Show simple item record

dc.contributor.advisorReza, Tanzim
dc.contributor.advisorRahman, Rafeed
dc.contributor.advisorParvez, Mohammad Zavid
dc.contributor.authorEshan, M Sakib Osman
dc.contributor.authorNafi, Md. Naimul Huda
dc.contributor.authorSakib, Nazmus
dc.contributor.authorMaruf, Md. Ahnaf Morshed
dc.contributor.authorEmon, Mehedi Hasan
dc.date.accessioned2023-12-05T06:03:10Z
dc.date.available2023-12-05T06:03:10Z
dc.date.copyright2023
dc.date.issued2023-05
dc.identifier.otherID 19101412
dc.identifier.otherID 19101400
dc.identifier.otherID 19101404
dc.identifier.otherID 20101630
dc.identifier.otherID 19301234
dc.identifier.urihttp://hdl.handle.net/10361/21916
dc.descriptionThis thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.en_US
dc.descriptionCataloged from PDF version of thesis.
dc.descriptionIncludes bibliographical references (pages 48-50).
dc.description.abstractFederated learning is a distributed machine learning paradigm that enables multiple clients to collaboratively train a global model without sharing their local data. How- ever, federated learning is vulnerable to adversarial attacks, where malicious clients can manipulate their local updates to degrade the performance or compromise the privacy of the global model. To mitigate this problem, this paper proposes a novel method that reduces the influence of malicious clients based on their confidence. We conducted our experiments on the Retinal OCT dataset. The proposed technique significantly improves the global model’s precision, recall, F1 score, and area under the receiver operating characteristic curve (AUC-ROC). Precision rises from 0.869 to 0.906, recall rises from 0.836 to 0.889, F1 score rises from 0.852 to 0.898, and AUC-ROC rises from 0.836 to 0.889.en_US
dc.description.statementofresponsibilityM Sakib Osman Eshan
dc.description.statementofresponsibilityMd. Naimul Huda Nafi
dc.description.statementofresponsibilityNazmus Sakib
dc.description.statementofresponsibilityMd. Ahnaf Morshed Maruf
dc.description.statementofresponsibilityMehedi Hasan Emon
dc.format.extent50 pages
dc.language.isoenen_US
dc.publisherBrac Universityen_US
dc.rightsBrac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectComputer visionen_US
dc.subjectFederated learningen_US
dc.subjectDeep learningen_US
dc.subjectHealthcareen_US
dc.subjectData poisoningen_US
dc.subjectRetinal OCTen_US
dc.subject.lcshCognitive learning theory
dc.subject.lcshArtificial intelligence
dc.subject.lcshMachine learning
dc.subject.lcshFederated database systems
dc.titleA secured federated learning system leveraging confidence score to identify retinal diseaseen_US
dc.typeThesisen_US
dc.contributor.departmentDepartment of Computer Science and Engineering, Brac University
dc.description.degreeB.Sc. in Computer Science and Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record