
i

EMBEDDED REAL TIME BLINK DETECTION SYSTEM
WITH HEART RATE SENSING FOR DRIVER FATIQUE

MONITORING

Author

UMME SAIRA HABIBA- ID 14221001
SHAFINAZ NADIA AHMED-ID 14221002

PRITHILA ANGKAN-ID 14221012
MD ARMAN NOOR SAHAD-ID 14221026

A thesis submitted in partial fulfillment of the requirements for
the degree of Bachelor of Science in Electrical and Electronic

Engineering

Supervisor
Dr. A. K. M. Abdul Malek Azad

Professor
Department of Electrical and Electronic Engineering

BRAC University, Dhaka

ii

DECLARATION

We hereby declare that the thesis titled ‘Embedded real time blink detection system with
heart rate sensing for driver fatigue monitoring’, a thesis submitted to the Department of
Electrical and Electronic Engineering of BRAC University in partial fulfillment of the
Bachelor of Science in Electrical and Electronic Engineering is our own work. The work has
not been presented elsewhere for assessment. The materials used from other sources have
been acknowledged.

Signature of Supervisor Signature of Authors

……………..
Dr. A. K. M. Abdul Malek Azad

 ………………
Umme Saira Habiba

………………
Shafinaz Nadia Ahmed

………………
Prithila Angkan

………………
Md Arman Noor Sahad

iii

LIST OF FIGURES

Figure 01: Drowsy driver

Figure 02: Block Diagram of the Overall system

Figure 03: Circuit diagram of Overall system

Figure 04: Grove ear clip heart rate sensor

Figure 05: Arduino UNO

Figure 06: Block diagram of heart beat detection using Arduino UNO

Figure 07: The heart beat sensor implemented using Arduino UNO

Figure 08: MCP 3008

Figure 09:MCP3008 pin configurations

Figure 10: Grove ear clip

Figure 11: Raspberry Pi

Figure 12: Raspberry Pi night vision camera

Figure 13:Visual representation of 68 key facial coordinates

Figure 14: Real Time Visual representation of 68 key facial coordinates

Figure 15: Real Time Visual representation of 6 key coordinates of each eye

Figure 16: Coordinates of the eye

Figure 17: Eye Aspect Ratio Equation

Figure 18: Value of EAR over time

Figure 19: Real time computation of EAR

Figure 20: Real time computation of EAR

Figure 21: Flowchart of the code for heart beat detection using Arduino UNO

iv

Figure 22: Code for the heart rate detection using Arduino UNO

Figure 23: Flowchart of the whole system

Figure 24: Blink sensor and heart rate sensor implemented together

Figure 25: Placement of the night vision camera

Figure 26: Implementation of the system in the car

Figure 27: EAR for different people for eyes open and eyes closed

Figure 28: Blink time for number of frames

Figure 29: Graph for EAR vs Luminous intensity

Figure 30: Graph of Heart rate vs Sample

Figure 31: ISDSN Detection system

Figure 32: Placement of alcohol sensor on steering wheel

Figure 33: Proposed Scenario of BSN

Figure 34: The model for future work

Figure 35: System Model of WBAN

Figure 36: WBAN communication alerting the vehicle

v

LIST OF TABLES

Table 01: Connections from mcp3008 to specific pins of raspberry pi to use SPI connection

Table 02: Specification table of grove ear clip heart rate sensor

Table 03: Experiment Table for different “range_val”

Table 04: Sample and EAR values for both eyes open and eye closed

Table 05: Blink time for number of frames

Table 06: EAR values at different luminous intensity

Table 07: Heart rate of different people when they are awake at different time of the day

Table 08: Costing of the system

vi

ABBREVIATION

ADC- Analog to Digital Converter

BAC- Blood Alcohol Concentration

BPM- Beats Per Minute

BSN- Body Sensor Network

EAR- Eye Aspect Ratio

EDA- Electrodermal Activity

FARS-Fatality Analysis Reporting System

FGPA- Field Programmable Gate Array

GPIO-General Purpose Input Output

GPS- Global Positioning System

ISDSN- Intelligent Steering Wheel Distributed Sensor Network

LED- Light Emitting Diode

NHTSA- National Highway Traffic Safety Administration

OBU- On Board Unit

PDA- Personal Digital Assistant

RSU- Road Side Unit

SPI- Serial Peripheral Interface

V2I- Vehicle To Infrastructure

V2R- Vehicle To Roadside

V2V-Vehicle To Vehicle

VANET- Vehicular Ad Hoc Networks

WBAN- Wearable Body Area Network

WHO- World Health Organization

vii

CONTENTS

List of figures ...………………………………………………………………………………iii

List of tables ...……………………………………………………………...…………………v

Abbreviation ...………………………………………………………………………………..vi

Acknowledgement ...………………………………………………………………………….ix

Abstract ...…………………………………………………………………………………..…x

Chapter 1: Introduction………………………………………………………………..……1

1.1 Motivation and background ….…………………………………………………....1

1.2 Literature review ………………...………………………………………………..2

1.3 Objective ………………………...………………………………………………..3

1.4 Overview of content ….…………………………………………………………...3

Chapter 2: Project Overview ……………………………….……………………………….5

Chapter 3: Heart beat detection …………………………………………………………….8

3.1Heart beat detection using Arduino UNO ………………………………………...8

 3.1.1 Components used ………………………………………………………...8

 3.1.2Implementation ……………………………………………………….....10

 3.1.3 Result …………………………………………………………………...11

3.2 Heart beat detection using Raspberry pi …………………………………………12

 3.2.1 Components used ……………………………………………………...12

3.2.2 Biological Background ………………………………………………...14

3.2.3 Implementation ………………………………………………………...14

Chapter 4: Eye blinking detection using Raspberry Pi ………………………………….15

 4.1Components used ………………………………………………………………..15

 4.2 Implementation ………………………………………………………………….18

viii

Chapter 5: Software ……………………………………………………………………….24

 5.1 Heart beat detection using Arduino UNO ……………………………………….24

 5.2 Heart beat detection and Eye blinking detection using Raspberry Pi …………...26

Chapter-6 Commissioning the whole system ……………………………………………..30

Chapter 7: Field test ………………………………………………………………………..33

Chapter 8: Conclusion……………………………………………………………………..41

 8.1 Summary ………………………………………..……………………………….41

 8.2 Future Prospects ……………………………………………………………........41

 8.2.1 Steering wheel ……………………………………………………........41

 8.2.2 BSN, VANET, WBAN …………………………………………..........43

 8.2.3 Limitation ……………………………………………………………...48

 8.2.4 Costing ……………………………………………………………........49

References…..50

Appendix …………...……………………………………………………………………….53

ix

ACKNOWLEDGEMENT

We are thankful to our thesis supervisor Dr. A. K. M. Abdul Malek Azad, Professor,

Department of Electrical and Electronic Engineering of BRAC University for his guidance

for the completion of our thesis. Regards to Ataur Rahman, Project Engineer, CARC, BRAC

University for his support throughout the whole thesis work.We are thankful to EEE

department, BRAC University for providing us the necessary equipment for the completion

of this project.

x

ABSTRACT

Road accidents are a common phenomenon in our daily lives. Each year these road accidents

led to many deaths, fatal injuries and economic losses all over the world. One of the major

reasons of these accidents is the drowsiness of drivers. Thus, it is necessary to develop a

method to detect the driver’s drowsiness to reduce the accident rates. This paper describes a

research and project development to detect the drowsiness of drivers. A device was

developed that uses two methods to detect the drowsiness. One method was to use the heart

beat sensor to check if the heartbeat lies within the threshold value range. The other method

was to detect the eye blinking using image processing to check the eyelid’s position. The

output of both the methods is given as input to the Raspberry Pi. The output from the device

is connected to a buzzer that buzzes if the device detects that the driver is drowsy. The final

system was implemented and it quite efficiently monitors and detects the driver’s fatigue.

1

CHAPTER-1

INTRODUCTION

1.1 Motivation and background

The increase in the number road accidents is a matter of concern as it is a threat for mankind.

Every day in the news we get to hear about road accidents and the loss it has caused. Even in

Bangladesh, road accidents are a common phenomenon. These accidents lead to loss of lives,

fatal injuries and economic losses. According to the Daily Star [1], at least 2,297 people died

in road accidents in Bangladesh in the first half of 2017. Thus, it can be concluded that a

large number of these accidents happen due to the drowsy state of drivers. Therefore, it is

very necessary to develop a system that can detect the drowsiness of the drivers and

implement it in vehicles.

Figure 01: Drowsy driver

Accidents due to drowsy driving occur mostly in vehicles like trucks and buses that travel at

night. According to UCLA Sleep Disorder Centre, drivers who work in shifts like night

shifts, have sleep disorders like insomnia, take medicines that make people drowsy like

cough syrups or those who drink alcohol are likely to drowse off while driving[3]. From our

research, we found many different methods to detect the drowsiness such as monitoring the

head position, steering wheel pattern, eyelid movement, heart rate, lane deviation. But in our

device we have decided to implement two methods. One is the heartbeat detection and the

other is the eyelid position monitoring.

