[17] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric

Regression,” Am. Stat., vol. 46, no. 3, pp. 175–185, Aug. 1992.

[18] V. N. Vapnik, The Nature of Statistical Learning Theory. New York, NY: Springer

New York, 2000.

[19] J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,”

J. Anim. Ecol., vol. 77, no. 4, pp. 802–813, Jul. 2008.

[20] H. Drucker, “Improving Regressors using Boosting Techniques.”

[21] J. L. Bentley and J. Louis, “Multidimensional binary search trees used for associative

searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[22] S. M. Omohundro and S. M. Omohundro, “Five Balltree Construction Algorithms,”

1989.

[23] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support Vector Machines.”

[24] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res.,

vol. 12, no. Oct, pp. 2825–2830, 2011.

[25] F. Chollet and others, “Keras.” 2015. [Online]. Available: https://keras.io/. [Accessed:

05-Mar-2018].

1

Appendix A

List of Devices

Channel

ID

Name Min Power

(Watt)

Max Power

(Watt)

Type

2 boiler 70 4000 Apparent

3 solar_thermal_pump 43 4000 Apparent

4 laptop 70 4000 Active

5 washing_machine 20 4000 Active

6 dishwasher 10 4000 Active

7 tv 10 4000 Active

8 kitchen_lights 50 4000 Apparent Sub meter

of channel 25

9 htpc 20 4000 Active

10 kettle 2000 4000 Active

11 toaster 1000 4000 Active

12 fridge 50 4000 Active

13 microwave 200 4000 Active

14 lcd_office 40 4000 Active

15 hifi_office 9 4000 Active

16 breadmaker 500 4000 Active

17 amp_livingroom 25 4000 Active

18 adsl_router 6 4000 Active

19 livingroom_s_lamp 16 4000 Active

20 soldering_iron 50 4000 Active

21 gigE_&_USBhub 5 4000 Active

22 hoover 1200 4000 Active

23 kitchen_dt_lamp 13 4000 Active

24 bedroom_ds_lamp 26 4000 Active

25 lighting_circuit 40 4000 Apparent

26 livingroom_s_lamp2 86 4000 Active

27 iPad_charger 7 4000 Active

2

28 subwoofer_livingroom 15 4000 Active

29 livingroom_lamp_tv 13 4000 Active

30 DAB_radio_livingroom 300 4000 Active

31 kitchen_lamp2 20 4000 Active

32 kitchen_phone&stereo 5 4000 Active

33 utilityrm_lamp 35 4000 Active

34 samsung_charger 4 4000 Active

35 bedroom_d_lamp 45 4000 Active

36 coffee_machine 1000 4000 Active

37 kitchen_radio 2 4000 Active

38 bedroom_chargers 2 4000 Active

39 hair_dryer 1600 4000 Active

40 straighteners 170 4000 Active

41 iron 1700 4000 Active

42 gas_oven 11 4000 Active

43 data_logger_pc 12 4000 Active

44 childs_table_lamp 14 4000 Active

45 childs_ds_lamp 10 4000 Active

46 baby_monitor_tx 15 4000 Active

47 battery_charger 20 4000 Active

48 office_lamp1 14 4000 Active

49 office_lamp2 10 4000 Active

50 office_lamp3 7 4000 Active

51 office_pc 100 4000 Active

52 office_fan 20 4000 Active

53 LED_printer 400 4000 Active

	ABSTRACT
	Acknowledgement
	List of Figures
	List of Tables
	List of Abbreviations
	CHAPTER 1
	Introduction
	1.1 Motivation
	1.2 Contribution Summary
	1.3 Thesis Outline

	CHAPTER 2
	Literature Review
	2.1 Load Forecasting with Machine Learning
	2.2 Time Series Analysis with Machine Learning
	2.3 Long Short-term Memory Network (LSTM)
	2.4 K-Nearest Neighbors Regression
	2.5 Support Vector Machine – Regression
	2.6 Decision Tree – Regression with AdaBoost

	CHAPTER 3
	Proposed Model
	3.1 Process
	3.2 Data Collection
	3.3 Preprocessing and Filtering Data
	3.4 Training STLF System
	3.4.1 Architecture of LSTM
	3.4.2 Training K-Nearest Neighbors Regression
	3.4.3 Support Vector Regression
	3.4.4 Decision Tree Regression with AdaBoost:
	3.4.5 Root Mean Squared Error

	CHAPTER 4
	Experimental Setup and Result Analysis
	4.1 Details of Hardware and Software
	4.2 Result Analysis
	4.2.1 Nearest Neighbors Regression:
	4.2.2 Support Vector Regression:
	4.2.3 Decision Tree Regression with AdaBoost:
	4.2.4 Long Short-term Memory Network (LSTM)

	4.3 Comparison and Result Summary

	CHAPTER 5
	Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	Reference
	Appendix A

