Show simple item record

dc.contributor.advisorAlam, Md. Golam Rabiul
dc.contributor.advisorShakil, Arif
dc.contributor.authorChakraborty, Dhruba
dc.contributor.authorRabbi, Mahima
dc.contributor.authorHossain, Maisha
dc.contributor.authorKhaled, Saraf Noor
dc.contributor.authorOishi, Maria Khanom
dc.date.accessioned2022-07-31T05:51:45Z
dc.date.available2022-07-31T05:51:45Z
dc.date.copyright2022
dc.date.issued2022-01
dc.identifier.otherID 18101028
dc.identifier.otherID 18101563
dc.identifier.otherID 18201184
dc.identifier.otherID 18141009
dc.identifier.otherID 17301029
dc.identifier.urihttp://hdl.handle.net/10361/17045
dc.descriptionThis thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.en_US
dc.descriptionCataloged from PDF version of thesis.
dc.descriptionIncludes bibliographical references (pages 29-30).
dc.description.abstractContent centric network is a state-of-the-art networking architecture for content distribution and content caching. However, it is inefficient to cache every content in each network device. The modern edge computing technology opens the door for content caching in the edge of the network. However, still we have to decide which contents we should cache and which content we should replace from the cache. Deep learning based predictive analytics can play an important role in selecting contents for caching purposes. In this research, we will use Long shortterm memory(LSTM) based Recurrent Neural Network(RNN) for decentralized content caching at the hierarchical edge of the network.en_US
dc.description.statementofresponsibilityDhruba Chakraborty
dc.description.statementofresponsibilityMahima Rabbi
dc.description.statementofresponsibilityMaisha hossain
dc.description.statementofresponsibilitySaraf Noor Khaled
dc.description.statementofresponsibilityMaria Khanom Oishi
dc.format.extent30 pages
dc.language.isoenen_US
dc.publisherBrac Universityen_US
dc.rightsBrac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectContenten_US
dc.subjectCachingen_US
dc.subjectEdge networkingen_US
dc.subjectDeep learningen_US
dc.subjectRecurrent Neural Network(RNN)en_US
dc.subjectLong short-term memory(LSTM)en_US
dc.subjectDecentralizeden_US
dc.subjectHierarchicalen_US
dc.subject.lcshCognitive learning theory (Deep learning)
dc.subject.lcshNeural networks (Computer science)
dc.titleDeep learning based predictive analytics for decentralized content caching in hierarchical edge networksen_US
dc.typeThesisen_US
dc.contributor.departmentDepartment of Computer Science and Engineering, Brac University
dc.description.degreeB. Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record