Show simple item record

dc.contributor.advisorSadeque, Farig Yousuf
dc.contributor.authorRahman, Md.Sakibur
dc.contributor.authorAhmed, Kaosar
dc.contributor.authorNafis, Tanvir Alam
dc.contributor.authorHossain, Md. Ridwan
dc.contributor.authorMajumder, Swapnil
dc.date.accessioned2023-12-06T05:46:28Z
dc.date.available2023-12-06T05:46:28Z
dc.date.copyright2023
dc.date.issued2023-05
dc.identifier.otherID 19101319
dc.identifier.otherID 19101328
dc.identifier.otherID 19101575
dc.identifier.otherID 19101305
dc.identifier.otherID 19101572
dc.identifier.urihttp://hdl.handle.net/10361/21929
dc.descriptionThis thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.en_US
dc.descriptionCataloged from PDF version of thesis.
dc.descriptionIncludes bibliographical references (pages 47-48).
dc.description.abstractObesity, the excessive accumulation of body fat, is a significant health risk associated with various detrimental impacts, including the development of chronic diseases, metabolic abnormalities, joint problems, sleep apnea, mental health issues, repro- ductive health difficulties, respiratory disorders, liver disease, and surgical risks. The emergence of machine learning, which offers potent analytical tools and high- performance computing capabilities, has revolutionised the interdisciplinary health industry. Through improved understanding and therapeutic interventions, this tech- nology offers opportunities to address and overcome the severe harm that obesity causes. This thesis aims to develop an automated system that utilises machine learning techniques to predict obesity based on different eating habits and relevant features. A comprehensive research methodology will be presented to categorise risk factors associated with an unhealthy lifestyle using machine learning. To effectively handle and anticipate various types of obesity, our AI system will analyse user data, including height, weight, daily food consumption habits, and more. The system will consider both weight-related and non-weight-related variables, as well as other fea- tures, to provide comprehensive insights into this health condition. Additionally, our technology will assist individuals by accurately classifying different forms of obesity, such as overweight I, overweight II, and beyond. Coefficient and correlation matri- ces have been utilised in the analysis to further enhance predictability. Therefore, by employing our obesity prediction algorithm, individuals can obtain estimates re- garding various levels of obesity. Empowered with this information, individuals can actively improve their health status by modifying their eating habits in accordance with their specific obesity condition. The primary objective of this research is to include and exclude features associated with predicting different levels of obesity and to see how this affects the accuracy scores. A secondary dataset and a range of machine learning techniques were employed to accomplish this goal, resulting in improved predictability and accuracy of the obesity-related outcomes.en_US
dc.description.statementofresponsibilityMd.Sakibur Rahman
dc.description.statementofresponsibilityKaosar Ahmed
dc.description.statementofresponsibilityTanvir Alam Nafis
dc.description.statementofresponsibilityMd. Ridwan Hossain
dc.description.statementofresponsibilitySwapnil Majumder
dc.format.extent48 pages
dc.language.isoenen_US
dc.publisherBrac Universityen_US
dc.rightsBrac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectSupervisionen_US
dc.subjectUnsustainable lifestyleen_US
dc.subjectAI systemen_US
dc.subjectSelf monitoringen_US
dc.subjectPre-existing diseasesen_US
dc.subject.lcshMachine learning
dc.subject.lcshArtificial intelligence
dc.titlePredicting obesity: a comparative analysis of machine learning models incorporating different featuresen_US
dc.typeThesisen_US
dc.contributor.departmentDepartment of Computer Science and Engineering, Brac University
dc.description.degreeB.Sc. in Computer Science and Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record