2

1.2 Literature Review

Micro-sleep is one of the major causes of road accidents that take place. Fatigue and

drowsiness can be detected by analyzing the condition of the eye. The eyes can be analyzed

using a camera that is set up on the dash board. Yet, analyzing the eyes can be limited by

lighting conditions. An IR illuminated camera that takes the advantage of bright pupil when

exposed to IR can be used for analyzing under any condition. Discussions about such a

device which consists of IR illuminated webcam and other devices that work together to

detect drowsiness has been made in paper [3]. The outcome of the device depends mainly on

effective and efficient image processing techniques. The paper also talks about several

mathematical approaches to analyze the eyes, such as Kalman filtering, the Mean shift

algorithm, template based co relation. A laboratory model was developed and tested which

consisted of an IR camera. The data from the camera was fed to data acquisition card and

then to a micro-controller. The micro-microcontroller then analyzed the image. At first, the

face region was separated from the whole image using Boundaries Function. Then Region

Prop Technique was used to identify the eyes from the rest of the eyes. If the eyes are closed

for a significant amount of time, the buzzer goes off and a led in the system turns red. The

experiment gave positive results even when different persons were used. It also gave a robust

performance at different environmental condition. The writers concluded that it can be used

as a very effective device to detect driver drowsiness, thus preventing micro-sleep which

leads to accidents.

Different methods like Steering Pattern Monitoring, Vehicle Position in Lane Monitoring,

Driver Eye/Face Monitoring, and Physiological Measurement have been suggested in paper

[4] that can be used to detect the driver’s drowsiness. This paper focuses on a model of Smart

Band which monitors the heart rate to detect the drowsiness. The grove ear clip which

contains the sensor can be placed on the tip of the finger or the ear lobe. The sensor has light

emitting diode and a light detecting receiver like photodiode or light detecting resistor. The

heart beat pulse cause the blood flow to vary in different regions of the body. When the grove

ear clip is worn the tissues are illuminated by light and depending on the blood volume in that

tissue light is absorbed, transmitted or reflected. The reflected light is received by the detector

and the detector output is proportional to the heart rate. This output is given as input to the

Arduino UNO. The Arduino compares this result with the threshold heart rate in the code

given in to it. If the input heart rate is greater than the threshold value the buzzer is off. But if

3

it falls below the threshold value, it means maybe the driver is drowsy or has fallen asleep

and the buzzer is triggered and it rings to wake up the driver. The code in paper [4] is

developed in embedded C’ language.

1.3 Objective

The main objective of this project is to develop a device that can detect the driver’s

drowsiness. In order to detect the drowsiness we decided to use two methods. One method is

to use the heart beat sensor and check if the heart beat is within the threshold value range.

The other method is to detect the eye blinking using image processing. The output from the

two methods is given as input to the Raspberry Pi that uses Python language and an overall

system is developed. If the heart beat is outside the threshold value range and if the eyelids

are found closed then the buzzer would be ON.

1.4Overview of contents

The rest of the dissertation is organized as follows:

Chapter-2: Project overview

In this chapter, the project overview has been discussed. How we want to develop the system,

what we want to implement and what results we expect to get has been discussed in short.

Chapter-3: Heart beat detection

In this chapter, the implementation of the heart beat sensor has been explained in details. This

chapter is also based on the discussion of heart beat sensing using Arduino UNO and

Raspberry Pi has been discussed. In this chapter the reason for switching from Arduino UNO

to Raspberry Pi has been stated.

Chapter 4: Eye blinking detection using Raspberry Pi

This chapter contains discussions about eye blinking detection in details. The way the image

is obtained, image processing is done and how results are obtained has been discussed.

Chapter 5: Software

In this chapter, the flowcharts of the codes and the portion of our contribution to the code has

been explained.

4

Chapter 6: Combining the overall system

In this chapter, the methods of how are the system has been combined together has been

explained in details.

Chapter 7: Field test

The final system has been tested in different places at different condition. The details of the

tests and the results obtained have been discussed in this chapter.

Chapter 8: Conclusion

In this last chapter the main results of the system has been summarized and some concluding

remarks and some directions for future works has been provided.

5

CHAPTER-2

PROJECT OVERVIEW

In this chapter, the overview of the system has been discussed in details. This chapter

contains brief explanation of the hardware that we used to build up the system. This chapter

also contains the discussions of the software and the processor that has been used.

From the literature review, we found out that there are many ways to detect the driver’s

drowsiness. In our system, we have decided to implement two methods to detect the

drowsiness. One is to monitor the heart beat and the other is to monitor the eye blinking. Any

one of the two methods can effectively predict the driver’s drowsiness but to make the system

more efficient we have incorporated both the methods together.

Figure 02: Block Diagram of the Overall system

The block diagram shows the design of the overall system. The Raspberry Pi night vision

camera and the pulse sensor are the two sensors we will implement in the system. The signal

from the Raspberry Pi night vision camera directly goes to the Raspberry Pi but the signal

from the pulse sensor passes via the ADC. The Raspberry Pi is powered from the car by USB

cable. The output from Raspberry Pi goes to the buzzer.

6

Figure 03: Circuit diagram of Overall system

The diagram shows the design of our overall system. It shows all the hardware that we

needed to build up the system. It consists of a pulse sensor, Raspberry Pi Night Vision

Camera, ADC, USB cable, Raspberry Pi, LED and alarm.

The pulse sensor measures the heart beat and Raspberry Pi Night Vision Camera for eye

blinking detection and these are the two sensors of our system. These two sensors provide the

input signals. The pulse sensor has a grove ear clip that can be worn on the fingertip or the

ear lobe according to the convenience of the driver. For conversion of the signal received

from the pulse sensor an ADC is incorporated in the system. The pulse sensor measures the

heart beat and sends the signal to the Raspberry Pi via the ADC. A Raspberry Pi night vision

camera is placed on the dashboard. The camera detects the face and the facial features. A

facial landmarks detector is used to find the facial coordinates. The night vision camera

detects if the eyes of the driver are open or closed.

7

We first used the Arduino UNO to implement the heart beat sensor but due to certain

limitations we had to shift to Raspberry Pi. The processing ability of Raspberry Pi is more

than that of Arduino UNO which makes it compatible for image processing. Hence, for the

whole system Raspberry Pi was used as the processor. Raspberry Pi needs to power to

operate. USB cable is required to power up the whole system and this power is provided from

the car.

For the software, we combined the codes for the eye blink detection and heart beat sensing.

The code for eye blink detection calculates the EAR value. The code for heart beat sensing

detects if the input heart beat is less than or greater than the threshold value range.

In the Raspberry Pi code, the Eye Aspect Ratio is calculated. The EAR for each eye is

calculated using 6 of the eye coordinates and the EAR calculation formula and the mean

value is taken. A threshold value of the EAR is set in the code. If the EAR value is less than

the threshold value then it detects the EAR for 5 more frames. If the EAR is still less than the

threshold than it will send a HIGH input to theRaspberry Pi. But if in between calculating the

EAR for the other 5 frames, the EAR increases then the code will calculate the EAR from the

start for 6 frames.

The code has been developed in such a way that only if it detects that the EAR is less than the

threshold then it calculates the heartbeat. In the Raspberry Pi code, a minimum and maximum

threshold heart beat value is set for heart beat detection. If the input signal falls outside the

threshold value range it sends a HIGH signal to the output otherwise a LOW signal goes to

the output.

If both the output signals are high then the buzzer goes ON to wake up the driver. It can be

concluded that the driver is drowsy or has fallen asleep. If both or even one signal is LOW

then buzzer is OFF. With the buzzer we have also connected an LED that glows if both the

sensors give a HIGH output.

In this chapter, the details of what we plan to, how we plan to do it and what results we

expect have been explained. Discussions about what sensors we will use in the system, the

hardware, software and processor we will use have been provided.

8

CHAPTER-3

HEART BEAT DETECTION

 Introduction

In our system we decided to implement two methods. Among them one of the methods that is

the heart rate detection was first implemented using the Arduino UNO. In this chapter, the

heart rate detection using Arduino UNO has been discussed in details. But due to certain

limitations the Arduino UNO was not suitable for our system so we had to switch to

Raspberry Pi. The heart rate detection using Raspberry Pi has also been discussed in this

chapter.

3.1 Heart beat detection using Arduino UNO

3.1.1 Components used

Grove ear clip heart rate sensor

Figure 04: Grove ear clip heart rate sensor

Grove ear clip heart rate sensor has ear clip and receiver module. The ear clip has heart rate

sensor in it and it can be worn on the ear lobe or at the tip of the finger according to the

convenience of the user. It has low power consumption, high sensitivity and it is very

9

convenient to use. Grove ear clip heart rate sensor is connected to Analog to Digital

Convertor (ADC) that has three wires:

 Black wire- Ground

 Red wire- Vcc

 Yellow wire- For data transfer to Arduino

Arduino UNO

Figure 05: Arduino UNO

The Arduino Uno is a microcontroller board which is based on the ATmega328. It has total

14 digital pins which can be used as input or output. Among them 6 can be used as PWM

outputs. There are also 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a

power jack, an ICSP header, and a reset button[5]. It is easy to use. Arduino UNO has a USB

cable that can be connected to the laptop/computer to get the power or it can be easily

powered using a battery.

