Show simple item record

dc.contributor.advisorAkon, Mujtahid Al-Islam
dc.contributor.advisorMostakim, Moin
dc.contributor.authorMahtab, Motahar
dc.contributor.authorHaque, Monirul
dc.contributor.authorHasan, Mehedi
dc.date.accessioned2022-08-28T10:07:16Z
dc.date.available2022-08-28T10:07:16Z
dc.date.copyright2022
dc.date.issued2022-01
dc.identifier.otherID 18301023
dc.identifier.otherID 18301055
dc.identifier.otherID 18301052
dc.identifier.urihttp://hdl.handle.net/10361/17128
dc.descriptionThis thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022en_US
dc.descriptionCataloged from PDF version of thesis.
dc.descriptionIncludes bibliographical references (pages 38-41).
dc.description.abstractThe art of luring us to click on certain content by exploiting our curiosity is recognized as clickbait. Clickbait might be aggravating at times because it is misleading. Several studies have worked on the detection of clickbait in online platforms as we transition from the Information Age to the Age of AI. Nonetheless, predicting clickbait in Bengali new articles is still a work in progress. Here, we use deep learning, the process of extracting pattern or feature from data using neural networks, to determine whether an online Bengali article is clickbait or not. We scrape data from online Bengali news articles, manually annotate them and employ deep nerural network architectures like CNN, Bi-LSTM,Bi-GRU and pre-trained fine-tuning language representation approaches –i.e. BERT, BanglaBERT, M-BERT to provide inputs for various types of classifiers. Finally, we evaluate the classifiers’ outputs and choose the best outcome to predict clickbait in Bengali news articles.en_US
dc.description.statementofresponsibilityMD. Motahar Mahtab
dc.description.statementofresponsibilityMehedi Hasan
dc.description.statementofresponsibilityMonirul Haque
dc.format.extent41 pages
dc.language.isoenen_US
dc.publisherBrac Universityen_US
dc.rightsBrac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectClickbaiten_US
dc.subjectDeep learningen_US
dc.subjectBengalien_US
dc.subjectOnline newsen_US
dc.subjectPredictionen_US
dc.subjectBinary classificationen_US
dc.subjectBERTen_US
dc.subject.lcshCognitive learning theory (Deep learning)
dc.subject.lcshNeural networks (Computer science)
dc.titleBanglaBait: using transformers, neural networks & statistical classifiers to detect clickbaits in New Bangla Clickbait Dataseten_US
dc.typeThesisen_US
dc.contributor.departmentDepartment of Computer Science and Engineering, Brac University
dc.description.degreeB. Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record