Show simple item record

dc.contributor.advisorAzad, A. K. M. Abdul Malek
dc.contributor.authorShrestha, Soptorsi Paul
dc.contributor.authorAmin, Md. Hasnatul
dc.contributor.authorFaisal, MD. Amir
dc.contributor.authorAlam, Syed Md. Jawadul
dc.date.accessioned2021-11-15T06:11:53Z
dc.date.available2021-11-15T06:11:53Z
dc.date.copyright2021
dc.date.issued2021-09
dc.identifier.otherID 17221001
dc.identifier.otherID 18121107
dc.identifier.otherID 17221008
dc.identifier.otherID 18121064
dc.identifier.urihttp://hdl.handle.net/10361/15613
dc.descriptionThis thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2021.en_US
dc.descriptionCataloged from PDF version of thesis.
dc.descriptionIncludes bibliographical references (pages 81-88).
dc.description.abstractMyocardial Infarction (MI) is a crucially leading reasons of huge mortality and modality all over the world. The prior reasons for most of the demise are delayed diagnosis and disrupted medical attention. Our endeavor objectifies developing a portable system to detect MI instantly and incorporating a forewarning system using GSM and GPS module. The paper is focusing on the warning system delivering text messages containing classified MI information. Initially, the dataset has been preprocessed using Standard Scalar method and the preprocessed data has been trained and tested using K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM) and Naive Bayes (NB) to distinguish the MI affected ECG from normal ECG signal. The aim of this project is to avail immediate attention to a MI affected patient to ensure medical deliberation rapidly. Proper activation of the system will minimize the deadly effect of MI and hence reduce the mortality rate due to MI.en_US
dc.description.statementofresponsibilitySoptorsi Paul Shrestha
dc.description.statementofresponsibilityMd. Hasnatul Amin
dc.description.statementofresponsibilityMD. Amir Faisal
dc.description.statementofresponsibilitySyed Md. Jawadul Alam
dc.format.extent126 pages
dc.language.isoenen_US
dc.publisherBrac Universityen_US
dc.rightsBrac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectMyocardial infarctionen_US
dc.subjectGSMen_US
dc.subjectGPSen_US
dc.subjectText messageen_US
dc.subjectStandard scalar methoden_US
dc.subjectK-Nearest Neighboren_US
dc.subjectRandom foresten_US
dc.subjectSupport Vector Machineen_US
dc.subjectNaive bayesen_US
dc.subjectECGen_US
dc.subjectMortality rateen_US
dc.subject.lcshMyocardial infarction
dc.subject.lcshMedicine--Research
dc.subject.lcshGlobal system for mobile communications
dc.titleAutomatic classified myocardial infarction detection using machine learning and forewarning system with location of the patient using GSM moduleen_US
dc.typeThesisen_US
dc.contributor.departmentDepartment of Electrical and Electronic Engineering, Brac University
dc.description.degreeB. Electrical and Electronic Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record