10

3.1.2Implementation

The block diagram below shows how to set up the circuit.

Figure 06: Block diagram of heart beat detection using Arduino UNO

Arduino Uno and Grove Ear-Clip heart rate sensor were used for making the heart beat

sensor circuit. The Grove Ear-clip heart sensor can be worn by the driver on the fingertip or

the ear lobe according to the convenience of the driver. The sensor emits Infra-Red light at

the earlobe or figure tip and the light is reflected off the tissue. The reflected light is detected

by the detector in the sensor and the heart rate is measured.

The Grove Ear-clip heart sensor is attached to the Analog to Digital Convertor, which has

three wires attached to it. We connected one wire (yellow) to digital pin number 2 for input

from the sensor, one to the power (red) and one to the ground(black)of the Arduino. The

Arduino drew 5V power from the computer it was connected to. The buzzer was connected to

pin number 11 and ground of the Arduino Uno.

After taking 20 inputs from the heart rate sensor the Arduino calculates the average heart rate.

A threshold heart rate is set in the code. The threshold was set to 60 in the code. If the

calculated heart rate is less than the threshold heart rate the buzzer is on and the driver is

alert. Otherwise, the buzzer remains off.

11

3.1.3 Result

Figure 07: The heart beat sensor implemented using Arduino UNO

The heart beat sensor was implemented by connecting the hardware as shown in the above

figure. The system accurately measures the heart beat and it was quite efficient.

3.1.4 Limitation

The sensor accurately measures the heartbeat. The processor used for this is the Arduino

UNO. But the Arduino is not compatible for image processing. In our system we want to

implement two methods and for the second method we want to incorporate in our project we

need image processing but for that we cannot use Arduino. That is why we had to change the

processor from Arduino to Raspberry pi.

12

3.2 Heart beat detection using Raspberry pi

3.2.1Components used

MCP 3008

Figure 08: MCP 3008Figure 09: MCP3008 pin configurations

‐ MCP 3008 is an ADC (analog to digital converter)

‐ It reads the raw data transferred and collected from the sensor and converts it to

digital data [6].

‐ GPIO pin and SPI software is used to connect to the ADC. Another option is to use

the SPI hardware. But to minimize the cost we used the software instead. Also the

hardware has some limitations and could work with certain pins only [6].

‐ 8 channels to read the analog signals and send it to the raspberry pi[6].

‐ The digital data is 10 bit [6].

‐ SPI (serial peripheral interface) serial connection required for connection

SPI is used to send data between microcontrollers and devices such as sensors,

registers and SD cards. To select the required device it has a separate clock and select

line [7].

13

The table for the specification pins of the ADC is given below [6].

MCP3008 Raspberry Pi

VDD 3.3V
VREF 3.3V
AGND GND
DGND GND
CLK Pin 18

DOUT Pin 23
DIN Pin 24

CS/SHDN Pin 25

Table 01: Connections from mcp3008 to specific pins of raspberry pi to use SPI connection

Grove ear clip heart rate sensor

Fig 10: Grove ear clip

‐ Consist of an ear clip and a receiver module

‐ Low power consumption [8].

‐ High sensitivity [8].

‐ Three wires for ground, Vcc and data

14

The specification table of the grove ear clip heart rate sensor is given below, see [8].
 minimum typical Maximum Unit
Voltage 3.0 5.0 5.25 V
Work current 6.5 mA
Length of ear
clip wire

 120 cm

Table 02: Specification table of grove ear clip heart rate sensor

3.2.2 Biological Background:

The normal heart rate also known as pulse varies from person to person. Generally, for adults

the normal heart rate is within the range of 60 to 100 beats per minute (bpm)[9]. During

exercise the maximum heart rate of an adult could be up to 200 bpm[10]. On the other hand

heart rate could be elevated because of fatigue, stress, anger or other emotional turmoil as our

heart tries to pump oxygen to increase our energy [11]. While sleeping the normal heart rate

of adults would drop till 24bpm, however, for people of around 80 years old the sleeping

heart rate could be 14bpm[12].

3.2.3 Implementation

The grove ear clip can be worn on the ear lobe or the fingertip according to the preference of

the driver. Raw data is collected via the heart rate sensor. An ADC is connected to the grove

ear clip that data from analog to digital signal. This signal is given as input to the Raspberry

Pi as input.

A threshold minimum heartbeat is set on the code. The heart beat from the sensor is

compared with the threshold heartbeat. If the heartbeat recedes below the minimum heartbeat

rate the buzzer will be turned on showing that the driver maybe drowsy. The condition of the

driver is considered as normal if the heartbeat is above the threshold heart beat and the buzzer

will be off.

Conclusion

In this chapter, the heart rate detection using both the Arduino UNO and Raspberry Pi has

been explained in details. Also the reason for switching from Arduino to Raspberry Pi has

been discussed in this chapter.

15

CHAPTER-4

EYE BLINKING DETECTION USING RASPBERRY PI

Introduction

In our system, we decided to implement two methods. We have already discussed the first

method. In this chapter, the details for the second method that is the eye blinking

detection have been discussed. The components used, the methods used and the results

have been discussed.

4.1 Components used

Raspberry Pi

 Top view Side view

Figure 11: Raspberry Pi

The microcontroller used for the project is a Raspberry Pi 3 Model B, which is a credit

card sized Single Board Computer. The Raspberry Pi 3 Model B is a third generation

model and is 50% faster than its previous model [13]. It has a Quad Core 1.2GHz

Broadcom BCM2837 64bit CPU,1 GB of RAM, 400 MHz VideoCore IV® GPU[14]. It

supports 802.11n wireless LAN and Bluetooth 4.1 connectivity. Unlike other

16

microcontrollers, there is no need to connect any external antenna. The antenna is

soldered on the board to keep the size of the device small. Even though the antenna is

small, it is capable enough to pick up wireless signals even through the walls [14]. There

are 4 usb 2.0 ports, 4 Pole stero output and composite video port, Full size HDMI, CSI

camera port for connecting a Raspberry Pi camera, DSI display port for connecting a

Raspberry Pi touchscreen display. HDMI cable is used to connect the microcontroller to a

HDMI supported display, and then the microcontroller can be programmed using

keyboard. The use of HDMI can be omitted when through remote desktop connection,

when both the controller and the computer are in the same network. Mice, keyboards,

network adapters and external storage can be connected using the USB ports.

There are 40 extended GPIO pins and they provide 4 different function-GPIO, Ground

and Power [15]. There are 2 different supply pins in Raspberry Pi 3 Model B. The 3V3

supply pin can provide up to 500mA, but using the 5V supply is preferable. There are 8

available ground pins and they are all electrically connected.

There are no ON/OFF switches available to turn on the device. Supplying power to it will

automatically boot it up[16]. It can be turned off by disconnecting the power supply, or

when in the graphical environment, it can be shut down from the main menu or using the

command terminal to execute code that will turn it off. The microcontroller uses a 5V

USB input, also has ports where external power source can be connected to provide

power.

The microcontroller used in this project uses operating system Raspbian, with the version

Jessie. It is a lightweight and is Debian-based Linux operating system. It is specifically

designed to work for Raspberry Pi devices [17]. A lightweight LXDE desktop allows a

user friendly interface to work with and uses python as the coding language. The OS is

installed in an 8GB memory card and this allows us to install additional packages and

make programs of our own.

17

Raspberry Pi night vision camera

Fig 12: Raspberry Pi night vision camera

The camera used in the project was a Raspberry Pi Night Vision Camera. The camera is

connected to the microcontroller through the CSI connector. It has two high intensity

infrared LED spotlights which obtains power directly from the CSI port. They are capable

of lighting an area up to a distance of 8 meters [18]. There is a tiny adjustable

potentiometer on each LED board that can be used to change the threshold. The camera

specifications are given below [18]

 5 Megapixel OV5647 Camera

 2 x 3W high-power 850 infrared LEDs:

 Onboard photoresistor to detect ambient light

 Onboard adjustable resistor, for controlling the ambient light threshold of toggling the

infrared LED

 CCD size : 1/4inch

 Aperture (F) : 1.8

 Focal Length : 3.6MM (adjustable)

 Diagonal : 75.7 degree

 Sensor Resolution : 1080p

18

4.2 Implementation

After detecting the face, the task is to acquire facial landmarks, for example, eye

contours, mouth corners, nose, eyebrows, etc. Geometrical knowledge is required to

locate facial landmarks such as the eye corners and centre, the mouth corners and centers.

Our system uses a facial landmark detector that is included in the dlib library. This

detector is an implementation of One Millisecond Face Alignment with an Ensemble of

Regression Trees paper by Kazemi and Sullivan (2014). Results are achieved faster and

effectively with the help of new algorithm. Dlib’s facial landmark detector is pre-trained,

and is used to find the location of 68(x, y)- coordinates. These coordinates are key

coordinates that help to localize certain areas of the face. The 68 coordinates can be

visualized in the diagram below.

