Show simple item record

dc.contributor.advisorReza, Tanzim
dc.contributor.advisorHossain, Dr. Muhammad Iqbal
dc.contributor.authorAl Rakin, Abdullah
dc.contributor.authorIqbal Majumder, MD. Akib
dc.contributor.authorKabir, Mohammad Farhan
dc.contributor.authorArafin, Rudmila
dc.date.accessioned2023-04-05T09:13:05Z
dc.date.available2023-04-05T09:13:05Z
dc.date.copyright2022
dc.date.issued2022-09
dc.identifier.otherID: 21341032
dc.identifier.otherID: 18201142
dc.identifier.otherID: 19101530
dc.identifier.otherID: 18301105
dc.identifier.urihttp://hdl.handle.net/10361/18089
dc.descriptionThis thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.en_US
dc.descriptionCataloged from PDF version of thesis.
dc.descriptionIncludes bibliographical references (pages 30-32).
dc.description.abstractn the medical industry, the availability of precise data limits the scope of deep learn ing applications. Institutional norms restrict hospitals and research facilities owing to privacy concerns. Therefore, data collection from such sources is unfeasible. Fed erated Learning (FL) is promising in this scenario, but it does not guarantee data privacy. In this paper, we will use Deep Convolutional Generative Adversarial Net work (DCGAN) and Wasserstein Generative Adversarial Network (WGAN) on an OCT dataset to demonstrate that the Federated GAN (FedGAN) architecture fails in these networks due to its innate structure. Additionally, introduce a Distributed Generative Adversarial Network (Distributed GAN) that collects and distributes the weights of each temporary GANs on the client side to the main server to tackle the mode collapse risk of non-iid data. This conserves the optimal distribution of data to all private discriminators while protecting sensitive individual data.en_US
dc.description.statementofresponsibilityAbdullah Al Rakin
dc.description.statementofresponsibilityMD. Akib Iqbal Majumder
dc.description.statementofresponsibilityMohammad Farhan Kabir
dc.description.statementofresponsibilityRudmila Arafin
dc.format.extent32 pages
dc.language.isoenen_US
dc.publisherBrac Universityen_US
dc.rightsBrac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectGANen_US
dc.subjectGeneratoren_US
dc.subjectDiscriminatoren_US
dc.subjectFederated Learningen_US
dc.subjectOCTen_US
dc.subjectDeep Convolutional Generative Adversarial Network (DCGAN)en_US
dc.subjectWasserstein GAN (WGAN)en_US
dc.subjectDistributed GANen_US
dc.subjectMode Collapseen_US
dc.subjectNon-iid Data.en_US
dc.subject.lcshNatural language processing (Computer science)
dc.subject.lcshMachine learning
dc.titleA GAN-based federated learning architecture for data augmentation of medical imagesen_US
dc.typeThesisen_US
dc.contributor.departmentDepartment of Computer Science and Engineering, Brac University
dc.description.degreeB. Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record