Show simple item record

dc.contributor.advisorMostakim, Moin
dc.contributor.authorWasi, Ahamed Al
dc.contributor.authorFahim, Ezazul Haque
dc.contributor.authorInova, Nishat Tasnim
dc.contributor.authorFahim, Abdullah Al
dc.contributor.authorPreeti, Taghrid Tahani
dc.date.accessioned2024-05-20T03:11:56Z
dc.date.available2024-05-20T03:11:56Z
dc.date.copyright©2024
dc.date.issued2024
dc.identifier.otherID: 21301745
dc.identifier.otherID: 17101266
dc.identifier.otherID: 18101112
dc.identifier.otherID: 19101567
dc.identifier.otherID: 19301189
dc.identifier.urihttp://hdl.handle.net/10361/22878
dc.descriptionThis thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2024.en_US
dc.descriptionCataloged from PDF version of thesis.
dc.descriptionIncludes bibliographical references (pages 53-54).
dc.description.abstractThis research introduces a hybrid recommendation system through sentiment analysis for Bangla long textual sentences. Social media, as a vast source of opinions, can be harnessed through sentiment analysis using deep learning techniques, overcoming language barriers and improving recommendation systems. The paper addresses challenges in Bangla sentiment analysis, such as the scarcity of datasets and linguistic nuances, proposing a model that combines LSTM, Bi-LSTM, and CNN for optimized text sequence classification. The study explores six neural network models (ANN, CNN, LSTM,Bi-LSTM,BERT,RCNN) overcoming obstacles in dataset quality and distribution. Challenges in data collection, model selection, and computational resources are discussed. The paper concludes with the acknowledgment of the evolving frontier of sentiment analysis in Bangla text, emphasizing the transformative potential with continued efforts to expand datasets and refine algorithms.en_US
dc.description.statementofresponsibilityAhamed Al Wasi
dc.description.statementofresponsibilityEzazul Haque Fahim
dc.description.statementofresponsibilityNishat Tasnim Inova
dc.description.statementofresponsibilityAbdullah Al Fahim
dc.description.statementofresponsibilityTaghrid Tahani Preeti
dc.format.extent66 pages
dc.language.isoenen_US
dc.publisherBrac Universityen_US
dc.rightsBrac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectCNNen_US
dc.subjectEmbeddingen_US
dc.subjectLSTMen_US
dc.subjectBiLSTMen_US
dc.subjectVectorizationen_US
dc.subjectTokenizationen_US
dc.subjectBERTen_US
dc.subject.lcshNeural networks (Computer science)
dc.subject.lcshDeep learning (Machine learning)
dc.titleHybrid recommendation system of intelligent captioning using deep learning networksen_US
dc.typeThesisen_US
dc.contributor.departmentDepartment of Computer Science and Engineering, Brac University
dc.description.degreeB.Sc in Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record