Fig 13: Visual representation of 68 key facial coordinate

19

Figure 14: Real Time Visual representation of 68 key facial coordinates

The coordinates of both the eyes are very important to us because that will help us to find

out if the eyes are open or not. Each eye has 6 unique coordinates, 2 on the top of the eye,

2 on the bottom and 1 on each side horizontal edge of the eye.

Figure 15: Real Time Visual representation of 6 key coordinates of each eye

These 6 particular coordinates are used to find the Eye Aspect Ratio, EAR. The EAR is a

formula that is discussed in Real-Time Eye Blink Detection using Facial Landmarks by

Soukupova´ and Čech (2016). Their paper[19] proposed a formula that detects eye blink

using the scalar quantity EAR. The Eye Aspect Ratio, as the name suggests, is a formula

that gives a scalar value of the extent to which the eye is open. The EAR is calculated in

each consecutive frame, and when there is a drop in the value of EAR, a blink is detected.

At the top-left in fig 5, the eye is fully open and the landmarks are visible along with the 6

20

key points, and the plot below shows that the EAR is constant over time. At the top-right

in Fig 5, the eye is closed and thus the EAR drops significantly.

Figure 16: Coordinates of the eye

Source: Adapted from [19]

Figure 17: Value of EAR over time

Each 6 coordinates are named as P1 to P6 starting from the left edge of the eye and going

clockwise with the remaining coordinates.

21

EAR
|| 2 6|| || 3 5||

2|| 1 4||

Figure 18: Eye Aspect Ratio Equation

Source: Adapted from [19]

The distance between two points, such as p2 and p6 are calculated using Euclidean

distance which is included in the NumPy library. The Euclidean distance is a popular

method to calculate the linear distance between two points. The numerator of the EAR

formula in fig 6 computes the distance between vertical coordinates and the numerator

calculates the distance between the horizontal coordinates. This formula saves us time to

find out if the eyes are closed, because conventional method for checking if they are

closed relies on further image processing.

Use of EAR is non-intrusive and allows us to find out the amount to which the eyes are

open, and determine whether they are open or closed. Other methods to find if the eyes

are closed require more processing power. One of the methods includes the use of

illuminated pupil. In Real Time Eye Detection and Tracking Method for Driver

Assistance System [3]by Ghosh, Nandy and Manna (2015) the eyes are exposed to IR rays

and they reflect it producing a bright pupil effect. This particular method says that the

eyes are open if bright pupil is detected, or the eyes are closed if there are no bright

pupils. More work has to be carried out by the processor to find out for bright pupil,

which can cause the system to run slower. But EAR relies on simple mathematics and

results are fast and accurate.

22

Figure 19: Real time computation of EAR

The EAR value for both the eyes is calculated and then the mean is taken. The EAR is

calculated for each consecutive frame and a threshold for EAR is set in the code. If the

value of EAR is less than the threshold, a counter is increased. If the value of the counter

reaches 6, it can be deduced that the eyes are closed, or not open enough. If that happens,

an alert is passed onto display output, along with the GPIO pins that trigger an alarm to

alert the driver.

Figure 20: Real time computation of EAR

23

Conclusion

The components and methods used for eye blinking detection have been discussed in this

chapter. The EAR value calculation and how it can be used to detect the driver’s fatigue

has also been discussed in this chapter.

24

CHAPTER-5

SOFTWARE

Introduction

The codes used for the heart rate detection using both Raspberry Pi and Arduino UNO and
also for eye blinking detection have been explained in this chapter.

5.1 Heart beat detection using Arduino UNO

Figure 21: Flowchart of the code for heart beat detection using Arduino UNO

The grove ear clip worn on the ear lobe or the fingertips takes the heart beat as input signal.

Then the input is converted to digital signal from analog signal using an ADC. The signal

from the ADC goes to the Arduino UNO. In the Arduino the checks if the heart beat is

greater than or less than the threshold value. If the heart rate is less than the threshold value

then the buzzer goes ON. But if the heart rate is less than the threshold value then the buzzer

is OFF.

25

Figure 22: Code for the heart rate detection using Arduino UNO

Based on the flowchart the code has been developed. The above portion of the code shows

that we have set the threshold heart beat value to 60. This value ‘60’ was found out by doing

a lot of research. The particular portion shows how the Arduino determines to turn ON or

keep the buzzer OFF the buzzer based on the input heart beat and the threshold value.

26

5.2 Heart beat detection and Eye blinking detection using Raspberry Pi

Figure 23: Flowchart of the whole system

The flowchart shows that first the system detects the eyes using the night vision camera. The

source code detecting the eyes is taken from pyimagesearch.com [20]. The EAR is calculated.

If the EAR is greater than the threshold it measures the EAR again. But if EAR is less than

the threshold than it measures the heartbeat. If the heart beat is less than the threshold than it

triggers the buzzer and flashes the LED.

27

The source code for measuring heart beat is retrieved from tutorials-raspberrypi.com [21].

But there was only one threshold given whereas we needed two threshold values. So we

modified the code such that a minimum and a maximum thresholds are set with which the

heartbeat of the driver is compared. If the heartbeat of the driver remains within the threshold

range the buzzer will not be turned on. In the grove sensor we are using noise is not filtered

automatically. As a result any external vibration or sound effect the values of the sensor. The

sensor sometimes gives BPM value over the normal heartbeat range while the person is in

normal physical state [22]. Also sometimes the sensor gives a high BPM output even when

the sensor is not connected to the fingertip or the earlobe [23]. To get rid of those external

values we needed to build a low pass filter.The number of consecutive pulses that would be

taken for comparison is denoted as “bpm_maxval”. Here we are comparing the previous 3

pulses with the current pulse. The “range_val” is the difference between the driver’s current

pulse with the previously obtained pulses. Here it is set as 20. That means if the differences

among the previous 3 pulses are within 20 with the current pulse then only the current pulsed

will be taken in as heartbeat. Otherwise the value will be discarded. While experimenting we

found that the noise that is interfering with the sensor’s value is very above 50. And the

general fluctuation between consecutive 3 heartbeats of a human is less than 20. Therefore,

for eliminating the noise the difference between the 3 consecutive heartbeats is set as 20.

28

As soon as the drowsiness alert is detected the code will go for checking the heartbeat.The

heartbeat will only be accepted if the differences among the previous three consecutive

values are within 20 BPM. After that it will check if the heartbeat obtained is within the

threshold value or not.If not only then the buzzer will be turned on.

29

While comparing with the threshold values and noise filtering the code will show the

message “Calculating BPM”. If the sensor gets disconnected from the body or is unable to

take input of the heartbeat then it will show the message “No heartbeat found”.

Conclusion

This chapter shows the code for heart beat detection using Raspberry Pi and Arduinoand eye

blink detection using Raspberry Pi. The important portions of the codes have also been given

here and explained in details.

30

CHAPTER-6

COMMISSIONING THE WHOLE SYSTEM

In this chapter, it has been discussed about how to implement the whole system in the car.

This chapter contains details about how to place the camera, the grove ear clip and Raspberry

Pi.This chapter basically explains how the hardware and software are combined together.

Figure 24: Blink sensor and heart rate sensor implemented together

Both the night vision camera and the grove ear clip are connected to the Raspberry Pi. The

same Raspberry Pi is used to process the signals given as input by the two sensors. The

Raspberry Pi runs the code. The night vision camera and the Raspberry Pi placed on the

dashboard as shown in the above figure. The grove ear clip is worn on the ear lobe. The

whole system is powered by supply from the car.The night vision camera is placed in such a

way that it does not cause any hindrance to the driver while driving. The night vision camera

detects the blinking of the eyes. It is the first sensor input. It takes images of the eyes and

using the code the EAR is calculated. If the EAR is less than the threshold value set in the

code then it calculates the EAR for 5 more frames. If the EAR for 6 consecutive frames is

less than the threshold only then it measures the heartbeat.

31

Figure 25: Placement of the night vision camera

The camera needs to be adjusted according to the position of the driver’s eyes. So, a tripod

has been used to place the night vision camera in the dashboard. Using the tripod, the height

and position of the camera can be adjusted according to the needs of the drivers.

The grove ear clip contains the heart rate sensor. The driver wears it on the ear lobe during

driving. Once the night vision camera gives a drowsiness alert and shows the eyes are closed

only then the heart beat is measured. The heart beat measured by the heart rate sensor is the

second input. For the heart beat sensor, the code does not measure filter the outside noise so a

filter is included in the code. In the code, minimum and maximum heart rates are given as

threshold values. If the heart rate is outside the threshold value range then it triggers the

buzzer and the buzzer goes ON to show that the driver is drowsy. An LED is also connected

at the output that glows alongside the buzzer if the EAR and heart beat are less than the

threshold.

The Raspberry Pi has been used as the processor for this system.The Raspberry Pi requires

5V supply so it has been powered using the supply from the car. The Raspberry Pi is placed

in box that has been placed with the night vision camera and the grove ear clip connected to

it.

32

Conclusion

This chapter shows how the hardware components were placed in the car. It explains about

how the code is processed in the Raspberry Pi to give the output. This chapter is basically the

details of how the hardware components and the software are combined to get the overall

system.

33

CHAPTER-7

 FIELD TEST

Introduction

In this chapter, we have included all the results that we have obtained during the field test.

We have done 4 field tests. This chapter contains all the results.

Figure 26: Implementation of the system in the car

1.Experiment Table for different “range_val”:

Range_val BPM (beats per

minute)

10 values

Description

0 No values

Its very rare that the consecutive BPM are exactly

the same. Generally there is a small change in the

consecutive BPM.

2 X

X

X

Very few values could be detected where the

difference between the consecutive beats are 2 or

less.

34

94

X

91

91

X

X

10 93

95

92

98

89

X

90

89

87

91

Almost all the results are reliable when the person

is in normal condition. However, while talking

the 6th value the person coughed and the heartbeat

jumped up beyond the acceptable difference of

BPM. Therefor the value was discarded.

20 90

88

87

85

89

95

112

90

88

87

All the values are reliable. During the 7th reading

the person coughed and the BPM went up by 17.

The code did not discard the value as the

acceptable difference is set to 20.

60 88

85

87

90

144

88

88

The 5th reading here way higher than the normal

BPM of that particular person. The difference

between the 4th and the 5th value is 54. However,

during the whole time the person was relaxed, did

not cough nor sneezed. This is the effect of

external noise taken in by the sensor.

35

89

87

90

Table 03: Experiment Table for different “range_val”

According to the experiment the most suitable value for “range_val” is 20. It eliminates the

external noises in addition to that it allows the maximum change in BPM to take as input in a

normal human being.

2.Experiment for Sample vs EAR:

The EAR values for 7 different people were recorded. The EAR for both eyes opened and
closed was measured. For accuracy the EAR was calculated for 5 times and the mean value
was recorded.The table below shows the mean values. Using the values a graph was plotted.

Table for sample vs EAR:

Sample EAR for eyes open EAR for eyes closed
1 0.374 0.218
2 0.253 0.121
3 0.350 0.129
4 0.302 0.147
5 0.379 0.195
6 0.275 0.136
7 0.281 0.110

Table 04: Sample and EAR values for both eyes open and eye closed

36

GRAPH:

Figure 27: EAR for different people for eyes open and eyes closed

From the graph we can see that, the minimum EAR for eyes open is for Sample2 which is

0.253. The maximum EAR for eyes open is for sample 1 is 0.218. Hence, the threshold was

set to 0.235 in the code.

3. Blink time for number of frames

The blink time for different number of frames was measured to find the most appropriate

number of frames to set in the code. Using the values a graph was plotted shown below.

Frames Blink Time(second)
4 1.74
6 2.49
8 3.33
10 3.70
12 4.05
15 5.56
20 6.99
25 9.82

Table 05: Blink time for number of frames

37

Figure 28: Blink time for number of frames

According to the graph, the most appropriate number of frames is 6. So in the code the

number of frames for which the code runs to detect the EAR was set to 6.

4. Experiment to determine EAR is constant at all luminous intensity:

The EAR for the same person with eye open was measured at 4 different luminous intensities.

It was done to see that the EAR of a person remains approximately constant at all luminous

intensity and also to show that the Raspberry Pi night vision camera works at different

luminous intensity.

The following table shows the EAR of a person at the different luminous intensity:

Luminous
intensity (lux)

Pictures showing the EAR

1.17

38

13.26

74.0

209.2

Table 06: EAR values at different luminous intensity

From the pictures above we can see that the EAR is 0.403, 0.395, 0.387, and 0.390. The

average the EAR is 0.394. The difference between the EAR values at different light

intensities is very less. Also the difference between the average EAR and the 4 different EAR

is less.

39

Figure 29: Graph for EAR vs Luminous intensity

The above graph also shows that EAR is almost constant for different luminous

intensity.Thus, it can be concluded that the EAR is constant for a person in a particular

situation (in this case eye open) and it does not depend on the light intensity. It can also be

concluded that the night vision camera works at all light intensity.

5. Experiment to measure the heart rate from various people at different time of the

day:

We carried out a test to measure the heart rate of various people at different time of the day.

The table below shows the experimental values:

sample Heart Rate (bpm)

1 79

2 93

3 82

4 67

5 90

6 96

7 81

8 77

9 112

40

10 92

11 108

12 74

13 93

14 90

15 88
Table 07: Heart rate of different people when they are awake at different time of the day

Figure 30: Graph of Heart rate vs Sample

The above graph shows that while awake the heart rate of an average healthy human does not

drop below 60bpm. Hence, in our system 60bpm is set as the minimum threshold heart rate.

Conclusion

This chapter contains all the field tests we performed using our system. Using our

experiments, we have found out the number of frames that should be set in the code for eye

blink detection. We also found out the threshold EAR value. From our tests, we can conclude

that the EAR of a person at any luminous intensity is constant in a particular situation(in this

case eye open). We can also conclude that the night vision camera works at all luminous

intensity.

41

CHAPTER 8

CONCLUSION

Introduction

This chapter contains brief summary of the entire system. It contains information about how

the system was developed and how it works. This chapter also contains details of how we

want to further develop our system to make it much more efficient.

8.1 Summary

The main objective of our work was to come up with a system that can detect driver’s fatigue.

After a lot of literature review, we found many methods to detect the fatigue level. But we

decided to implement two methods that can be used in our system that we thought were the

most accurate methods. Blink detection system and heart rate sensing are the two methods

that we implemented in our project. Raspberry Pi was used as the processor. For eye blink

detection the EAR was calculated and the groove ear clip was used to monitor the heart rate.

These two methods together detected the drowsiness of drivers.

The developed system was tested under different conditions. The system can detect the EAR

at different light intensity even in the dark as it used night vision camera. The system also

accurately monitors the heartbeat. All the field test results prove that the system is quite

efficient in monitoring the driver’s fatigue.

The developed system is easy to develop, implement, use and gives accurate output. The

efficiency of the system shows that it can be used for commercial purpose. But the system is

just a prototype that needs certain modifications before it can be implemented in vehicles.

The cost of the entire system is quite low which makes it affordable for use in commercial

purpose.

8.2 Future Prospective

8.2.1 Steering wheel

Besides using facial detection method to detect the facial behavior of the driver such as eye

movement, head tilting, blinking or even yawning heartbeat sensors could also be used to

detect if the driver is falling asleep as we are using in our project. The limitation of using our

system is that the sensor must be connected to the driver’s earlobe or fingertip in order to

42

detect the driver’s heartbeat. And as our heartbeat sensor is not wireless a wire is always

connected to the drivers body hence there would be some limitation of movement of the

driver as well as it may cause the driver discomfort. In order to get rid of the problem a

different type of heartbeat sensor could be built where no wire is required also the sensor

need not to be attached to the driver’s body all the time. In the conference paper “Wireless

Sensor Embedded Steering Wheel For Real Time Monitoring Of Driver Fatigue Detection”a

method is introduced where the heartbeat sensor is embedded in the steering wheel of the

car[24]. The Intelligent Steering Wheel Distributed Sensor Network (ISDSN) is the cluster of

several sensors in the steering wheel [24]. The infrared emitter and receiver are placed in

such a way so that very less space is consumed [24].

Figure 31: ISDSN Detection system (p. 224)

Source: Adapted from [24]

As the driver places his palm on the steering wheel the sensor could start working. The

infrared ray is emitted from the emitter and it reflects back from the blood of the driver’s

blood vessels. The volume of our blood flowing through the blood vessels changes according

to our blood pressure[24]. Therefore the reflected ray received by the receiver gives the value

of the driver’s heart rate. There are also filter to filter out the external noises from the original

sensor’s value and amplifier to amplify the obtained value all incorporated within the steering

43

wheel[24].For further advancement a data storage device could also be added to keep the

record of the data collected from the sensor [24].

In a journal “Smartwatch-Based Driver Vigilance Indicator With Kernel-Fuzzy-C-Means-

Wavelet Method”a similar technique is used to determine the drivers fatigue stage. Here

instead of using infrared ray ECG (electrocardiogram) sensors are used [25]. Moreover, the

biomedical signals can be received by the smartwatch devices through BLE (Bluetooth low

energy) [25]. Therefore this device could become wireless.

8.2.2 BSN, VANET AND WBAN

According to Association for Safe International Road Travel [26], each year about 1.3 million

people die in road accidents, which means on an average 3287 people die every day on the

roads. Needless to say, the importance of developing an integrated road safety system cannot

be stressed enough. Along with the two sensors that we implemented in our system several

other inputs from various sensors, such as Q sensor, alcohol sensor etc, can be taken to make

the system more coherent and reliable in reducing such road fatalities and injuries.

Among several methods to prevent road accidents, Genaro Rebolledo-Mendez, Reyes,

Paszkowicz, Domingo, and Skrypchuk (2014) [27] illustrated on developing a Body Sensor

Network (BSN) by detecting the driver’s emotions. The two sensors used by Rebolledo-

Mendez et al [27] are Q sensor for determining electrodermal activity (EDA) and NeuroSky’s

Mindwave. Both these sensors are portable and readily available to buy. Q sensor measures

skin conductance in microsiemens. The level of arousal of the driver can be predicted by this

measurement. If the EDA value is high Rebolledo-Mendez et al [27] states that the person is

more engaged, stressed or in a state of excitement, meaning higher level of arousal and

similarly, disengagement, boredom or calmness can be concluded if the EDA value is low,

indicating lower of arousal. On the other hand, NeuroSky’s Mindwave determines whether

the driver is in the state of attention or meditation. These two types of neural activities can be

determined by Beta waves and Alpha waves. Rebolledo-Mendez et al [27] explains an

increase in Beta waves indicates a state of attention meaning the driver is aware and

similarly, increase in Alpha waves indicates a state meditation. According to Rebolledo-

Mendez et al [27], data is not stored on the NeuroSky but instead it has external storage

mechanism with Bluetooth that communicates with the On Board Unit (OBU) of the vehicle.

From their test results, Rebolledo-Mendez et al [27] derives the correlation between

physiological responses and emotional information given by 13 drivers themselves using

44

logical regression. Their results show high coefficients of variance between the neural

activity predicted by NeuroSky’s Mindwave and self reported data given by the drivers.

Whereas, the coefficient of variance is very low between EDA results and data reported about

their emotions while driving by the drivers themselves.

From our literature review, we found another reason for road accidents is drunk driving.

According to National Highway Traffic Safety Administration, in 2016, 10497 died due to

accidents caused by drunken driving [28]. According to WHO report, small amount of

alcohol concentration in blood can lead to accidents but the risk of accidents increase when

the blood alcohol concentration, BAC>= 0.04g/dl [29].

In our system we can incorporate an alcohol sensor that would continuously monitor the

blood alcohol concentration. An infrared breath analyzer can be placed on the steering

wheel.The breath analyzer willdetect the driver’s exhaled breath and will monitor the BAC.

We can set the threshold BAC to 0.04g/dl and if the detected BAC is greater than 0.04g/dl

then it will give a signal. We can connect a buzzer at the output which will buzz if BAC>

0.04g/dl.

Figure 32: Placement of alcohol sensor on steering wheel

The integration of Body Sensor Network and Vehicular Ad-hoc Networks can be used to

reduce accidents [30]. The BSN detects four psychological states. Firstly, it detects the

drowsiness of drivers that we have already implemented in our project. But [30] talks about

measuring the heart rate using ECG sensor attached to the steering wheel. In future, we can

also replace the groove ear clip with the ECG sensor and drivers would not have to wear the

groove ear clip in their finger or ear lobe which would make the system more convenient to

45

use. Secondly, BSN detects the drunken state of drivers using alcohol sensors. Thirdly, BSN

uses ECG, EDA sensors to detect the emotional state of the drivers. Fourthly, BSN detects

distracted driving motion sensors, accelerometers, gyroscopes.

Figure 33: Proposed Scenario of BSN

Source: Adapted from [30]

All the data obtained from the BSN goes to the monitoring station for processing. A

processing node which can be a Personal Digital Assistant (PDA), smartphone, laptop,

microcontroller, Field Programmable Gate Array (FGPA) The monitoring station has two

modules: one for extraction of the features from the sensors and the other is the intelligent

driver’s state recognition module to determine if the driver has one of the four psychological

states [30]. From the monitoring station the data goes the car’s OBU and the OBU has an

alarm notification module. If it detects one of the four psychological features it will forward

message to the VANET or the RSU. For this wireless communication means like Wi-Fi, GPS

is required. Vehicular Ad-hoc Network as described in [31] is a network of nodes on the road

where each vehicle is a node. All vehicles within a certain range, for example 100 to 300

meters, are connected through devices such as personal digital assistants (PDA), smart

46

phones, or laptops etc. Thus a network is created with numerous vehicles continuously

adding and falling out from it. The network also contains Road Side Units (RSU) which is

placed in fixed intervals in areas where the traffic is low. Therefore, the three kinds of

connections with a VANET system described in [31] are Vehicle to Vehicle (V2V), Vehicle

to Roadside (V2R) and Vehicle to infrastructure (V2I). The possible future position of each

vehicle can hence be predicted if the road map, road structure and the direction and speed of

the vehicle is known.

Figure 34: The model for future work

Source: Adapted from [30]

A hybrid VANET model is illustrated in [31] using Wireless Body Area Network (WBAN).

Wireless sensors are connected in the body to form WBAN network to increase the safety of

47

careless pedestrians. Flexible, less power consuming, compact devices such as, Google

glasses, smart oats or smart watches etc can worn by the pedestrians to form this network. In

[32] this hybrid model is introduced keeping in mind pedestrians in black spots which the

driver cannot see. Furthermore, the safety of disabled, handicapped, people with poor vision,

drunken pedestrians and children on the streets can be increased drastically if they wear a

wearing a device which can communicate with the RSU through Wi-Fi communication

interface and alert drivers of their approach and take necessary action such as, slowing down,

applying brakes or changing lanes, in order to avoid any imminent accidents.

Figure 35: System Model of WBAN

Source: Adapted from [31]

Experiments using GrooveNet simulator was done assuming vehicles going on a model of 3-

lane highway and results in [31] show drastic improvement in hybrid VANET model. When

the speed of the vehicle is more than 36km/hr, then only it was a danger for pedestrians in the

hybrid VANET model, where even vehicles driven at a speed of 11km/hr were risky to

pedestrians when WBAN was not used.

48

Figure 36: WBAN communication alerting the vehicle

Source: Adapted from [31]

8.2.3 Limitation

Raspberry Pi 3 Model B has a maximum CPU speed of 1.2 GHz and that limits the number of

tasks we can perform on it. When the program is run to detect the eyes and measure heart

rate, the CPU of the Raspberry Pi runs upto 80% of its maximum processing power. For

future prospects, we discussed that an alcohol sensor can be introduced in the system to

reduce drunk driving and heartbeat can be measured through the use of a band that send data

wirelessly to the micro controller. As more sensors are introduced, the system becomes more

complex and more powerful CPU will be required to do the tasks. Thus we will need to

change the microcontroller when making the system more advanced.

49

8.2.4 Costing

The table below shows all the components we needed to build up the system along with their

costing.

Components PRICE(Tk.) PRICE(USD)

Raspberry Pi 3 model B 3950 49.375

5 Megapixel night vision for Raspberry

Pi

4351 54.388

Raspberry Pi case 556 6.950

Grove ear clip heart rate sensor 2351 29.388

Bread board 105 1.313

MCP3008 361 4.513

Buzzer 15 0.188

LED 2 0.025

Remax Car charger 700 8.750

Jumper wires 33 0.413

USB Cable 90 1.125

16 Memory Card 900 11.25

Total 13414 159

Table 08: Costing of the system

Conclusion

In this chapter, we summarized all the things we did to develop our system, how the system

works and its limitations. In this system we used only two sensors to detect the driver’s

drowsiness. But in future we want to incorporate more sensors to form a BSN that will be

more efficient in reducing the road accidents.

50

REFERENCE

1. The Daily Star. ‘Road Accidents: Sharp rise in fatalities’. (2017). Available:

https://www.thedailystar.net/backpage/road-accidents-sharp-rise-fatalities-

1426999[Accessed 16 Apr. 2018].

2. UCLA Health. ‘Drowsy Driving’. [Online]. Available:

http://sleepcenter.ucla.edu/drowsy-driving [Accessed: 10-April-2018]

3. Real Time Eye Detection and Tracking Method for Driver Assistance System

BySayani Ghosh, TanayaNandy and NilotpalManna.Retrieved from

http://www.springer.com/cda/content/document/cda_downloaddocument/9788132222

552-c2.pdf?SGWID=0-0-45-1492990-p177196737

4. C. Boke, A. Shetty, A. Kadam, S. Jadhav, S. Pakhmode, S. Barahate, et al., “Smart

Band for Drowsiness Detection to Prevent Accidents, vol. 5, issue 1, pp. 1107-1114,

Jan 2016Retrieved from

https://www.ijirset.com/upload/2016/january/70_15_SMART.pdf

5. TECHSHOP bd.com. [Online]. Available: https://www.techshopbd.com/product-

categories/boards/1253/arduino-uno-r3-china-techshop-bangladesh [Accessed: 10-

April-2018]

6. Adafruit.com, ‘Raspberry Pi Analog to Digital Converter’ , 2016. [Online]. Available:

https://learn.adafruit.com/raspberry-pi-analog-to-digital-converters/mcp3008.

[Accessed: 07-April-2018].

7. Sparkfun.com, ‘Serial Peripheral Interface (SPI)’, [Online]. Available:

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi. [Accessed: 07-

April-2018].

8. Seeedstudio.com, ’Grove-Ear-clip Heart Rate Senser’, 2013. [Online]. Available:

http://wiki.seeed.cc/Grove-Ear-clip_Heart_Rate_Sensor/. [Accessed: 07-April-2018].

9. Livescience.com, ‘What is a normal heart rate?’ 2017. [Online]. Available:

https://www.livescience.com/42081-normal-heart-rate.html. [Accessed: 07-April-

2018].

10. Medicalnewstoday.com, ‘What should my heart rate be?’, 2017. [Online]. Available:

https://www.medicalnewstoday.com/articles/235710.php. [Accessed: 07-April-2018].

11. Livestrong.com, ‘Causes of Fatigue and a racing heart’, 2017. [Online]. Available:

https://www.livestrong.com/article/258899-causes-of-fatigue-and-a-racing-heart/.

[Accessed: 07-April-2018].

51

12. livestrong.com, ‘What Is a Normal Heart Rate While Sleeping?’, 2017, [Online].

Available:https://www.livestrong.com/article/105256-normal-heart-rate-sleeping/.

[Accessed: 07-April-2018].

13. Chonowski, K. (2017, December 26). Top Ten Things to Know About the Raspberry

Pi 3. Retrieved from https://www.arrow.com/en/research-and-events/articles/top-ten-

things-to-know-about-the-raspberry-pi-3[Accessed: 26-February-2018]

14. Raspberry Pi 3 is out now! Specs, benchmarks & more. (2017, June 02). Retrieved

from https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-

benchmarks/[Accessed: 26-February-2018]

15. Raspberry Pi GPIO Pinout. (n.d.). Retrieved from https://pinout.xyz/[Accessed: 26-

February-2018]

16. Raspberry Pi FAQs - Frequently Asked Questions. (n.d.).

Retrievedfromhttps://www.raspberrypi.org/help/faqs/#powerReqs[Accessed: 26-

February-2018]

17. Best Operating Systems for Raspberry Pi 2 & 3 | Top 10 OS List. (2017, September

20). Retrieved from https://www.raspberrypistarterkits.com/products/operating-

systems-raspberry-pi/[Accessed: 26-February-2018]

18. ModMyPi | Raspberry Pi Camera Board - Night Vision & Adjustable-Focus Lens

(5MP). (n.d.). Retrieved from https://www.modmypi.com/raspberry-

pi/camera/camera-boards/raspberry-pi-night-vision-camera[Accessed: 26-February-

2018]

19. Soukupova, T., & Cˇ ech, J. (2016). Real-Time Eye Blink Detection using Facial

Landmarks. Retrieved from https://vision.fe.uni-

lj.si/cvww2016/proceedings/papers/05.pdf.

20. https://www.pyimagesearch.com/2017/10/23/raspberry-pi-facial-landmarks-

drowsiness-detection-with-opencv-and-dlib/

21. tutorials-raspberrypi.com, ‘Raspberry Pi heartbeat/pulse measuring’, [Online].

Available:https://tutorials-raspberrypi.com/raspberry-pi-heartbeat-pulse-measuring/.

[Accessed: 07-April-2018].

22. github.com, ‘Pulse sensor showing BPM 150+’, 2017, [Online]. Available:

https://github.com/WorldFamousElectronics/PulseSensor_Amped_Arduino/issues/60

. [Accessed: 07-April-2018].

52

23. github.com, ‘Detecting BPM without touching the sensor’, 2015, [Online].

Available:https://github.com/WorldFamousElectronics/PulseSensor_Amped_Arduino

/issues/13 . [Accessed: 07-April-2018].

24. B. Thomas, and G. Ashutosh, “Wireless Sensor Embedded Steering Wheel For Real

Time Monitoring Of Driver Fatigue Detection” in Proc. of the Intl. Conf. on

Advances in Computer Science and Electronics Engineering, 2014

25. B.G.Lee, Jae-H. Park, C.C.Pu, and Wan-Y.Chung, “Smartwatch-Based Driver

Vigilance Indicator WithKernel-Fuzzy-C-Means-Wavelet Method” in IEEE sensors

journal, vol.16 ,no.1 ,Jan.2016

26. http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-

statistics[Accessed: 11-April-2018].

27. G. Rebolledo-Mendez, A. Reyes, S. Paszkowicz, M. C. Domingo, and L. Skrypchuk,

“Developing a Body Sensor Network to Detect Emotions During Driving,” in IEEE

transaction on intelligent transport systems, vol. 15, no. 4, Aug. 2014

28. National Highway Traffic Safety Administration. Drunk Driving. [online]. Available:

https://www.nhtsa.gov/risky-driving/drunk-driving [Accessed 11-April-2018]

29. World Health Oraganization. Road Traffic Injuries. (2018). Available [Online]:

http://www.who.int/mediacentre/factsheets/fs358/en/ [Accessed: 11-April-2018]

30. Angelica Reyes-Muñoz 1’*, Mari Carmen Domingo 2, Marco Antonio López-Trinidad

3 and José Luis Delgado 3 “Integration of Body Sensor Networks and Vehicular Ad-

hoc Networks for Traffic Safety”. Retrieved from http://www.mdpi.com/1424-

8220/16/1/107

31. D. Sam, E. Evangelin, and Dr. V. Cyril Raj, “A novel idea to improve pedestrian

safety in Black Spots using a Hybrid VANETof vehicular and body sensors” in

International Conference on Innovation Information in Computing Technologies,

2015

53

APPENDIX

a. Source code for eye blink detection and heart rate detection using Raspberry Pi,

see [20]

USAGE
python pi_detect_drowsiness.py --cascade
haarcascade_frontalface_default.xml --shape-predictor
shape_predictor_68_face_landmarks.dat
python pi_detect_drowsiness.py --cascade
haarcascade_frontalface_default.xml --shape-predictor
shape_predictor_68_face_landmarks.dat --alarm 1

import the necessary packages
import sys
importos
from math import fabs
#sys.path.append('/home/pi/Adafruit_Python_MCP3008/examples/')
frompulsesensor import Pulsesensor

fromimutils.video import VideoStream
fromimutils import face_utils
importnumpy as np
importargparse
importimutils
import time
importdlib
import cv2
importRPi.GPIO as GPIO
from time import sleep

#---------------------------CONFIGURATION FOR HEARTBEAT SENSOR---------

p = Pulsesensor() #The class that reads the value from ADC
p.startAsyncBPM() #Start reading the value periodically in a different
thread

buzzer_pin=18 #Pin number to which the buzzer is connected [BCM,
Raspberry Pi Model B]
led_pin=14 #Pin number to which the LED light is connected. It remains
on when the eyes are closed

min_bpm = 50 #Minimum BPM threshold below which the buzzer will sound
max_bpm = 200 #mum BPM threshold above which the buzzer will sound

#This parameters filter noise value by accepting fixed number of BPM
values
#which exists within a valid range

last_bpm = 0 #The Last BPM read from the Sensor class
bpm_in_range = 0 #Number of BPM value detected which is within the
range
bpm_max_val = 3 #Number of consecutive BPM values that must exist
within a valid range

54

#Maximum difference between last value read and current value read
range_val = 20 #Maximum difference between last and current BPM value
that validates range
processing = False #The detected BPM value was obtained while
calculating BPM or from the sensor

#---------------------------CONFIGURATION FOR HEARTBEAT SENSOR---------

GPIO.setmode(GPIO.BCM)
GPIO.setup(24, GPIO.OUT)
GPIO.setup(buzzer_pin,GPIO.OUT)
GPIO.setup(led_pin, GPIO.OUT)

#--------------------------FUNCTIONS OF HEARTBEAT SENSOR---------------

#---------------Functions for controlling the buzzer---------------
def cleanup():
GPIO.cleanup()
defbuzzer_on():
ifGPIO.input(buzzer_pin) == 0:
GPIO.output(buzzer_pin, GPIO.HIGH)
time.sleep(1)
defbuzzer_off():
ifGPIO.input(buzzer_pin) == 1:
GPIO.output(buzzer_pin, GPIO.LOW)

deflight_on():
ifGPIO.input(led_pin) == 0:
GPIO.output(led_pin, GPIO.HIGH)
time.sleep(1)
deflight_off():
ifGPIO.input(led_pin) == 1:
GPIO.output(led_pin, GPIO.LOW)
#--------------------------FUNCTIONS OF HEARTBEAT SENSOR---------------

#---------------Test Buzzer-----------------------
#print "TESTING BUZZER. TURNING ON THE BUZZER"
#GPIO.output(buzzer_pin, GPIO.HIGH)
#time.sleep(2)
#print "TESTING BUZZER. TURNING OFF THE BUZZER"
#GPIO.output(buzzer_pin, GPIO.LOW)

defeuclidean_dist(ptA, ptB):
 # compute and return the euclidean distance between the two
 # points
 returnnp.linalg.norm(ptA - ptB)

defeye_aspect_ratio(eye):
 # compute the euclidean distances between the two sets of
 # vertical eye landmarks (x, y)-coordinates
 A = euclidean_dist(eye[1], eye[5])
 B = euclidean_dist(eye[2], eye[4])

 # compute the euclidean distance between the horizontal

55

 # eye landmark (x, y)-coordinates
 C = euclidean_dist(eye[0], eye[3])

 # compute the eye aspect ratio
 ear = (A + B) / (2.0 * C)

 # return the eye aspect ratio
 return ear

construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-c", "--cascade", required=True,
 help = "path to where the face cascade resides")
ap.add_argument("-p", "--shape-predictor", required=True,
 help="path to facial landmark predictor")
ap.add_argument("-a", "--alarm", type=int, default=0,
 help="boolean used to indicate if TraffHat should be used")
args = vars(ap.parse_args())

check to see if we are using GPIO/TrafficHat as an alarm
ifargs["alarm"] > 0:
 fromgpiozero import TrafficHat
 th = TrafficHat()
 print("[INFO] using TrafficHat alarm...")

define two constants, one for the eye aspect ratio to indicate
blink and then a second constant for the number of consecutive
frames the eye must be below the threshold for to set off the
alarm
EYE_AR_THRESH = 0.2
EYE_AR_CONSEC_FRAMES = 6

initialize the frame counter as well as a boolean used to
indicate if the alarm is going off
COUNTER = 0
ALARM_ON = False

load OpenCV'sHaar cascade for face detection (which is faster than
dlib's built-in HOG detector, but less accurate), then create the
facial landmark predictor
print("[INFO] loading facial landmark predictor from " +
str(args["cascade"]))
detector = cv2.CascadeClassifier(args["cascade"])
predictor = dlib.shape_predictor(args["shape_predictor"])

grab the indexes of the facial landmarks for the left and
right eye, respectively
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]

start the video stream thread
print("[INFO] starting video stream thread...")
#vs = VideoStream(src=0).start()
vs = VideoStream(usePiCamera=True).start()
time.sleep(1.0)

loop over frames from the video stream
while True:

56

print "Running"
light_off()
buzzer_off()
 # grab the frame from the threaded video file stream, resize
 # it, and convert it to grayscale
 # channels)
 #time.sleep(0.1)
 frame = vs.read()
frame = imutils.rotate(frame, 180)
 frame = imutils.resize(frame, width=450)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
try:
 # detect faces in the grayscale frame
 rects = detector.detectMultiScale(gray, scaleFactor=1.1,
 minNeighbors=5, minSize=(30, 30),
 flags=cv2.CASCADE_SCALE_IMAGE)
 # loop over the face detections
 for (x, y, w, h) in rects:
 # construct a dlib rectangle object from the Haar cascade
 # bounding box
 rect = dlib.rectangle(int(x), int(y), int(x + w),
 int(y + h))

 # determine the facial landmarks for the face region, then
 # convert the facial landmark (x, y)-coordinates to a NumPy
 # array
 shape = predictor(gray, rect)
 shape = face_utils.shape_to_np(shape)

 # extract the left and right eye coordinates, then use the
 # coordinates to compute the eye aspect ratio for both eyes
 leftEye = shape[lStart:lEnd]
 rightEye = shape[rStart:rEnd]
 leftEAR = eye_aspect_ratio(leftEye)
 rightEAR = eye_aspect_ratio(rightEye)

 # average the eye aspect ratio together for both eyes
 ear = (leftEAR + rightEAR) / 2.0

 # compute the convex hull for the left and right eye, then
 # visualize each of the eyes
 leftEyeHull = cv2.convexHull(leftEye)
 rightEyeHull = cv2.convexHull(rightEye)
 cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
 cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)

 # check to see if the eye aspect ratio is below the blink
 # threshold, and if so, increment the blink frame counter
 if ear < EYE_AR_THRESH:
 COUNTER += 1

 # if the eyes were closed for a sufficient number of
 # frames, then sound the alarm
 if COUNTER >= EYE_AR_CONSEC_FRAMES:
 # if the alarm is not on, turn it on
 if not ALARM_ON:
 ALARM_ON = True

57

 # check to see if the TrafficHat buzzer
should
 # be sounded
 ifargs["alarm"] > 0:
 th.buzzer.blink(0.1, 0.1, 10,
 background=True)

 # draw an alarm on the frame
 cv2.putText(frame, "DROWSINESS ALERT!", (10,
30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
 #GPIO.output(24, 1)
print "-----------EYES CLOSED!!!!!!!!!!!!!!!!------------------------"
 #------------------------DETECTION OF
HEARTBEAT PULS-------------------------
 #buzzer_off()
light_on()
bpm = p.BPM
if bpm == 0:
processing = False
else:
processing = True
print "Difference: " + str(fabs(bpm - last_bpm))
iffabs(bpm-last_bpm) <= range_val:
ifbpm_in_range>= bpm_max_val:
bpm_in_range = bpm_max_val - 1
else:
bpm_in_range = bpm_in_range + 1
bpm = 0
elif bpm != 0:
last_bpm = bpm
bpm_in_range = 0
bpm = 0

 p.BPM = 0
print "Last BPM: " + str(last_bpm)
print "No. of BPM in range: " + str(bpm_in_range)
if bpm > 0:
print("----------BPM: %d----------" % bpm)
if bpm <min_bpm or bpm >max_bpm:
buzzer_on()
else:
if processing:
print("----------Calculating BPM----------")
else:
print("----------No Heartbeat found----------")
processing = False

 #-----------------------------DETECTION OF HEARTBEAT PULSE-

 # otherwise, the eye aspect ratio is not below the blink
 # threshold, so reset the counter and alarm
 else:
 COUNTER = 0
 ALARM_ON = False
 #GPIO.output(24, 0)
 #light_off()

58

 # draw the computed eye aspect ratio on the frame to help
 # with debugging and setting the correct eye aspect ratio
 # thresholds and frame counters
 cv2.putText(frame, "EAR: {:.3f}".format(ear), (300, 30),
 cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

 # show the frame
 cv2.imshow("Frame", frame)
 # if the `q` key was pressed, break from the loop
exceptKeyboardInterrupt:
print "Exiting"
break
 #vs.stop()
 #os._exit(1)
except:
print "Error"
 #vs.stop()
 #os._exit(1)
break
 key = cv2.waitKey(1) & 0xFF

 # if the `q` key was pressed, break from the loop
 if key == ord("q"):
 break

do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
os._exit(1)

59

b. Source code for heart beat detection using Arduino, see [8]

// Function: This program can be used to measure heart rate, the lowest
pulse in the program be set to 30.

// Use an external interrupt to measure it.

// Hardware: Grove - Ear-clip Heart Rate Sensor, Grove - Base Shield,
Grove - LED

// Arduino IDE: Arduino-1.0

// Author: FrankieChu

// Date: Jan 22, 2013

// Version: v1.0

// by www.seeedstudio.com

#define LED 11//indicator, Grove - LED is connected with D4 of Arduino

booleanled_state = LOW;//state of LED, each time an external interrupt

 //will change the state of LED

unsigned char counter;

unsigned long temp[21];

unsigned long sub;

booldata_effect=true;

unsignedintheart_rate;//the measurement result of heart rate

constintmax_heartpluse_duty = 2000;//you can change it follow your
system's request.

 //2000 meams 2 seconds. System return error

 //if the duty overtrip 2 second.

void setup()

{

pinMode(LED, OUTPUT);

Serial.begin(9600);

Serial.println("Device Starting...");

delay(5000);

arrayInit();

Serial.println("Heart rate test begin.");

attachInterrupt(0, interrupt, RISING);//set interrupt 0,digital port 2

60

}

void loop()

{

 //digitalWrite(LED, led_state);//Update the state of the indicator

}

/*Function: calculate the heart rate*/

void sum()

{

if(data_effect)

 {

heart_rate=1200000/(temp[20]-temp[0]);//60*20*1000/20_total_time

Serial.print("Heart_rate_is:\t");

Serial.println(heart_rate);

if(heart_rate< 85)

 {

Serial.println("Buzzer ON");

digitalWrite(LED, HIGH);

delay(1000);

 }

else

 {

Serial.println("Buzzer OFF");

digitalWrite(LED, LOW);

 }

 }

data_effect=1;//sign bit

}

/*Function: Interrupt service routine.Get the sigal from the external
interrupt*/

void interrupt()

{

temp[counter]=millis();

61

Serial.println(counter,DEC);

 //Serial.println(temp[counter]);

switch(counter)

 {

case 0:

sub=temp[counter]-temp[20];

 //Serial.println(sub);

break;

default:

sub=temp[counter]-temp[counter-1];

 //Serial.println(sub);

break;

 }

if(sub>max_heartpluse_duty)//set 2 seconds as max heart pluse duty

 {

data_effect=0;//sign bit

counter=0;

Serial.println("Heart rate measure error,test will restart!");

arrayInit();

 }

if (counter==20&&data_effect)

 {

counter=0;

sum();

 }

else if(counter!=20&&data_effect)

counter++;

else

 {

counter=0;

data_effect=1;

 }

62

}

/*Function: Initialization for the array(temp)*/

voidarrayInit()

{

for(unsigned char i=0;i < 20;i ++)

 {

temp[i]=0;

 }

temp[20]=millis();

}

